本案係關於一種調壓電路,尤指一種可減少損耗而提高效能之調壓電路及其所適用之並聯式調壓電路系統。This case relates to a voltage regulating circuit, especially a voltage regulating circuit capable of reducing loss and improving performance, and a parallel voltage regulating circuit system applicable thereto.
分散式電源(distributed power)系統由於具有較高的整體效率以及可靠度,且在電路實現的成本上亦相對較低,因此被廣泛地應用於各種電子產品中。分散式電源系統在使用分散式的供電方式時,由於所提供之每一電源的功率損耗較小,發熱量亦較低,因此散熱會比集中式的供電方式更容易且效果更好,此外,因為分散式電源系統所提供之電源的分散度之效率較高,因此分散式電源系統一旦發生故障,其所影響的範圍便較小,使得電子產品也就越可靠。Distributed power systems are widely used in various electronic products because of their high overall efficiency and reliability, and relatively low cost in circuit implementation. When the distributed power supply system uses the distributed power supply mode, since the power loss of each power supply is small and the heat generation is low, the heat dissipation is easier and better than the centralized power supply mode. Because the dispersion of the power supply provided by the distributed power system is more efficient, once the distributed power system fails, the range of impact is small, and the electronic product is more reliable.
然而為了能提供負載端更穩定的電壓轉換以及穩壓的效果,且提高供電的效率,並降低生產成本,由分散式電源系統所改良的中間匯流排(Intermediate Bus)電源系統便因應而生。However, in order to provide a more stable voltage conversion and voltage regulation effect at the load end, and to improve the efficiency of power supply and reduce the production cost, the intermediate bus power system improved by the distributed power system is born.
中間匯流排電源系統主要包含一前級調壓電路以及至少一後級轉換電路。其中,前級調壓電路包含至少一開關元件,前級調壓電路係藉由控制開關元件之運作而將所接收之輸入電壓轉換為具有一固定值之過渡電壓,後級轉換電路則與前級調壓電路電連接,其係接收過渡電壓,並依據不同負載之要求,而將過渡電壓轉換成負載所需之工作電壓,例如1.8V、3.3V或5V等。由於前級調壓電路係先將輸入電壓轉換為過渡電壓,因此後級轉換電路便可直接將過渡電壓轉換成負載所需之工作電壓,而無須直接轉換輸入電壓,因此後級轉換電路在進行轉換動作時所產生的損耗便可減少,且後級轉換電路之電路架構亦可採用較為便宜的電子元件來實現。The intermediate bus power system mainly includes a pre-stage voltage regulating circuit and at least one post-stage converting circuit. Wherein, the pre-stage voltage regulating circuit comprises at least one switching element, and the pre-stage voltage regulating circuit converts the received input voltage into a transition voltage having a fixed value by controlling the operation of the switching element, and the post-stage conversion circuit is The level voltage regulating circuit is electrically connected, which receives the transition voltage and converts the transition voltage into a working voltage required for the load according to the requirements of different loads, such as 1.8V, 3.3V or 5V. Since the pre-stage voltage regulating circuit converts the input voltage into a transition voltage, the post-stage conversion circuit can directly convert the transition voltage into the working voltage required by the load without directly converting the input voltage, so the post-stage conversion circuit is performing. The loss generated during the conversion operation can be reduced, and the circuit structure of the post-stage conversion circuit can also be realized by using relatively inexpensive electronic components.
然而前級調壓電路為了輸出具有一固定值之過渡電壓,前級調壓電路實際上會對應不同準位的輸入電壓來調整開關元件的責任週期,舉例而言,當輸入電壓持續提昇時,前級調壓電路便會控制開關元件的責任週期持續減小,反之,當輸入電壓持續減小時,前級調壓電路便會控制開關元件的責任週期持續提昇,如以一來,前級調壓電路藉由調整開關元件的責任週期便可將所接收之輸入電壓轉換為所需之額定電壓,然而,一旦輸入電壓過大,導致前級調壓電路需將開關元件的責任週期控制在非常小時,前級調壓電路便會具有較高的傳導損耗(conduction loss)、切換損耗(switching loss)以及濾波器損耗(filter loss)等缺失,進而降低前級調壓電路之效能。However, in order to output a transition voltage having a fixed value, the pre-stage voltage regulating circuit actually adjusts the duty cycle of the switching element corresponding to the input voltage of different levels. For example, when the input voltage continues to increase, The pre-stage voltage regulating circuit will continuously reduce the duty cycle of the switching element. Conversely, when the input voltage continues to decrease, the pre-stage voltage regulating circuit will continuously control the duty cycle of the switching element to continue to increase. The voltage circuit can convert the received input voltage to the required rated voltage by adjusting the duty cycle of the switching element. However, once the input voltage is too large, the pre-stage voltage regulating circuit needs to control the duty cycle of the switching element to be very small. The pre-stage voltage regulating circuit will have high loss of conduction loss, switching loss and filter loss, thereby reducing the performance of the pre-stage voltage regulating circuit.
因此,如何發展一種可以解決上述習知技術所遭遇之問題與缺失的 調壓電路及其適用之 並聯式調壓電路系統 ,實為目前所迫切需要解決之問題。Therefore, how to develop a voltage regulating circuit that can solve the problems and the problems encountered by the above-mentioned conventional technologies and the parallel voltage regulating circuit system applicable thereto is an urgent problem to be solved at present.
本案之主要目的為提供一種 調壓電路及其適用之 並聯式調壓電路,俾解決習知前級調壓電路當所接收之輸入電壓過大時,前級調壓電路內之開關元件的責任週期係被控制在非常小,導致習知前級調壓電路具有較高的傳導損耗、切換損耗以及濾波損耗而效能不佳等缺失。The main purpose of this case is to provide a voltage regulating circuit and a parallel voltage regulating circuit thereof, which solves the problem of the duty cycle of the switching components in the pre-stage voltage regulating circuit when the input voltage of the conventional pre-stage voltage regulating circuit is too large. The system is controlled to be very small, resulting in the loss of the conventional pre-stage voltage regulation circuit with high conduction loss, switching loss, and filtering loss.
為達上述目的,本案之較佳實施態樣提供一種調壓電路,包括:能量轉換電路,係包含至少一開關元件,且藉由開關元件之運作將輸入電壓轉換為過渡電壓;輸入電壓偵測電路,係與能量轉換電路電連接,用以輸出與輸入電壓相對應之輸入電壓偵測訊號;以及回授電路,係與能量轉換電路及輸入電壓偵測電路電連接,用以產生回授控制訊號;其中,當該輸入電壓改變時,該回授電路係調整使該過渡電壓隨著該輸入電壓偵測訊號的改變而改變。In order to achieve the above objective, a preferred embodiment of the present invention provides a voltage regulating circuit including: an energy conversion circuit including at least one switching element, and converting an input voltage into a transition voltage by operation of the switching element; and input voltage detection The circuit is electrically connected to the energy conversion circuit for outputting an input voltage detection signal corresponding to the input voltage; and the feedback circuit is electrically connected to the energy conversion circuit and the input voltage detection circuit for generating feedback control a signal; wherein, when the input voltage is changed, the feedback circuit is adjusted such that the transition voltage changes as the input voltage detection signal changes.
為達上述目的,本案之較佳實施態樣另提供一種並聯式調壓電路系統,包含:複數個調壓電路,係彼此並聯連接,且每一調壓電路係包含:能量轉換電路,係包含至少一開關元件,且藉由開關元件之運作將輸入電壓轉換為過渡電壓及輸出電流;輸入電壓偵測電路,係與能量轉換電路電連接,用以輸出與輸入電壓相對應之輸入電壓偵測訊號;電流偵測電路,係與能量轉換電路電連接,用以輸出與輸出電流相對應之電流偵測訊號;以及回授電路,係與能量轉換電路、電流偵測電路及輸入電壓偵測電路電連接,用以產生回授控制訊號;其中,當輸入電壓或輸出電流改變時,該回授電路係調整使過渡電壓隨著輸入電壓偵測訊號的改變而改變或使電流偵測訊號改變 。In order to achieve the above object, a preferred embodiment of the present invention further provides a parallel voltage regulating circuit system, comprising: a plurality of voltage regulating circuits connected in parallel with each other, and each voltage regulating circuit comprises: an energy conversion circuit, comprising At least one switching element, and converting the input voltage into a transition voltage and an output current by operation of the switching element; the input voltage detecting circuit is electrically connected to the energy conversion circuit for outputting an input voltage detection corresponding to the input voltage a current detecting circuit electrically connected to the energy conversion circuit for outputting a current detecting signal corresponding to the output current; and a feedback circuit, the energy conversion circuit, the current detecting circuit and the input voltage detecting circuit The electrical connection is used to generate a feedback control signal; wherein, when the input voltage or the output current changes, the feedback circuit adjusts the transition voltage to change according to the input voltage detection signal or changes the current detection signal.
為達上述目的,本案之較佳實施態樣又提供一種並聯式調壓電路系統,包含:複數個調壓電路,係彼此並聯連接,且皆連接於電流分享匯流排,其中每一調壓電路係包含:能量轉換電路,係包含至少一開關元件,且藉由開關元件之運作將輸入電壓轉換為過渡電壓及輸出電流;輸入電壓偵測電路,係與能量轉換電路電連接,用以輸出與輸入電壓相對應之輸入電壓偵測訊號;電流偵測電路,係與能量轉換電路電連接,用以輸出與輸出電流相對應之一電流偵測訊號;以及一回授電路;其中,當輸入電壓改變時,回授電路係調整使過渡電壓係隨著輸入電壓偵測訊號的改變而改變,且當電流偵測訊號與電流分享匯流排之一電流分享訊號相異時,該回授電路係使 電流偵測訊號與電流分享訊號相等。In order to achieve the above objective, the preferred embodiment of the present invention further provides a parallel voltage regulating circuit system, comprising: a plurality of voltage regulating circuits connected in parallel with each other and connected to a current sharing bus, wherein each voltage regulating circuit The system includes: an energy conversion circuit, comprising at least one switching component, and converting the input voltage into a transition voltage and an output current by operation of the switching component; the input voltage detecting circuit is electrically connected to the energy conversion circuit for outputting The input voltage detecting signal corresponding to the input voltage; the current detecting circuit is electrically connected to the energy conversion circuit for outputting a current detecting signal corresponding to the output current; and a feedback circuit; wherein, when the input voltage is When changing, the feedback circuit is adjusted so that the transition voltage changes with the change of the input voltage detection signal, and when the current detection signal is different from the current sharing signal of the current sharing bus, the feedback circuit is The current detection signal is equal to the current sharing signal.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,然其皆不脫離本案的範圍,且其中的說明及圖式在本質上係當作說明之用,而非用以限制本案。Some exemplary embodiments embodying the features and advantages of the present invention are described in detail in the following description. It should be understood that the present invention is capable of various modifications in the various aspects of the present invention, and the description and drawings are intended to be illustrative and not limiting.
請參閱第一圖,其係為本案較佳實施例之中央匯流排電源系統之電路方塊圖。如第一圖所示,中央匯流排電源系統1主要包含一前級調壓電路2以及至少一後級轉換電路,其中前級調壓電路2係接收輸入電壓Vin,並將輸入電壓Vin轉換為一過渡電壓Vs。後級轉換電路,例如第一圖所示之第一後級轉換電路3a、第二後級轉換電路3b以及第三後級轉換電路3c,則與前級調壓電路2電連接,其係分別用以接收過渡電壓Vs,並將過渡電壓Vs轉換為負載(未圖示)所需之工作電壓,以提供給負載使用,於本實施例中,第一後級轉換電路3a係輸出第一工作電壓Vo1,第二後級轉換電路3b係輸出第二工作電壓Vo2,第三後級轉換電路3c係輸出第三工作電壓Vo3。Please refer to the first figure, which is a circuit block diagram of a central bus power supply system according to a preferred embodiment of the present invention. As shown in the first figure, the central bus power supply system 1 mainly includes a pre-stage voltage regulating circuit 2 and at least one post-stage conversion circuit, wherein the pre-stage voltage regulating circuit 2 receives the input voltage Vin and inputs the input voltage Vin Converted to a transition voltage Vs . The post-stage conversion circuit, for example, the first post-stage conversion circuit 3a, the second post-stage conversion circuit 3b, and the third post-stage conversion circuit 3c shown in the first figure are electrically connected to the pre-stage voltage regulating circuit 2, respectively The operating voltage required to receive the transition voltage Vs and convert the transition voltage Vs into a load (not shown) for use by the load. In this embodiment, the first post-stage conversion circuit 3a outputs An operating voltage Vo1 , the second post-stage conversion circuit 3b outputs a second operating voltage Vo2 , and the third post-stage converting circuit 3c outputs a third operating voltage Vo3 .
於一些實施例中,後級轉換電路可由非隔離式的轉換器所構成,更甚者,後級轉換電路可由非隔離式的直流-直流轉換器所構成,但並不以此為限。此外,第一工作電壓Vo1可為但不限於1V,第二工作電壓Vo2可為但不限於3.3V,第三工作電壓Vo3可為但不限於5V。In some embodiments, the post-stage conversion circuit may be formed by a non-isolated converter. Further, the post-stage conversion circuit may be formed by a non-isolated DC-DC converter, but is not limited thereto. In addition, the first operating voltage Vo1 may be, but not limited to, 1V, the second operating voltage Vo2 may be, but not limited to, 3.3V, and the third operating voltage Vo3 may be, but not limited to, 5V.
請參閱第二圖,其係為第一圖所示之前級調壓電路之電路方塊圖。如第二圖所示,前級調壓電路2主要包含一能量轉換電路20,一輸入電壓偵測電路21、一回授電路22以及一控制驅動電路23,其中能量轉換電路20係包含至少一開關元件(本圖未圖示),且藉由開關元件之運作將輸入電壓Vin轉換為過渡電壓Vs。輸入電壓偵測電路21係與能量轉換電路20電連接,用以 偵測與輸入電壓Vin相對應之一轉換電壓,進而輸出一輸入電壓偵測訊號Vt。回授電路22係與能量轉換電路20以及輸入電壓偵測電路21電連接,用以依據輸入電壓偵測訊號Vt以及過渡電壓Vs而輸出一回授控制訊號Vf。至於控制驅動電路23則與能量轉換電路20以及回授電路22電連接,其係接收回授控制訊號Vf,並根據回授控制訊號Vf而控制開關元件之責任週期,使能量轉換電路20運作並產生過渡電壓Vs。Please refer to the second figure, which is a circuit block diagram of the previous stage voltage regulating circuit shown in the first figure. As shown in the second figure, the pre-stage voltage regulating circuit 2 mainly includes an energy conversion circuit 20, an input voltage detecting circuit 21, a feedback circuit 22 and a control driving circuit 23, wherein the energy conversion circuit 20 includes at least one The switching element (not shown in the figure) converts the input voltage Vin into a transition voltage Vs by the operation of the switching element. The input voltage detecting circuit 21 is electrically connected to the energy conversion circuit 20 for detecting a conversion voltage corresponding to the input voltage Vin , and thereby outputting an input voltage detecting signal Vt . The feedback circuit 22 is electrically connected to the energy conversion circuit 20 and the input voltage detection circuit 21 for outputting a feedback control signal Vf according to the input voltage detection signal Vt and the transition voltage Vs . The control driving circuit 23 is electrically connected to the energy conversion circuit 20 and the feedback circuit 22, and receives the feedback control signalVf , and controls the duty cycle of the switching element according to the feedback control signalVf , so that the energy conversion circuit 20 Operates and produces a transition voltage Vs .
於本實施例中,當輸入電壓Vin升高時,輸入電壓偵測訊號Vt係對應輸入電壓Vin而增加,回授控制訊號Vf亦對應輸入電壓偵測訊號Vt而改變,此時,控制驅動電路23便會依據回授控制訊號Vf而控制開關元件之責任週期於一責任週期預定值以上,因此本案之前級調壓電路2便可減少 傳導損耗、切換損耗以及濾波損耗, 進而提昇實際效能。In this embodiment, when the input voltage Vin is increased, the input voltage detection signal Vt is increased corresponding to the input voltage Vin , and the feedback control signal Vf is also changed corresponding to the input voltage detection signal Vt . At this time, the control driving circuit 23 controls the duty cycle of the switching element according to the feedback control signal Vf to be greater than a predetermined duty cycle. Therefore, the previous stage voltage regulating circuit 2 can reduce conduction loss, switching loss, and filtering loss. In turn, improve the actual performance.
請參閱第三圖,並配合第二圖,其中第三圖係為第二圖所示之前級調壓電路之部份細部電路結構示意圖。如第二及三圖所示,能量轉換電路20可為但不限於一半橋式脈衝寬度調變轉換器所構成,且主要包含一第一濾波電感L1、一第一分壓電路200、至少一開關元件、一變壓器T以及一次級側電路201。其中第一濾波電感L1係用以對輸入電流(未圖示)進行濾波。第一分壓電路200則與濾波電感L1電連接,用以對輸入電壓Vin進行分壓,以提供給變壓器T之初級繞組Np,且於本實施例中,第一分壓電路200可為但不限於由串聯連接之第一電容C1以及第二電容C2所構成。開關元件,例如第三圖所示之第一開關元件S1以及第二開關元件S2,則與第一分壓電路200、變壓器T之初級繞組Np以及控制驅動電路23電連接,第一開關元件S1以及第二開關元件S2係受控制驅動電路23之控制而進行導通或截止之動作,使輸入電壓Vin之能量可選擇性地經由第一開關元件S1以及第二開關元件S2傳送至變壓器T之初級繞組Np,進而使次級繞組Ns因電磁感應而產生感應交流電壓Vac,且於本實施例中,第一開關元件S1及第二開關元件S2係以交錯的方式來進行導通或截止 。Please refer to the third figure, and cooperate with the second figure, wherein the third picture is a schematic diagram of a part of the detailed circuit structure of the previous stage voltage regulating circuit shown in the second figure. As shown in the second and third figures, the energy conversion circuit 20 can be composed of, but not limited to, a half bridge pulse width modulation converter, and mainly includes a first filter inductor L1, a first voltage divider circuit 200, and at least A switching element, a transformer T, and a primary side circuit 201. The first filter inductor L1 is used to filter an input current (not shown). The first voltage dividing circuit 200 is electrically connected to the filter inductor L1 for dividing the input voltage Vin to provide the primary winding Np of the transformer T, and in the embodiment, the first partial piezoelectric The path 200 can be, but is not limited to, a first capacitor C1 and a second capacitor C2 connected in series. The switching element, such as the first switching element S1 and the second switching element S2 shown in the third figure, is electrically connected to the first voltage dividing circuit 200, the primary winding Np of the transformer T, and the control driving circuit 23, a power switching element S1 S2 and a second switching element control line drive circuit 23 performs the turning on or off by the operation of the input voltage Vin of selectively switching the first switching element S1 and a second via The element S2 is transmitted to the primary winding Np of the transformer T, thereby causing the secondary winding Ns to generate an induced alternating voltage Vac due to electromagnetic induction, and in the present embodiment, the first switching element S1 and the second switching element S2 Turn on or off in a staggered manner.
次級側電路201則與變壓器T之次級繞組Ns電連接,用以對感應交流電壓Vac進行整流及濾波,以輸出過渡電壓Vs,於本實施例中,次級側電路201主要包含一同步整流電路202以及一濾波電路203,其中同步整流電路202係與變壓器T之次級繞組Ns電連接,用以進行同步整流,且可為但不限於由複數個同步整流開關Sr所構成。濾波電路203則與同步整流電路202電連接,其係用以濾波,且可為但不限於由一第一濾波電容Cf1以及一第二濾波電感L2所構成。The secondary side circuit 201 is electrically connected to the secondary winding Ns of the transformer T for rectifying and filtering the induced alternating voltage Vac to output a transition voltage Vs . In this embodiment, the secondary side circuit 201 is mainly A synchronous rectification circuit 202 and a filter circuit 203 are included, wherein the synchronous rectification circuit 202 is electrically connected to the secondary winding Ns of the transformer T for synchronous rectification, and may be, but not limited to, a plurality of synchronous rectification switches Sr Composition. The filter circuit 203 is electrically connected to the synchronous rectification circuit 202 for filtering, and may be, but not limited to, a first filter capacitor Cf1 and a second filter inductor L2 .
當然,能量轉換電路20並不局限於如第三圖所示係由一半橋式脈衝寬度調變轉換器所構成,於一些實施例中,能量轉換電路20亦可由例如順向式、反馳式或是全橋式等脈衝寬度調變轉換器所構成。更甚者,能量轉換電路20亦可由諧振式,例如串聯諧振、並聯諧振、LLC串聯諧振或LLC並聯諧振的脈衝頻率調變轉換器所構成。Of course, the energy conversion circuit 20 is not limited to being constituted by a half bridge pulse width modulation converter as shown in the third figure. In some embodiments, the energy conversion circuit 20 may also be, for example, a forward type or a reverse type. It is composed of a full-bridge pulse width modulation converter. Furthermore, the energy conversion circuit 20 can also be constructed of a resonant frequency, such as a series resonant, parallel resonant, LLC series resonant or LLC parallel resonant pulse frequency modulation converter.
請參閱第四圖並配合第二及三圖,其中第四圖係為第三圖所示之輸入電壓偵測電路的細部電路結構示意圖。如第二至四圖所示,由於本實施例中,輸入電壓偵測電路21係與變壓器T之次級繞組Ns電連接,因此輸入電壓偵測電路21 所偵測的轉換電壓 實際上 為次級繞組Ns上之感應交流電壓Vac,而因為感應交流電壓Vac的大小係與輸入電壓Vin的大小相對應,故輸入電壓偵測電路21藉由偵測感應交流電壓Vac所輸出之輸入電壓偵測訊號Vt亦會與輸入電壓Vin相對應。Please refer to the fourth figure and cooperate with the second and third figures. The fourth figure is the detailed circuit structure diagram of the input voltage detecting circuit shown in the third figure. As shown in the second to fourth embodiments, since the input voltage detecting circuit 21 is electrically connected to the secondary winding Ns of the transformer T in this embodiment, the converted voltage detected by the input voltage detecting circuit 21 is actually The induced alternating voltage Vac on the secondary winding Ns , and because the magnitude of the induced alternating voltage Vac corresponds to the magnitude of the input voltage Vin , the input voltage detecting circuit 21 detects the induced alternating voltage Vac The output input voltage detection signal Vt also corresponds to the input voltage Vin .
輸入電壓偵測電路21主要包含一整流二極體D、一第二濾波電容Cf2以及一第二分壓電路210,其中整流二極體D之陽極端係與變壓器T之次級繞組Ns電連接,整流二極體D係用以整流,第二濾波電容Cf2係與整流二極體D之陰極端電連接,第二濾波電容Cf2係用以濾波,第二分壓電路210則與整流二極體D之陰極端、第二濾波電容Cf2以及回授電路22電連接,且可為但不限於由一第一電阻R1以及一第二電阻R2串聯連接所構成,第二分壓電路210係用以對經由整流二極體D整流以及經第二濾波電容Cf2濾波後之電壓進行分壓,以輸出輸入電壓偵測訊號Vt至回授電路22。The input voltage detecting circuit 21 mainly includes a rectifying diode D, a second filtering capacitor Cf2 and a second voltage dividing circuit 210 , wherein the anode end of the rectifying diode D and the secondary winding N of the transformer Ts electrical connection, rectifying diode D is used for rectification, second filter capacitor Cf2 is electrically connected to the cathode end of rectifying diode D, second filter capacitor Cf2 is used for filtering, second voltage dividing circuit The 210 is electrically connected to the cathode end of the rectifier diode D, the second filter capacitor Cf2 , and the feedback circuit 22 , and may be, but not limited to, a first resistor R1 and a second resistor R2 connected in series. The second voltage dividing circuit 210 is configured to divide the voltage filtered by the rectifying diode D and filtered by the second filter capacitor Cf2 to output the input voltage detecting signal Vt to the feedback circuit 22 .
當然,輸入電壓偵測電路21並不侷限於如第三圖所示係與變壓器T之次級繞組Ns電連接,以藉由偵測次級繞組Ns上之感應交流電壓Vac而輸出輸入電壓偵測訊號Vt,於一些實施例中,輸入電壓偵測電路21亦可電連接於第一濾波電感L1之輸入端、變壓器T附加的初級繞組(未圖示)、變壓器T附加的次級繞組(未圖示)、第一分壓電路200中第一電容C1及第二電容C2之間的連接點或是同步整流電路202之輸出側等位置,此時輸入電壓偵測電路21偵測到的能量轉換電路20之轉換電壓實際上便為上述該些位置所對應之電壓。Of course, not limited to 21 as in the third circuit shown in FIG input voltage detection line is electrically connected to the secondary winding Ns of T, by detecting the induced alternating voltage to Vac on the secondary winding Ns outputs The input voltage detection circuit Vt is also electrically connected to the input end of the first filter inductor L1 , the additional primary winding of the transformer T (not shown), and the transformer T is attached. The secondary winding (not shown), the connection point between the first capacitor C1 and the second capacitor C2 in the first voltage dividing circuit 200 or the output side of the synchronous rectifying circuit 202, and the input voltage at this time The switching voltage of the energy conversion circuit 20 detected by the detecting circuit 21 is actually the voltage corresponding to the above positions.
請再參閱第三圖,回授電路22主要包含一第一運算放大器220、一第三電容C3、一第三分壓電路221、一光耦合器222以及一參考電壓調整電路223。其中第三分壓電路221係與能量轉換電路20之次級側電路201以及第一運算放大器220之反向輸入端電連接,其係用以對次級側電路201所輸出之過渡電壓Vs進行分壓,以提供給第一運算放大器220之反向輸入端,且於本實施例中,第三分壓電路221可為但不限於由一第三電阻R3以及一第四電阻R4串聯連接所構成。第三電容C3係分別與第一運算放大器220之反向輸入端以及輸出端電連接。光耦合器222之輸入端,即發光二極體元件D1係與第一運算放大器220之輸出端電連接,光耦合器222之輸出端,即光電晶體B則與控制驅動電路23電連接。參考電壓調整電路223則電連接於第一運算放大器220之非反向輸入端以及輸入電壓偵測電路21之間,用以接收輸入電壓偵測訊號Vt,並根據輸入電壓偵測訊號Vt而輸出一參考電壓Vref。第一運算放大器220係用以比較經第三分壓電路221分壓後之過渡電壓Vs與參考電壓Vref,並依比較結果而經光耦合器222輸出一回授控制訊號Vf,如此一來,控制驅動電路23便根據回授控制訊號Vf而對應地調整第一開關元件S1以及第二開關元件S2之責任週期,進而調節過渡電壓Vs,亦即使經第三分壓電路221分壓後之過渡電壓Vs與參考電壓Vref實質上相等。Referring to the third figure, the feedback circuit 22 mainly includes a first operational amplifier 220, a third capacitor C3 , a third voltage dividing circuit 221 , an optical coupler 222 , and a reference voltage adjusting circuit 223 . The third voltage dividing circuit 221 is electrically connected to the secondary side circuit 201 of the energy conversion circuit 20 and the inverting input terminal of the first operational amplifier 220, and is used for the transition voltage V outputted by the secondary side circuit 201.The s is divided and supplied to the inverting input terminal of the first operational amplifier 220. In this embodiment, the third voltage dividing circuit 221 can be, but not limited to, a third resistor R3 and a fourth resistor. R4 is connected in series. Third capacitance C3 lines are connected to the inverting input terminal and the output terminal of the first operational amplifier 220. The input end of the optical coupler 222, that is, the light emitting diode element D1 is electrically connected to the output end of the first operational amplifier 220, and the output end of the optical coupler 222, that is, the photoelectric crystal B is electrically connected to the control driving circuit 23. The reference voltage adjusting circuit 223 is electrically connected to a first non-inverting input of the operational amplifier 220, and between the input voltage detection circuit 21 for receiving an input voltage sense signal Vt, and the input voltage detection signal Vt And a reference voltage Vref is output. The first operational amplifier 220 is configured to compare the transition voltage Vs divided by the third voltage dividing circuit 221 with the reference voltage Vref , and output a feedback control signal Vf via the optocoupler 222 according to the comparison result. In this way, the control driving circuit 23 correspondingly adjusts the duty cycle of the first switching element S1 and the second switching element S2 according to the feedback control signal Vf , thereby adjusting the transition voltage Vs even after the third point. The voltage Vs divided by the voltage circuit 221 is substantially equal to the reference voltage Vref .
請參閱第五圖,並配合第二至四圖,其中第五圖係為第三圖所示之參考電壓調整電路之細部電路結構示意圖。如第二至五圖所示,參考電壓調整電路223主要包含一比較器2230、一電壓調整開關元件S3、一可調穩壓器2231、一第一電壓調整電阻R5、一第二電壓調整電阻R6、一第三電壓調整電阻R7以及一第四電壓調整電阻R8。其中第四電壓調整電阻R8係接收一直流電壓Vcc。可調穩壓器2231可為但不限於由美國國家半導體(National Semiconductor:NS)的產品編號為LM4041的積體電路所構成,且可調穩壓器2231的陰極端a係與第一運算放大器220之非反向輸入端以及第四電壓調整電阻R8電連接,可調穩壓器2231之陽極端b係與一接地端ground電連接,可調穩壓器2231之回授端c係與第一電壓調整電阻R5電連接。第三電壓調整電阻R7係電連接於可調穩壓器2231之陰極端a及回授端c之間,且與第一運算放大器220之非反向輸入端電連接,以輸出參考電壓Vref。第二電壓調整電阻R6係電連接於可調穩壓器2231之回授端c以及陽極端b之間,因此第二電壓調整電阻R6兩端之電壓係被可調穩壓器2231限定於一電壓固定值,例如1.225V。第一電壓調整電阻R5係與電壓調整開關元件S3串聯連接,且第一電壓調整電阻R5與電壓調整開關元件S3的串聯回路係電連接於可調穩壓器2231之回授端c以及陽極端b之間。比較器2230的非反向輸入端係接收一預設電壓Vad,比較器2230的反向輸入端則與輸入電壓偵測電路21電連接而接收輸入電壓偵測訊號Vt。Please refer to the fifth figure, and cooperate with the second to fourth figures, wherein the fifth figure is a detailed circuit structure diagram of the reference voltage adjusting circuit shown in the third figure. As shown in the second to fifth figures, the reference voltage adjustment circuit 223 mainly includes a comparator 2230, a voltage adjustment switching element S3 , an adjustable voltage regulator 2231 , a first voltage adjustment resistor R5 , and a second voltage. The resistor R6 , a third voltage adjusting resistor R7 and a fourth voltage adjusting resistor R8 are adjusted. The fourth voltage regulating resistor R8 receives the DC voltage Vcc . The adjustable voltage regulator 2231 can be, but is not limited to, an integrated circuit of National Semiconductor (NS) product number LM4041, and the cathode terminal a of the adjustable voltage regulator 2231 is connected to the first operational amplifier. The non-inverting input terminal of 220 and the fourth voltage adjusting resistor R8 are electrically connected, and the anode end b of the adjustable voltage regulator 2231 is electrically connected to a ground ground, and the feedback terminal 2231 of the adjustable voltage regulator 2231 is The first voltage adjusting resistor R5 is electrically connected. The third voltage adjusting resistor R7 is electrically connected between the cathode terminal a and the feedback terminal c of the adjustable voltage regulator 2231 , and is electrically connected to the non-inverting input terminal of the first operational amplifier 220 to output the reference voltage V.Ref . The second voltage adjusting resistor R6 is electrically connected between the feedback terminal c and the anode terminal b of the adjustable voltage regulator 2231, so the voltage across the second voltage adjusting resistor R6 is limited by the adjustable voltage regulator 2231 A fixed value of a voltage, such as 1.225V. The first voltage adjusting resistor R5 is connected in series with the voltage adjusting switching element S3 , and the series circuit of the first voltage adjusting resistor R5 and the voltage adjusting switching element S3 is electrically connected to the feedback end of the adjustable voltage regulator 2231 c and between the anode ends b. The non-inverting input terminal of the comparator 2230 receives a predetermined voltage Vad , and the inverting input terminal of the comparator 2230 is electrically connected to the input voltage detecting circuit 21 to receive the input voltage detecting signal Vt .
以下將進一步說明本案之參考電壓調整電路223的作動方式以及本案之前級調壓電路2所能達成的技術效果。請參閱第六至八圖,並配合第二至五圖,其中第六圖係為第三圖所示之前級調壓電路之參考電壓對應於輸入電壓偵測訊號之波形圖,第七圖係為第三圖所示之前級調壓電路之過渡電壓對應於輸入電壓之波形圖,第八圖係為第三圖所示之前級調壓電路之開關元件的責任週期對應於輸入電壓之波形圖。如圖所示,當輸入電壓Vin由0開始提昇至大於一最小驅動電壓Vmin以上時,中央匯流排電源系統1便被輸入電壓Vin所驅動,使得輸入電壓偵測訊號Vt由0開始提昇,而當輸入電壓偵測訊號Vt尚未提昇至大於預設電壓Vad,即輸入電壓偵測訊號Vt係小於預設電壓Vad時,比較器2230便會輸出一高準位的致能訊號,使電壓調整開關元件S3導通,進而使第一電壓調整電阻R5以及第二電壓調整電阻R6並聯連接,因此參考電壓Vref係維持在如第六圖所示之一第一參考準位Vref1,該第一參考準位Vref1的值可例如為(R5//R6)*1.225/R7+1.225。而由第七圖及第八圖可得知,當輸入電壓偵測訊號Vt小於預設電壓Vad時,過渡電壓Vs係維持在如第七圖所示之第一過渡準位Vs1,該第一過渡準位Vs1的值為{(R3+R4)/R4}* Vref1,至於能量轉換電路20之開關元件,例如第一開關元件S1或第二開關元件S2的責任週期會從輸入電壓Vin等於最小驅動電壓Vmin時開始持續的下降。The operation mode of the reference voltage adjusting circuit 223 of the present invention and the technical effects that can be achieved by the previous stage voltage regulating circuit 2 of the present invention will be further described below. Please refer to the sixth to eighth figures, together with the second to fifth diagrams, wherein the sixth figure is the waveform diagram of the reference voltage of the previous stage voltage regulating circuit corresponding to the input voltage detection signal shown in the third figure, the seventh picture is The waveform of the transition voltage of the previous stage voltage regulating circuit shown in the third figure corresponds to the waveform of the input voltage, and the eighth figure is the waveform diagram of the duty cycle of the switching element of the previous stage voltage regulating circuit shown in the third figure corresponding to the input voltage. . As shown in the figure, when the input voltage Vin is raised from 0 to be greater than a minimum driving voltage Vmin , the central bus power system 1 is driven by the input voltage Vin such that the input voltage detecting signal Vt is 0. Starting to increase, when the input voltage detection signal Vt has not risen to be greater than the preset voltage Vad , that is, the input voltage detection signal Vt is less than the preset voltage Vad , the comparator 2230 outputs a high level. The enable signal causes the voltage adjustment switching element S3 to be turned on, and the first voltage adjustment resistor R5 and the second voltage adjustment resistor R6 are connected in parallel. Therefore, the reference voltage Vref is maintained as shown in FIG. A reference level Vref1 , the value of the first reference level Vref1 may be, for example, (R5 //R6 )*1.225/R7 +1.225. As can be seen from the seventh and eighth figures, when the input voltage detection signal Vt is less than the preset voltage Vad , the transition voltage Vs is maintained at the first transition level Vs1 as shown in FIG. 7 . The value of the first transition level Vs1 is {(R3 + R4 ) / R4 } * Vref1 , as for the switching element of the energy conversion circuit 20, such as the first switching element S1 or the second switching element S The duty cycle of2 begins to decrease continuously from the input voltage Vin equal to the minimum drive voltage Vmin .
而當輸入電壓Vin提昇至一電壓門檻值Vth,使輸入電壓偵測訊號Vt恰好大於預設電壓Vad時,比較器2230便會輸出一低準位的截止訊號,使電壓調整開關元件S3截止,此時第一電壓調整電阻R5形成開路,如此一來,參考電壓Vref的準位便提高至如第六圖所示之一第二參考準位Vref2,該第二參考準位Vref2的值可例如為(R6*1.225/R7)+1.225。而由第七圖及第八圖可得知,當輸入電壓偵測訊號Vt恰好大於預設電壓Vad時,過渡電壓Vs的準位係提高至一第二過渡準位Vs2,該第二過渡準位Vs2的值為{(R3+R4)/R4}* Vref2,至於第一開關元件S1或第二開關元件S2的責任週期便會在一第一責任週期預定值Duty1時呈現一步階式(step)的提昇,其中該第一責任週期預定值Duty1係可為但不限於60%。When the input voltage Vin is raised to a voltage threshold Vth and the input voltage detection signal Vt is just greater than the preset voltage Vad , the comparator 2230 outputs a low-level cutoff signal to make the voltage adjustment switch. The element S3 is turned off, at which time the first voltage adjusting resistor R5 forms an open circuit, so that the level of the reference voltage Vref is increased to a second reference level Vref2 as shown in FIG. 6 , the second The value of the reference level Vref2 may be, for example, (R6 *1.225/R7 )+1.225. As can be seen from the seventh and eighth figures, when the input voltage detection signal Vt is just greater than the preset voltage Vad , the level of the transition voltage Vs is increased to a second transition level Vs2 , The value of the second transition level Vs2 is {(R3 + R4 ) / R4 } * Vref2 , and the duty cycle of the first switching element S1 or the second switching element S2 is a first responsibility The period predetermined value Duty1 exhibits a step-up promotion, wherein the first duty cycle predetermined value Duty1 may be, but not limited to, 60%.
如第六圖所示,參考電壓Vref係隨著輸入電壓偵測訊號Vt的增加而階段地改變,因此當輸入電壓Vin提昇至大於電壓門檻值Vth而小於中央匯流排電源系統1所能承受的一最大驅動電壓Vmax,且輸入電壓偵測訊號Vt係大於預設電壓Vad時,參考電壓Vref的準位便會持續維持在第二參考準位Vref2,而過渡電壓Vs的準位亦持續維持在第二過渡準位Vs2,至於第一開關元件S1或第二開關元件S2的責任週期則會從輸入電壓Vin大於電壓門檻值Vth時開始持續的下降,然而由第八圖可得知,第一開關元件S1或第二開關元件S2的責任週期在下降的過程中仍維持於在第一責任週期預定值Duty1以上。As shown in the sixth figure, the reference voltage Vref changes stepwise as the input voltage detection signal Vt increases, so when the input voltage Vin is raised to be greater than the voltage threshold value Vth and smaller than the central bus power supply system 1 When the maximum driving voltage Vmax can be tolerated, and the input voltage detecting signal Vt is greater than the preset voltage Vad , the level of the reference voltage Vref is continuously maintained at the second reference level Vref2 , and the transition The level of the voltage Vs is also maintained at the second transition level Vs2 , and the duty cycle of the first switching element S1 or the second switching element S2 is started when the input voltage Vin is greater than the voltage threshold value Vth . The continuous decrease, however, as can be seen from the eighth figure, the duty cycle of the first switching element S1 or the second switching element S2 is maintained above the first duty cycle predetermined value Duty1 during the falling process.
由上可知,本案之前級調壓電路2所接收之輸入電壓Vin由0開始提昇至最小驅動電壓Vmin以上時,前級調壓電路2之能量轉換電路20的開關元件,例如第一開關元件S1或第二開關元件S2的責任週期係開始下降,然而當輸入電壓Vin提昇至一電壓門檻值Vth時,第一開關元件S1或第二開關元件S2的責任週期係在第一責任週期預定值Duty1時呈現步階式的提昇,且當輸入電壓Vin提昇至大於電壓門檻值Vth而小於中央匯流排電源系統1所能承受的電壓最大驅動電壓Vmax時,第一開關元件S1或第二開關元件S2的責任週期仍維持在大於第一責任週期預定值Duty1以上,因此相較於習知前級調壓電路之開關元件的責任週期係隨著輸入電壓的提昇而持續地減小,本案之前級調壓電路2便可減少電能傳導的損耗、第一開關元件S1或第二開關元件S2的切換損耗以及第一濾波電感L1以及濾波電路203的濾波損耗等缺失 ,進而提昇效能。When seen from the above, the case of receiving two stage voltage until the circuit input voltage Vin starting from 0 up to the minimum driving voltage Vmin or more, the energy of the former stage voltage conversion circuit 2 circuit switching element 20, for example, a first switch The duty cycle of the element S1 or the second switching element S2 begins to decrease, but when the input voltage Vin is raised to a voltage threshold value Vth , the duty cycle of the first switching element S1 or the second switching element S2 is When the first duty cycle predetermined value Duty1 is presented, the stepwise boost is presented, and when the input voltage Vin is raised to be greater than the voltage threshold value Vth and less than the voltage maximum driving voltage Vmax that the central bus power supply system 1 can withstand, The duty cycle of the first switching element S1 or the second switching element S2 is still maintained above the first duty cycle predetermined value Duty1, so that the duty cycle of the switching element of the conventional pre-stage voltage regulating circuit is followed by the input. the boosted voltage is continuously reduced, in this case before the stage voltage regulator circuit 2 can reduce the loss of energy conducted, the first switching element or the second switchingelement. 1 S S2 of the switching loss and the inductor L1 and a first filter Loss wave filtering circuit 203 and the like deleted, and thus improve performance.
請參閱第九至十二圖,其中第九圖係為第五圖所示之參考電壓調整電路之另一變化例,第十圖係為第九圖所示之參考電壓調整電路應用於第三圖所示之前級調壓電路時參考電壓對應於輸入電壓偵測訊號之波形圖,第十一圖係為第九圖所示之參考電壓調整電路應用於第三圖所示之前級調壓電路時過渡電壓對應於輸入電壓之波形圖,第十二圖係為第九圖所示之參考電壓調整電路應用於第三圖所示之前級調壓電路時開關元件之責任週期對應於輸入電壓之波形圖。如第九至十二圖所示,本實施例之參考電壓調整電路423的電路結構係與第五圖所示之參考電壓調整電路223相仿,且相同符號之元件代表結構與功能相似,故元件特徵及作動方式於此不再贅述。唯相較於第五圖,本實施例之參考電壓調整電路423並不具有如第五圖所示之比較器2230以及電壓調整開關元件S3,此外,第一電壓調整電阻R5係改電連接於輸入電壓偵測電路21以及可調穩壓器2231之回授端c之間,進而接收輸入電壓偵測訊號Vt,且第一電壓調整電阻R5亦與第二電壓調整電阻R6以及第三電壓調整電阻R7電連接,因此經可調穩壓器2231所輸出之參考電壓Vref的值為1.225+1.225*(R5//R6)/R7+Vt*(R5//R6)/R5,由於第一電壓調整電阻R5、第二電壓調整電阻R6以及第三電壓調整電阻R7之電阻值為常數,由此可知,此時參考電壓Vref係隨著輸入電壓偵測訊號Vt的變化而實質上線性地改變,亦即如第十及十一圖所示,當輸入電壓Vin由最小驅動電壓Vmin提昇至最大驅動電壓Vmax而輸入電壓偵測訊號Vt持續提昇時,由參考電壓調整電路223所輸出之參考電壓Vref亦對應輸入電壓偵測訊號Vt而持續地提昇。Please refer to the ninth to twelfth drawings, wherein the ninth figure is another variation of the reference voltage adjusting circuit shown in the fifth figure, and the tenth figure is the reference voltage adjusting circuit shown in the ninth figure applied to the third The reference voltage shown in the figure shows the reference voltage corresponding to the waveform of the input voltage detection signal, and the eleventh figure shows the reference voltage adjustment circuit shown in the ninth diagram applied to the previous stage voltage regulation circuit shown in the third figure. The time transition voltage corresponds to the waveform of the input voltage, and the twelfth figure is the reference voltage adjustment circuit shown in FIG. 9 applied to the previous stage voltage regulating circuit shown in the third figure, the duty cycle of the switching element corresponds to the input voltage Waveform diagram. As shown in the ninth to twelfth drawings, the circuit structure of the reference voltage adjusting circuit 423 of the present embodiment is similar to the reference voltage adjusting circuit 223 shown in FIG. 5, and the components of the same symbol represent structures and functions similarly, so that the components are Features and actions will not be described here. Compared with the fifth figure, the reference voltage adjusting circuit 423 of the present embodiment does not have the comparator 2230 and the voltage adjusting switching element S3 as shown in FIG.5 , and the first voltage adjusting resistor R5 is changed to electricity. Connected between the input voltage detecting circuit 21 and the feedback terminal c of the adjustable voltage regulator 2231 to receive the input voltage detecting signal Vt , and the first voltage adjusting resistor R5 and the second voltage adjusting resistor R6 And the third voltage adjusting resistor R7 is electrically connected, so the value of the reference voltage Vref outputted by the adjustable regulator 2231 is 1.225+1.225*(R5 //R6 )/R7 +Vt *(R5 //R6 )/R5 , since the resistance values of the first voltage adjusting resistor R5 , the second voltage adjusting resistor R6 and the third voltage adjusting resistor R7 are constant, it can be seen that the reference voltage Vref at this time The system changes substantially linearly as the input voltage detection signal Vt changes, that is, as shown in the tenth and eleventh figures, when the input voltage Vin is raised from the minimum driving voltage Vmin to the maximum driving voltage Vmax When the input voltage detection signal Vt continues to rise, the reference voltage Vr output by the reference voltage adjustment circuit 223The ef also continuously increases in response to the input voltage detection signal Vt .
此外,當輸入電壓Vin由最小驅動電壓Vmin提昇至最大驅動電壓Vmax時,過渡電壓VS係對應地持續提昇,然而因為參考電壓Vref係持續地提昇,且為使第三分壓電路221分壓後之過渡電壓Vs可與參考電壓Vref實質上相等,即便輸入電壓Vin係增加,控制驅動電路23亦會將第一開關元件S1或第二開關元件S2的責任週期控制在一定值而不會減少,例如第12圖所示大於一第二責任週期預定值Duty2以上。In addition, when the input voltage Vin is increased from the minimum driving voltage Vmin to the maximum driving voltage Vmax , the transition voltage VS is correspondingly continuously increased, however, since the reference voltage Vref is continuously boosted, and for the third partial voltage The divided voltage Vs after the voltage division of the circuit 221 can be substantially equal to the reference voltage Vref . Even if the input voltage Vin is increased, the control driving circuit 23 will also be the first switching element S1 or the second switching element S2 . The duty cycle is controlled at a certain value without being reduced, for example, as shown in Fig. 12, which is greater than a predetermined duty value Duty2 of a second duty cycle.
於其它實施例中,如第十三圖所示,回授電路22亦可不具有如第三圖所示之參考電壓調整電路223,此時回授電路22之第一運算放大器220之非反向輸入端則對應地改與輸入電壓偵測電路21電連接而接收輸入電壓偵測訊號Vt,如此一來,回授電路22之第一運算放大器220之非反向輸入端所接收之參考電壓則直接為輸入電壓偵測訊號Vt,因此當輸入電壓Vin提昇時,輸入電壓偵測訊號Vt亦跟著提昇,而為了使第三分壓電路221分壓後之過渡電壓Vs與輸入電壓偵測訊號Vt實質上相等,過渡電壓Vs便持續的增加,故即便輸入電壓Vin係增加,控制驅動電路23亦會控制第一開關元件S1或第二開關元件S2的責任週期維持在一定值而不會減少,以具有如第十二圖所示之相似效果,換言之,即第一開關元件S1或第二開關元件S2的責任週期亦會大於一第三責任週期預定值以上(未圖示)。In other embodiments, as shown in FIG. 13, the feedback circuit 22 may not have the reference voltage adjustment circuit 223 as shown in the third figure. In this case, the first operational amplifier 220 of the feedback circuit 22 is non-inverted. The input terminal is electrically connected to the input voltage detecting circuit 21 to receive the input voltage detecting signal Vt , and thus the reference voltage received by the non-inverting input terminal of the first operational amplifier 220 of the feedback circuit 22 is received. The signal Vt is directly detected for the input voltage. Therefore, when the input voltage Vin is increased, the input voltage detection signal Vt is also increased, and the transition voltage Vs after the third voltage dividing circuit 221 is divided The input voltage detection signals Vt are substantially equal, and the transition voltage Vs is continuously increased. Therefore, even if the input voltage Vin is increased, the control driving circuit 23 controls the first switching element S1 or the second switching element S2 . The duty cycle is maintained at a certain value without being reduced to have a similar effect as shown in Fig. 12, in other words, the duty cycle of the first switching element S1 or the second switching element S2 is greater than a third responsibility More than the predetermined period of the cycle (not Shown).
於一些實施例中,控制驅動電路23可為脈衝寬度調變控制驅動電路所構成,但不以此為限,當 能量轉換電路20為諧振式的脈衝頻率調變轉換器所構成時, 控制驅動電路23亦可為 脈衝頻率調變控制驅動電路所構成。In some embodiments, the control driving circuit 23 can be configured as a pulse width modulation control driving circuit, but not limited thereto. When the energy conversion circuit 20 is a resonant pulse frequency modulation converter, the control driving is performed. Circuit 23 can also be constructed as a pulse frequency modulation control drive circuit.
當然,中央匯流排電源系統1並不侷限於如第一圖所示僅具有一前級調壓電路2,於一些實施例中,如第十四圖所示,中央匯流排電源系統1亦可具有複數個前級調壓電路2,該些前級調壓電路2係相互並聯連接以構成一並聯式調壓電路系統,因此中央匯流排電源系統1便可藉由並聯連接之複數個前級調壓電路2而提供較大的輸出功率給後級轉換電路。Of course, the central bus power system 1 is not limited to having only one pre-stage voltage regulating circuit 2 as shown in the first figure. In some embodiments, as shown in FIG. 14, the central bus bar power system 1 may also be The plurality of pre-stage voltage regulating circuits 2 are connected in parallel to each other to form a parallel voltage regulating circuit system, so that the central bus power supply system 1 can be connected by a plurality of pre-stages connected in parallel The voltage regulator circuit 2 provides a larger output power to the post-stage conversion circuit.
此外,為了使複數個前級調壓電路2具有電流分配技術 (current sharing technique),即每一前級調壓電路2之輸出電流Io可與其它的前級調壓電路2達成匹配,例如均流,以平均分配提供給後級轉換電路所需之電流,如第十四圖所示,每一前級調壓電路2更可為但不限於包含一電流偵測電路24,其係與能量轉換電路20以及回授電路22電連接,用以偵測能量轉換電路20內 與輸出電流Io相對應之一轉換電流 ,以輸出一電流偵測訊號Vfc至回授電路22,使回授電路22 更對應 電流偵測訊號Vfc、 輸入電壓偵測訊號Vt以及 過渡電壓Vs改變回授控制訊號Vf,如此一來,控制驅動電路23便調整例如第一開關元件S1或第二開關元件S2之責任週期來改變 前級調壓電路2之過渡電壓Vs,因此除了過渡電壓Vs會隨著輸入電壓Vin的改變而調整,前級調壓電路2的輸出電流Io與其它的前級調壓電路2之輸出電流Io亦可達成匹配,舉例而言,當複數個前級調壓電路2之其中之一前級調壓電路2的輸出電流Io過大時,電流偵測電路24便會輸出代表輸出電流Io過大的電流偵測訊號Vfc給回授電路22,使回授電路22對應輸入電壓偵測訊號Vt及電流偵測訊號Vfc而輸出相對應的回授控制訊號Vf,如此一來,控制驅動電路23便會根據回授控制訊號Vf調整第一開關元件S1或第二開關元件S2的責任週期,使過渡電壓Vs下降,進而降低輸出電流Io,以使其與其它的前級調壓電路2負擔相同的負載電流。In addition, in order to enable the plurality of pre-stage voltage regulating circuits 2 to have a current sharing technique, that is, the output current Io of each of the pre-stage voltage regulating circuits 2 can be matched with other pre-stage voltage regulating circuits 2, for example, for example, The current sharing is performed to evenly distribute the current required for the subsequent stage conversion circuit. As shown in FIG. 14 , each of the front stage voltage regulating circuits 2 can be, but is not limited to, include a current detecting circuit 24, The energy conversion circuit 20 and the feedback circuit 22 are electrically connected to detect a conversion current in the energy conversion circuit 20 corresponding to the output current Io to output a current detection signal Vfc to the feedback circuit 22 to The circuit 22 further changes the feedback control signal Vf corresponding to the current detection signal Vfc , the input voltage detection signal Vt and the transition voltage Vs , so that the control driving circuit 23 adjusts, for example, the first switching element S1 or The duty cycle of the second switching element S2 changes the transition voltage Vs of the pre-stage voltage regulating circuit 2, so that the output current of the pre-stage voltage regulating circuit 2 is adjusted except that the transition voltage Vs is adjusted as the input voltage Vin is changed. Io and other pre-level piezoelectrics The output current Io of channel 2 can achieve the matching, for example, when one of the plurality of pre-regulator circuit 2 before stage voltage circuit output current I 2 iso is too large, the current detection circuit 24 will The current detection signal Vfc representing the excessive output current Io is output to the feedback circuit 22, and the feedback circuit 22 outputs the corresponding feedback control signal V corresponding to the input voltage detection signal Vt and the current detection signal Vfc .f . In this way, the control driving circuit 23 adjusts the duty cycle of the first switching element S1 or the second switching element S2 according to the feedback control signal Vf to lower the transition voltage Vs , thereby reducing the output current Io . So that it bears the same load current as the other pre-stage voltage regulator circuits 2.
請參閱第十五圖,其係為第十四圖所示之 前級調壓電路之部份細部電路結構示意圖。 如第十五圖所示,電流偵測電路24主要包含一感測元件241、一訊號放大器242、一第一放大比例調整電阻R9以及一第二放大比例調整電阻R10,其中感測元件241可由電阻所構成,但不以此為限,感測元件241亦可由其他電流感測元件,例如電流變壓器、霍爾電流感測器(Hall- Effect Current Sensor)或是同步整流開關Sr之導通電阻等來構成,感測元件241係與次級測電路201之輸出端電連接, 其係用以偵測與輸出電流Io相對應之一轉換電流,於本實施例中, 轉換電流 實際上係 為輸出電流Io,此外,感測元件241更會對應轉換電流而輸出一電流感測訊號Vc。訊號放大器242、第一放大比例調整電阻R9以及一第二放大比例調整電阻R10則構成一訊號放大電路,該訊號放大電路係與感測元件241以及第四電阻R4電連接,用以調整電流感測訊號Vc,例如本實施例中,係將電流感測訊號Vc放大R10/R9倍,以產生一電流偵測訊號Vfc,並藉由第四電阻R4傳送至第一運算放大器220的反向輸入端,使第一運算放大器220對應電流偵測訊號Vfc、經第三分壓電路221分壓後之過渡電壓Vs以及輸入電壓偵測訊號Vt而產生回授控制訊號Vf,使控制驅動電路23控制第一開關元件S1或第二開關元件S2的責任週期來調整過渡電壓Vs,進而使前級調壓電路2之輸出電流Io可與其它前級調壓電路2之輸出電流Io達成匹配。Please refer to the fifteenth figure, which is a schematic diagram of a part of the detailed circuit structure of the previous stage voltage regulating circuit shown in FIG. As shown in FIG. 15 , the current detecting circuit 24 mainly includes a sensing component 241 , a signal amplifier 242 , a first amplification ratio adjusting resistor R9 and a second amplification ratio adjusting resistor R10 , wherein the sensing component 241 can be formed by a resistor, but not limited thereto. The sensing component 241 can also be used by other current sensing components, such as a current transformer, a Hall-effect Current Sensor, or a synchronous rectifier switch Sr . configured like the oN resistance, the electrical output of the sensing element 241 and the secondary line connected to the sensing circuit 201, which system for detecting the output current Io corresponds to one of the switching current, in the present embodiment, the current actual conversion The upper part is the output current Io , and the sensing element 241 outputs a current sensing signal Vc corresponding to the switching current. The signal amplifier 242, the first amplification ratio adjusting resistor R9 and the second amplification ratio adjusting resistor R10 form a signal amplifying circuit, and the signal amplifying circuit is electrically connected to the sensing component 241 and the fourth resistor R4 for Adjusting the current sensing signal Vc , for example, in the embodiment, the current sensing signal Vc is amplified by R10 /R9 times to generate a current detecting signal Vfc and transmitted to the fourth resistor R4 to The inverting input terminal of the first operational amplifier 220 causes the first operational amplifier 220 to correspond to the current detecting signal Vfc , the transition voltage Vs divided by the third voltage dividing circuit 221 , and the input voltage detecting signal Vt . The feedback control signal Vf is generated to cause the control driving circuit 23 to control the duty cycle of the first switching element S1 or the second switching element S2 to adjust the transition voltage Vs , thereby causing the output current Io of the pre-stage voltage regulating circuit 2 It can match the output current Io of other pre-stage voltage regulating circuits 2.
當然,感測元件241所偵測之轉換電流實際上並不侷限於如上所述係為輸出電流Io,可依感測元件241連接位置的不同而有不同之實施態樣,因此只要感測元件241連接的位置所偵測到的轉換電流與輸出電流Io有對應關係,皆在本案的保護範圍內。Of course, the switching current detected by the sensing component 241 is not limited to being the output current Io as described above, and may be different depending on the connection position of the sensing component 241, so as long as the sensing is performed. The switching current detected by the position where the component 241 is connected has a corresponding relationship with the output current Io , and is within the protection range of the present case.
請參閱十六圖,其係為第十四圖所示之中央匯流排電源系統之一變化例。如第十六圖所示,本實施例之中央匯流排電源系統1的電路結構與第十四圖所示之中央匯流排電源系統1相仿,且相同符號之元件代表結構與功能相似,故元件特徵及作動方式於此不再贅述。Please refer to the sixteen figure, which is a variation of the central bus power system shown in FIG. As shown in the sixteenth embodiment, the circuit structure of the central bus power supply system 1 of the present embodiment is similar to that of the central bus power supply system 1 shown in FIG. 14, and the components of the same symbols represent structures and functions similarly, so that the components are Features and actions will not be described here.
唯相較於第十四圖所示之中央匯流排電源系統1,本實施例之中央匯流排電源系統1之每一前級調壓電路2更具有一電流分享電路25、一電流匹配電路26以及電流分享匯流排4,此外,電流偵測電路24係與能量轉換電路20、電流分享電路25以及電流匹配電路26電連接。Each of the front-stage voltage regulating circuits 2 of the central bus power supply system 1 of the present embodiment has a current sharing circuit 25 and a current matching circuit 26 as compared with the central bus power supply system 1 shown in FIG. The current sharing bus 4 is further electrically connected to the energy conversion circuit 20, the current sharing circuit 25, and the current matching circuit 26.
電流分享電路25係與電流偵測電路24電連接,並經由電流分享匯流排4而與其它前級調壓電路2之電流分享電路25電連接,電流分享電路25係接收由電流偵測電路24所輸出之電流偵測訊號Vfc,此外,電流分享電路25亦傳送一電流分享信號Vcs至電流分享匯流排4,其中該電流分享匯流排訊號Vcs係代表著中央匯流排電源系統1內之複數個前級調壓電路2之輸出電流Io的平均值或是複數個前級調壓電路2之輸出電流Io中的最大電流值。電流匹配電路26則與電流偵測電路24、電流分享匯流排4以及回授電路22電連接,用以對電流偵測訊號Vfc與電流分享匯流排訊號Vcs之差異進行處理,使回授電路22可依據電流偵測訊號Vfc與電流分享匯流排訊號Vcs兩者間之差異而對應地調整回授控制訊號Vf,因此控制驅動電路23便依據回授控制訊號Vf調整第一開關元件S1或第二開關元件S2之責任週期,以改變前級調壓電路2之輸出電流Io,故除了過渡電壓Vs會隨著輸入電壓Vin的改變而調整,電流偵測訊號Vfc亦會被調整於等於電流分享匯流排訊號Vcs,如此一來,前級調壓電路2之輸出電流Io與其它前級調壓電路2之輸出電流Io便可達成匹配。The current sharing circuit 25 is electrically connected to the current detecting circuit 24 and electrically connected to the current sharing circuit 25 of the other pre-stage voltage regulating circuit 2 via the current sharing bus 4, and the current sharing circuit 25 receives the current detecting circuit 24 The output current detecting signal Vfc , in addition, the current sharing circuit 25 also transmits a current sharing signal Vcs to the current sharing bus 4 , wherein the current sharing bus signal Vcs represents the central bus power system 1 The average value of the output current Io of the plurality of pre-stage voltage regulating circuits 2 or the maximum current value of the output current Io of the plurality of pre-stage voltage regulating circuits 2 . The current matching circuit 26 is electrically connected to the current detecting circuit 24, the current sharing bus 4 and the feedback circuit 22 for processing the difference between the current detecting signal Vfc and the current sharing bus signal Vcs for feedback The circuit 22 can adjust the feedback control signal Vf according to the difference between the current detection signal Vfc and the current sharing bus signal Vcs , so the control driving circuit 23 adjusts the first according to the feedback control signal Vf . The duty cycle of the switching element S1 or the second switching element S2 is to change the output current Io of the pre-stage voltage regulating circuit 2, so that the transition voltage Vs is adjusted according to the change of the input voltage Vin , the current detection signal Vfc will be adjusted to equal to the current share bus signal Vcs, this way, the first stage of the regulator circuit 2, the output current Io and the output current Io other front stage of the voltage regulating circuit 2 can achieve matching.
請參閱第十七圖,其係為第十六圖所示之 前級調壓電路之部份細部電路結構示意圖。如第十七圖所示,每一前級調壓電路2之電流分享電路25主要包含一第二運算放大器250以及一第一 逆向電流阻隔二極體D2,其中第二運算放大器260之非反向輸入端係與電流偵測電路24電連接而接收電流偵測訊號Vfc,第二運算放大器250之反向輸入端則經由電流分享匯流排4與其它前級調壓電路2之電流分享電路25電連接,第二運算放大器250之輸出端係與第一 逆向電流阻隔 二極體D2之陽極端電連接,因此第二運算放大器250便可將非反向輸入端所接收之電流偵測訊號Vfc與其它前級調壓電路2之電流分享電路25所接收之電流偵測訊號進行溝通,進而經由第一 逆向電流阻隔二極體D2輸出電流分享匯流排訊號Vcs。Please refer to the seventeenth figure, which is a schematic diagram of a part of the detailed circuit structure of the previous stage voltage regulating circuit shown in FIG. As shown in FIG. 17, the current sharing circuit 25 of each of the pre-stage voltage regulating circuits 2 mainly includes a second operational amplifier 250 and a first reverse current blocking diode D2 , wherein the second operational amplifier 260 is non- The inverting input is electrically connected to the current detecting circuit 24 to receive the current detecting signal Vfc , and the inverting input of the second operational amplifier 250 is connected to the current of the other front regulating circuit 2 via the current sharing bus 4 The sharing circuit 25 is electrically connected, and the output of the second operational amplifier 250 is electrically connected to the anode terminal of the first reverse current blocking diode D2 , so that the second operational amplifier 250 can receive the current received by the non-inverting input terminal. The detection signal Vfc communicates with the current detection signal received by the current sharing circuit 25 of the other pre-stage voltage regulating circuit 2, and further outputs the current sharing bus signal Vcs via the first reverse current blocking diode D2 .
電流匹配電路26係包含一第二逆向電流阻隔 二極體D3、第三運算放大器260、第五電阻R11以及第四電容C4,其中第三運算放大器260之反向輸出端係經由第五電阻R11而與第一逆向電流阻隔 二極體D2之陰極端電連接,以接收電流分享匯流排訊號Vcs,第三運算放大器260之非反向輸入端係與電流偵測電路24電連接而接收電流偵測訊號Vfc,第三運算放大器260之輸出端係與第二逆向電流阻隔二極體D3之陰極端電連接,第二逆向電流阻隔二極體D3之陽極端係與第一運算放大器220之反向輸入端電連接。第三運算放大器260與第五電阻R11以及第四電容C4係構成一比例積分器,故比例積分器係與電流分享匯流排4以及電流偵測電路24電連接,比例積分器 係對電流偵測訊號Vfc與電流分享匯流排訊號Vcs之差異進行處理,並將處理的結果經由 第二逆向電流阻隔二極體D3傳送至 回授電路22,故回授電路22便依據電流偵測訊號Vfc與電流分享匯流排訊號Vcs兩者間之差異而對應地調整回授控制訊號Vf,因此控制驅動電路23便依據回授控制訊號Vf調整第一開關元件S1或第二開關元件S2之責任週期,以改變前級調壓電路2之輸出電流Io,使電流偵測訊號Vfc與電流分享匯流排訊號Vcs實質上相等,如此一來,前級調壓電路2之輸出電流Io與其它前級調壓電路2之輸出電流Io便可達成匹配。The current matching circuit 26 includes a second reverse current blocking diode D3 , a third operational amplifier 260 , a fifth resistor R11 , and a fourth capacitor C4 , wherein the reverse output terminal of the third operational amplifier 260 is via the first The fifth resistor R11 is electrically connected to the cathode end of the first reverse current blocking diode D2 to receive the current sharing bus signal Vcs , and the non-inverting input terminal of the third operational amplifier 260 and the current detecting circuit 24 Electrically connected to receive the current detecting signal Vfc , the output end of the third operational amplifier 260 is electrically connected to the cathode end of the second reverse current blocking diode D3 , and the second reverse current blocking diode D3 is positive The extremes are electrically coupled to the inverting input of the first operational amplifier 220. The third operational amplifier 260 and the fifth resistor R11 and the fourth capacitor C4 form a proportional integrator, so the proportional integrator is electrically connected to the current sharing bus 4 and the current detecting circuit 24, and the proportional integrator is tied to the current. The difference between the detection signal Vfc and the current sharing bus signal Vcs is processed, and the processed result is transmitted to the feedback circuit 22 via the second reverse current blocking diode D3 , so the feedback circuit 22 is based on the current detection. The feedback control signal Vf is adjusted correspondingly to the difference between the test signal Vfc and the current sharing bus signal Vcs , so the control drive circuit 23 adjusts the first switching element S1 or the first according to the feedback control signal Vf . The duty cycle of the two switching elements S2 is to change the output current Io of the front-stage voltage regulating circuit 2 so that the current detecting signal Vfc is substantially equal to the current sharing bus signal Vcs , so that the front-stage voltage regulating 2 circuit output current Io of the output current Io and the other 2 pre-regulator circuit of the matching can be reached.
綜上所述,本案係提供一種調壓電路及其適用之並聯式調壓電路系統,其係包括一能量轉換電路,一輸入電壓偵測電路,一回授電路以及控制驅動電路。該輸入電壓偵測電路偵測能量轉換電路內與輸入電壓相對應之一轉換電壓,使回授電路可依據轉換電壓及能量轉換電路所輸出之過渡電壓而輸出回授控制訊號 ,如此一來,控制驅動電路便可根據回授控制訊號而調整開關元件之責任週期,使開關元件之責任週期在輸入電壓提昇的過程中,可保持於一責任週期預定值以上,進而使前級調壓電路之傳導損耗、開關元件的切換損耗以及濾波電感或濾波電路的濾波損耗降低並提昇效能。In summary, the present invention provides a voltage regulating circuit and a parallel voltage regulating circuit system therefor, which comprise an energy conversion circuit, an input voltage detecting circuit, a feedback circuit and a control driving circuit. The input voltage detecting circuit detects a conversion voltage corresponding to the input voltage in the energy conversion circuit, so that the feedback circuit can output the feedback control signal according to the transition voltage outputted by the conversion voltage and the energy conversion circuit, so that The control driving circuit can adjust the duty cycle of the switching component according to the feedback control signal, so that the duty cycle of the switching component can be maintained at a predetermined duty cycle or more during the process of increasing the input voltage, thereby enabling the front voltage regulating circuit to The conduction loss, the switching loss of the switching element, and the filter loss of the filter inductor or filter circuit are reduced and the performance is improved.
本案得由熟知此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。This case has been modified by people who are familiar with the technology, but it is not intended to be protected by the scope of the patent application.
1‧‧‧中央匯流排電源系統1‧‧‧Central Busbar Power System
2‧‧‧前級調壓電路2‧‧‧Pre-stage voltage regulator circuit
20‧‧‧能量轉換電路20‧‧‧Energy conversion circuit
200‧‧‧第一分壓電路200‧‧‧First voltage divider circuit
201‧‧‧次級側電路201‧‧‧Secondary side circuit
202‧‧‧同步整流電路202‧‧‧Synchronous rectifier circuit
203‧‧‧濾波電路203‧‧‧Filter circuit
21‧‧‧輸入電壓偵測電路21‧‧‧Input voltage detection circuit
210‧‧‧第二分壓電路210‧‧‧Second voltage divider circuit
22‧‧‧回授電路22‧‧‧Return circuit
220‧‧‧第一運算放大器220‧‧‧First operational amplifier
221‧‧‧第三分壓電路221‧‧‧ Third voltage divider circuit
222‧‧‧光耦合器222‧‧‧Optocoupler
223、423‧‧‧參考電壓調整電路223, 423‧‧‧reference voltage adjustment circuit
2230‧‧‧比較器2230‧‧‧ Comparator
2231‧‧‧可調穩壓器2231‧‧‧Adjustable regulator
23‧‧‧控制驅動電路23‧‧‧Control drive circuit
24‧‧‧電流偵測電路24‧‧‧ Current detection circuit
241‧‧‧感測元件241‧‧‧Sensor components
242‧‧‧訊號放大器242‧‧‧Signal Amplifier
25‧‧‧電流分享電路25‧‧‧current sharing circuit
250‧‧‧第二運算放大器250‧‧‧Second operational amplifier
26‧‧‧電流匹配電路26‧‧‧ Current matching circuit
260‧‧‧第三運算放大器260‧‧‧ Third operational amplifier
3a~3c‧‧‧第一~第三後級轉換電路3a~3c‧‧‧1st to 3rd stage conversion circuit
4‧‧‧匯流排4‧‧‧ Busbar
Vin‧‧‧輸入電壓Vin ‧‧‧ input voltage
Vs‧‧‧過渡電壓Vs ‧ ‧ transition voltage
Vs1‧‧‧第一過渡準位Vs1 ‧‧‧ first transitional level
Vs2‧‧‧第二過渡準位Vs2 ‧‧‧second transitional level
Vo1~Vo3‧‧‧第一~第三工作電壓Vo1 ~Vo3 ‧‧‧first to third working voltage
Vt‧‧‧輸入電壓偵測訊號Vt ‧‧‧Input voltage detection signal
Vf‧‧‧回授控制訊號Vf ‧‧‧ feedback control signal
Vac‧‧‧感應交流電壓Vac ‧‧‧Induction AC voltage
Vref‧‧‧參考電壓Vref ‧‧‧reference voltage
Vref1‧‧‧第一參考準位Vref1 ‧‧‧ first reference level
Vref2‧‧‧第二參考準位Vref2 ‧‧‧second reference level
Vcc‧‧‧直流電壓Vcc ‧‧‧ DC voltage
Vad‧‧‧預設電壓Vad ‧‧‧Preset voltage
Vth‧‧‧電壓門檻值Vth ‧‧‧ voltage threshold
Vmin‧‧‧最小驅動電壓Vmin ‧‧‧minimum drive voltage
Vmax‧‧‧最大驅動電壓Vmax ‧‧‧Maximum driving voltage
Vc‧‧‧電流感測訊號Vc ‧‧‧ current sense signal
Vfc‧‧‧電流偵測訊號Vfc ‧‧‧ current detection signal
Vcs‧‧‧電流分享匯流排訊號Vcs ‧‧‧current sharing bus signal
L1~L2‧‧‧第一~第二濾波電感L1~ L2 ‧‧‧first to second filter inductor
T‧‧‧變壓器T‧‧‧Transformer
Np‧‧‧初級繞組Np ‧‧‧Primary winding
Ns‧‧‧次級繞組Ns ‧‧‧secondary winding
C1~C4‧‧‧第一~第四電容C1 ~ C4 ‧‧‧first to fourth capacitor
Cf1~Cf2‧‧‧第一~第二濾波電容Cf1 ~Cf2 ‧‧‧first to second filter capacitor
S1~S2‧‧‧第一~第二開關元件S1 ~S2 ‧‧‧first to second switching elements
S3‧‧‧電壓調整開關S3 ‧‧‧Voltage adjustment switch
Sr‧‧‧同步整流開關Sr ‧‧‧Synchronous rectifier switch
D‧‧‧整流二極體D‧‧‧Rectifying diode
D1‧‧‧光二極體D1 ‧‧‧Light diode
D2~D3‧‧‧ 第一 逆向~第二電流阻隔 二極體D2 ~D3 ‧‧‧ First reverse ~ second current blocking diode
B‧‧‧光電晶體B‧‧‧Photoelectric crystal
R1~R4‧‧‧第一~第四電阻R1 ~R4 ‧‧‧first to fourth resistance
R5~R8‧‧‧第一~第四電壓調整電阻R5 ~R8 ‧‧‧First to fourth voltage adjustment resistors
R9~R10‧‧‧第一~第二放大比例調整電阻R9 ~R10 ‧‧‧first to second amplification ratio adjustment resistor
R11‧‧‧第五電阻R11 ‧‧‧ fifth resistor
ground‧‧‧共接點Ground‧‧‧ joint
Duty1~Duty2‧‧‧第一~二責任週期預定值Duty1~Duty2‧‧‧First to second duty cycle predetermined value
Io‧‧‧輸出電流Io ‧‧‧Output current
a‧‧‧陰極端A‧‧‧ cathode end
b‧‧‧陽極端b‧‧‧Anode end
c‧‧‧回授端C‧‧‧reporting end
第一圖:其係為本案較佳實施例之中央匯流排電源系統之電路方塊圖。First: It is a circuit block diagram of a central bus power system of the preferred embodiment of the present invention.
第二圖:其係為第一圖所示之前級調壓電路之電路方塊圖。Second figure: It is a circuit block diagram of the previous stage voltage regulating circuit shown in the first figure.
第三圖:其係為第二圖所示之前級調壓電路之部份細部電路結構示意圖。The third figure is a schematic diagram of the detailed circuit structure of the previous stage voltage regulating circuit shown in the second figure.
第四圖:其係為第三圖所示之輸入電壓偵測電路的細部電路結構示意圖。The fourth picture is a detailed circuit structure diagram of the input voltage detection circuit shown in the third figure.
第五圖:其係為第三圖所示之參考電壓調整電路之細部電路結構示意圖。Fifth picture: It is a schematic diagram of the detailed circuit structure of the reference voltage adjustment circuit shown in the third figure.
第六圖:其係為第三圖所示之前級調壓電路之參考電壓對應於輸入電壓偵測訊號之波形圖。Figure 6: It is the waveform diagram of the reference voltage of the previous stage voltage regulating circuit shown in the third figure corresponding to the input voltage detection signal.
第七圖:其係為第三圖所示之前級調壓電路之過渡電壓對應於輸入電壓之波形圖。Figure 7: The waveform of the transition voltage of the previous stage voltage regulating circuit shown in the third figure corresponds to the input voltage.
第八圖:其係為第三圖所示之前級調壓電路之開關元件的責任週期對應於輸入電壓之波形圖。Figure 8: The duty cycle of the switching elements of the previous stage voltage regulating circuit shown in the third figure corresponds to the waveform of the input voltage.
第九圖:其係為第五圖所示之參考電壓調整電路之另一變化例。Ninth diagram: This is another variation of the reference voltage adjustment circuit shown in the fifth figure.
第十圖:其係為第九圖所示之參考電壓調整電路應用於第三圖所示之前級調壓電路時參考電壓對應於輸入電壓偵測訊號之波形圖。The tenth figure is the waveform diagram of the reference voltage corresponding to the input voltage detection signal when the reference voltage adjustment circuit shown in FIG. 9 is applied to the previous stage voltage regulating circuit shown in the third figure.
第十一圖:其係為第九圖所示之參考電壓調整電路應用於第三圖所示之前級調壓電路時過渡電壓對應於輸入電壓之波形圖。Eleventh figure: The waveform of the transition voltage corresponding to the input voltage when the reference voltage adjustment circuit shown in FIG. 9 is applied to the previous stage voltage regulating circuit shown in the third figure.
第十二圖:其係為第九圖所示之參考電壓調整電路應用於第三圖所示之前級調壓電路時開關元件之責任週期對應於輸入電壓之波形圖。Twelfth figure: The reference voltage adjustment circuit shown in the ninth figure is applied to the previous stage voltage regulating circuit shown in the third figure, and the duty cycle of the switching element corresponds to the waveform of the input voltage.
第十三圖:其係為第三圖所示之回授電路之一變化例。Thirteenth figure: This is a variation of the feedback circuit shown in the third figure.
第十四圖:其係為第一圖所示之中央匯流排電源系統之一變化例。Figure 14: This is a variation of the central busbar power system shown in the first figure.
第十五圖:其係為第十四圖所示之前級調壓電路之部份細部電路結構示意圖。Figure 15: It is a schematic diagram of the detailed circuit structure of the previous stage voltage regulating circuit shown in Figure 14.
第十六圖:其係為第十四圖所示之中央匯流排電源系統之一變化例。Figure 16: This is a variation of the central busbar power system shown in Figure 14.
第十七圖:其係為第十六圖所示之前級調壓電路之部份細部電路結構示意圖。Figure 17: It is a schematic diagram of the detailed circuit structure of the previous stage voltage regulating circuit shown in Figure 16.
2‧‧‧前級調壓電路2‧‧‧Pre-stage voltage regulator circuit
20‧‧‧能量轉換電路20‧‧‧Energy conversion circuit
21‧‧‧輸入電壓偵測電路21‧‧‧Input voltage detection circuit
22‧‧‧回授電路22‧‧‧Return circuit
23‧‧‧控制驅動電路23‧‧‧Control drive circuit
Vin‧‧‧輸入電壓Vin ‧‧‧ input voltage
Vs‧‧‧過渡電壓Vs ‧ ‧ transition voltage
Vt‧‧‧輸入電壓偵測訊號Vt ‧‧‧Input voltage detection signal
Vf‧‧‧回授控制訊號Vf ‧‧‧ feedback control signal
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22937609P | 2009-07-29 | 2009-07-29 |
| Publication Number | Publication Date |
|---|---|
| TW201120606A TW201120606A (en) | 2011-06-16 |
| TWI401555Btrue TWI401555B (en) | 2013-07-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW099125001ATWI401555B (en) | 2009-07-29 | 2010-07-29 | Voltage-regulating circuit with input voltage detecting circuit and parallel voltage-regulating circuit system using the same |
| Country | Link |
|---|---|
| US (1) | US8787040B2 (en) |
| CN (1) | CN101989814B (en) |
| TW (1) | TWI401555B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103683944B (en)* | 2012-09-21 | 2016-09-14 | 台达电子工业股份有限公司 | Voltage supply system, converter therein, and voltage adjustment method |
| US10153701B2 (en)* | 2011-03-03 | 2018-12-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Controlling a switched mode power supply with maximised power efficiency |
| EP2700137B1 (en)* | 2011-04-20 | 2017-06-07 | Telefonaktiebolaget LM Ericsson (publ) | Control of dynamic bus voltage in an intermediate bus architecture power system |
| CN102761247A (en)* | 2011-04-26 | 2012-10-31 | 登丰微电子股份有限公司 | Control circuit of conversion circuit |
| US10680515B2 (en) | 2011-05-05 | 2020-06-09 | Psemi Corporation | Power converters with modular stages |
| EP4318909A3 (en) | 2011-05-05 | 2024-03-06 | PSEMI Corporation | Dc-dc converter with modular stages |
| US20120297104A1 (en)* | 2011-05-20 | 2012-11-22 | General Electric | Controlled intermediate bus architecture optimization |
| US8743553B2 (en) | 2011-10-18 | 2014-06-03 | Arctic Sand Technologies, Inc. | Power converters with integrated capacitors |
| WO2013059961A1 (en)* | 2011-10-27 | 2013-05-02 | Telefonaktiebolaget L M Ericsson (Publ) | Fully-regulated power converter |
| TWI457548B (en)* | 2011-12-16 | 2014-10-21 | Au Optronics Corp | Light sense appratus and method of adjustion thereof |
| US8723491B2 (en) | 2011-12-19 | 2014-05-13 | Arctic Sand Technologies, Inc. | Control of power converters with capacitive energy transfer |
| IN2014KN01763A (en)* | 2012-01-30 | 2015-10-23 | Ericsson Telefon Ab L M | |
| JP5991078B2 (en) | 2012-08-27 | 2016-09-14 | 富士電機株式会社 | Switching power supply |
| US9158314B2 (en) | 2013-01-09 | 2015-10-13 | Richtek Technology Corporation | Voltage regulator, and control circuit and control method thereof |
| US8724353B1 (en) | 2013-03-15 | 2014-05-13 | Arctic Sand Technologies, Inc. | Efficient gate drivers for switched capacitor converters |
| US8619445B1 (en) | 2013-03-15 | 2013-12-31 | Arctic Sand Technologies, Inc. | Protection of switched capacitor power converter |
| US9407154B2 (en) | 2013-06-14 | 2016-08-02 | Advanced Charging Technologies, LLC | Electrical circuit for delivering power to consumer electronic devices |
| US10141844B2 (en)* | 2013-07-16 | 2018-11-27 | Lion Semiconductor Inc. | Reconfigurable power regulator |
| CN104679085B (en)* | 2013-11-30 | 2017-02-15 | 上海德朗能新能源有限公司 | Power supply regulating device |
| US9979307B2 (en)* | 2014-01-10 | 2018-05-22 | Astec International Limited | Control circuits and methods for regulating output voltages using multiple and/or adjustable reference voltages |
| US9337741B2 (en) | 2014-02-17 | 2016-05-10 | Huawei Technologies Co., Ltd. | DC-DC conversion circuit and method |
| CN103825459B (en)* | 2014-02-17 | 2017-05-10 | 华为技术有限公司 | DC-to-DC conversion circuit and method |
| US10693368B2 (en) | 2014-03-14 | 2020-06-23 | Psemi Corporation | Charge pump stability control |
| DE112015001245T5 (en) | 2014-03-14 | 2016-12-15 | Arctic Sand Technologies, Inc. | Charge-balanced charge pump control |
| DE112015001260T5 (en) | 2014-03-14 | 2016-12-08 | Arctic Sand Technologies, Inc. | Charge pump stability control |
| CN104079176B (en)* | 2014-06-20 | 2016-11-23 | 华为技术有限公司 | A kind of method for managing power supply and power supply |
| DE102014211854A1 (en)* | 2014-06-20 | 2015-12-24 | Robert Bosch Gmbh | Device and method for determining an electrical voltage |
| WO2016149063A1 (en) | 2015-03-13 | 2016-09-22 | Arctic Sand Technologies, Inc. | Dc-dc transformer with inductor for the facilitation of adiabatic inter-capacitor charge transport |
| CN105048815B (en)* | 2015-05-05 | 2017-11-24 | 北京新雷能科技股份有限公司 | A kind of output voltage regulation circuit and power supply |
| WO2017007991A1 (en) | 2015-07-08 | 2017-01-12 | Arctic Sand Technologies, Inc. | Switched-capacitor power converters |
| WO2017007387A1 (en)* | 2015-07-09 | 2017-01-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Isolated buck converter, switched mode power supply, and method of transferring digital data from a primary side to an isolated secondary side of an isolated buck converter |
| EP3282550B1 (en) | 2016-02-05 | 2020-04-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Adapter and charging control method |
| US9729073B1 (en)* | 2016-02-05 | 2017-08-08 | Power Forest Technology Corporation | Power conversion apparatus |
| JP6843696B2 (en) | 2017-04-28 | 2021-03-17 | キヤノン株式会社 | Power supply device and image forming device |
| TWI666861B (en)* | 2017-09-01 | 2019-07-21 | 明緯(廣州)電子有限公司 | Control circuit for reducing power loss of llc resonant converter during light-load or no-load operation |
| CN108631579B (en)* | 2018-06-12 | 2019-12-20 | 漳州科华技术有限责任公司 | UPS and method, system and equipment for adjusting DC bus voltage thereof |
| US10686367B1 (en) | 2019-03-04 | 2020-06-16 | Psemi Corporation | Apparatus and method for efficient shutdown of adiabatic charge pumps |
| US11223289B2 (en) | 2020-01-17 | 2022-01-11 | Astec International Limited | Regulated switched mode power supplies having adjustable output voltages |
| TWI729835B (en) | 2020-06-03 | 2021-06-01 | 亞源科技股份有限公司 | Hysteresis voltage detection circuit |
| TWI759932B (en)* | 2020-11-02 | 2022-04-01 | 國立臺灣科技大學 | Interleaved three phase wye-delta connected power converter |
| US11682962B2 (en)* | 2021-04-27 | 2023-06-20 | Infineon Technologies Ag | Circuit for controlling an output of a power converter |
| CN113783262A (en)* | 2021-09-15 | 2021-12-10 | 淮海机电科技股份有限公司 | Charger power feedback regulation and control circuit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080266907A1 (en)* | 2007-04-25 | 2008-10-30 | Jin-Tae Kim | Switch controller, switch control method, converter using the same, and driving method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09233816A (en)* | 1996-02-22 | 1997-09-05 | Matsushita Electric Ind Co Ltd | Switching power supply |
| DE69808322T2 (en)* | 1997-02-06 | 2003-05-15 | Taiheiyo Cement Corp | CONTROL CIRCUIT AND METHOD FOR A PIEZOELECTRIC TRANSFORMER |
| JPH11187662A (en)* | 1997-12-24 | 1999-07-09 | Isuzu Motors Ltd | Dc-to-dc converter |
| KR100303450B1 (en)* | 1998-05-29 | 2001-11-30 | 김덕중 | Pfc controller |
| US6278263B1 (en)* | 1999-09-01 | 2001-08-21 | Intersil Corporation | Multi-phase converter with balanced currents |
| US6975098B2 (en)* | 2002-01-31 | 2005-12-13 | Vlt, Inc. | Factorized power architecture with point of load sine amplitude converters |
| US6944034B1 (en)* | 2003-06-30 | 2005-09-13 | Iwatt Inc. | System and method for input current shaping in a power converter |
| JP4468011B2 (en)* | 2004-02-25 | 2010-05-26 | キヤノン株式会社 | Switching power supply and image forming apparatus |
| US7280376B2 (en)* | 2004-10-15 | 2007-10-09 | Dell Products L.P. | Primary side voltage sense for AC/DC power supplies capable of compensation for a voltage drop in the secondary |
| TWI340528B (en)* | 2007-04-03 | 2011-04-11 | Delta Electronics Inc | Resonant converter system and controlling method thereof having relatively better efficiency |
| JP4908386B2 (en)* | 2007-11-30 | 2012-04-04 | コーセル株式会社 | Switching power supply device and driving method thereof |
| US8098506B2 (en)* | 2009-06-02 | 2012-01-17 | Power Integrations, Inc. | Single-stage power supply with power factor correction and constant current output |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080266907A1 (en)* | 2007-04-25 | 2008-10-30 | Jin-Tae Kim | Switch controller, switch control method, converter using the same, and driving method thereof |
| Publication number | Publication date |
|---|---|
| US20110026275A1 (en) | 2011-02-03 |
| CN101989814A (en) | 2011-03-23 |
| CN101989814B (en) | 2013-10-09 |
| TW201120606A (en) | 2011-06-16 |
| US8787040B2 (en) | 2014-07-22 |
| Publication | Publication Date | Title |
|---|---|---|
| TWI401555B (en) | Voltage-regulating circuit with input voltage detecting circuit and parallel voltage-regulating circuit system using the same | |
| TWI556545B (en) | Charge control circuit, flyback power conversion system and charging control method | |
| TWI593224B (en) | Buck-boost power converter and associated control circuit | |
| TWI589106B (en) | Switching power supplies and switch controllers | |
| US9081401B2 (en) | Switching regulator and control circuit and control method thereof | |
| US8004262B2 (en) | Method and apparatus to control a power factor correction circuit | |
| CN101552560B (en) | Switch voltage stabilizing circuit and control method thereof | |
| TWI442677B (en) | Power supply and controller thereof | |
| US9331589B2 (en) | Primary feedback switching power converter controller with intelligent determination of and response to output voltage drops due to dynamic load conditions | |
| US7336057B2 (en) | DC/DC converter | |
| US9491819B2 (en) | Hysteretic power factor control method for single stage power converters | |
| CN103312200A (en) | Power converter, current limiting unit, control circuit and related control method | |
| TWI499183B (en) | Power factor correction circuit of power converter | |
| US8111009B2 (en) | Light adjustment circuit for alternating-current light emitting diodes (AC-LED's) | |
| TW201635689A (en) | Switching converter and its controller and mode control circuit | |
| KR100829121B1 (en) | Power Factor Correction Circuit for Single Power Operation in BCM Mode | |
| TW202002494A (en) | Power conversion system | |
| TWI516007B (en) | DC power supply unit | |
| CN101834527B (en) | Two-stage switching power conversion circuit | |
| TW201407941A (en) | Active feedback control integrated circuit applied to an alternating current/direct current converter and operation method thereof | |
| CN203352469U (en) | Power Converter, Current Limiting Unit and Control Circuit | |
| TWI462450B (en) | Control circuits for power converters and offline control circuits for power converters | |
| KR20080086798A (en) | Method and apparatus for high voltage power supply circuit | |
| US8482208B2 (en) | Switching mode power supplies and control methods used therein to provide power factor correction and constant output current | |
| US20230107131A1 (en) | Switching mode power supply with stable zero crossing detection, the control circuit and the method thereof |