Movatterモバイル変換


[0]ホーム

URL:


TWI378299B - Light module with high collimation emitting property - Google Patents

Light module with high collimation emitting property
Download PDF

Info

Publication number
TWI378299B
TWI378299BTW97134676ATW97134676ATWI378299BTW I378299 BTWI378299 BTW I378299BTW 97134676 ATW97134676 ATW 97134676ATW 97134676 ATW97134676 ATW 97134676ATW I378299 BTWI378299 BTW I378299B
Authority
TW
Taiwan
Prior art keywords
light
film
guide plate
source module
light source
Prior art date
Application number
TW97134676A
Other languages
Chinese (zh)
Other versions
TW201011410A (en
Inventor
Yem Yeu Chang
Chia Jen Ting
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res InstfiledCriticalInd Tech Res Inst
Priority to TW97134676ApriorityCriticalpatent/TWI378299B/en
Publication of TW201011410ApublicationCriticalpatent/TW201011410A/en
Application grantedgrantedCritical
Publication of TWI378299BpublicationCriticalpatent/TWI378299B/en

Links

Landscapes

Description

Translated fromChinese

1378299 101. 7 2〇 年月 日修正替換頁 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種高準直面型光源模組及其出光方 ; 法’尤指一種可將出光光場之半高全寬(FWHM,Full Width Half Maximum)度數大幅縮小’除具備高準直出光特性外, 亦可適用於現有背光模組製程技術進行生產製作之高準直 面型光源模組。 【先前技術】 按,液晶顯示器之應用極為廣泛,包含手機、pDA、車 用顯示器、筆記型電腦、電腦螢幕以及液晶電視等。然而, TFT-LCD(薄膜電晶體-液晶)顯示器為非自發光型(n〇n_ emission)顯示态,除控制晝面顯示之液晶面板外,需要外 加背光模組提供平面光源。至於傳統側光式背光模組係採 用導光板形成平面光源,主要構件除光源、導光板、反射 參片之外,通常另包括二片結構互相垂直的集光稜鏡片 (prism sheet)以及設置於該二集光稜鏡片上下兩面,將該 二集光稜鏡片失設於其間之二擴散片(Diffuser),該集光 *-稜鏡片通常簡稱 BEF(Brightness Enhancement Fi lm),其 、 作用在於限縮光限射出角度,使得大部份光線在正面視角 ±22〜25度射出,並將其餘光線回射再利用(recycling), 達到集光增亮效果,至於該擴散片則具有擴散勻光功能, 可減少亮度(輝度)不均勻性,並遮蔽光學缺陷(如雲彩紋 (ΜοίΓέ pattern))。然而,傳統液晶顯示器之光線利用率 7 1378299 101. 7. 2 0 年月日修正替換頁 僅6%〜10%,對筆記型電腦而言,液晶顯示器所耗費之電量 約為30〜40%,如能改善光線利用率則能大幅延長電池使用 時間。 此外,傳統利用微透鏡聚光方式提高半穿反式 (transflective)背光源光線利用技術,或利用光栅繞射彩 色分光技術取代傳統染料吸收式彩色濾光片’以提升光線 利用率之技術,或採用柱狀透鏡膜片產生雙眼視覺錯位之 立體顯示技術(3D display),惟此類習知技術之共通需求 在於高準直出光面型背光源,然而,傳統液晶顯示器背光 模組出光光場之半高全寬約為30〜50度,而習知可提供高 1 準直背光源之高準直背光源技術之結構則過於複雜且製程 困難,並不利於量產。 【發明内容】 有鑑於習知技術之缺失,本發明提出一種高準直面型 光源模組及其出光方法,可將出光光場之半高全寬(FWHM, Full Width Half Maximum)度數大幅縮小,除具備高準直 出光特性外,亦可適用於現有背光模組製程技術進行生產 製作。 為達到上述目的,本發明提出一種高準直面型光源模 組及其出光方法,其包含光源、一導光板、一光線發散角 度收斂膜片及一光線轉向導直膜片,於該導光板底面或頂 面、該收斂膜片出光面、該導直膜片入光面均設有微結構, 光源之光線由導光板侧面射入該導光板後,光線經由該導 光板之微結構反射或折射導出該導光板進入該收斂膜片’ 8 101. 7. 2 0 1378299 年月 日修正替換頁 經由該收斂膜片出光面微結構折射出該收斂膜片進入該導 直膜片,經由該導直膜片入光面微結構折射後,再由該導 直膜片之出光面射出該導直膜片。 為使貴審查委員對於本發明之結構目的和功效有更 進一步之了解與認同,茲配合圖示詳細說明如后。 【實施方式】 以下將參照隨附之圖式來描述本發明為達成目的所使 # 用的技術手段與功效,而以下圖式所列舉之實施例僅為輔 助說明,以利貴審查委員瞭解,但本案之技術手段並不限 於所列舉圖式。 請參閱第一圖所示,本發明提供之高準直面型光源模 組,其主要包含至少一光源10、一導光板20、一收斂膜片 30及一導直膜片40。 該導光板2 0具有至少一側面21、一底面2 2以及一頂 面23,該光源10係設置於該導光板20之側面21,該光源 • 10可採用發光二極體(LED)或冷陰極管(CCFL),該光源10 產生之光線L1由該導光板20之侧面21射入該導光板20。 該導光板20可為鏡面網點導光板、楔型導光板、喷砂霧化 導光板,或採用高散射光學穿透材料(Highly Scattering Optical Transmission Polymer,HSOT)之高角度出光導光 板。亦即以導光板20發光面法線A (正面視角)為0度, 而該導光板20在與法線A夾角為60〜85度時射出光線強度 最高。於該導光板20底面22設有微結構24,請參閱第二 圖所示該導光板20實施例放大結構示意圖,該微結構24 9 1378299 101. 7. 2 0 I 年月 日絛正替換頁 具有一反射面241,該反射面241與該導光板20底面22(亦 即水平面)之夾角θ 1小於5度,光線L1經由該反射面241 反射形成反射光線L2,該反射光線L2再透過該導光板20 頂面23形成折射光線L3射出該導光板20。 如第一圖所示,該導光板20底面22下方可設有一反 射片50,該反射片50可採用反射率98%以上之鍍銀高反射 率鏡面反射片,透過該反射片50可將由底面22射出之光 線反射至該導光板20内,再由頂面23射出,以提高光利 用率。 請再參閱第一圖所示,該收斂膜片30係設置於該導光 板20之頂面23上方,該收斂膜片30可採用熱壓、UV硬 化成形等方式製作,該枚斂膜片30與該導光板20之間具 有一定間距,該收斂膜片30具有一入光面31及一出光面 32,該入光面31係朝向該導光板20,於該出光面32設有 微結構33,請參閱第三圖所示該收斂膜片30實施例放大 結構示意圖,該收斂膜片30之微結構33具有一主要光線 出射面331,該主要光線出射面331與該收斂膜片30法線 Θ具有一夹角7ι,相對於該主要光線出射面331、位於該 收斂膜片30法線/5另一側之非主要光線出射面332與該收 斂膜片30法線A具有一夾角/ι,關於該收斂膜片30之設 計原則在於利用該夾角7i、夾角/i,使得該收斂膜片30 内之傳遞光線L4可被控制由該主要光線出射面331射出, 避免該傳遞光線L4入射該非主要光線出射面332,以及避 免出射光線L5再度入射至相鄰微結構33而產生非預期之 出射光線。出射光線L5與該收斂膜片30法線A之夾角/3ι 可透過下列關係式求得: 1378299 ιοί. 7· 20 ’ I__年月 日修正替換百 η· sin(90〇-7 l-aO^sinOO'-Ti-^]) 其中, n為該收斂膜片30之折射率; α!為傳遞光線L4與該收斂膜片30法線$之夾角。 以收敛膜片折射率為1.57、與收斂膜片3〇法線》之失 角為75度光線L3入射為例’在膜片中傳遞的光線夾角α ^ 約為38度’為了避免傳遞光線L4入射該非主要光線出射 面332,夾角Α應該設計小於或等於38度。然而,當失角 略大於38度時,例如增加2度,雖然光線發散角度有所 支曰加(4 6度),但仍可保留一定的收敛特性。如收敛膜片 採用較低折射率(如1.49)的材料,則在膜片中傳遞的光線 夾角約為40度,則夾角△可以設計至42度。此外,為了 避免出射光線L5再度入射至相鄰微結構33而產生非預期 之出射光線,夾角/!不能設計過小,最好能大於出射光線 夾角。而出射光線夾角卢!與夾角7 1的設計值有關,大 夾角T !對應較大的夾角冷!。當夾角7 !大於7〇度時,夾 角/3 1大於48度,會導致光線入射至相鄰微結構33 ;當夾 #角r丨小於4〇度時,夾角…小於30度,過小的夹角a 將導致光線轉向導直膜片設計上的困難,並產生非預期之 出射光線。因此,設計該主要光線出射φ 331與該收敛膜 片30法線Α之夾角7^位於40〜70度之範圍。然而,當夾 角略小於夾角&時,雖然會產生一些非預期之出射光 線,但其比例不大時,對光學效果不會有重大影響,則該 非主要光線出射面332與該收斂臈片3〇法線a之夾角心位 於25 42度之㈣。此外,由於過大之特徵尺寸將導致視 覺缺陷(如MUra ’顯示器亮度不均勻造成之痕跡)產生,而 11 1378299 _ ΙΟΙ 7. 2 0 I 年月 日修正替換頁 過小之特徵尺寸將導致繞射效應而降低輝度,因此,該微 結構33高度H1以位於liMOOgm之範圍,且該微結構33 之間距(pitch)Pl以位於10〜lOOym之範圍為佳。 請參閱第四圖,其顯示本發明收斂膜片之另一實施例 放大結構示意圖,本實施例之收斂膜片30A係以第三圖實 施例為基礎,不同點在於該收斂膜片30A之入光面31亦設 有微結構34,該微結構34具有至少一主要光線入射面 341,該主要光線入射面341與該收斂膜片30A法線A夾角 /ία位於75〜88度之範圍,相對於該主要光線入射面341、 位於該收斂膜片30A法線A另一侧之非主要光線入射面 ® 342與該收斂膜片30A法線A夾角Τ ία位於40〜70度之範 圍;透過該微結構34之設置可輔助該折射光線L3進入該 收斂膜片30A,可調整折射光線L3的射出角度,並略為提 升折射光線L3之利用率。 請再參閱第一圖所示,該導直膜片40係設置於該收斂 膜片30上方,該導直膜片40可採用熱壓、UV硬化成形等 方式製作,該導直膜片40與該收斂膜片30之間具有一定 間距,該導直膜片40具有一入光面41及一出光面42,該 籲 入光面41係朝向該收斂膜片30,且該入光面41設有微結 構43,請參閱第五圖所示該導直膜片40 —實施例之放大 結構示意圖,該導直膜片40之微結構43具有一光線入射 面431,該光線入射面431與該導直膜片40法線/5具有一 夾角/2,相對於該光線入射面431、位於該導直膜片40法 線A另一側為光線導正面432,該光線導正面432與該導直 膜片40法線A具有一夾角72,此外,α2為出射光線L5 與該導直膜片40法線之夾角,該夾角α 2等於第三圖所 12 J / J / 101· 7. 2 0 年月 日條正替換頁 射光線L5與該收斂膜片30法線仏夾角同理, 40之設計原則在於利用該夾角/2及夹角h, t仔該導直膜片4G内之傳遞光線L6可被控制由該光線入 ^面^射人該導直膜片4Q後可被導正為導直光線^射 出該導直膜片40,其設計關係式如下所示, )+毛) ,2=45°-i(sin-ι>(9〇 -o^-lo) η 二中η為該導直膜片4G之折射率。顯示或照明應用之最1378299 101. 7 2 〇 日 修正 替换 、 、 、 、 、 、 、 、 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九The half-height full width (FWHM, Full Width Half Maximum) of the light field is greatly reduced. In addition to the high-collimation light-emitting characteristics, it can also be applied to the existing backlight module process technology for the production of high-precision direct-surface light source modules. [Prior Art] Press, LCD monitors are widely used, including mobile phones, pDA, car monitors, notebook computers, computer screens, and LCD TVs. However, the TFT-LCD (Thin Film Transistor-Liquid Crystal) display is a non-self-illuminating (n〇n_emission) display state. In addition to controlling the liquid crystal panel of the kneading surface display, an external backlight module is required to provide a planar light source. As for the conventional edge-lit backlight module, the light guide plate is used to form a planar light source, and the main component, in addition to the light source, the light guide plate and the reflective slab, usually includes two prism sheets which are perpendicular to each other and disposed on the prism sheet. The two sets of light-reeling sheets are disposed on the upper and lower sides, and the two-collector strips are disposed between the two diffuser sheets (Diffuser), and the collected light--strips are generally referred to as BEF (Brightness Enhancement Fi lm), and the function is limited to The dimming limit emits an angle, so that most of the light is emitted at a frontal viewing angle of ±22 to 25 degrees, and the rest of the light is retroreflected and recycled to achieve a light collecting and brightening effect, and the diffusing film has a diffused and uniform function. , can reduce brightness (luminance) unevenness, and cover optical defects (such as 纹οίΓέ pattern). However, the light utilization rate of the conventional liquid crystal display 7 1378299 101. 7. The date of replacement of the monthly replacement page is only 6% to 10%, and for the notebook computer, the power consumption of the liquid crystal display is about 30 to 40%. If you can improve light utilization, you can greatly extend battery life. In addition, the traditional use of microlens concentrating to improve the transflective backlight light utilization technology, or the use of grating diffraction color spectroscopy technology to replace the traditional dye absorption color filter 'to improve light utilization technology, or The use of a cylindrical lens diaphragm to produce a three-dimensional display technology (3D display), but the common need of such a conventional technology lies in the high-precision straight-surface backlight, however, the conventional liquid crystal display backlight module light field The full width at half maximum is about 30 to 50 degrees, and the structure of the high collimation backlight technology that can provide a high 1 collimated backlight is too complicated and difficult to manufacture, which is not conducive to mass production. SUMMARY OF THE INVENTION In view of the lack of the prior art, the present invention provides a high-collimation surface light source module and a light-emitting method thereof, which can greatly reduce the FWHM (Full Width Half Maximum) degree of the light field. In addition to the high-precision direct light characteristics, it can also be applied to the existing backlight module process technology for production. In order to achieve the above object, the present invention provides a high-collimation direct-surface light source module and a light-emitting method thereof, comprising a light source, a light guide plate, a light divergence angle convergence film, and a light-converting direct film on the bottom surface of the light guide plate. Or a top surface, the light exit surface of the aggregating diaphragm, and the light incident surface of the directing film are respectively provided with a microstructure, and the light of the light source is incident on the light guide plate from the side of the light guide plate, and the light is reflected or refracted through the microstructure of the light guide plate. Deriving the light guide plate into the aggregating diaphragm ' 8 101. 7. 2 0 1378299 The date of the replacement surface is refracted through the aisotropic film exit surface microstructure to enter the directing film, through the straight line After the diaphragm is refracted into the light surface microstructure, the directivity film is emitted from the light exit surface of the directivity film. In order to enable the reviewing committee to have a better understanding and approval of the structural purpose and efficacy of the present invention, the detailed description is as follows. [Embodiment] Hereinafter, the technical means and effects of the present invention for achieving the object will be described with reference to the accompanying drawings, and the embodiments listed in the following drawings are merely supplementary explanations, so that the reviewers can understand, but The technical means of this case are not limited to the illustrated figures. Referring to the first figure, the present invention provides a high-collimation type light source module, which mainly comprises at least one light source 10, a light guide plate 20, an aggregating diaphragm 30 and a directing diaphragm 40. The light guide plate 20 has at least one side surface 21, a bottom surface 2 2 and a top surface 23. The light source 10 is disposed on the side surface 21 of the light guide plate 20. The light source 10 can be made of a light emitting diode (LED) or cold. In the cathode tube (CCFL), the light L1 generated by the light source 10 is incident on the light guide plate 20 from the side surface 21 of the light guide plate 20. The light guide plate 20 may be a mirror dot light guide plate, a wedge type light guide plate, a sandblasted atomized light guide plate, or a high angle light guide light guide plate using High Scattering Optical Transmission Polymer (HSOT). That is, the normal A of the light-emitting surface of the light guide plate 20 (frontal viewing angle) is 0 degrees, and the light guide plate 20 has the highest intensity of light when it is at an angle of 60 to 85 degrees from the normal A. The bottom surface 22 of the light guide plate 20 is provided with a microstructure 24, please refer to the enlarged structure of the embodiment of the light guide plate 20 shown in the second figure, the microstructure is 24 9 1378299 101. 7. 2 0 I Having a reflective surface 241, the angle θ 1 between the reflective surface 241 and the bottom surface 22 of the light guide plate 20 (ie, the horizontal plane) is less than 5 degrees, and the light ray L1 is reflected by the reflective surface 241 to form a reflected light L2, and the reflected light L2 is transmitted through the reflective surface L2. The top surface 23 of the light guide plate 20 forms refracted light L3 to emit the light guide plate 20. As shown in the first figure, a reflective sheet 50 may be disposed under the bottom surface 22 of the light guide plate 20. The reflective sheet 50 may be a silver plated high reflectivity specular reflection sheet having a reflectance of 98% or more. The light emitted from the light is reflected into the light guide plate 20 and then emitted from the top surface 23 to improve the light utilization efficiency. Referring to the first figure, the aggregating diaphragm 30 is disposed above the top surface 23 of the light guide plate 20. The aggregating diaphragm 30 can be formed by hot pressing, UV hardening, or the like. The light-converging surface 31 has a light-incident surface 31 and a light-emitting surface 32. The light-incident surface 31 faces the light guide plate 20, and the light-emitting surface 32 is provided with a microstructure 33. Please refer to the enlarged schematic structural view of the embodiment of the aggregating diaphragm 30 shown in FIG. 3 . The microstructure 33 of the aggregating diaphragm 30 has a main light exit surface 331 , and the main light exit surface 331 and the asymmetrical diaphragm 30 are normal. The crucible has an angle 7 ι, and the non-primary light exit surface 332 on the other side of the normal line/5 of the aggregating diaphragm 30 has an angle / ι with respect to the normal line A of the asymmetry diaphragm 30 with respect to the main light exit surface 331 The design principle of the aggregating diaphragm 30 is to use the angle 7i and the angle /i so that the transmitted light L4 in the aggregating diaphragm 30 can be controlled to be emitted from the main light exit surface 331 to prevent the transmitted light L4 from entering the non-transmission. Main light exit surface 332, and avoid outgoing light L5 It is again incident on the adjacent microstructures 33 to produce unintended outgoing rays. The angle between the outgoing light L5 and the normal line A of the aggregating diaphragm 30/3ι can be obtained by the following relationship: 1378299 ιοί. 7· 20 ' I__ year, month and day correction replacement hundred η· sin(90〇-7 l-aO ^sinOO'-Ti-^]) where n is the refractive index of the aggregating patch 30; α! is the angle between the transmitted ray L4 and the normal of the astringent patch 30. Taking the refractive index of the asymmetrical diaphragm as 1.57 and the angle of loss of the asymmetrical film 3〇 normal as 75 degrees of light L3 incident as an example 'the angle of the light transmitted in the diaphragm α ^ is about 38 degrees' in order to avoid transmitting light L4 The non-primary light exit surface 332 is incident, and the angle Α should be designed to be less than or equal to 38 degrees. However, when the angle of loss is slightly larger than 38 degrees, for example, by 2 degrees, although the angle of light divergence is increased (46 degrees), a certain convergence characteristic can be retained. If the attenuating diaphragm uses a material with a lower refractive index (such as 1.49), the angle of light transmitted through the diaphragm is about 40 degrees, and the angle Δ can be designed to 42 degrees. In addition, in order to prevent the outgoing light L5 from being incident on the adjacent microstructures 33 again to produce unintended outgoing light, the angle /! cannot be designed too small, preferably larger than the angle of the outgoing light. And the light is out of the angle! It is related to the design value of the angle 7 1 , and the large angle T ! corresponds to a large angle cold! . When the angle 7! is greater than 7〇, the angle /3 1 is greater than 48 degrees, which will cause light to enter the adjacent microstructure 33; when the angle #丨 is less than 4 degrees, the angle is less than 30 degrees, too small Angle a will cause difficulties in the design of the light to direct the diaphragm and produce unintended emission. Therefore, the angle between the main light exit φ 331 and the normal line of the astringent film 30 is designed to be in the range of 40 to 70 degrees. However, when the angle is slightly smaller than the angle &, although some unintended outgoing light is generated, if the proportion is not large, the optical effect is not greatly affected, and the non-primary light exit surface 332 and the convergence plate 3 are The angle of the normal line a is at 25 42 degrees (four). In addition, due to the large feature size will lead to visual defects (such as traces caused by MUra 'display brightness unevenness), and 11 1378299 _ ΙΟΙ 7. 2 0 I date correction replacement page too small feature size will lead to diffraction effect The luminance is lowered. Therefore, the height 33 of the microstructure 33 is in the range of liMOOgm, and the pitch P1 of the microstructure 33 is preferably in the range of 10 to 100 μm. Please refer to the fourth figure, which shows an enlarged schematic view of another embodiment of the aggregating diaphragm of the present invention. The asymmetrical diaphragm 30A of the present embodiment is based on the third embodiment, except that the asymmetrical diaphragm 30A is inserted. The light surface 31 is also provided with a microstructure 34 having at least one main light incident surface 341. The main light incident surface 341 is at an angle of 75 to 88 degrees from the normal angle A of the aggregating diaphragm 30A. The main light incident surface 341, the non-primary light incident surface 342 located on the other side of the normal line A of the aggregating diaphragm 30A, and the normal angle A of the asymmetrical diaphragm 30A are in the range of 40 to 70 degrees; The arrangement of the microstructures 34 can assist the refracted light L3 to enter the aggregating diaphragm 30A, adjust the angle of incidence of the refracted ray L3, and slightly increase the utilization of the refracted ray L3. Referring to the first figure, the directing film 40 is disposed above the aggregating diaphragm 30. The directing film 40 can be formed by hot pressing, UV hardening, etc., and the directing film 40 is The abutting film 40 has a light-incident surface 41 and a light-emitting surface 42 facing the astringent film 30, and the light-incident surface 41 is disposed. There is a microstructure 43, which is shown in the fifth figure, which is an enlarged schematic view of the embodiment. The microstructure 43 of the directivity film 40 has a light incident surface 431, and the light incident surface 431 The straight line of the directing film 40 has an angle /2, with respect to the light incident surface 431, on the other side of the normal A of the directing film 40, the light guiding front 432, the light guiding front 432 and the guiding The normal line 40 of the straight diaphragm 40 has an angle 72. Further, α2 is the angle between the outgoing light L5 and the normal line of the directing diaphragm 40, and the angle α 2 is equal to that of the third figure 12 J / J / 101· 7. 2 The 0 year, month, and day strips are replacing the page beam L5 with the asymmetry of the asymmetry diaphragm 30. The design principle of 40 is to use the angle /2 and the angle h. The transmitted light L6 in the directing film 4G can be controlled by the light into the surface of the directing film 4Q, which can be guided into a direct light ray to emit the directing film 40. The design relationship is as follows, ) + hair), 2 = 45°-i (sin-ι > (9〇-o^-lo) η η is the refractive index of the directivity diaphragm 4G. Display or illumination Most applied

,度,不一定要求在正面視角,而是視需求而調整,如 果要讓最強亮度在正面視角度内,則其設計關係式如 下所示, 42° -1 2 ) + /2)<r2 ^48° <;in^〇nc 為了讓入射光線能有效入射至光線導正面432,以防 止非預期射出光線的產生,該光線入射面與導直膜片 4〇法線/5之夾角/2最好能小於26度,且隨著/2角度的縮 卜’非預期射出光線的防止效果越佳。但考慮模仁加工的 _排屑問題與成形時的拔模角設計,/2需在1度以上,綜合 上述考量,可設計出該光線入射面431與導直膜片40法線 «之夾角6位於卜26度之範圍。而由於&設計值位於卜26 度,高分子材料折射率通常在丨.4〜16範圍,且α2設計在 25〜50度範圍,根據上式可以整理出該光線導正面與 導直膜片40法線6之夾角Τ2位於25〜35度之範圍。導直 臈片40之微結構的高度與間距設計與收斂膜片3〇之考量 相同,該微結構43高度Η2位於l〇〜l〇〇#m之範圍,且該 微結構43之間距(pitch)P2位於ltMOOym之範圍。 13 1378299 . 101 7. 2 0 I 年月 日條正替換頁 請參閱第六圖所示本發明之導直膜片另一實施例放大 結構示意圖,該導直膜片40A具有複數微結構43A,該微 結構43A具有一定間距PA,於該微結構43A於靠近該出光 面42A之一側形成尺寸不一之平邊fP、fPl,其中,該較 大尺寸之平邊fPl導致出射光線L5A於進入該導直膜片40A 時,無法射入該微結構43A之光線入射面431A,而是由該 平邊fPl進入該導直膜片40A,使得射出光線L7A呈現歪 斜狀態,也導致該導直膜片40A產生非預期輝度峰,嚴重 降低正面視角輝度,而至於該尺寸較小之平邊fP,則可避 免出射光線L5B由平邊處射入導直膜月40A產生非預期輝 ® 度峰;本實施例在於說明,本發明之導直膜片容許一定之 製作加工或成型精度誤差。以《2為50度,/2為5度,材 料折射率1. 57,T 2為31. 8度為例,當平邊與間距之長度 符合下列關係式:, degree, does not necessarily require a frontal view, but adjusts according to demand. If the strongest brightness is to be in the front view angle, the design relationship is as follows, 42° -1 2 ) + /2)<r2 ^48° <;in^〇nc In order to allow incident light to be effectively incident on the front surface 432 of the light guide to prevent the generation of unintended emitted light, the angle between the incident surface of the light and the straight line of the directing diaphragm 4 / 2 is preferably less than 26 degrees, and with the /2 angle of the buckling 'unexpected shot light prevention effect is better. However, considering the _ chip removal problem of the mold processing and the draft angle design during forming, /2 needs to be above 1 degree. Based on the above considerations, the angle between the light incident surface 431 and the normal line of the directing diaphragm 40 can be designed. 6 is located in the range of 26 degrees. Since the & design value is at 26 degrees, the refractive index of the polymer material is usually in the range of 丨.4~16, and the α2 is designed in the range of 25 to 50 degrees. According to the above formula, the front surface of the light guide and the straight guide film can be arranged. The angle Τ 2 of the 40 normal line 6 is in the range of 25 to 35 degrees. The height and pitch design of the microstructure of the straight guiding cymbal 40 is the same as that of the asymmetrical diaphragm 3, the height Η2 of the microstructure 43 is in the range of l〇~l〇〇#m, and the pitch of the microstructure 43 is (pitch). ) P2 is located in the range of ltMOOym. 13 1378299 . 101 7. 2 0 I Year of the Moon, the replacement page, please refer to the enlarged structure of another embodiment of the directing film of the present invention shown in the sixth figure, the direct film 40A has a plurality of microstructures 43A, The microstructure 43A has a certain pitch PA, and the micro-structure 43A forms a flat edge fP, fP1 of a size close to one side of the light-emitting surface 42A, wherein the larger-sized flat edge fP1 causes the outgoing light L5A to enter. When the film 40A is guided, the light incident surface 431A of the microstructure 43A cannot be incident, but the flat edge fP1 enters the directivity film 40A, so that the emitted light L7A is in a skewed state, which also causes the conductive film. The sheet 40A produces an unexpected luminance peak, which seriously reduces the front view luminance, and as for the smaller flat edge fP, it is possible to prevent the exiting light L5B from being incident on the directing film 40A at the flat side to produce an unexpected glow peak; This embodiment is intended to illustrate that the directing film of the present invention allows a certain manufacturing process or molding accuracy error. Taking "2 is 50 degrees, /2 is 5 degrees, the material refractive index is 1.57, and T2 is 31.8 degrees. For example, when the length of the flat side and the pitch meet the following relationship:

fP<=0.2PA 可避免平邊fP對輝度產生影響。當fP>〇. 2PA時,該 導直膜片40A產生非預期輝度峰,且正面視角輝度隨著fP 的增加而降低。本例中fP<=0. 2PA為最佳設計值,但並非 _ 限定fP —定要小於或等於0. 2PA,假如實際應用上可以允 許一定強度的非預期輝度峰,則fP可以大於〇. 2PA ’實際 fP範圍以應用需求之非預期輝度峰容許程度決定。此外, 本例中僅舉“平邊缺陷”作為說明,這些缺陷也可能是自 由曲面或是不規則面(圖中未示出),只要光線不會射至缺 陷處,或是射到缺陷的光線比例不高,則能減少或避免非 預期輝度峰的產生。 請參閱下表所示本發明之收斂膜片30與導直膜片40 1378299 麗 7 . 2〇 __ 年月日修正替換頁 片30與導為1·57之材料,並根據上述該收敛臈 值。直膜片4〇之設計關係式所計算出之十項驗證數fP<=0.2PA avoids the influence of flat edge fP on luminance. When fP > 2PA, the directivity film 40A produces an unexpected luminance peak, and the front viewing angle luminance decreases as fP increases. In this example, fP<=0. 2PA is the optimal design value, but not _limit fP - is less than or equal to 0. 2PA, if the actual application can allow a certain intensity of unintended luminance peak, then fP can be greater than 〇. 2PA 'The actual fP range is determined by the degree of tolerance of the unexpected luminance peak of the application demand. In addition, in this example, only the "flat edge defect" is used as an illustration. These defects may also be free-form surfaces or irregular surfaces (not shown), as long as the light does not hit the defect or the defect is detected. If the proportion of light is not high, the generation of unintended luminance peaks can be reduced or avoided. Please refer to the astringent film 30 and the directing film 40 1378299 of the present invention as shown in the following table. The material of the replacement sheet 30 and the lead is 1.57, and according to the above convergence 臈value. Ten verification numbers calculated from the design relationship of the straight diaphragm

收斂骐片 收斂膜片 射出角度 等於 導直膜片 入射角度 項 次 導直膜片Convergence cymbal asymmetry diaphragm ejection angle equal to directing diaphragm incident angle term sub-directing diaphragm

_ ,其中’該對應關係表所顯示之特徵角度万2,係為導直 光線L7與導直膜片40法線$之夹角(可參考第五圖,由於 該導直光線L7與法線A幾乎平行,因此第五圖未標示出該 特徵角度,由對應關係表可知,透過本發明所設計之 收斂臈片與導直膜片特徵角度,該夾角卢2可趨近於零,亦 即可將輝度峰調整至正面視角方向。 請參閱第七圖所示本發明與不同架構背光模組之發光 強度-視角模擬關係圖,將強度除以視角的餘弦函數即可得 到輝度’在此為了將僅有導光板的發光特性一起比較,故 15 1378299 _ 101* 7. 2ο_争月日條正替換頁 以強度分布取代常見的輝度分布。本發明的高準直光源模 組包含光源、一導光板、一鏡面底反射片、一收斂臈片與 一導直膜片A ;而習知模組(逆棱鏡架構)則包含光源、一 導光板、一鏡面底反射片與一導直膜片B。請注意本發明 之收斂膜片除了會讓光線發散角度變小外,也會改變入射 至導直膜片的強度峰(輝度峰)角度,為了能將最終射出光 線導向正面視角,導直膜片A與導直膜片B的結構並不相 同。請參閱第七圖所示,其中,曲線81代表僅有導光板的 強度曲線,亦即未設置收斂膜片與導直膜片A之強度曲 線’曲線82代表導光板加設收斂膜片之強度曲線,曲線 · 83代表導光板加設收斂膜片與導直膜片a之強度曲線,亦 即如第一圖所示本發明之架構,至於曲線84則代表導光板 加设導直膜片B但未加收斂膜片之輝度曲線。如曲線83與 曲線84顯示’當採用本發明之高準直面型光源模組架構 時’其強度峰(輝度峰)角度的半高寬(FWHM)可以縮小到3 度’而採用傳統導直膜片B的FWHM則在1〇度附近。由於 光線集中在小角度範圍射出,本發明可大幅提升正面視角 強度(輝度)’提供一高準直出光之光源模組。 、,請^參閱第一圖,綜合上述本發明所提供之高準直面- 型光源模組架構,可歸納出高準直面型統模組之出光方 法,包含: 一、 由至少一光源10提供光線L1 ; 二、 光線L1由一導光板20側面21進入導光板2〇,於該 : 導光板20底面22設有微結構24 ’光線L1經由該導 光板20底面22微結構24反射後,再由該導光板 頂面23射出該導光板20 ; 16 1378299 _ 年月日修正替換頁 三、由該導光板20射出之光線L3進入收斂膜片30,該收 斂膜片30之出光面32設有微結構33,光線L3經由 • 該收斂膜片30出光面32之微結構33折射後,再射出 該收斂膜片30 ; :· 四、由該收敛膜片30射出之光線L5進入導直膜片40,該 . 導直膜片40之入光面41設有微結構43,光線L5經 由該導直膜片40入光面41之微結構43折射後,再形 成導直光線L7射出該導直膜片40。 综上所述可知,本發明所提出之高準直面型光源模 ® 組,藉由收斂膜片搭配導直膜片,不僅具備高準直出光特 性,更可控制出光光場之半高全寬縮小至3〜15度之範圍, 同時可套用於現有背光模組製程技術進行生產製作,適用 於各種液晶顯示器裝置相關產業,包括手機、PDA、車用顯 示器、筆記型電腦、電腦螢幕、液晶電視及防窺視顯示器 等,以及各種照明裝置。 惟以上所述者,僅為本發明之實施例而已,當不能以 之限定本發明所實施之範圍。即大凡依本發明申請專利範 ^ 圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之 範圍内,謹請貴審查委員明鑑,並祈惠准,是所至禱。 【圖式簡單說明】 第一圖係本發明之高準直面型光源模組實施例之結構 示意圖。 第二圖係本發明導光板實施例放大結構示意圖。 第三圖係本發明收斂膜片實施例放大結構示意圖。 第四圖係本發明收斂膜片另一實施例放大結構示意 17 1378299 _ 耻7. 2 0 年月 日絛正替換頁 圖, 第五圖係本發明導直膜片實施例放大結構示意圖。 第六圖係本發明導直膜片另一實施例放大結構示意 圖。 第七圖係本發明與不同架構背光模組之輝度模擬關係 圖。 【主要元件符號說明】_ , where 'the corresponding relationship table shows a characteristic angle of 20,000, which is the angle between the straight ray L7 and the normal line of the directing diaphragm 40 (refer to the fifth figure, because the direct ray L7 and the normal A is almost parallel, so the fifth figure does not indicate the characteristic angle. It can be seen from the correspondence table that the angle between the converging cymbal and the directing diaphragm designed by the present invention can approach zero, that is, The luminance peak can be adjusted to the front viewing angle. Please refer to the relationship between the luminous intensity and the viewing angle of the backlight module of the present invention shown in the seventh figure, and divide the intensity by the cosine function of the viewing angle to obtain the luminance. The light-emitting characteristics of only the light guide plate are compared together, so the 15 1378299 _ 101* 7. 2ο_ 月月日正正换页 replaces the common luminance distribution with the intensity distribution. The high-collimation light source module of the present invention comprises a light source, The light guide plate, a mirror bottom reflection sheet, a convergence film and a direct film A; and the conventional module (inverse prism structure) comprises a light source, a light guide plate, a mirror bottom reflection sheet and a direct film B. Please note the receipt of the present invention In addition to making the light divergence angle smaller, the diaphragm will also change the intensity peak (luminance peak) angle incident on the directing diaphragm. In order to guide the final emitted light to the front viewing angle, the directing diaphragm A and the directing diaphragm The structure of B is not the same. Please refer to the seventh figure, where curve 81 represents the intensity curve of only the light guide plate, that is, the intensity curve of the asymmetrical diaphragm and the directing diaphragm A is not set. Curve 82 represents the light guide plate. The intensity curve of the astringent film is added, and the curve 83 represents the intensity curve of the light guide plate with the augmented film and the straight film a, that is, the structure of the present invention as shown in the first figure, and the curve 84 represents the light guide plate. The directivity film B is added but the luminance curve of the astringent film is not added. As shown by the curve 83 and the curve 84, the half of the intensity peak (luminance peak) angle is used when the high-collimation surface light source module structure of the present invention is used. The height and width (FWHM) can be reduced to 3 degrees' while the FWHM of the conventional directing diaphragm B is around 1 degree. Since the light is concentrated in a small angle range, the present invention can greatly enhance the front view intensity (luminance). a high-precision light The light source module, please refer to the first figure, which integrates the high-collimation surface-type light source module structure provided by the above invention, and can summarize the light-emitting method of the high-precision straight-face type module, including: At least one light source 10 provides light L1. Second, the light L1 enters the light guide plate 2 from a side surface 21 of the light guide plate 20. The bottom surface 22 of the light guide plate 20 is provided with a microstructure 24. The light L1 passes through the bottom surface 22 of the light guide plate. After the reflection of 24, the light guide plate 20 is emitted from the top surface 23 of the light guide plate; 16 1378299 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The light-emitting surface 32 is provided with a microstructure 33, and the light beam L3 is refracted by the microstructure 33 of the light-emitting surface 32 of the astringent film 30, and then the astringent film 30 is emitted; 4, the light L5 emitted by the astringent film 30 The light incident surface 41 of the directing film 40 is provided with a microstructure 43. The light L5 is refracted through the microstructure 43 of the light incident surface 41 of the directing film 40, and then a direct light is formed. L7 projects the directing diaphragm 40. In summary, the high-collimation type light source mode group proposed by the present invention not only has a high collimated light-emitting characteristic, but also controls the half-height and full-width of the light field to be reduced to a large extent by a converging diaphragm and a directing diaphragm. 3 to 15 degrees range, can be used in the production of existing backlight module process technology, suitable for a variety of liquid crystal display device related industries, including mobile phones, PDAs, car monitors, notebook computers, computer screens, LCD TVs and Peep monitors, etc., as well as various lighting devices. However, the above description is only for the embodiments of the present invention, and the scope of the invention is not limited thereto. That is to say, the equivalent changes and modifications made by the applicants in accordance with the scope of application of the present invention should still fall within the scope covered by the patent of the present invention. I would like to ask your review committee to give a clear understanding and pray for the best. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic view showing the structure of an embodiment of the high-collimation type light source module of the present invention. The second figure is an enlarged schematic view of an embodiment of the light guide plate of the present invention. The third figure is an enlarged schematic view of an embodiment of the astringent film of the present invention. The fourth figure is an enlarged structure of another embodiment of the astringent film of the present invention. 17 1378299 _ shame 7. 2 0 绦 绦 替换 replacement page The fifth figure is an enlarged schematic view of the embodiment of the directing film of the present invention. Fig. 6 is a schematic enlarged view showing another embodiment of the directing film of the present invention. The seventh figure is a graph showing the luminance simulation relationship between the present invention and the backlight modules of different architectures. [Main component symbol description]

1 〇 -光源 I 20- 導光板 21- 側面 22- 底面 23- 頂面 24- 微結構 241-反射面 30、30A-收斂膜片 31_入光面 , 32- 出光面 33- 微結構 331- 主要光線出射面 332- 非主要光線出射面 34- 微結構 341- 主要光線入射面 342- 非主要光線入射面 40、40A-導直膜片 18 1378299 101. 7. 2ϋ 年月日修正替換頁 41 -入光面 42-出光面 43、43Α-微結構 431、431Α-光線入射面 432-光線導正面 50-反射片 81〜84 -輝度曲線 Θ -法線 fP、fPl-平邊 HI、H2-高度 L1-光源產生之光線 L 2 _反射光線 L3-折射光線 L4、L6-傳遞光線 L5、L5A、L5B-出射光線 L7-導直光線 L7A-射出光線 PI、P2、PA-間距 Θ 1 ' 7* 1、Ί 1A ' 7 2、/l、/lA、/2、(2 1、yS 1、(2 2、 /3 2-夾角 191 〇-light source I 20- light guide plate 21 - side 22 - bottom surface 23 - top surface 24 - microstructure 241 - reflection surface 30, 30A - astringent diaphragm 31_ light entrance surface, 32 - light surface 33 - microstructure 331- Main light exit surface 332 - Non-primary light exit surface 34 - Microstructure 341 - Main light incident surface 342 - Non-primary light incident surface 40, 40A - Direct diaphragm 18 1378299 101. 7. 2ϋ Year and month correction replacement page 41 - Light-in surface 42 - Light-emitting surface 43, 43 - Microstructure 431, 431 - Light incident surface 432 - Light guide front 50 - Reflective sheet 81 - 84 - Brightness curve Θ - Normal line fP, fPl - Flat side HI, H2- Height L1-light source L 2 _ reflected ray L3- refracted ray L4, L6 - transmitted ray L5, L5A, L5B - outgoing ray L7 - direct ray L7A - emitted ray PI, P2, PA - spacing Θ 1 ' 7 * 1, Ί 1A ' 7 2, / l, / lA, /2, (2 1, yS 1, (2 2, / 3 2- angle 19

Claims (1)

Translated fromChinese
1378299 1〇1· 7. 2 ο I 年月 日修正替換頁 十、申請專利範圍: 1. 一種高準直面型光源模組,包含: 至少一光源,用以提供光線; 一導光板,該導光板具有一發光面、一相對於該發光面 之底面以及至少一側面,於該發光面或底面至少有一面 設有至少一微結構,該侧面係提供該光源之光線射入該 導光板,光線經由該導光板發光面或底面微結構偏折 後,再由該發光面射出該導光板; 一收斂膜片,該收斂膜片係設置於該導光板之發光面上 鲁 方,該收敛膜片具有一入光面及一出光面,該入光面係 朝向該導光板,該出光面設有至少一微結構,該入光面 可接收由該導光板射出之光線,光線經由該收斂膜片出 光面之微結構折射後,再射出該收斂膜片;以及 一導直膜片,該導直膜片係設置於該收斂膜片上方,該 導直膜片具有一入光面及一出光面,該入光面係朝向該 收斂膜片,且該入光面設有至少一微結構,該入光面可 接收由該收斂膜片射出之光線,光線經由該導直膜片入 1 光面微結構折射後,再由該導直膜片之出光面射出該導 直膜片; 其中,該收斂膜片出光面之該微結構具有至少一主要光 線出射面,該主要光線出射面與該收斂膜片法線夾角位 於40〜70度之範圍,相對於該主要光線出射面、位於該 收斂膜片法線另一側之一非主要光線出射面與該收斂膜 片法線夾角位於25〜42度之範圍。 2.如申請專利範圍第1項所述之高準直面型光源模組,其 20 1378299 101. 年月日條正替換頁 匕十 /3 tj 1 皆正瞀 :===面設有—微結構,該微結構具有至 線夹角位於’75.度:要光線入射面與收㈣片法 範圍第2項所述之高準直面型光源模組,其 相對於該主要光線人射面、位於該收敛膜片法線另一 V/主要光線入射面與該收斂膜片法線夾角位於 40〜70度之範圍。 請專利範圍第4項所述之高準直面型光源模組,其 -亥收斂膜片之出光面之該微結構間距(邮⑻位於 10〜100#m之範圍。 、 .:申喷專利㈣第i項所述之高準直面型光源模組,宜 中該收斂膜片與該導光板之間具有間距。 '、 7. 利乾圍第1項所述之高準直面型光源模組,其 導直則之微結構包括―紐人射面以及-光線導 ^面,該光線人射面與該導直膜片之法線夾角位於卜26 度=圍’該光線導正面與該導直膜片之法線 25〜35度之範圍。 ^申明專利fcH第1項所述之高準直面型光源模組,其 該導直膜片之微結構高度位於10]00# m之範圍。 ^申明專利fell第8項所述之高準直面型光源模組,其 該導直膜片之微結構間距(pitch)位於〜⑽#出之 21 1378299 101. 7. 2 0 年月曰絛正替換頁 範圍。 10. 如申請專利範圍第1項所述之高準直面型光源模 組,其中該導直膜片與該導光板之間具有間距。 11. 如申請專利範圍第1項所述之高準直面型光源模 組,其中該光源可為發光二極體(LED)或冷陰極管 (CCFL)。 12. 如申請專利範圍第1項所述之高準直面型光源模 組,其中該導光板為一高角度偏向導光板。 13. 如申請專利範圍第1項所述之高準直面型光源模 參 組,其中該導光板可為鏡面網點導光板、楔型導光板、 喷砂霧化導光板,或採用高散射光學穿透材料(Highly Scattering Optical Transmission Polymer , HSOT)之 導光板。 14. 如申請專利範圍第1項所述之高準直面型光源模 組,其中該導光板底面下方設有一反射片,用以將光線 反射至該導光板。 15. 如申請專利範圍第14項所述之高準直面型光源模 , 組,其中該反射片為一高反射率鏡面反射片。 16. 如申請專利範圍第15項所述之高準直面型光源模 組,其中該反射片為反射率98%以上之鍍銀反射膜片。 17. 如申請專利範圍第1項所述之高準直面型光源模 組,其中該收斂膜片及該導直膜片可採用熱壓、UV硬化 成形等方式製作。 18. —種高準直面型光源模組之出光方法,包含: 22 1378299 101. 7· 2 0 年月日修正替換頁 由至少一光源提供光線; 光線由一導光板側面進入一導光板,於該導光板之發光 面或相對於該發光面之底面設有微結構,光線經由該導 光板發光面或底面微結構偏折後,再由該導光板發光面 射出該導光板; 由該導光板射出之光線進入一收斂膜片,該收斂膜片之 出光面設有微結構,光線經由該收斂膜片出光面之微結 構折射後,再射出該收斂膜片; φ 由該收斂膜片射出之光線進入一導直膜片,該導直膜片 之入光面設有微結構,光線經由該導直膜片入光面之微 結構折射後,再射出該導直膜片; 其中,該收斂膜片出光面之該微結構具有至少一主要光 線出射面,該主要光線出射面與該收斂膜片法線夾角位 於40〜70度之範圍,相對於該主要光線出射面、位於該 收斂膜片法線另一側之一非主要光線出射面與該收斂膜 片法線夾角位於25〜42度之範圍。 ^ 19. 如申請專利範圍第18項所述之高準直面型光源模組 ' 之出光方法,其中該收斂膜片之入光面設有微結構,該 微結構具有至少一主要光線入射面,該主要光線入射面 與收斂膜片法線夾角位於75〜88度之範圍。 20. 如申請專利範圍第19項所述之高準直面型光源模組 之出光方法,其中相對於該主要光線入射面、位於該收 斂膜片法線另一側之非主要光線入射面與該收斂膜片法 線夾角位於40〜70度之範圍。 21. 如申請專利範圍第18項所述之高準直面型光源模組 23 /8299 101. 7. 20 年月日修正替換頁 之出光方法,其中該收斂膜片之微結構高度位於1〇〜1〇〇 以01之範圍。 2. 如申凊專利範圍第21項所述之高準直面型光源模組 之出光方法,其中該收斂膜片之微結構間距(pitch)位 · 於10〜100# m之範圍。 3. 如申凊專利範圍第18項所述之高準直面型光源模組 之出光方法,其中該收斂臈片與該導光板之間具有間距。 4. 如申請專利範圍第18項所述之高準直面型光源模組 之出光方法,其中該導直膜片之微結構包括一光線入射 _ 乂及光線導正面,该光線入射面與該導直膜片法線 夾角位於1〜26度之範圍,該光線導正面與該導直膜片法 線失角位於25〜35度之範圍。 .如申睛專利範圍第18項所述之高準直面型光源模組 之出光方法,其中該導直膜片之微結構高度位於1〇1〇〇 之範圍。 26·如申請專利範圍第25項所述之高準直面型光源模组 之出光方法,其中該導直膜片之微結構間距(pitch)位 於10〜lOOem之範圍。 .如申凊專利範圍第18項所述之高準直面型光源模組 2之出光方法,其中該導直膜片與該導光板之間具有間距❶· .如申請專利範圍第18項所述之高準直面型光源模組 , 一出光方法,其中該光源可為發光二極體(led)或冷陰極 管(CCFL)。 •如申請專利範圍第18項所述之高準直面型光源模組 24 1378299 101. 7. 2 0 年月 日修正替換頁 之出光方法,其中該導光板為一高角度偏向導光板。 30. 如申請專利範圍第18項所述之高準直面型光源模組 . 之出光方法,其中該導光板可為鏡面網點導光板、楔型 導光板、喷砂霧化導光板,或採用高散射光學穿透材料 (Highly Scattering Optical Transmission Polymer , HSOT)之導光板。 31. 如申請專利範圍第18項所述之高準直面型光源模組 之出光方法,其中該導光板底面下方設有一反射片,用 Θ 以將光線反射至該導光板。 32. 如申請專利範圍第31項所述之高準直面型光源模組 之出光方法,其中該反射片為一高反射率鏡面反射片。 33. 如申請專利範圍第32項所述之高準直面型光源模組 之出光方法,其中該反射片為反射率98%以上之鍍銀反 射膜片。 34. 如申請專利範圍第18項所述之高準直面型光源模組 之出光方法,其中該收斂膜片及該導直膜片可採用熱 壓、UV硬化成形等方式製作。 251378299 1〇1· 7. 2 ο I Amendment and Replacement Page 10, Patent Application Range: 1. A high-precision direct-surface light source module comprising: at least one light source for providing light; a light guide plate, the guide The light panel has a light emitting surface, a bottom surface opposite to the light emitting surface, and at least one side surface. At least one side of the light emitting surface or the bottom surface is provided with at least one microstructure, and the side surface provides light of the light source to enter the light guide plate, and the light After the light-emitting surface or the bottom surface of the light guide plate is deflected, the light-guiding plate is emitted from the light-emitting surface; and the astringent film is disposed on the light-emitting surface of the light guide plate, and the astringent film is disposed on the light-emitting surface of the light guide plate. Having a light incident surface and a light exiting surface, the light incident surface is directed toward the light guide plate, and the light exiting surface is provided with at least one microstructure, and the light incident surface can receive the light emitted by the light guide plate, and the light passes through the aggregating diaphragm After the microstructure of the light-emitting surface is refracted, the aggregating film is injected; and a directing film is disposed above the aggregating film, the directing film has a light-incident surface and a light-emitting surface. , the light The surface is oriented toward the aggregating diaphragm, and the light incident surface is provided with at least one microstructure, and the light incident surface can receive the light emitted by the aggregating diaphragm, and the light is refracted through the directing diaphragm into the 1 surface microstructure. And the light guiding surface of the directing film is emitted from the light guiding surface; wherein the microstructure of the light emitting surface of the astringent film has at least one main light emitting surface, and the main light emitting surface and the asymmetrical film normal The angle is in the range of 40 to 70 degrees, and the angle between the non-primary light exit surface and the normal line of the astringent film is in the range of 25 to 42 degrees with respect to the main light exit surface on the other side of the normal line of the aggregating diaphragm. 2. For the high-precision direct-surface light source module described in the first paragraph of the patent application, 20 1378299 101. The date of the year is replaced by the page 匕10/3 tj 1 are all positive: === face is set - micro a structure having a high-collimation type light source module with a line angle of '75. degrees: a light incident surface and a fourth (four) slice method range, which is opposite to the main light human face, The angle between the other V/main ray incident surface of the aisotropic patch normal and the normal of the astringent diaphragm is in the range of 40 to 70 degrees. Please refer to the high-precision direct-surface light source module described in item 4 of the patent scope, the micro-structural spacing of the light-emitting surface of the -a convergence film (mail (8) is in the range of 10~100#m., .: Shenpeng patent (4) The high-collimation direct-surface light source module according to item i has a spacing between the aggregating diaphragm and the light guide plate. ', 7. The high-precision direct-surface light source module according to item 1 of the Lekanwei, The direct microstructure of the direct structure includes a "newman's face" and a light guide surface, and the angle between the human face of the light and the normal of the directing film is located at 26 degrees = circumference 'the light guide front and the direct film The normal line of the film is in the range of 25 to 35 degrees. ^The patented fcH item 1 of the high-precision direct-surface light source module has a microstructure height of 10]00# m. According to the high-order straight-face type light source module described in the eighth item of the patent, the microstructure pitch of the directing film is located at ~(10)# out of 21 1378299 101. 7. 2 0 months 曰绦 replacement page 10. The high-collimation direct-type light source module of claim 1, wherein the direct-guiding film and the light guide plate have 11. The high-collimation direct-type light source module according to claim 1, wherein the light source may be a light-emitting diode (LED) or a cold cathode tube (CCFL). The high-collimation type light source module of the present invention, wherein the light guide plate is a high-angle direct-direction light guide plate. The high-collimation direct-type light source module of the first aspect of the invention, wherein the light guide plate can be It is a mirror dot light guide plate, a wedge type light guide plate, a sandblasted atomized light guide plate, or a light guide plate of Highly Scattering Optical Transmission Polymer (HSOT). 14. As described in claim 1 The high-collimation type light source module, wherein a reflective sheet is disposed under the bottom surface of the light guide plate for reflecting light to the light guide plate. 15. The high-collimation surface light source mold according to claim 14 of the patent application group The high-collimation type light source module according to the fifteenth aspect of the invention, wherein the reflection sheet is a silver-plated reflective film having a reflectance of 98% or more. 17. The high-precision direct-surface light source module according to claim 1, wherein the aggregating diaphragm and the directing diaphragm can be fabricated by hot pressing, UV hardening, etc. 18. A high-collimation surface light source module The light-emitting method of the group includes: 22 1378299 101. 7· 2 0 The date correction replacement page is provided by at least one light source; the light enters a light guide plate from a side of the light guide plate, and the light-emitting surface of the light guide plate is opposite to the light-emitting surface The bottom surface of the light emitting surface is provided with a microstructure, and the light is deflected through the light emitting surface or the bottom surface of the light guiding plate, and then the light guiding plate is emitted from the light emitting surface of the light guiding plate; the light emitted by the light guiding plate enters an aggregating film, The light-emitting surface of the astringent film is provided with a microstructure, and the light is refracted by the microstructure of the light-emitting surface of the astringent film, and then the astringent film is emitted; φ the light emitted by the astringent film enters a direct film, the guide The light incident surface of the straight film is provided with a microstructure, and the light is refracted through the microstructure of the light incident surface of the directing film, and then the directing film is emitted; wherein the microstructure of the light emitting surface of the astringent film has at least a main light exit surface, the main light exit surface and the convergence film normal angle between 40 to 70 degrees, relative to the main light exit surface, one of the non-primary rays on the other side of the aisotropic film normal The angle between the exit surface and the normal of the astringent diaphragm is in the range of 25 to 42 degrees. The light-emitting method of the high-collimation direct-type light source module of claim 18, wherein the light-incident surface of the aggregating diaphragm is provided with a microstructure, the microstructure having at least one main light incident surface, The angle between the main light incident surface and the aisotropic diaphragm normal is in the range of 75 to 88 degrees. 20. The method of emitting light of a high-collimation type light source module according to claim 19, wherein a non-primary light incident surface on the other side of the normal line of the aggregating diaphragm is opposite to the main light incident surface The normal angle of the astringent diaphragm is in the range of 40 to 70 degrees. 21. The high-collimation direct-type light source module 23/8299 as described in claim 18 of the patent application. The light-emitting method of the replacement page is corrected in the year of the 20th, wherein the azimuth of the asymmetrical film is located at 1〇~ 1〇〇 is in the range of 01. 2. The light-emitting method of the high-collimation direct-type light source module according to claim 21, wherein the asymmetrical film has a microstructure pitch of 10 to 100 mm. 3. The light-emitting method of the high-collimation direct-type light source module according to claim 18, wherein the convergence plate has a distance from the light guide plate. 4. The light-emitting method of the high-precision direct-surface light source module according to claim 18, wherein the microstructure of the direct-conductive diaphragm comprises a light incident 乂 and a light guide front, the light incident surface and the guide The normal angle of the straight film is in the range of 1 to 26 degrees, and the normal angle of the light guide and the normal angle of the directing film are in the range of 25 to 35 degrees. The light-emitting method of the high-precision direct-surface light source module according to claim 18, wherein the microstructure of the directivity diaphragm is in a range of 1〇1〇〇. The light-emitting method of the high-precision direct-surface light source module according to claim 25, wherein the microstructure of the directivity diaphragm has a pitch of 10 to 100 Å. The light-emitting method of the high-collimation type light source module 2 according to claim 18, wherein the directivity film and the light guide plate have a spacing ❶· as described in claim 18 The high-collimation direct-surface light source module has a light-emitting method, wherein the light source can be a light-emitting diode (LED) or a cold cathode tube (CCFL). • The high-precision direct-surface light source module as described in claim 18 of the patent application. 24 1378299 101. 7. The date of the replacement of the light-emitting method of the replacement page, wherein the light guide plate is a high-angle deflecting light guide plate. 30. The light-emitting method of the high-collimation direct-type light source module according to claim 18, wherein the light guide plate may be a mirror dot light guide plate, a wedge-shaped light guide plate, a sandblasted atomized light guide plate, or a high Light guide plate of Highly Scattering Optical Transmission Polymer (HSOT). The light-emitting method of the high-precision direct-type light source module according to claim 18, wherein a light-reflecting sheet is disposed under the bottom surface of the light guide plate, and Θ is used to reflect light to the light guide plate. 32. The method for emitting light of a high-collimation direct-type light source module according to claim 31, wherein the reflective sheet is a high-reflectance specular reflection sheet. 33. The light-emitting method of the high-precision direct-surface light source module according to claim 32, wherein the reflective sheet is a silver-plated reflective film having a reflectance of 98% or more. 34. The light-emitting method of the high-collimation direct-type light source module according to claim 18, wherein the aggregating diaphragm and the directing diaphragm are formed by hot pressing or UV hardening. 25
TW97134676A2008-09-102008-09-10Light module with high collimation emitting propertyTWI378299B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
TW97134676ATWI378299B (en)2008-09-102008-09-10Light module with high collimation emitting property

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
TW97134676ATWI378299B (en)2008-09-102008-09-10Light module with high collimation emitting property

Publications (2)

Publication NumberPublication Date
TW201011410A TW201011410A (en)2010-03-16
TWI378299Btrue TWI378299B (en)2012-12-01

Family

ID=44828610

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW97134676ATWI378299B (en)2008-09-102008-09-10Light module with high collimation emitting property

Country Status (1)

CountryLink
TW (1)TWI378299B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TWI624716B (en)*2017-01-262018-05-21豪晶科技股份有限公司Backlight module of liquid crystal display and manufacturing method thereof
US11169378B2 (en)2018-10-152021-11-09Coretronic CorporationNear-eye display apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TWI412842B (en)*2010-11-262013-10-21Coretronic CorpBlacklight module and display apparatus
TWI479197B (en)*2012-03-062015-04-01玉晶光電股份有限公司 And a conversion means for converting the 2D image into a 3D image
TWI507786B (en)*2013-05-092015-11-11Chi Lin Optoelectronics Co LtdDisplay apparatus and side edge type backlight module thereof
TWI832417B (en)*2022-09-132024-02-11中強光電股份有限公司Anti-peep light source module and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TWI624716B (en)*2017-01-262018-05-21豪晶科技股份有限公司Backlight module of liquid crystal display and manufacturing method thereof
US11169378B2 (en)2018-10-152021-11-09Coretronic CorporationNear-eye display apparatus

Also Published As

Publication numberPublication date
TW201011410A (en)2010-03-16

Similar Documents

PublicationPublication DateTitle
CN101684927B (en) High-collimation direct light source module and light emitting method thereof
TWI428646B (en)Light guide plate and light emitting apparatus
KR100781611B1 (en)Prism sheet, back light unit using the prism sheet, and transmissive liquid crystal display device
CN102109101B (en) Surface light source module and optical film
US20110141765A1 (en)Planar light source module and optical film
US20080158912A1 (en)Light guide plate
KR100903028B1 (en) LGP for backlight unit of liquid crystal display including wedge back prism
JP4856261B2 (en) Light guide for collimating light, method for improving collimation of light guide, backlight, and display device
WO2011065052A1 (en)Planar lighting device and display device having same
US9348081B2 (en)Illumination device and display device
CN102588835B (en)A kind of novel backlight module for liquid crystal display
JP2004527780A (en) Light source device for non-radiative display device
US8289639B2 (en)Optical films
CN101737725B (en)Backlight module and liquid crystal display
TWI275842B (en)Light guide plate and method of making the same
CN101514789B (en) backlight unit
TWI378299B (en)Light module with high collimation emitting property
TW201312170A (en)Optical strip and backlight module and LCD device having the optical strip
CN201218442Y (en)Backlight module and LCD device containing the same
KR20070042860A (en) Light guide plate
KR20070026513A (en) Prism sheet having reflective and transmissive properties, method for manufacturing the same, and integration in display module
CN103438390B (en)curved backlight module
CN101017270A (en) Optical module
TW201939129A (en)Structure of light guiding component comprising a light incident surface, a reflective surface and a light emitting surface
CN100419530C (en) Surface light source device and liquid crystal display

Legal Events

DateCodeTitleDescription
MM4AAnnulment or lapse of patent due to non-payment of fees

[8]ページ先頭

©2009-2025 Movatter.jp