本發明是有關於一種復熱器效率評估方法與復熱器效率診斷方法,特別是有關於一種用於回收廢熱之復熱器的效率評估與診斷方法。The invention relates to a reheater efficiency evaluation method and a reheater efficiency diagnosis method, in particular to an efficiency evaluation and diagnosis method for recovering waste heat reheater.
復熱器為一種熱交換器,其係用以回收廢熱。一般而言,復熱器係裝設於燃燒設備的排氣端,以進行高溫廢熱的回收。熱交換器的形式主要有殼管式(shell and tube)、板式(plate)、絕熱輪(adiabatic wheel)、板式鰭片式(plate fin)等。根據熱流體的流動方向,熱交換器又可分成順流式和逆流式兩大類。使用於廢熱回收的熱交換器大多採用逆流式殼管式熱交換器,其係利用高溫煙氣中的能量來加熱工作流體,例如水、油或是氣體等,以達到廢熱回收之目的。The reheater is a heat exchanger that is used to recover waste heat. In general, the reheater is installed at the exhaust end of the combustion equipment for high temperature waste heat recovery. The heat exchanger is mainly in the form of a shell and tube, a plate, an adiabatic wheel, a plate fin, and the like. According to the flow direction of the hot fluid, the heat exchanger can be divided into two types, a downstream type and a counter flow type. Most of the heat exchangers used for waste heat recovery use a counter-flow shell-and-tube heat exchanger that uses energy from high-temperature flue gas to heat a working fluid, such as water, oil or gas, for waste heat recovery purposes.
目前復熱器在設計完成並安裝於現場單位後便無法由外觀或操作數據上得知復熱器的運作狀況,故僅能在燃燒設備停工時檢視復熱器之狀況。然而,對於某些燃燒設備而言,可能僅在歲修時才會停工,如此不但無法隨時掌握復熱器的狀況,也會造成歲修排程上的不確定性。At present, after the reheater is designed and installed in the field unit, the operation status of the reheater cannot be known from the appearance or operation data, so the condition of the reheater can only be checked when the combustion equipment is shut down. However, for some combustion equipment, it may only be stopped at the time of repair, so that not only can you not know the condition of the reheater at any time, but it will also cause uncertainty in the repair schedule.
另外,目前復熱效率的評估也僅於利用溫度來評估之方式,這種方式無法完整地呈現熱焓交換的行為並精確地表示出復熱效率。In addition, the current assessment of reheating efficiency is only evaluated using temperature.In this way, this approach does not fully represent the behavior of the hot exchange and accurately represents the reheating efficiency.
因此,需要一種復熱器效率評估與診斷方法,其可並精確地表達復熱器之復熱效率,並供使用者隨時掌握復熱器的效率並判斷復熱器是否出現異常。Therefore, there is a need for a reheater efficiency evaluation and diagnosis method that can accurately and accurately express the reheating efficiency of the reheater, and allows the user to grasp the efficiency of the reheater and determine whether the reheater is abnormal.
本發明之一方面是在提供於一種復熱器效率評估方法與復熱器效率診斷方法,其可根據復熱器的空氣流量、廢氣流量、熱空氣溫度、廢氣溫度等資訊來評估復熱器之效率,並判斷是否有異常發生。One aspect of the present invention is to provide a reheater efficiency evaluation method and a reheater efficiency diagnosis method, which can evaluate a reheater according to information such as air flow rate, exhaust gas flow rate, hot air temperature, and exhaust gas temperature of the reheater. Efficiency and determine if an abnormality has occurred.
根據本發明之一實施例,在此復熱器效率評估方法中,首先提供進入復熱器之空氣的空氣流量。然後,提供進入復熱器之廢氣的廢氣流量,其中此廢氣包含複數種組成氣體。接著,量測離開復熱器之熱空氣的熱空氣溫度。然後,量測進入復熱器之廢氣的廢氣含氧率以及廢氣溫度。接著,根據廢氣之氣體組成比例來計算出複數個氣體組成常數。然後,進行流量計算步驟,以根據廢氣流量、氣體組成常數以及廢氣含氧率來計算出組成氣體之流量。接著,進行廢氣熱焓計算步驟,以根據組成氣體之流量、組成氣體之比熱以及廢氣溫度來計算出組成氣體之總熱焓。然後,進行熱空氣熱焓計算步驟,以根據空氣流量、空氣之比熱以及熱空氣溫度來計算出熱空氣之空氣熱焓。接著,根據總熱焓和空氣熱焓來計算出復熱器之復熱效率。According to an embodiment of the present invention, in the reheater efficiency evaluation method, the air flow rate of the air entering the reheater is first provided. Then, an exhaust gas flow rate of the exhaust gas entering the reheater is provided, wherein the exhaust gas contains a plurality of constituent gases. Next, the hot air temperature of the hot air leaving the reheater is measured. Then, the oxygen content of the exhaust gas entering the reheater and the exhaust gas temperature are measured. Next, a plurality of gas composition constants are calculated based on the gas composition ratio of the exhaust gas. Then, a flow calculation step is performed to calculate the flow rate of the constituent gas based on the exhaust gas flow rate, the gas composition constant, and the oxygen content of the exhaust gas. Next, an exhaust gas enthalpy calculation step is performed to calculate the total enthalpy of the constituent gas based on the flow rate of the constituent gas, the specific heat of the constituent gas, and the exhaust gas temperature. Then, a hot air enthalpy calculation step is performed to calculate the air enthalpy of the hot air based on the air flow rate, the specific heat of the air, and the hot air temperature. Next, the reheating efficiency of the reheater is calculated based on the total heat and air enthalpy.
根據本發明之另一實施例,此復熱器效率診斷方法包含標準建立階段和線上診斷階段。在此標準建立階段中,首先提供進入復熱器之空氣的歷史空氣流量。然後,提供進入復熱器之廢氣的歷史廢氣流量,其中廢氣包含複數種組成氣體。接著,量測離開復熱器之熱空氣的歷史熱空氣溫度。然後,量測進入復熱器之廢氣之歷史廢氣含氧率以及歷史廢氣溫度。接著,根據廢氣之氣體組成比例來計算出氣體組成常數。然後,進行歷史流量計算步驟,以根據歷史廢氣流量、氣體組成常數以及歷史廢氣含氧率來計算出組成氣體之歷史組成氣體流量。接著,進行歷史廢氣熱焓計算步驟,以根據歷史組成氣體流量、組成氣體之複數個歷史比熱、以及歷史廢氣溫度來計算出組成氣體之歷史總熱焓。然後,進行歷史熱空氣熱焓計算步驟,以根據歷史空氣流量、空氣之歷史空氣比熱以及歷史熱空氣溫度來計算出熱空氣之歷史空氣熱焓。接著,根據歷史總熱焓和歷史空氣熱焓來計算出復熱器之復熱效率,其中復熱效率為復熱器效率標準。然後,進行線上診斷階段,以判斷復熱器是否出現異常。在此線上診斷階段中,首先提供進入復熱器之空氣之線上空氣流量。然後,提供進入復熱器之廢氣之線上廢氣流量。接著,量測離開復熱器之熱空氣之線上熱空氣溫度。然後,量測進入復熱器之廢氣之線上廢氣含氧率以及線上廢氣溫度。然後,進行線上流量計算步驟,以根據線上廢氣流量、氣體組成常數以及線上廢氣含氧率來計算出組成氣體之複數個線上組成氣體流量。接著,進行線上廢氣熱焓計算步驟,以根據線上組成氣體流量、組成氣體之線上比熱以及線上廢氣溫度來計算出組成氣體之線上總熱焓。然後,進行線上熱空氣熱焓計算步驟,以根據線上空氣流量、空氣之線上空氣比熱以及線上熱空氣溫度來計算出熱空氣之線上空氣熱焓。接著,根據線上總熱焓和線上空氣熱焓來計算出復熱器之線上復熱效率。然後,根據復熱器效率標準和線上復熱效率來判斷復熱器是否出現異常。According to another embodiment of the present invention, the reheater efficiency diagnosis methodIncludes standard setup phase and online diagnostic phase. In this standard establishment phase, the historical air flow of the air entering the reheater is first provided. Then, a historical exhaust gas flow rate of the exhaust gas entering the reheater is provided, wherein the exhaust gas contains a plurality of constituent gases. Next, the historical hot air temperature of the hot air leaving the reheater is measured. Then, the historical exhaust gas oxygen content and the historical exhaust gas temperature of the exhaust gas entering the reheater are measured. Next, the gas composition constant is calculated based on the gas composition ratio of the exhaust gas. Then, a historical flow calculation step is performed to calculate the historical constituent gas flow rate of the constituent gas based on the historical exhaust gas flow rate, the gas composition constant, and the historical exhaust gas oxygen content. Next, a historical exhaust gas enthalpy calculation step is performed to calculate a historical total enthalpy of the constituent gases based on the historical composition gas flow rate, the plurality of historical specific heats of the constituent gases, and the historical exhaust gas temperature. Then, a historical hot air enthalpy calculation step is performed to calculate the historical air enthalpy of the hot air based on historical air flow, historical air specific heat of the air, and historical hot air temperature. Then, based on the historical total enthusiasm and historical air enthusiasm to calculate the reheating efficiency of the reheater, wherein the reheating efficiency is the reheater efficiency standard. Then, an online diagnostic phase is performed to determine whether the reheater is abnormal. In this online diagnostic phase, the air flow to the air entering the reheater is first provided. Then, the flow of exhaust gas on the line of the exhaust gas entering the reheater is provided. Next, the hot air temperature on the hot air exiting the reheater is measured. Then, the oxygen content of the exhaust gas on the line of the exhaust gas entering the reheater and the temperature of the on-line exhaust gas are measured. Then, an online flow calculation step is performed to calculate a constituent gas flow rate on a plurality of lines constituting the gas based on the on-line exhaust gas flow rate, the gas composition constant, and the on-line exhaust oxygen content. Next, an online exhaust gas enthalpy calculation step is performed to form a gas based on the lineThe flow, the specific heat on the line of the constituent gases, and the temperature of the on-line exhaust gas are used to calculate the total heat enthalpy on the line that makes up the gas. Then, an on-line hot air enthalpy calculation step is performed to calculate the air enthalpy on the hot air line based on the on-line air flow rate, the air specific heat on the air line, and the hot air temperature on the line. Then, the on-line reheating efficiency of the reheater is calculated according to the total on-line heat and the on-line air enthalpy. Then, according to the reheater efficiency standard and the online reheating efficiency, it is judged whether the reheater is abnormal.
由上述說明可知,本發明實施例之復熱器效率評估方法與復熱器效率診斷方法,可根據復熱器的空氣流量、廢氣流量、熱空氣溫度、廢氣溫度等資訊來即時提供復熱器之效率值給使用者,並診斷復熱器是否產生異常,如此可讓使用者即時監控復熱器的工作狀態。It can be seen from the above description that the reheater efficiency evaluation method and the reheater efficiency diagnosis method of the embodiment of the present invention can provide the reheater according to the air flow rate, the exhaust gas flow rate, the hot air temperature, the exhaust gas temperature and the like of the reheater. The efficiency value is given to the user, and the abnormality of the reheater is diagnosed, so that the user can monitor the working state of the reheater in real time.
100‧‧‧復熱器100‧‧ ‧Reheater
110‧‧‧管排110‧‧‧ tube row
120‧‧‧冷空氣入口120‧‧‧cold air inlet
130‧‧‧熱空氣出口130‧‧‧hot air outlet
140‧‧‧廢氣通道140‧‧‧Exhaust passage
200‧‧‧復熱器效率評估方法200‧‧‧Reheater efficiency assessment method
210‧‧‧空氣流量提供步驟210‧‧‧Air flow providing steps
220‧‧‧廢氣流量提供步驟220‧‧‧Exhaust flow supply steps
230‧‧‧溫度量測步驟230‧‧‧ Temperature measurement steps
240‧‧‧廢氣量測步驟240‧‧‧Exhaust gas measurement steps
250‧‧‧常數計算步驟250‧‧‧Constant calculation steps
260‧‧‧流量計算步驟260‧‧‧Flow calculation steps
270‧‧‧廢氣熱焓計算步驟270‧‧‧Exhaust heat calculation steps
280‧‧‧熱空氣熱焓計算步驟280‧‧‧hot air enthalpy calculation steps
290‧‧‧復熱效率計算步驟290‧‧‧Reheating efficiency calculation steps
300‧‧‧復熱器效率診斷方法300‧‧‧Reheater efficiency diagnosis method
310‧‧‧標準建立階段310‧‧‧Standard establishment phase
311‧‧‧歷史空氣流量提供步驟311‧‧‧Historical air flow providing steps
312‧‧‧歷史廢氣流量提供步驟312‧‧‧ Historical exhaust gas flow providing steps
313‧‧‧歷史熱空氣溫度量測步驟313‧‧‧Historical hot air temperature measurement steps
314‧‧‧歷史廢氣量測步驟314‧‧‧ Historical exhaust gas measurement steps
315‧‧‧常數計算步驟315‧‧‧Constant calculation steps
316‧‧‧歷史流量計算步驟316‧‧‧ Historical flow calculation steps
317‧‧‧歷史廢氣熱焓計算步驟317‧‧‧ Historical exhaust gas enthalpy calculation steps
318‧‧‧歷史熱空氣熱焓計算步驟318‧‧‧Historical hot air enthalpy calculation steps
319‧‧‧歷史復熱效率計算步驟319‧‧‧Historical reheating efficiency calculation steps
320‧‧‧線上診斷階段320‧‧‧Online diagnosis stage
321‧‧‧線上空氣流量提供步驟321‧‧‧Online air flow providing steps
322‧‧‧線上廢氣流量提供步驟322‧‧‧Online exhaust flow supply steps
323‧‧‧熱空氣溫度量測步驟323‧‧‧ Hot air temperature measurement steps
324‧‧‧線上廢氣量測步驟324‧‧‧Online exhaust gas measurement steps
325‧‧‧線上流量計算步驟325‧‧‧ Online flow calculation steps
326‧‧‧線上廢氣熱焓計算步驟326‧‧‧Online exhaust heat calculation steps
327‧‧‧線上熱空氣熱焓計算步驟327‧‧‧ Online hot air enthalpy calculation steps
328‧‧‧線上復熱效率計算步驟328‧‧‧ Online reheating efficiency calculation steps
329‧‧‧判斷步驟329‧‧‧ Judgment steps
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,上文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.
第1圖係繪示根據本發明實施例之復熱器的剖面結構示意圖。1 is a schematic cross-sectional view showing a reheater according to an embodiment of the present invention.
第2圖係繪示根據本發明實施例之復熱器效率評估方法的流程示意圖。2 is a flow chart showing a method for evaluating the efficiency of a reheater according to an embodiment of the present invention.
第3a-3b圖係繪示根據本發明實施例之復熱器效率診斷方法的流程示意圖。3a-3b are schematic flow charts showing a method for diagnosing the efficiency of a reheater according to an embodiment of the present invention.
請同時參照第1圖和第2圖,第1圖係繪示根據本發明實施例之復熱器100的剖面結構示意圖,第2圖係繪示根據本發明實施例之復熱器效率評估方法200的流程示意圖。復熱器100包含複數個管排110、冷空氣入口120、熱空氣出口130以及廢氣通道140。待加熱之冷空氣係從冷空氣入口120流入復熱器100之管排110中,以利用彎曲的管排110來充分地接收外部所提供之熱能。燃燒設備所提供之高溫廢氣係從廢氣通道140進入復熱器100,並從管排110外流過,以加熱管排110中的冷空氣,使其變成熱空氣並從熱空氣出口130排出。Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 1 is a schematic cross-sectional structural view of a reheater 100 according to an embodiment of the present invention, and FIG. 2 is a diagram showing an evaluation method of reheater efficiency according to an embodiment of the present invention. Schematic diagram of the process of 200. The recuperator 100 includes a plurality of tube rows 110, a cool air inlet 120, a hot air outlet 130, and an exhaust passage 140. The cold air to be heated flows from the cold air inlet 120 into the tube row 110 of the reheater 100 to utilize the curved tube row 110 to adequately receive the externally provided thermal energy. The high temperature exhaust gas provided by the combustion apparatus enters the reheater 100 from the exhaust passage 140 and flows out of the tube row 110 to heat the cold air in the tube row 110 to be heated and discharged from the hot air outlet 130.
為了能即時獲得復熱器100的復熱效率(熱回收效率),本發明實施例提供復熱器效率評估方法200來計算復熱器100的復熱效率值。在本發明實施例之復熱器效率評估方法200中,首先進行空氣流量提供步驟210,以提供進入復熱器100之空氣的空氣流量。在本實施例中,進入復熱器100之空氣流量係由外部燃燒設備之離散控制系統(Distributed Control System;DCS)所提供,但本發明之實施例並不受限於此。在本發明之其他實施例中,進入復熱器100之空氣流量亦可從冷空氣入口120測得。In order to obtain the reheating efficiency (heat recovery efficiency) of the reheater 100 in real time, the embodiment of the present invention provides a reheater efficiency evaluation method 200 to calculate the reheating efficiency value of the reheater 100. In the reheater efficiency evaluation method 200 of the embodiment of the present invention, an air flow providing step 210 is first performed to provide an air flow rate of air entering the reheater 100. In the present embodiment, the air flow rate entering the reheater 100 is provided by a discrete control system (DCS) of the external combustion equipment, but the embodiment of the present invention is not limited thereto. In other embodiments of the invention, air flow into the recuperator 100 may also be measured from the cold air inlet 120.
在空氣流量提供步驟210之後,接著進行廢氣流量提供步驟220,以提供進入復熱器100之廢氣的廢氣流量。在本實施例中,進入復熱器100之廢氣流量亦由外部燃燒設備之離散控制系統所提供,但本發明之實施例並不受限於此。在本發明之其他實施例中,進入復熱器100之廢氣流量亦可從外部燃燒設備之廢氣出口測得。After the air flow providing step 210, an exhaust gas flow providing step 220 is then performed to provide an exhaust gas flow rate to the exhaust gas entering the reheater 100. In the present embodiment, the flow rate of the exhaust gas entering the reheater 100 is also provided by a discrete control system of the external combustion apparatus, but the embodiment of the present invention is not limited thereto. In other embodiments of the invention, the exhaust entering the reheater 100The flow rate can also be measured from the exhaust gas outlet of the external combustion equipment.
燃燒設備之廢氣主要係由氧氣、氮氣、水氣以及二氧化碳等四種氣體所組成。然而,隨著燃燒設備的種類不同,組成氣體的比例也會不同。在本實施例中,將以煉焦爐氣(Coke Oven Gas)為廢氣來舉例說明。值得注意的是,本發明實施例之復熱器效率評估方法200並不限定於煉焦爐氣,在本發明之其他實施例中,廢氣可為天然氣或燃油(重油)燃燒所產生的廢氣。The exhaust gas of the combustion equipment is mainly composed of four gases such as oxygen, nitrogen, water gas and carbon dioxide. However, the proportion of the constituent gases will vary depending on the type of combustion equipment. In the present embodiment, coke oven gas (Coke Oven Gas) will be exemplified as the exhaust gas. It should be noted that the reheater efficiency evaluation method 200 of the embodiment of the present invention is not limited to the coke oven gas. In other embodiments of the present invention, the exhaust gas may be exhaust gas generated by natural gas or fuel oil (heavy oil) combustion.
在廢氣流量提供步驟220之後,接著進行溫度量測步驟230,以量測離開復熱器100之熱空氣的溫度。在本實施例中,溫度量測步驟230係利用溫度計來於復熱器100之熱空氣出口130量測熱空氣之溫度,但本發明之實施例並不受限於此。在溫度量測步驟230後,接著進行廢氣量測步驟240,以量測進入復熱器100之廢氣的廢氣含氧率以及廢氣溫度。在本實施例中,廢氣量測步驟240係於廢氣通道140量測廢氣的廢氣含氧率以及廢氣溫度,但本發明之實施例並不受限於此。After the exhaust gas flow providing step 220, a temperature measuring step 230 is then performed to measure the temperature of the hot air exiting the recuperator 100. In the present embodiment, the temperature measuring step 230 measures the temperature of the hot air at the hot air outlet 130 of the reheater 100 using a thermometer, but the embodiment of the present invention is not limited thereto. After the temperature measurement step 230, an exhaust gas measurement step 240 is then performed to measure the oxygen content of the exhaust gas entering the reheater 100 and the exhaust gas temperature. In the present embodiment, the exhaust gas measurement step 240 measures the exhaust gas oxygen content of the exhaust gas and the exhaust gas temperature in the exhaust gas passage 140, but the embodiment of the present invention is not limited thereto.
在廢氣量測步驟240後,接著進行常數計算步驟250,以根據廢氣之組成氣體及其比例來計算出多個氣體組成常數。在本實施例中,廢氣為煉焦爐氣,因此根據煉焦爐氣的氣體組成所獲得之氧氣常數、氮氣常數、水氣常數以及二氧化碳常數分別為1.013、0.464與70.3112、1.0891、0.3883。After the exhaust gas measurement step 240, a constant calculation step 250 is then performed to calculate a plurality of gas composition constants based on the constituent gases of the exhaust gas and their ratios. In the present embodiment, since the exhaust gas is a coke oven gas, the oxygen constant, the nitrogen gas constant, the water gas constant, and the carbon dioxide constant obtained according to the gas composition of the coke oven gas are 1.013, 0.464, and 70.3112, 1.0891, and 0.3883, respectively.
在常數計算步驟250後,接著進行流量計算步驟260,以根據廢氣流量、氣體組成常數以及廢氣含氧率來計算出每個組成氣體之流量。在本實施例中,廢氣之組成氣體為氧氣、氮氣、水氣以及二氧化碳,而各組成氣體流量之計算方式如下:QO2=(1.013*X*QCOG)/(21-X) QN2=(0.464*X+70.3112)*QCOG/(21-X) QH2O=1.0891*QCOGQCO2=0.3883*QCOGAfter the constant calculation step 250, a flow calculation step 260 is then performed to calculate the flow rate of each constituent gas based on the exhaust gas flow rate, the gas composition constant, and the exhaust gas oxygen content. In the present embodiment, the constituent gases of the exhaust gas are oxygen, nitrogen, moisture, and carbon dioxide, and the flow rates of the constituent gases are calculated as follows: QO2 = (1.013 * X * QCOG ) / (21 - X) QN2 = (0.464*X+70.3112)*QCOG /(21-X) QH2O =1.0891*QCOG QCO2 =0.3883*QCOG
其中,QO2、QN2、QH2O以及QCO2係分別代表氧氣、氮氣、水氣以及二氧化碳的流量(Nm3/hr);X係代表廢氣含氧率(%);QCOG為廢氣流量。Among them, QO2 , QN2 , QH2O and QCO2 represent the flow rates of oxygen, nitrogen, water and carbon dioxide, respectively (Nm3 /hr); X represents the oxygen content (%) of the exhaust gas; QCOG is the exhaust gas flow rate.
在流量計算步驟260之後,接著進行廢氣熱焓計算步驟270,以根據組成氣體之流量、組成氣體之比熱以及廢氣溫度來計算出所有組成氣體之總熱焓(即廢氣熱焓)。本實施例之廢氣熱焓計算公式如下:HO2=QO2*CpO2*T1-7.8452*QO2HN2=QN2*CpN2*T1-7.7617*QN2HN2O=QN2O*CpN2O*T1-8.8904*QN2OHCO2=QCO2*CpCO2*T1-9.8700*QCO2Hflue=HO2+HN2+HN2O+HCOAfter the flow calculation step 260, an exhaust gas enthalpy calculation step 270 is then performed to calculate the total enthalpy of all constituent gases (i.e., exhaust gas enthalpy) based on the flow rate of the constituent gases, the specific heat of the constituent gases, and the exhaust gas temperature. The exhaust gas enthalpy calculation formula of this embodiment is as follows: HO2 = QO2 * CpO2 * T1 - 7.8452 * QO2 HN2 = QN2 * CpN2 * T1 - 7.7617 * QN2 HN2O = QN2O * CpN2O *T1 -8.8904*QN2O HCO2 =QCO2 *CpCO2 *T1 -9.8700*QCO2 Hflue =HO2 +HN2 +HN2O +HCO
其中,Hflue、HO2、HN2、HN2O以及HCO2係分別代表廢氣、氧氣、氮氣、水氣以及二氧化碳的熱焓;CpO2、CpN2、CpN2O、HCO2係分別代表氧氣、氮氣、水氣以及二氧化碳的比熱;T1為廢氣溫度。Among them, Hflue , HO2 , HN2 , HN2O and HCO2 represent enthalpy of exhaust gas, oxygen, nitrogen, water gas and carbon dioxide, respectively; CpO2 , CpN2 , CpN2O and HCO2 represent oxygen and nitrogen respectively. , water vapor and specific heat of carbon dioxide; T1 is the exhaust gas temperature.
氧氣、氮氣、水氣以及二氧化碳的比熱可以下列公式來計算:CpO2=0.3126+4.8585*10-5*T1-7.5838*10-9*T12CpN2=0.3102+1.10178*10-5*T1+2.0417*10-8*T12CpN2O=0.3547+3.6022*10-5*T1+2.7443*10-8*T12CpCO2=0.3889+2.3891*10-4*T1-1.1572*10-7*T12The specific heat of oxygen, nitrogen, moisture and carbon dioxide can be calculated by the following formula: CpO2 = 0.3126 + 4.8585 * 10-5 * T1 - 7.5838 * 10-9 * T12 CpN2 = 0.3102 + 1.10178 * 10-5 * T1 +2.0417*10-8 *T12 CpN2O =0.3547+3.6022*10-5 *T1 +2.7443*10-8 *T12 CpCO2 =0.3889+2.3891*10-4 *T1 -1.1572 *10-7 *T12
在廢氣熱焓計算步驟270後,接著進行熱空氣熱焓計算步驟280,以根據空氣流量、空氣之比熱以及熱空氣溫度來計算出熱空氣之空氣熱焓。在本實施例中,空氣熱焓之計算公式如下:Hair=Qair*Cpair*T2-7.7393*QairAfter the exhaust gas enthalpy calculation step 270, a hot air enthalpy calculation step 280 is then performed to calculate the air enthalpy of the hot air based on the air flow rate, the specific heat of the air, and the hot air temperature. In the present embodiment, the calculation formula of the air enthalpy is as follows: Hair = Qair * Cpair * T2 - 7.7393 * Qair
其中,Hair為熱空氣熱焓;Qair為空氣流量;T2為熱空氣溫度;Cpair為空氣比熱。空氣比熱可以下列公式來計算:Cpair=0.3091+1.8507*10-5*T1+1.1572*10-8*T12Wherein, Hair is hot air enthalpy; Qair is air flow; T2 is hot air temperature; Cpair is air specific heat. The specific heat of the air can be calculated by the following formula: Cpair =0.3091+1.8507*10-5 *T1 +1.1572*10-8 *T12
在熱空氣熱焓計算步驟280後,接著進行復熱效率計算步驟290,以根據總熱焓和空氣熱焓來計算出復熱器100之復熱效率(η)。在本實施例中,復熱效率(η)之計算公式如下:η=Hair/HflueAfter the hot air enthalpy calculation step 280, a reheating efficiency calculation step 290 is then performed to calculate the reheat efficiency (η) of the reheater 100 based on the total enthalpy and air enthalpy. In the present embodiment, the calculation formula of thereheating efficiency (η) is as follows: η = Hair / Hflue
由上述之說明可知,本發明實施例之復熱器效率評估方法200不僅利用溫度來評估復熱器之換熱效率,更引入流量之概念來表示整體熱焓的交換行為,故本發明實施例之復熱器效率評估方法200可精確地評估出復熱器之復熱效率。It can be seen from the above description that the reheater efficiency evaluation method 200 of the embodiment of the present invention not only uses the temperature to evaluate the heat exchange efficiency of the reheater, but also introduces the concept of the flow rate to express the exchange behavior of the overall heat enthalpy, so the present invention is implemented.The reheater efficiency evaluation method 200 can accurately estimate the reheating efficiency of the reheater.
請參照第3a-3b圖,其係繪示根據本發明實施例之復熱器效率診斷方法300的流程示意圖。復熱器效率診斷方法300係基於復熱器效率評估方法200來診斷復熱器100之效率。復熱器效率診斷方法300包含標準建立階段310和線上診斷階段320,其中標準建立階段310係於復熱器100上線之前對復熱器100的換熱效率進行評估並計算出復熱器效率標準,而線上診斷階段320則於復熱器100上線工作後對復熱器100之復熱器效率進行監控。Please refer to FIG. 3a-3b, which is a schematic flow chart of a reheater efficiency diagnosis method 300 according to an embodiment of the present invention. The reheater efficiency diagnostic method 300 is based on the reheater efficiency evaluation method 200 to diagnose the efficiency of the reheater 100. The reheater efficiency diagnostic method 300 includes a standard setup phase 310 and an online diagnostic phase 320, wherein the standard setup phase 310 evaluates the heat exchange efficiency of the reheater 100 and calculates the reheater efficiency criteria before the reheater 100 goes online. The online diagnostic stage 320 monitors the reheater efficiency of the reheater 100 after the reheater 100 is online.
在標準建立階段310中,首先進行歷史空氣流量提供步驟311,以提供進入復熱器100之空氣的空氣流量。在本實施例中,歷史空氣流量提供步驟311係類似空氣流量提供步驟210,故不再贅述歷史空氣流量提供步驟311之詳細內容。在以下的敘述中,歷史空氣流量提供步驟311所提供之空氣流量稱為歷史空氣流量。In the standard establishment phase 310, a historical air flow providing step 311 is first performed to provide air flow to the air entering the reheater 100. In the present embodiment, the historical air flow providing step 311 is similar to the air flow providing step 210, so the details of the historical air flow providing step 311 will not be described again. In the following description, the air flow rate provided by the historical air flow providing step 311 is referred to as the historical air flow rate.
在歷史空氣流量提供步驟311之後,接著進行歷史廢氣流量提供步驟312,以提供進入復熱器100之廢氣的廢氣流量。在本實施例中,歷史廢氣流量提供步驟312係類似於廢氣流量提供步驟220,故不再贅述歷史廢氣流量提供步驟312之詳細內容。在以下的敘述中,歷史廢氣流量提供步驟312所提供之廢氣流量稱為歷史廢氣流量。After the historical air flow providing step 311, a historical exhaust gas flow providing step 312 is then performed to provide exhaust gas flow into the exhaust of the reheater 100. In the present embodiment, the historical exhaust gas flow providing step 312 is similar to the exhaust gas flow providing step 220, so the details of the historical exhaust gas flow providing step 312 will not be described again. In the following description, the flow of exhaust gas provided by the historical exhaust gas flow providing step 312 is referred to as the historical exhaust gas flow.
在歷史廢氣流量提供步驟312之後,接著進行歷史熱空氣溫度量測步驟313,以量測離開復熱器之熱空氣的溫度。在本實施例中,歷史熱空氣溫度量測步驟313係類似於溫度量測步驟230,故不再贅述歷史熱空氣溫度量測步驟313之詳細內容。在以下的敘述中,歷史熱空氣溫度量測步驟313所提供之熱空氣溫度稱為歷史熱空氣溫度。After the historical exhaust gas flow providing step 312, a historical hot air temperature measuring step 313 is then performed to measure the temperature of the hot air exiting the reheaterdegree. In the present embodiment, the historical hot air temperature measuring step 313 is similar to the temperature measuring step 230, so the details of the historical hot air temperature measuring step 313 will not be described again. In the following description, the hot air temperature provided by the historical hot air temperature measuring step 313 is referred to as the historical hot air temperature.
在歷史熱空氣溫度量測步驟313後,接著進行歷史廢氣量測步驟314,以量測進入復熱器100之廢氣的含氧率以及廢氣溫度。在本實施例中,歷史廢氣量測步驟314係類似於廢氣量測步驟240,故不再贅述歷史廢氣量測步驟314之詳細內容。在以下的敘述中,歷史廢氣量測步驟314所提供之廢氣含氧率和廢氣溫度稱為歷史廢氣含氧率以及歷史廢氣溫度。After the historical hot air temperature measurement step 313, a historical exhaust gas measurement step 314 is then performed to measure the oxygen content of the exhaust gas entering the reheater 100 and the exhaust gas temperature. In the present embodiment, the historical exhaust gas measurement step 314 is similar to the exhaust gas measurement step 240, so the details of the historical exhaust gas measurement step 314 will not be described again. In the following description, the exhaust gas oxygen content and exhaust gas temperature provided by the historical exhaust gas measurement step 314 are referred to as historical exhaust oxygen content and historical exhaust gas temperature.
在歷史廢氣量測步驟314後,接著常數計算步驟315,以根據歷史廢氣之組成氣體及其比例來計算出多個氣體組成常數。在本實施例中,廢氣為煉焦爐氣,因此根據煉焦爐氣的氣體組成所獲得之氧氣常數、氮氣常數、水氣常數以及二氧化碳常數分別為1.013、0.464與70.3112、1.0891、0.3883。After the historical exhaust gas measurement step 314, a constant calculation step 315 is followed to calculate a plurality of gas composition constants based on the constituent gases of the historical exhaust gas and their proportions. In the present embodiment, since the exhaust gas is a coke oven gas, the oxygen constant, the nitrogen gas constant, the water gas constant, and the carbon dioxide constant obtained according to the gas composition of the coke oven gas are 1.013, 0.464, and 70.3112, 1.0891, and 0.3883, respectively.
在常數計算步驟315後,接著進行歷史流量計算步驟316,以根據歷史廢氣流量、氣體組成常數以及歷史廢氣含氧率來計算出每個組成氣體之流量。在本實施例中,歷史流量計算步驟316係類似於流量計算步驟260,故不再贅述歷史流量計算步驟316之詳細內容。在以下的敘述中,歷史流量計算步驟316所提供之組成氣體之流量稱為歷史組成氣體流量。After the constant calculation step 315, a historical flow calculation step 316 is then performed to calculate the flow rate of each constituent gas based on the historical exhaust gas flow rate, the gas composition constant, and the historical exhaust gas oxygen content. In the present embodiment, the historical traffic calculation step 316 is similar to the flow calculation step 260, so the details of the historical flow calculation step 316 will not be described again. In the following description, the flow rate of the constituent gases provided by the historical flow calculation step 316 is referred to as the historical constituent gas flow rate.
在歷史流量計算步驟316之後,接著進行歷史廢氣熱焓計算步驟317,以根據歷史組成氣體流量、組成氣體之比熱(或稱為歷史比熱)以及歷史廢氣溫度來計算出所有組成氣體之總熱焓。在本實施例中,歷史廢氣熱焓計算步驟317係類似於廢氣熱焓計算步驟270,故不再贅述歷史廢氣熱焓計算步驟317之詳細內容。在以下的敘述中,歷史廢氣熱焓計算步驟317所提供之熱焓稱為歷史總熱焓。After the historical flow calculation step 316, a historical exhaust gas enthalpy calculation step 317 is then performed to calculate the total enthalpy of all constituent gases based on the historical composition gas flow, the specific heat of the constituent gases (or historical specific heat), and the historical exhaust gas temperature. . In the present embodiment, the historical exhaust gas enthalpy calculation step 317 is similar to the exhaust gas enthalpy calculation step 270, so the details of the historical exhaust gas enthalpy calculation step 317 will not be described again. In the following description, the heat provided by the historical exhaust gas heat calculation step 317 is referred to as historical total heat.
在歷史廢氣熱焓計算步驟317後,接著進行歷史熱空氣熱焓計算步驟318,以根據歷史空氣流量、空氣之比熱(或稱為歷史空氣比熱)以及歷史熱空氣溫度來計算出熱空氣之空氣熱焓。在本實施例中,歷史熱空氣熱焓計算步驟318係類似於熱空氣熱焓計算步驟280,故不再贅述歷史熱空氣熱焓計算步驟318之詳細內容。在以下的敘述中,歷史熱空氣熱焓計算步驟318所提供之熱焓稱為歷史熱空氣熱焓。After the historical exhaust gas enthalpy calculation step 317, a historical hot air enthalpy calculation step 318 is then performed to calculate the hot air air based on historical air flow, air specific heat (or historical air specific heat), and historical hot air temperature. Enthusiastic. In the present embodiment, the historical hot air enthalpy calculation step 318 is similar to the hot air enthalpy calculation step 280, so the details of the historical hot air enthalpy calculation step 318 are not repeated. In the following description, the heat provided by the historical hot air enthalpy calculation step 318 is referred to as historical hot air enthalpy.
在歷史熱空氣熱焓計算步驟318後,接著進行歷史復熱效率計算步驟319,以根據歷史總熱焓和歷史空氣熱焓來計算出復熱器100之復熱效率。在本實施例中,歷史復熱效率計算步驟319係類似於復熱效率計算步驟290,故不再贅述歷史復熱效率計算步驟319之詳細內容。本實施例之歷史復熱效率計算步驟319所計算出的復熱效率為復熱器100上線之前所預先評估的合理復熱效率值,故本實施例以此作為復熱效率之標準。After the historical hot air enthalpy calculation step 318, a historical reheat efficiency calculation step 319 is then performed to calculate the reheat efficiency of the reheater 100 based on historical total enthalpy and historical air enthalpy. In the present embodiment, the historical reheating efficiency calculation step 319 is similar to the reheating efficiency calculation step 290, so the details of the historical reheating efficiency calculation step 319 will not be described again. The reheating efficiency calculated by the historical reheating efficiency calculation step 319 of the present embodiment is a reasonable reheating efficiency value pre-evaluated before the reheater 100 is online. Therefore, the present embodiment uses this as the standard of reheating efficiency.
在標準建立階段310結束後,接著進行線上診斷階段320,以利用上述之復熱效率標準來判斷復熱器上線工作後是否出現異常。After the end of the standard establishment phase 310, an online diagnostic step is performed.The segment 320 is configured to determine whether an abnormality occurs after the reheater is put into operation by using the above-mentioned reheating efficiency standard.
在線上診斷階段320中,首先進行線上空氣流量提供步驟321,以提供進入復熱器100之空氣的空氣流量。在本實施例中,線上空氣流量提供步驟321係類似空氣流量提供步驟210,故不再贅述線上空氣流量提供步驟321之詳細內容。在以下的敘述中,線上空氣流量提供步驟321所提供之空氣流量稱為線上空氣流量。In the online diagnostic phase 320, an in-line air flow providing step 321 is first performed to provide air flow into the air of the reheater 100. In the present embodiment, the online air flow providing step 321 is similar to the air flow providing step 210, so the details of the online air flow providing step 321 will not be described again. In the following description, the air flow rate provided by the online air flow providing step 321 is referred to as the online air flow.
在線上空氣流量提供步驟321之後,接著進行線上廢氣流量提供步驟322,以提供進入復熱器100之廢氣的廢氣流量。在本實施例中,線上廢氣流量提供步驟322係類似於廢氣流量提供步驟220,故不再贅述線上廢氣流量提供步驟322之詳細內容。在以下的敘述中,線上廢氣流量提供步驟322所提供之廢氣流量稱為線上廢氣流量。After the on-line air flow is provided, step 321 is followed by an on-line exhaust gas flow providing step 322 to provide exhaust gas flow to the exhaust of the reheater 100. In the present embodiment, the online exhaust gas flow providing step 322 is similar to the exhaust gas flow providing step 220, so the details of the online exhaust gas flow providing step 322 will not be described again. In the following description, the flow of exhaust gas provided by the online exhaust gas flow providing step 322 is referred to as the online exhaust gas flow.
在線上廢氣流量提供步驟322之後,接著進行線上熱空氣溫度量測步驟323,以量測離開復熱器之熱空氣的溫度。在本實施例中,線上熱空氣溫度量測步驟323係類似於溫度量測步驟230,故不再贅述線上熱空氣溫度量測步驟323之詳細內容。在以下的敘述中,線上熱空氣溫度量測步驟323所提供之熱空氣溫度稱為線上熱空氣溫度。After the on-line exhaust gas flow providing step 322, an in-line hot air temperature measuring step 323 is then performed to measure the temperature of the hot air exiting the reheater. In the present embodiment, the online hot air temperature measuring step 323 is similar to the temperature measuring step 230, so the details of the online hot air temperature measuring step 323 will not be described again. In the following description, the hot air temperature provided by the online hot air temperature measuring step 323 is referred to as the online hot air temperature.
在線上熱空氣溫度量測步驟323後,接著進行線上廢氣量測步驟324,以量測進入復熱器100之廢氣的含氧率以及廢氣溫度。在本實施例中,線上廢氣量測步驟324係類似於廢氣量測步驟240,故不再贅述線上廢氣量測步驟324之詳細內容。在以下的敘述中,線上廢氣量測步驟324所提供之廢氣含氧率和廢氣溫度稱為線上廢氣含氧率以及線上廢氣溫度。After the on-line hot air temperature measurement step 323, an on-line exhaust gas measurement step 324 is then performed to measure the oxygen content of the exhaust gas entering the reheater 100 and the exhaust gas temperature. In the present embodiment, the online exhaust gas measurement step 324 is similar to the exhaust gas measurement step 240, so the online exhaust gas measurement step will not be described again.Details of 324. In the following description, the exhaust gas oxygen content and exhaust gas temperature provided by the on-line exhaust gas measurement step 324 are referred to as the on-line exhaust gas oxygenation rate and the on-line exhaust gas temperature.
在線上廢氣量測步驟324後,接著進行線上流量計算步驟325,以根據線上廢氣流量、氣體組成常數以及線上廢氣含氧率來計算出每個組成氣體之流量。在本實施例中,線上流量計算步驟325係類似於流量計算步驟260,故不再贅述線上流量計算步驟325之詳細內容。在以下的敘述中,線上流量計算步驟325所提供之組成氣體之流量稱為線上組成氣體流量。After the on-line exhaust gas measurement step 324, an in-line flow calculation step 325 is then performed to calculate the flow rate of each constituent gas based on the on-line exhaust flow rate, the gas composition constant, and the on-line exhaust oxygen content. In the present embodiment, the online traffic calculation step 325 is similar to the flow calculation step 260, so the details of the online flow calculation step 325 will not be described again. In the following description, the flow rate of the constituent gases provided by the online flow calculation step 325 is referred to as the on-line constituent gas flow rate.
在線上流量計算步驟325之後,接著進行線上廢氣熱焓計算步驟326,以根據線上組成氣體流量、組成氣體之比熱(或稱為線上比熱)以及線上廢氣溫度來計算出所有組成氣體之總熱焓。在本實施例中,線上廢氣熱焓計算步驟326係類似於廢氣熱焓計算步驟270,故不再贅述線上廢氣熱焓計算步驟326之詳細內容。在以下的敘述中,線上廢氣熱焓計算步驟326所提供之熱焓稱為線上總熱焓。After the on-line flow calculation step 325, an on-line exhaust gas enthalpy calculation step 326 is then performed to calculate the total enthalpy of all constituent gases based on the on-line composition gas flow, the specific heat of the constituent gases (or the on-line specific heat), and the on-line exhaust gas temperature. . In the present embodiment, the online exhaust enthalpy calculation step 326 is similar to the exhaust gas enthalpy calculation step 270, so the details of the online exhaust enthalpy calculation step 326 will not be described again. In the following description, the hot enthalpy provided by the online exhaust enthalpy calculation step 326 is referred to as the on-line total enthalpy.
在線上廢氣熱焓計算步驟326後,接著進行線上熱空氣熱焓計算步驟327,以根據線上空氣流量、空氣之比熱(或稱為線上空氣比熱)以及線上熱空氣溫度來計算出熱空氣之空氣熱焓。在本實施例中,線上熱空氣熱焓計算步驟327係類似於熱空氣熱焓計算步驟280,故不再贅述線上熱空氣熱焓計算步驟327之詳細內容。在以下的敘述中,線上熱空氣熱焓計算步驟327所提供之熱焓稱為線上熱空氣熱焓。After the on-line exhaust gas enthalpy calculation step 326, an on-line hot air enthalpy calculation step 327 is then performed to calculate the hot air air based on the on-line air flow, the specific heat of the air (or the on-line air specific heat), and the on-line hot air temperature. Enthusiastic. In the present embodiment, the online hot air enthalpy calculation step 327 is similar to the hot air enthalpy calculation step 280, so the details of the online hot air enthalpy calculation step 327 will not be described again. In the following description, the hot enthalpy provided by the online hot air enthalpy calculation step 327 is referred to as hot air on the line.Enthusiastic.
在線上熱空氣熱焓計算步驟327後,接著進行線上復熱效率計算步驟328,以根據線上總熱焓和線上空氣熱焓來計算出復熱器100之復熱效率。在本實施例中,線上復熱效率計算步驟328係類似於復熱效率計算步驟290,故不再贅述線上復熱效率計算步驟328之詳細內容。After the online hot air enthalpy calculation step 327, an online reheating efficiency calculation step 328 is performed to calculate the reheating efficiency of the reheater 100 based on the total on-line heat and on-line air enthalpy. In the present embodiment, the online reheating efficiency calculation step 328 is similar to the reheating efficiency calculation step 290, so the details of the online reheating efficiency calculation step 328 will not be described again.
在線上復熱效率計算步驟328後,接著進行判斷步驟329,以根據復熱器效率標準和線上復熱效率來判斷復熱器100是否出現異常。例如,當線上復熱效率低於復熱器效率標準時,判斷復熱器100出現異常並發出警告訊息通知使用者。又例如,當線上復熱效率低於復熱器效率標準,且效率差值大於一容忍範圍時,判斷復熱器100出現異常並發出警告訊息通知使用者。After the online reheating efficiency calculation step 328, a determination step 329 is then performed to determine whether the reheater 100 is abnormal according to the reheater efficiency criterion and the on-line reheating efficiency. For example, when the on-line reheating efficiency is lower than the reheater efficiency criterion, it is judged that the reheater 100 is abnormal and a warning message is issued to inform the user. For another example, when the on-line reheating efficiency is lower than the reheater efficiency criterion, and the efficiency difference is greater than a tolerance range, it is determined that the reheater 100 is abnormal and issues a warning message to inform the user.
由上述之說明可知,本發明實施例之復熱器效率診斷方法300可對線上工作的復熱器進行監診,以達到及時監控之目的。另外,本發明實施例之復熱器效率診斷方法300亦可搭配人機介面來將計算獲得的復熱效率顯示於介面上。另外,當復熱器效率出現異常時,可透過人機介面來以燈光、聲音或文字方式發出警告訊息通知使用者。It can be seen from the above description that the reheater efficiency diagnosis method 300 of the embodiment of the present invention can supervise the reheater working on the line to achieve the purpose of timely monitoring. In addition, the reheater efficiency diagnosis method 300 of the embodiment of the present invention can also be combined with a human machine interface to display the calculated reheating efficiency on the interface. In addition, when the efficiency of the reheater is abnormal, the human-machine interface can be used to send a warning message to the user by light, sound or text.
雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.
200‧‧‧復熱器效率評估方法200‧‧‧Reheater efficiency assessment method
210‧‧‧空氣流量提供步驟210‧‧‧Air flow providing steps
220‧‧‧廢氣流量提供步驟220‧‧‧Exhaust flow supply steps
230‧‧‧溫度量測步驟230‧‧‧ Temperature measurement steps
240‧‧‧廢氣量測步驟240‧‧‧Exhaust gas measurement steps
250‧‧‧常數計算步驟250‧‧‧Constant calculation steps
260‧‧‧流量計算步驟260‧‧‧Flow calculation steps
270‧‧‧廢氣熱焓計算步驟270‧‧‧Exhaust heat calculation steps
280‧‧‧熱空氣熱焓計算步驟280‧‧‧hot air enthalpy calculation steps
290‧‧‧復熱效率計算步驟290‧‧‧Reheating efficiency calculation steps
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102103526ATWI485397B (en) | 2013-01-30 | 2013-01-30 | Methods for evaluating and diagnosing efficiency of recuperator |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102103526ATWI485397B (en) | 2013-01-30 | 2013-01-30 | Methods for evaluating and diagnosing efficiency of recuperator |
| Publication Number | Publication Date |
|---|---|
| TW201430339A TW201430339A (en) | 2014-08-01 |
| TWI485397Btrue TWI485397B (en) | 2015-05-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW102103526ATWI485397B (en) | 2013-01-30 | 2013-01-30 | Methods for evaluating and diagnosing efficiency of recuperator |
| Country | Link |
|---|---|
| TW (1) | TWI485397B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5118395A (en)* | 1990-05-24 | 1992-06-02 | Air Products And Chemicals, Inc. | Oxygen recovery from turbine exhaust using solid electrolyte membrane |
| TW407199B (en)* | 1997-02-24 | 2000-10-01 | Envirotest Systems Corp | Method and apparatus for remote measurement of exhaust gas |
| US20080277265A1 (en)* | 2007-05-11 | 2008-11-13 | Plasco Energy Group, Inc. | Gas reformulation system comprising means to optimize the effectiveness of gas conversion |
| TW200935017A (en)* | 2008-02-15 | 2009-08-16 | Foxconn Tech Co Ltd | Detecting device for heat pipes |
| TW201215869A (en)* | 2010-10-12 | 2012-04-16 | China Steel Corp | Method of producing dioxins sample |
| TW201226895A (en)* | 2010-12-27 | 2012-07-01 | Ind Tech Res Inst | Gas sensor and manufacture method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5118395A (en)* | 1990-05-24 | 1992-06-02 | Air Products And Chemicals, Inc. | Oxygen recovery from turbine exhaust using solid electrolyte membrane |
| TW407199B (en)* | 1997-02-24 | 2000-10-01 | Envirotest Systems Corp | Method and apparatus for remote measurement of exhaust gas |
| US20080277265A1 (en)* | 2007-05-11 | 2008-11-13 | Plasco Energy Group, Inc. | Gas reformulation system comprising means to optimize the effectiveness of gas conversion |
| TW200935017A (en)* | 2008-02-15 | 2009-08-16 | Foxconn Tech Co Ltd | Detecting device for heat pipes |
| TW201215869A (en)* | 2010-10-12 | 2012-04-16 | China Steel Corp | Method of producing dioxins sample |
| TW201226895A (en)* | 2010-12-27 | 2012-07-01 | Ind Tech Res Inst | Gas sensor and manufacture method thereof |
| Publication number | Publication date |
|---|---|
| TW201430339A (en) | 2014-08-01 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102734783B (en) | Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station | |
| CN113011010A (en) | Boiler fault diagnosis method and diagnosis system based on structural mechanism and operation data | |
| CN101216164B (en) | An online safety evaluation method for water-cooled walls | |
| JP4466232B2 (en) | Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program | |
| CN104808634A (en) | Thermal power plant visual management system based on virtual reality | |
| CN103672846A (en) | Method for monitoring wall temperature of heating surface and thickness of scale cinder of boiler superheater or reheater | |
| CN102252780A (en) | Apparatus of measuring power station boiler furnace gas temperature and measuring method thereof | |
| CN111521430B (en) | Waste heat boiler performance test method | |
| CN106547945A (en) | A kind of energy efficiency test method for being applied to trilogy supply region energy supplying system | |
| CN113685797B (en) | Variable working condition thermodynamic calculation method for waste heat boiler economizer | |
| CN106524118A (en) | Method for establishing anti-wear explosion-proof temperature field simulation model of boilers | |
| CN105067275A (en) | Gas turbine combustion system online monitoring and diagnosis method based on exhaust temperature deviation index | |
| CN103267684A (en) | Method for obtaining life losses of power station boiler bearing elements, and system thereof | |
| CN107490000A (en) | The wall temperature monitoring method and system at a kind of Dissimilar Metal Joints In Power Boilers position | |
| CN104655673B (en) | A kind of trisector air heater heat exchange property inline diagnosis method | |
| CN103728339A (en) | Real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side | |
| CN106289754A (en) | A kind of fired power generating unit component capabilities based on Statistical Control Technique change decision method | |
| TWI485397B (en) | Methods for evaluating and diagnosing efficiency of recuperator | |
| WO2021100760A1 (en) | Information processing device | |
| CN105510045B (en) | Gas turbine combustion system on-line monitoring method based on coefficient matrix | |
| CN104238534B (en) | Online monitoring device and online monitoring method for boiling degree of blast-furnace gas boiler economizer | |
| US20130327128A1 (en) | Leakage inspection method of heat exchanger | |
| JP2703548B2 (en) | Air preheater performance diagnostic device | |
| CN104154522B (en) | Boiler heat pipe is quick-fried leaks through journey running status appraisal procedure | |
| CN101382458B (en) | Station boiler air preheater hot spot detecting method based on analog computation of rotor temperature field |
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |