13.5650213.56502
100年.11月的日倐正辦頁I 六、發明說明: 【發明所屬之技術領域】 [〇〇〇1]本發明涉及一種太陽能電池,尤其涉及一種基於奈米碳 管的太陽能電池。 [先前技術] [00〇2]太陽能係當今最清潔的能源之一,取之不盡、用之不竭 。太陽能的利用方式包括光能-熱能轉換、光能_電能轉 換和光能-化學能轉換。太陽能電池係光能-電能轉換的 典型例子,係利用半導體材料的光生伏特原理製成的。 根據半導體光電轉換材料種類不同,太陽能電池可以分 為矽基太陽能電池(請參見太陽能電池及多晶矽的生產, 材料與冶金學報’張明傑等,v〇16,p33-38 (20 07))、砷化鎵太陽能電池、有機薄膜太陽能電池等。 [0003]目前,太陽能電池以矽基太陽能電池為主。請參閱圖i, 為先前技術中的矽基太陽能電池3〇包含一背電極32、一 矽片襯底34、一摻雜矽層36和一上電極38 ^於矽基太陽 能電池中,作為光電轉換的材料的矽片襯底通常採用單 晶矽製成。因此,要獲得高轉換效率的矽基太陽能電池 ,就需要製備出高純度的單晶矽。所述背電極32設置於 所述矽片襯底34的下表面341,且與該矽片襯底34的下表 面3411姆接觸。所述發片概底34的上表面343形成有複 數個間隔設置的凹孔342。所述摻雜矽層36形成於所述凹 孔342的内表面344,作為光電轉換的材料。所述上電極 38設置於所述矽片襯底34的上表面343。通常,為了增加 太陽光的透過率,一般採用導電金屬網格作為上電極38 097113276 表單编號Α0101 第3頁/共20頁 1003408309-0 1356502100-year-old November 1st, I. Invention Description: [Technical Field of the Invention] [1] The present invention relates to a solar cell, and more particularly to a solar cell based on a carbon nanotube. [Prior Art] [00〇2] One of the cleanest energy sources in the solar system today is inexhaustible. Solar energy utilization includes light energy-thermal energy conversion, light energy_electric energy conversion, and light energy-chemical energy conversion. A typical example of solar cell-to-light energy-to-electrical conversion is made using the photovoltaic principle of semiconductor materials. According to different types of semiconductor photoelectric conversion materials, solar cells can be classified into germanium-based solar cells (see the production of solar cells and polycrystalline germanium, Journal of Materials and Metallurgy, Zhang Mingjie et al., v〇16, p33-38 (20 07)), arsenic Gallium solar cells, organic thin film solar cells, and the like. [0003] At present, solar cells are mainly based on germanium-based solar cells. Referring to FIG. 1 , the prior art 矽-based solar cell 3 〇 includes a back electrode 32 , a ruthenium substrate 34 , a doped yttrium layer 36 , and an upper electrode 38 . The ruthenium substrate of the converted material is usually made of single crystal ruthenium. Therefore, in order to obtain a high conversion efficiency bismuth-based solar cell, it is necessary to prepare a high-purity single crystal germanium. The back electrode 32 is disposed on the lower surface 341 of the cymbal substrate 34 and is in contact with the lower surface 3411 of the cymbal substrate 34. The upper surface 343 of the hair piece substrate 34 is formed with a plurality of recessed holes 342 which are spaced apart. The doped germanium layer 36 is formed on the inner surface 344 of the recess 342 as a material for photoelectric conversion. The upper electrode 38 is disposed on the upper surface 343 of the cymbal substrate 34. Generally, in order to increase the transmittance of sunlight, a conductive metal grid is generally used as the upper electrode 38 097113276 Form No. 1010101 Page 3 of 20 1003408309-0 1356502
l lQO^.llJ 〇'3B 。然而導電金屬都係不透明的材料,仍影響了所述太陽 能電池30的透光率,降低了太陽能電池30的光電轉換效 率。為了進一步提高太陽能電池30的光電轉換效率,可 採用透明的銦錫氧化物層作為上電極38,但由於銦錫氧 化物層的機械和化學耐用性不夠好,及銦錫氧化物層作 上電極38存在電阻阻值分佈不均勻等缺點,導致了先前 的太1¼能電池3 〇的对用性低,光電轉換效率性能不高。 [0004] 有鑒於此,提供一種具有較高的光電轉換效率、对用性 高、成本低、阻值分佈均勻及透光性好的太陽能電池實 鲁 為必要》 ' 【發明内容】 [0005] -種太陽能電池包括一背電極、一矽片後底一摻雜矽 層和—上電極。所述背電極設置於所迷發片襯底的下表 面’且與該石夕片襯底表面歐姆接觸。所地石夕片襯底的上 成有複數個間隔設置的凹孔。所述請層形成 署祕石夕片概底上表面的凹孔的内表兩。所述上電極設 太石夕片概底的上表面。該上電極包括複數個線狀 不未碳官結構。 [0006] 減=衝相比較,所述太陽能電池具有以下優點:其 雷^米碳管結構具有良好科Μ,職到的太 有有優異的性能;其二,線“米碳管結構具 作上\7#_強度H用線狀奈米碟管結構 ’可以相應的提高太陽能電池的耐用性。 【實施方式] [0007] 097113276 乂下將結合關詳&制本技術方 表單―“頁/共2" 陽“池 1003408ί 13.56502 [0008] 100年.11月03日修正 請參閱圖2及圖3,本技術方案實施例提供一種太陽能電 池10包括-背電極12、-w概底14、—摻糾層16和l lQO^.llJ 〇'3B. However, the conductive metal is an opaque material, which still affects the light transmittance of the solar cell 30, and reduces the photoelectric conversion efficiency of the solar cell 30. In order to further improve the photoelectric conversion efficiency of the solar cell 30, a transparent indium tin oxide layer may be used as the upper electrode 38, but the mechanical and chemical durability of the indium tin oxide layer is not good enough, and the indium tin oxide layer is used as the upper electrode. 38 has the disadvantages of uneven distribution of resistance values, resulting in low compatibility of the previous 11⁄4 battery, and low photoelectric conversion efficiency. [0004] In view of the above, it is necessary to provide a solar cell having high photoelectric conversion efficiency, high usability, low cost, uniform resistance distribution, and good light transmittance. [Invention] [0005] A solar cell includes a back electrode, a backside, a doped germanium layer, and an upper electrode. The back electrode is disposed on the lower surface of the substrate of the hair piece and is in ohmic contact with the surface of the substrate. The ground slab substrate is formed with a plurality of spaced apart recessed holes. The layer is formed to form the inner surface of the concave hole on the upper surface of the skeleton. The upper electrode is provided on the upper surface of the base of the slab. The upper electrode includes a plurality of linear unconformed carbon structures. [0006] Compared with the subtraction comparison, the solar cell has the following advantages: the structure of the thunder carbon tube has good scientific performance, and the service has too much excellent performance; secondly, the line "meter carbon tube structure is made On the \7#_strength H with the wire-shaped nano-disc structure' can improve the durability of the solar cell accordingly. [Embodiment] [0007] 097113276 The next will be combined with the details of the technical form - "page </ br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> - doped layer 16 and
-上電極18。所述背電極12設置於所料片襯底14的下 表面U卜且與所料片概底14的下表面141歐姆接觸。 所述石夕片襯底14的上表面143形成有複數翻隔設置的凹 孔142。所述摻雜石夕層16形成於所述石夕片概底14上表面 ⑷的凹孔142的内表面144。所述上電極18設置於所述 石夕片襯底U的上表面143。該上電極18包括複數個線狀奈 米碳管結構183。 [0009] 所述太陽能電池10進一步包括-金屬層20,該金屬層20 的材料為㈣者銀。所述金屬層2G設置於所述上電極Μ 和石夕片襯底14的上表面143之間,並與所述上電極18和石夕 片襯底14電接觸。所述金屬層2()與所述上電極18之間形 成複數個異質結,用以提高所述上電極18與石夕片概底Μ 的電連接,進而提高所述太陽能電池_光電轉換效率 〇 [0010] 097113276 所述太陽能電池1G進-步包括—第—電極。和—第二電 極24,該第-電極22和第二電極24的材料為銀或者:等 。所述第-電極22和第二電極24間隔設置於所述上電極 18的上表面181或下表面⑽,並與上電極18的上表面 181或下表面182電接觸。所述第一電極22和第二電極24 的設置可用於收集流過所述上電極18中的電流。 所述太陽能電池1〇進一步包括一減反層26,該減反層Μ 的材料為二氧化欽或者氧化_等。所述減反層26設置 弟:> 頁/共2〇頁 1003408309-0 [0011] 1356502 [0012] [0013] [0014] 097113276 j上電極18對太陽光的反射,從而進一步提高所述太陽 能電池10的光電轉換效率。 所迷背電極12的材料可為銘、錄或者銀等金屬。所述背 電極12的厚度為1〇微米〜3〇〇微米。 所地砂片襯底14為P型單晶石夕片。該p型單晶石夕片的厚度 為2〇〇微米〜300微米。所述相鄰的兩個凹孔142之間的距 離為10微㈣0« ’深度㈣微米〜7Q微米 ^孔Μ罐…祕,械丨4如面的形狀 乂為正方形、梯形或者三角形等多邊形。本實施例中 =述複數個凹孔142優選等_均勻設置W夕片襯 底的上表面U3。該凹孔142橫截面的形“正方形, 相鄰的兩個凹孔142之間的距離糊微米,深㈣〇微米 ^所述摻雜矽層16的材料為^^型摻雜矽層, 1♦通過向所述 石夕片襯底淑人過量的如㈣者坤„_雜材料而形成 的。所述㈣雜㈣16的厚度為5叫米]微米。所述 _捧雜材料與所述吻片襯底14形成複數個"結結構 ’從而實現所述太陽能電池1G中錢到電一轉換。所 述凹孔142的結構使所述矽片襯底14的上表面Η?具有, 好的陷光機制和較大的P〜N結的介面面積, ^ ,A °『以提高所述 未陽能電池10的光電轉換效率。 所述上電極18具有均勻分佈關隙、良好⑽過太陽光 的能力、很好的·和機械強度及均句分佈的 以 使所述太陽能電池1〇0具有良好的透光性、較高。的光電轉 換效率耐用性及均句的電阻,從而提高所述太 陽能電_〇的性^所心電極18包括 束祕_ 第6頁/共9“ 歌個線狀'丁'米 100340830 1356502- Upper electrode 18. The back electrode 12 is disposed on the lower surface Ub of the web substrate 14 and is in ohmic contact with the lower surface 141 of the web substrate 14. The upper surface 143 of the slab substrate 14 is formed with a plurality of recesses 142 provided in a slanted manner. The doped layer 16 is formed on the inner surface 144 of the recess 142 of the upper surface (4) of the stone substrate 14. The upper electrode 18 is disposed on the upper surface 143 of the substrate U. The upper electrode 18 includes a plurality of linear carbon nanotube structures 183. [0009] The solar cell 10 further includes a metal layer 20, the material of which is (iv) silver. The metal layer 2G is disposed between the upper electrode Μ and the upper surface 143 of the slab substrate 14 and is in electrical contact with the upper electrode 18 and the slab substrate 14. A plurality of heterojunctions are formed between the metal layer 2() and the upper electrode 18 to improve the electrical connection between the upper electrode 18 and the base plate, thereby improving the photoelectric conversion efficiency of the solar cell. 〇 [0010] 097113276 The solar cell 1G further includes a first electrode. And - the second electrode 24, the material of the first electrode 22 and the second electrode 24 is silver or the like. The first electrode 22 and the second electrode 24 are spaced apart from the upper surface 181 or the lower surface (10) of the upper electrode 18 and are in electrical contact with the upper surface 181 or the lower surface 182 of the upper electrode 18. The arrangement of the first electrode 22 and the second electrode 24 can be used to collect current flowing through the upper electrode 18. The solar cell 1 further includes an anti-reflection layer 26, and the material of the anti-reflection layer is oxidized or oxidized. The anti-reflection layer 26 is provided with the following: > page/total page 1003408309-0 [0011] [0014] [0014] 097113276 j reflection of sunlight on the upper electrode 18, thereby further enhancing the solar cell 10 photoelectric conversion efficiency. The material of the back electrode 12 can be metal such as Ming, Lu, or silver. The back electrode 12 has a thickness of 1 μm to 3 μm. The sand substrate 14 is a P-type single crystal stone. The p-type single crystal slab has a thickness of 2 Å to 300 μm. The distance between the two adjacent recessed holes 142 is 10 micro (four) 0 « 'depth (four) micrometers ~ 7Q micrometers ^ hole cans... the shape of the surface of the machine 乂 is 正方形 square, trapezoidal or triangular. In the present embodiment, the plurality of recessed holes 142 are preferably equalized to uniformly set the upper surface U3 of the W-shaped substrate. The recessed hole 142 has a cross section of a square shape, and the distance between the adjacent two recessed holes 142 is micron, and the depth is (four) 〇 micron. The material of the doped yttrium layer 16 is a doped yttrium layer, 1 ♦ Formed by the excessive amount of materials such as (4) to the surface of the stone substrate. The (iv) hetero (tetra) 16 has a thickness of 5 m. The plurality of materials and the kiss sheet substrate 14 form a plurality of "junction structures' to achieve a money-to-electricity conversion in the solar cell 1G. The structure of the recessed hole 142 is such that the upper surface of the cymbal substrate 14 has a good light trapping mechanism and a larger interface area of the P~N junction, ^, A ° "to improve the yang The photoelectric conversion efficiency of the battery 10. The upper electrode 18 has a uniform distribution of the gap, a good (10) ability to pass sunlight, a good and mechanical strength, and a uniform distribution so that the solar cell 1 〇 0 has good light transmittance and is high. The photoelectric conversion efficiency durability and the resistance of the uniform sentence, thereby improving the solar energy _ 〇 ^ 所 所 所 所 所 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
100年11月03日修正替換頁 碳管結構183,用以收集所述P-N結中通過光能向電能轉 換而產生的電流。 [0015] 所述上電極18中複數個線狀奈米碳管結構183沿從所述第 一電極22向第二電極14延伸的方向,平行且等間隔地設 置於所述矽片襯底14的上表面143。或者所述複數個線狀 奈米碳管結構183平行、等間隔且交叉設置形成一網狀結 構,並設置於所述矽片襯底14的上表面143,從而使得所 述上電極18具有均勻的阻值分佈和透光特性。所述複數 個線狀奈米碳管結構形成的網狀結構具有均勻的網孔, 且孔徑大小為1奈米〜20微米。其中,於複數個線狀奈米 碳管結構183形成的網狀結構中,有至少部分線狀奈米碳 管結構183沿從所述第一電極22向第二電極24延伸的方向 設置於所述矽片襯底14的上表面143,以保證流經線狀奈 米碳管結構183的電流被所述第一電極22和秦二電極24收 集。 [0016] 所述相鄰兩個線狀奈米碳管結構183之間的距離為10微米 # 〜30微米。本實施例中,優選相鄰兩個線狀奈米碳管結構 183之間的距離為20微米。所述線狀奈米碳管結構183可 由至少一根奈米碳管長線184組成。請參閱圖4及圖5,所 述線狀奈米碳管結構183係由多根奈米碳管長線184組成 的束狀結構或者由多根奈米碳管長線184組成的絞線結構 。本實施例優選所述線狀奈米碳管結構183係由多根奈米 碳管長線184組成的束狀結構。所述線狀奈米碳管結構 183的直徑大小由奈米碳管長線184的根數及直徑大小決 定,奈米碳管長線184的直徑越大,根數越多,線狀奈米 097113276 表單編號A0101 第7頁/共20頁 1003408309-0 [Γόο年11-月正钥^頁丨 碳管結構183的直徑越大,反之,線狀奈来碳管結構183 的直位越λ!所述線狀奈米藏管結構183的長度大小由奈 米碳管長線184的長度大小決定。 所述奈米碳管長線184係由複數個首尾相連的奈米碳管纟 組成的束狀結構枝轉結構。所述奈米碳管束巾包括 複數個長度相等且均勻分佈的奈米碳管。所述奈米碳管 長線184可通過有機溶劑處理所述奈米碳管薄膜或者通 過直接拉取較窄寬度的奈米雙管陣列獲得。該奈米碳管 長線184中奈米碳管沿奈米碳管長線的轴向擇優取向排歹|J · 。進-步’所述奈米碳管長線184可通過施加機械外力經 過-扭轉過程獲得。扭轉後該奈米碳管長線184中奈米碳 管繞奈米碳官長線的軸向呈螺旋狀旋轉排列。 所述奈米碳官長線184係由奈米破管陣列經進一步處理得 到的,故其直fe與長度和奈米碳管陣列所生長的基底的 尺寸有關。可根據實際需求财^本實施例巾,採用氣 相沈積法於4英寸的基底生長超順排奈米碳管陣列。所述 奈米碳管長線184的直徑為丨微米〜1〇〇微米,長度為5〇微 β 米〜100微米。 所述線狀奈米碳官結構183具有很好的韌性和機械強度, 故,採用該線狀奈米碳管結構183作上電極18 ,可以相應 提高所述太陽能電池10的耐用性。所述太陽能電池1〇中 的線狀奈米碳管結構183均勻分佈,故,採用該線狀奈米 碳管結構183作上電極18,可使得上電極18具有均勻的電 阻。另,所述線狀奈米碳營結構183的直徑小,間隔設置 時複數個線狀奈米碳管結構丨83之間易於具有間隙,故, 表單编號細1 帛8頁/共20胃 1 〇刪8309-0 1356502 t 100年.11月03日修正替換W 採用線狀奈米碳管結構183作上電極18,可使得上電極18 對太陽光具有很好的透光性,從而使得所述太陽能電池 10具有較高的光電轉換效率。 [0020] • 所述線狀奈米碳管結構183中的奈米碳管為單壁奈米碳管 、雙壁奈米碳管或者多壁奈米碳管。當所述線狀奈米碳 管結構183中的奈米碳管為單壁奈米碳管時,該單壁奈米 碳管的直徑為0.5奈米〜50奈米。當所述線狀奈米碳管結 構183中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管 的直徑為1. 0奈米〜50奈米。當所述線狀奈米碳管結構中 的奈米碳管為多壁奈米碳管時,該多壁奈米碳管的直徑 為1.5奈米〜50奈米。由於所述線狀奈米碳管結構183中 的奈米碳管非常純淨,且由於奈米碳管本身的比表面積 非常大,故該線狀奈米碳管結構183本身具有較強的粘性 。該線狀奈米碳管結構183可利用其本身的粘性直接固定 於所述複數個凹孔142的表面。 [0021] • 可以理解,所述上電極18也可係奈米碳管長線184與金屬 形成的複合材料製成的線狀結構。如奈米碳管長線184與 金絲、銀絲、銅絲等金屬絲相互纏繞後形成的線狀奈米 碳管結構183。或者金顆粒、銀顆粒、銅顆粒等金屬顆粒 均勻分佈於奈米碳管長線184中形成的線狀奈米碳管結構 183。或者奈米碳管粉末與金屬粉末混合後經進一步處理 形成的線狀奈米碳管結構183。所述上電極18只需具有透 光性、導電性及耐用性等特性即可。 [0022] 所述太陽能電池10於應用時,太陽光照射到所述上電極 18,並通過上電極18中的複數個線狀奈米碳管結構183之 097113276 表單編號A0101 第9頁/共20頁 1003408309-0 1356502 丨100年ll j D3日飾 間的間隙刪叫t ’太陽光通過所述凹孔142的㈣多次反射從而增加了 該太陽能電池10中所述石夕片概底14的上表面143的陷光性 能。於所述複數個凹孔142内,…夕片襯底14_型捧雜 材料接觸於—起的面形成有複數個卜㈣。於接觸面上N 型摻雜材料多餘電子趨向p型石夕片襯底,並形成阻擋層或 接觸電位差。當P型砂片襯底14接正極,N型摻雜材料接 負極’ N型摻雜材料多餘電子和p_N結上電子容易往正極 移動’且⑽層變薄接觸電㈣變小,即電阻變小,可 [0023] 形成較大電流。即,所述P_N結於太陽光的激發下產生複 « 數個電子-電洞對’電子-電洞對於靜電勢能作用下分離 ’N型摻雜材料中的電子向所述上電極㈣的線狀奈米碳 管結構183移動,P型石夕片襯底14中的電洞向所述背電極 12移動,然後被背電極12和作為上電極18的線狀奈米碳 管結構183收集,進一步,可以被所述第—電極以和第二 電極24收集。這樣外電路於工作時接通後,就會有電流 通過外電路。 所述太陽能電池具有以下優點:其一,線狀奈米碳管結 構具有很好的韌性和機械強度,故,採用線狀奈米碳管 結構作上電極’可以相應的提高太陽能電池的耐用性; 其一’由於線狀奈米碳管結構係採用從奈米碳管陣列中 直接拉取後作進一步處理獲得而製成,易於操作,故所 制得的太陽能電池成本低;其三,由於所述上電極中包 括複數個均勻分佈的線狀奈米碳管結構,故,採用線狀 奈米碳管結構作上電極’可使得上電極具有均句的電阻 097113276 表單编號A0101 第10頁/共20頁 1003408309-0 1356502 100年.11月03日修正替換頁 ,從而提高太陽能電池的性能;其四,線狀奈米碳管結 構的直徑小,間隔設置時複數個線狀奈米碳管結構易於 具有均勻分佈的間隙,故,採用複數個線狀奈米碳管結 構作上電極,可使得上電極對太陽光具有很好的透光性 ,從而使得到的太陽能電池具有較高的光電轉換效率, 可以達到3. 5%。 [0024] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 • ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 [0025] 【圖式簡單說明】 圖1係先前技術中太陽能電池的結構示意圖。 [0026] 圖2係本技術方案實施例的太陽能電池的側視結構示意圖 〇 • [0027] 圖3係本技術方案實施例的太陽能電池的俯視結構示意圖 〇 [0028] 圖4係本技術方案實施例的多根奈米碳管長線組成的束狀 結構示意圖。 [0029] 圖5係本技術方案實施例的多根奈米碳管長線組成的絞線 狀結構示意圖。 [0030] 【主要元件符號說明】 太陽能電池:10,30 097113276 表單编號A0101 第11頁/共20頁 1003408309-0 1356502 [0031] 背電極:12, 32 [0032] 矽片襯底:14, 34 [0033] 矽片襯底的下表面:141, [0034] 凹孔:142,342 [0035] 矽片襯底的上表面:143, [0036] 凹孔的内表面: 144, 344 [0037] 摻雜矽層:16, 36 [0038] 上電極:18,38 [0039] 上電極的上表面 :181 [0040] 上電極的下表面 :182 [0041] 奈米碳管結構: 183 [0042] 奈求碳管長線: 184 [0043] 金屬層:20 [0044] 第一電極:22 [0045] 第二電極:24 [0046] 減反層:26 341 343 097113276 表單编號A0101 第12頁/共20頁 100年.11月的日按正替备頁The replacement page carbon tube structure 183 is used to collect the current generated by the conversion of light energy to electric energy in the P-N junction. [0015] The plurality of linear carbon nanotube structures 183 in the upper electrode 18 are disposed in parallel and equally spaced on the cymbal substrate 14 in a direction extending from the first electrode 22 to the second electrode 14. Upper surface 143. Or the plurality of linear carbon nanotube structures 183 are parallel, equally spaced and intersected to form a mesh structure, and are disposed on the upper surface 143 of the cymbal substrate 14, so that the upper electrode 18 has uniformity. Resistance distribution and light transmission characteristics. The network structure formed by the plurality of linear carbon nanotube structures has a uniform mesh and a pore size of 1 nm to 20 μm. Wherein, in the network structure formed by the plurality of linear carbon nanotube structures 183, at least a portion of the linear carbon nanotube structure 183 is disposed in a direction extending from the first electrode 22 to the second electrode 24. The upper surface 143 of the cymbal substrate 14 is described to ensure that current flowing through the linear carbon nanotube structure 183 is collected by the first electrode 22 and the second electrode 24. [0016] The distance between the adjacent two linear carbon nanotube structures 183 is 10 micrometers to 30 micrometers. In this embodiment, it is preferred that the distance between two adjacent linear carbon nanotube structures 183 is 20 μm. The linear carbon nanotube structure 183 can be comprised of at least one nanocarbon tube long line 184. Referring to Figures 4 and 5, the linear carbon nanotube structure 183 is a bundle structure composed of a plurality of carbon nanotube long wires 184 or a strand structure composed of a plurality of carbon nanotube long wires 184. In the present embodiment, it is preferable that the linear carbon nanotube structure 183 is a bundle structure composed of a plurality of carbon nanotube long wires 184. The diameter of the linear carbon nanotube structure 183 is determined by the number and diameter of the long carbon nanotubes 184. The larger the diameter of the long carbon nanotubes 184, the more the number of the roots, the linear nano 097113276 form number A0101 Page 7 / Total 20 pages 1003408309-0 [Γόο年11-月正key^Page 丨 The diameter of the carbon tube structure 183 is larger, and conversely, the straight position of the linear Nile carbon tube structure 183 is λ! The length of the nanotube structure 183 is determined by the length of the long carbon nanotube 184. The carbon nanotube long line 184 is a bundle structure of a bundle structure consisting of a plurality of end-to-end carbon nanotubes. The carbon nanotube bundle includes a plurality of carbon nanotubes of equal length and uniform distribution. The carbon nanotube long line 184 can be obtained by treating the carbon nanotube film with an organic solvent or by directly pulling a narrow width of the nanotube array. The carbon nanotubes in the long line 184 are aligned along the axial direction of the long carbon nanotubes of the carbon nanotubes |J · . The carbon nanotube long line 184 can be obtained by applying a mechanical external force through a torsion process. After twisting, the nano carbon tubes in the long line 184 of the carbon nanotubes are arranged in a spiral shape around the axial direction of the nanometer carbon official line. The nanocarbon official line 184 is further processed by a nanotube array, so that the length is related to the length and the size of the substrate on which the carbon nanotube array is grown. The super-sequential carbon nanotube array can be grown on a 4-inch substrate by gas phase deposition according to actual needs. The carbon nanotube long wire 184 has a diameter of 丨 micron to 1 〇〇 micron and a length of 5 〇 micro β m to 100 μm. The linear carbon carbon structure 183 has good toughness and mechanical strength. Therefore, by using the linear carbon nanotube structure 183 as the upper electrode 18, the durability of the solar cell 10 can be correspondingly improved. The linear carbon nanotube structure 183 in the solar cell 1 is uniformly distributed, so that the linear carbon nanotube structure 183 is used as the upper electrode 18, so that the upper electrode 18 has a uniform resistance. In addition, the diameter of the linear nanocarbon camp structure 183 is small, and a plurality of linear carbon nanotube structures 丨83 are easily spaced between the intervals, so the form number is fine 1 帛 8 pages / total 20 stomach 1 〇 deleted 8309-0 1356502 t 100 years. November 03 revised replacement W uses a linear carbon nanotube structure 183 as the upper electrode 18, which allows the upper electrode 18 to have good light transmission to sunlight, thereby making The solar cell 10 has a high photoelectric conversion efficiency. [0020] The carbon nanotubes in the linear carbon nanotube structure 183 are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotubes in the linear carbon nanotube structure 183 are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotubes in the linear carbon nanotube structure 183 are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is 1.0 nm to 50 nm. When the carbon nanotubes in the linear carbon nanotube structure are multi-walled carbon nanotubes, the multi-walled carbon nanotubes have a diameter of from 1.5 nm to 50 nm. Since the carbon nanotube in the linear carbon nanotube structure 183 is very pure, and since the specific surface area of the carbon nanotube itself is very large, the linear carbon nanotube structure 183 itself has strong viscosity. The linear carbon nanotube structure 183 can be directly fixed to the surface of the plurality of recessed holes 142 by its own viscosity. [0021] It will be understood that the upper electrode 18 may also be a linear structure made of a composite material of a carbon nanotube long wire 184 and a metal. For example, a linear carbon nanotube structure 183 formed by twisting a long wire 184 of a carbon nanotube with a wire such as a gold wire, a silver wire or a copper wire. Or metal particles such as gold particles, silver particles, and copper particles are uniformly distributed in the linear carbon nanotube structure 183 formed in the long carbon nanotube 184. Or a linear carbon nanotube structure 183 formed by further processing the carbon nanotube powder mixed with the metal powder. The upper electrode 18 only needs to have characteristics such as light transmittance, conductivity, and durability. [0022] When the solar cell 10 is applied, sunlight is irradiated to the upper electrode 18 and passes through a plurality of linear carbon nanotube structures 183 of the upper electrode 18 097113276 Form No. A0101 Page 9 of 20 Page 1003408309-0 1356502 丨100 years ll j D3 inter-decoration gaps t 'sunlight through the recess 142 (four) multiple reflections to increase the solar cell 10 in the Shi Xi tablet The light trapping property of the upper surface 143. In the plurality of recessed holes 142, a plurality of pads (four) are formed on the surface of the mating substrate 14_type holding material. The excess electrons of the N-type dopant material on the contact surface tend to form a p-type slab substrate and form a barrier layer or a contact potential difference. When the P-type sand substrate 14 is connected to the positive electrode, the N-type doping material is connected to the negative electrode 'N-type doping material excess electrons and the electrons on the p_N junction are easily moved to the positive electrode' and the (10) layer becomes thinner and the contact electric power (4) becomes smaller, that is, the resistance becomes smaller. , [0023] A large current is formed. That is, the P_N junction generates a plurality of electron-hole pairs under the excitation of sunlight, and the electron-holes separate the electrons in the N-type dopant material from the upper electrode (four) under the action of electrostatic potential energy. The carbon nanotube structure 183 moves, and the holes in the P-type substrate 14 are moved toward the back electrode 12, and then collected by the back electrode 12 and the linear carbon nanotube structure 183 as the upper electrode 18. Further, it may be collected by the first electrode and the second electrode 24. When the external circuit is turned on during operation, current flows through the external circuit. The solar cell has the following advantages: First, the linear carbon nanotube structure has good toughness and mechanical strength, so the use of a linear carbon nanotube structure as the upper electrode can correspondingly improve the durability of the solar cell. The first one is because the linear carbon nanotube structure is made by directly drawing from the carbon nanotube array for further processing, and is easy to operate, so the cost of the solar cell produced is low; The upper electrode includes a plurality of uniformly distributed linear carbon nanotube structures, so that the linear carbon nanotube structure is used as the upper electrode, so that the upper electrode has a uniform resistance 097113276. Form No. A0101 Page 10 / Total 20 pages 1003408309-0 1356502 100 years. November 03 revised the replacement page to improve the performance of the solar cell; Fourth, the diameter of the linear carbon nanotube structure is small, a plurality of linear carbon carbon at intervals The tube structure is easy to have a uniformly distributed gap. Therefore, the use of a plurality of linear carbon nanotube structures as the upper electrode allows the upper electrode to have good light transmission to sunlight, thereby making the The solar cell has a high photoelectric conversion efficiency, which can reach 3.5%. [0024] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a solar cell in the prior art. 2 is a schematic side view of a solar cell according to an embodiment of the present invention. [0027] FIG. 3 is a schematic top view of a solar cell according to an embodiment of the present invention. [0028] FIG. 4 is a technical implementation of the present invention. A schematic diagram of a bundle structure consisting of a plurality of long carbon nanotubes. [0029] FIG. 5 is a schematic diagram of a stranded structure composed of a plurality of long carbon nanotubes of the embodiment of the present technical solution. [Explanation of main component symbols] Solar cell: 10,30 097113276 Form No. A0101 Page 11 of 20 1003408309-0 1356502 [0031] Back electrode: 12, 32 [0032] Bake substrate: 14, 34 [0033] Lower surface of the cymbal substrate: 141, [0034] Recessed hole: 142, 342 [0035] Upper surface of the cymbal substrate: 143, [0036] Inner surface of the recessed hole: 144, 344 [0037 Doped yttrium layer: 16, 36 [0038] Upper electrode: 18, 38 [0039] Upper surface of upper electrode: 181 [0040] Lower surface of upper electrode: 182 [0041] Carbon nanotube structure: 183 [0042 ] Nine carbon tube long line: 184 [0043] Metal layer: 20 [0044] First electrode: 22 [0045] Second electrode: 24 [0046] Anti-reflection layer: 26 341 343 097113276 Form No. A0101 Page 12 / Total 20 pages 100 years. November day replacement page
1003408309-01003408309-0