Movatterモバイル変換


[0]ホーム

URL:


TWI321372B - Preparation method for high performance of alkaline direct ethanol fuel cell - Google Patents

Preparation method for high performance of alkaline direct ethanol fuel cell
Download PDF

Info

Publication number
TWI321372B
TWI321372BTW095144111ATW95144111ATWI321372BTW I321372 BTWI321372 BTW I321372BTW 095144111 ATW095144111 ATW 095144111ATW 95144111 ATW95144111 ATW 95144111ATW I321372 BTWI321372 BTW I321372B
Authority
TW
Taiwan
Prior art keywords
ethanol
anode
fuel cell
catalyst
carbon
Prior art date
Application number
TW095144111A
Other languages
Chinese (zh)
Other versions
TW200824175A (en
Inventor
Chun Chen Yang
Shwu Jer Chiu
Wen Chen Chien
Ying Jeng Li
Original Assignee
Univ Mingchi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Mingchi TechnologyfiledCriticalUniv Mingchi Technology
Priority to TW095144111ApriorityCriticalpatent/TWI321372B/en
Publication of TW200824175ApublicationCriticalpatent/TW200824175A/en
Application grantedgrantedCritical
Publication of TWI321372BpublicationCriticalpatent/TWI321372B/en

Links

Classifications

Landscapes

Description

Translated fromChinese

1321372 九、發明說明: - 【發明所屬之技術領域】 本發明係有關一種電池之製法,尤指一種鹼性直接乙醇燃料 電池之製法。 【先前技術】 有鑒於地球石油及天然氣之巍藏量’預估在未來3〇〜40年左 右用罄,以及日益嚴重的溫室效應所引起的問題,歐美各國莫不 戮力開發「新能源」或「綠色或替代能源」。氫能即因為其係為一 種非常乾淨而又來源充足之能源,而受到相當的重視。日本政府 •鲁於1993年正式成立一國際性研究計畫WE-NET,結合美、加、 歐洲各國,共同推動氫能之相關研究。其中最直接之應用,即為 「燃料電池」。燃料電池是一種直接將化學能轉變成電能的電化學 裝置,其係一種高效率、乾淨且安靜的電力來源,隨著技術不斷 地進步,結構體可大可小,可以廣泛應用在發電廠、汽/機車、家 庭、手機、筆記型電腦等用途。 目前電池系統還是以「鉛酸電池」為主,而其他較先進的二 次電池,例如:鎳氫、鋰離子等,這些二次電池的成本都太高。 另外一個缺點是這些二次電池的充電時間太長約需小時,且 ··可使用的二次電池能量密度太低,這些原因使得二次電池不易大 量生產及商業化。 於1838年,Grove以電解水產生氫氣及氧氣的逆向概念,製 作出第一個燃料電池組。不像燃燒程序先將熱能轉為動能再轉為 電能,該燃料電池是透過電化學直接將化學能轉為電能,所以能 . 源效率高(約3〇〜35%)。如果產生的熱能再回收使用,效率更可高 , 達70〇/〇以上。同時,以電池用於汽車引擎亦可達到低排放或零排 放之要求。 燃料電池依電解質的應用種類不同,可分為:(1)鹼液型 1321372 (AFC) ; (2)磷酸型(PAFC) ; (3)溶融碳酸鹽型(MCFC) ; (4)固熊氧 - 化物型(S0FC);及(5)質子交換膜燃料電池(PEMFC)等五種電 能密度及尚能量轉換率是發展輕量化、低成本及高比能量密度 (Wh/kg或Wh/L)燃料電池系統的先決條件。目前,具備大於1 VV/cm2之高功率密度的燃料電池為質子交換膜及鹼性^料電池系 統。由於固態高分子電解質具有高離子導電度、低電子導電度和 化學安定佳等特性,可解決液態電解質易漏液及内部短路=問 題,而在PEMFC中使用Nafion固態高分子電解質膜,擔負著電 解質及隔離層的雙層功能。 °、 籲馨 雖然尚活性氫氣(㈠2)是燃料電池的最佳燃料’但是氫氣需由天 然氣、石油、酒精等燃料重組(reforming)反應而得,燃料電池因 而需再加入重組器(reformer),使整個系統趨於複雜。由於直接乙 醇燃料電池(Direct ethanol fuel cell, DEFC) ’不需要轉化裝置,負 ; 載響應特性佳,燃料安全性高,可應用於移動式電源設備,例如 電動;車、電動機車及攜帶式電力’諸如:行動電話、筆記型電 , 腦,所以目前直接乙醇燃料電池也最具有發展潛力成為攜帶式電 力之熱門能源之一。 由於乙醇可由生質(biomass)經發酵(fermentation)取得,不會 破壞大自然的C〇2平衡問題。另外,比較甲醇及乙醇之能量密度 分別是6.1 kWh/kg對8.0 kWh/kg,乙醇當做燃料時具有下列許多 優點:⑴毒性低(non_toxicity) ; (2)大自然到處可得(natura丨 availability) ; (3)可再生的(renewability) ; (4)高功率密度(a high power density);以及(5)零污染(zero emission,green energy) 等。在固態高分子直接乙醇燃料電池使用Nafion-115(膜厚5mil) 或Nafion 117(膜厚7 mil)高分子電解質膜,工作溫度可由7〇。〇提 升至90°C左右,乙醇燃料電池性能可顯著的提高。但許多研究指 出,乙醇的電催化氧化活性及電池的性能均隨著電池溫度上升而 6 1321372 顯著,尚。另外’乙醇的電催化觸媒相當重要,觸媒主要功能是 ' ,醇的c c鍵直接打斷’而形成C〇2產物。結果顯示乙醇氧化 後有許多的中間物生成例如:CH3CH〇、CH3C〇〇H、c〇她(一氧 ,碳吸附在觸媒表面)、C0_CH3等。目前所知,#(Hati_,pt) 是極佳特性及電化性質吸附有機小分子物質’但易被C〇吸附而 失去活性,這使得乙醇燃料電池性能極速下降。最近的研究乙醇 燃料電池性能主要是找到功能性強賴合金難,尤其是二成份 (bimetallic)和三成份(tertjary)合金觸媒,而其中二成份的有1321372 IX. DESCRIPTION OF THE INVENTION: - Technical Field of the Invention The present invention relates to a method of manufacturing a battery, and more particularly to a method for producing an alkaline direct ethanol fuel cell. [Prior Art] In view of the fact that the amount of oil and natural gas in the world is estimated to be used in the next 3 to 40 years, and the problems caused by the increasingly serious greenhouse effect, European and American countries are not trying to develop "new energy" or "Green or alternative energy." Hydrogen is highly valued because it is a very clean and well sourced source of energy. The Japanese government • Lu officially established an international research project WE-NET in 1993, combining the United States, Canada, and European countries to jointly promote research related to hydrogen energy. The most direct application is the "fuel cell". A fuel cell is an electrochemical device that directly converts chemical energy into electrical energy. It is a highly efficient, clean and quiet source of electricity. As technology continues to advance, structures can be large or small, and can be widely used in power plants. Steam/locomotive, home, mobile phone, notebook computer, etc. At present, the battery system is still dominated by "lead-acid batteries", while other more advanced secondary batteries, such as nickel-metal hydride and lithium-ion batteries, are too expensive. Another disadvantage is that the charging time of these secondary batteries is too long, and it takes about an hour, and the secondary battery energy density that can be used is too low, which makes the secondary battery difficult to mass-produce and commercialize. In 1838, Grove made the first fuel cell stack with the reverse concept of hydrogen and oxygen produced by electrolyzed water. Unlike the combustion process, which converts thermal energy into kinetic energy and then converts it into electrical energy, the fuel cell directly converts chemical energy into electrical energy through electrochemistry, so the source efficiency is high (about 3 〇 to 35%). If the heat generated is recycled, the efficiency can be as high as 70〇/〇. At the same time, the use of batteries for automotive engines can also achieve low emissions or zero emissions. Fuel cells can be divided into: (1) lye type 1321372 (AFC); (2) phosphoric acid type (PAFC); (3) molten carbonate type (MCFC); (4) solid bear oxygen depending on the type of electrolyte application. - Five types of electrical energy density and energy conversion rate, such as chemical type (S0FC); and (5) proton exchange membrane fuel cell (PEMFC), are light weight, low cost and high specific energy density (Wh/kg or Wh/L). Prerequisites for fuel cell systems. At present, fuel cells having a high power density of more than 1 VV/cm2 are proton exchange membranes and alkaline battery systems. Due to its high ionic conductivity, low electron conductivity and good chemical stability, solid polymer electrolytes can solve the problem of liquid electrolyte leakage and internal short circuit = problem, while Nafion solid polymer electrolyte membrane is used in PEMFC, which is responsible for electrolytes. And the double layer function of the isolation layer. °, Yu Xin Although active hydrogen ((a) 2) is the best fuel for fuel cells', but hydrogen needs to be restructured from natural gas, petroleum, alcohol and other fuels, so the fuel cell needs to be added to the reformer. Make the whole system more complicated. Since Direct ethanol fuel cell (DEFC) does not require a conversion device, it has good load-response characteristics and high fuel safety. It can be applied to mobile power equipment such as electric vehicles, electric vehicles and portable electric power. 'such as: mobile phones, notebooks, brains, so the current direct ethanol fuel cell also has the most potential to become one of the hot energy sources of portable power. Since ethanol can be obtained by fermentation of biomass, it does not destroy the C〇2 balance problem of nature. In addition, the energy densities of methanol and ethanol are 6.1 kWh/kg to 8.0 kWh/kg, respectively. When ethanol is used as fuel, it has many advantages: (1) low toxicity (non_toxicity); (2) nature is ubiquitous (natura丨availability) (3) renewability; (4) high power density; and (5) zero emission (green energy). In the solid polymer direct ethanol fuel cell, Nafion-115 (film thickness 5mil) or Nafion 117 (film thickness 7 mil) polymer electrolyte membrane can be used, and the working temperature can be 7〇. When the temperature is raised to about 90 °C, the performance of the ethanol fuel cell can be significantly improved. However, many studies have pointed out that the electrocatalytic oxidation activity of ethanol and the performance of the battery are both significant as the temperature of the battery rises. In addition, the electrocatalytic catalyst of ethanol is quite important. The main function of the catalyst is ', and the c c bond of the alcohol is directly broken to form a C〇2 product. The results showed that many intermediates were formed after the oxidation of ethanol, for example, CH3CH〇, CH3C〇〇H, c〇 (one oxygen, carbon adsorbed on the catalyst surface), C0_CH3, and the like. It is known that #(Hati_,pt) is an excellent property and electrochemical property to adsorb small organic molecules' but is easily deactivated by C〇 adsorption, which makes the performance of ethanol fuel cells drop rapidly. Recent studies on the performance of ethanol fuel cells are mainly to find functionally difficult alloys, especially bimetallic and tertjary alloy catalysts, and two of them have

Pt/Ru、Pt/Sn、Pt/W 等’三成份的有 Pt/Ru/Sn、Pt/Ru/W、Pt/Pd/Bi • ·或 Pt/Pd/Pb 等。 。乙^燃料電池在同樣的工作電壓下,1〇〇。〇下電池電流密度比 60 C時高出很多。由於NafjQn為全氟化的酸性高分子電解質 ^erfluorinated sulfonic acid polymer)膜,具有極佳的化學性、熱 ; 穩定性與高離子傳導性,域輕、機械強度高,易於加工等優點, ; 而成為多數酸性燃料電池系統的主要高分子電解質膜。但是,當 • Nafion尚分子膜應用於DEFC上,也具有顯著的乙醇滲透⑽丨 crossover)問題,造成DEFC的電性性能減弱下降問題。 φφ 乙醇滲透的基本原因,是乙醇在Nafion高分子膜中具有很高 的擴散係數,而影響乙醇滲透率之因素很多,例如:乙醇濃度、 壓力、溫度、膜厚和當量重。研究發現量測乙醇在Nafi〇n彳^高 分子膜之滲透率,且滲透率隨溫度上昇而增加,乙醇滲透率也因 而提高。探討不同厚度的Nafion高分子膜在DEFC陰極所殘留之 乙醇及水,實驗結果顯示Nafion高分子膜愈厚乙醇滲透較緩和。 • 另外,實驗發現增加乙醇進料濃度,該乙醇燃料的電池開路電位 (open circuit potential, OCP)也會下降,此可能是因為乙醇滲透 分子膜現象所造成。 > 7 1321372 k 另外’也有些研究者提出複合式電解質膜可以做為DMFC或 DEFC的乙醇不滲賴,它是設計使料殊的三明治結構,其係採 用Nafion與PVA之複合式膜,例如:探討非全氟續酸根系列離子 父換膜之質子導電度與乙醇選擇率。結果指出pBi (polybenzimidazde)高分子膜,雖然質子導電度比Nafi〇n高分子膜 低,但PB丨具有較低的乙醇滲透率,相較於问油加高分子膜下降很 多’選擇率也較Nafion高分子膜為高。The three components of Pt/Ru, Pt/Sn, Pt/W, etc. are Pt/Ru/Sn, Pt/Ru/W, Pt/Pd/Bi • or Pt/Pd/Pb. . B ^ fuel cell at the same working voltage, 1 〇〇. The current density of the underarm battery is much higher than that at 60 C. Because NafjQn is a perfluorinated sulfonic acid polymer membrane, it has excellent chemical and thermal properties, stability and high ion conductivity, light domain, high mechanical strength and easy processing. It is the main polymer electrolyte membrane for most acidic fuel cell systems. However, when Nafion's molecular film is applied to DEFC, it also has significant ethanol permeation (10) 丨 crossover problem, which causes the degradation of the electrical properties of DEFC. The basic reason for φφ ethanol permeation is that ethanol has a high diffusion coefficient in Nafion polymer membrane, and there are many factors affecting ethanol permeability, such as ethanol concentration, pressure, temperature, film thickness and equivalent weight. The study found that the permeability of ethanol in the Nafi〇n彳 high molecular membrane was measured, and the permeability increased with increasing temperature, and the ethanol permeability increased. The ethanol and water remaining in the DEFC cathode of different thickness Nafion polymer membranes were investigated. The experimental results show that the thicker the Nafion polymer membrane is, the ethanol penetration is milder. • In addition, the experiment found that increasing the ethanol feed concentration, the open circuit potential (OCP) of the ethanol fuel also decreased, which may be caused by the phenomenon of ethanol permeation molecular membrane. > 7 1321372 k In addition, some researchers have suggested that the composite electrolyte membrane can be used as a DMFC or DEFC ethanol without osmosis. It is a sandwich structure designed to make a special coating, such as a composite membrane of Nafion and PVA, for example : Exploring the proton conductivity and ethanol selectivity of the non-perfluoroserphate series ion parental membrane. The results indicate that pBi (polybenzimidazde) polymer film, although the proton conductivity is lower than that of Nafi〇n polymer film, PB丨 has a lower ethanol permeability, which is much lower than that of the oil and polymer film. The Nafion polymer film is high.

在燃料電池中的負電極,使用的觸媒材料主要是以鉑為主 體,因為其具有極佳的電化報f,這也是燃料電池成本偏高的 主要原因之-。目前,研究者可義含量降働Q2〜Q 13 mg/cm2, 以降低觸媒成本,並同時可以兼顧電池性能表現。乙醇在觸媒層 始表面的電吸附,隨著質子和電子的產生和遷移而連續進行^ 成觸媒毒化的-氧化碳中間物(Pt_c〇)且不易脫附 池效能下降。 忖…付电 因為吸附在鉑的一氧化碳(co)要氧化成二氧化碳(c〇2),需由 氧化吸附的水分子提供第二個活性氧原子^些第二金屬(例如: 釕(=1〇)形成的合金,對於乙醇的氧化活性增強不大可以增強 的氧化活性’因此’觸媒相騎究朝向雙金屬觸媒或多金屬θ觸媒, 例如:Pt/Ru、Pt/Sn、Pt/Au、嶋等。根據許多研究文獻報導 ,,陽極觸媒材料中是以_ni:1M(pt/Ru(1:1)/c)電極的觸媒^ 能,佳。對乙醇的氧化能力隨著釕的含量的增加而增加,但有些 研究學者(Lamy等人日ectrochimica Acta,49 (2004) ρ·3901·3908) ’發現錫(sn)含量10~2〇at%時達到最佳值。另外, 以,渡元素Fe、Co、Ni、W與Pt形成的雙金屬觸媒,對乙醇之 化能力做研究’實驗數據顯示,只#Pt/Sn/C具有較佳的性能表現。 雷上則、型化、輕型化為風潮,大部分市售的鐘離子 乎機通訊只能1〇〇分鐘),或驗性鋅猛圓筒型从^規格 8 拉小關係受到限制,厚度約為9〜12晒,應用 如…私^^上父限於厚度^前市面上現代冗電子產品喟 t=電話、手提式電腦、攝频、多魏手機等,都要求短 、L、體積小的電池。驗性驗電池練電池在應用上受到 很t侷限。祕雜電池紐電池,靴献在3C電子產品的高 功率、高能量密度且薄型化的特殊要求。 【發明内容】 本發明是開發-種複合錢性交聯(G「Qsslinked)聚乙稀醇 (PVA)固態高分子電解_,其厚度只有5()〜6QQMm,可以適合 於目前的DEFC電池技術,制在_化3C電子產品之電池。 因此DEFC電池具有高能量密度(8 〇〇〇 Wh_且乙醇成本低、易 儲存使用等優點’;%-個非常有競爭力的燃料電池,該乙醇燃料 電池可應用在現代3C f子產品上,依產品要求做尺寸上彈性設 计。在電子產品上使用上也沒有漏液問題,因為係使用固態高分 子電解質膜。 目前’ PEO-PVA-KOH鹼性固態高分子電解質膜(Yang等人In the negative electrode of the fuel cell, the catalytic material used is mainly platinum, because it has an excellent electrochemical report f, which is also the main reason for the high cost of the fuel cell. At present, the researchers can reduce the catalyst content by reducing the amount of Q2~Q 13 mg/cm2, and at the same time, can balance the performance of the battery. The electrosorption of ethanol at the initial surface of the catalyst layer, along with the generation and migration of protons and electrons, continuously proceeds to a catalytically poisoned carbon monoxide intermediate (Pt_c〇) and the performance of the desorbable cell is degraded.忖...Electricity: Since carbon monoxide (co) adsorbed on platinum is oxidized to carbon dioxide (c〇2), a second active oxygen atom is required to be provided by the oxidatively adsorbed water molecule (for example: 钌(=1〇) The alloy formed, which has little enhanced oxidation activity for ethanol, can enhance the oxidation activity. Therefore, the catalyst phase is oriented toward a bimetallic catalyst or a multi-metal θ catalyst, for example: Pt/Ru, Pt/Sn, Pt/ Au, ruthenium, etc. According to many research literatures, the anode catalyst material is a catalyst with _ni:1M (pt/Ru(1:1)/c) electrode, which is good for oxidation of ethanol. The increase in the content of earthworms has increased, but some researchers (Lamy et al. ectrochimica Acta, 49 (2004) ρ·3901·3908) have found the best value when the tin (sn) content is 10~2〇at%. In addition, the bimetallic catalyst formed by the elements Fe, Co, Ni, W and Pt is used to study the ability of ethanol. Experimental data shows that only #Pt/Sn/C has better performance. Then, the type, the lightness is a trend, most of the commercially available clock ion communication can only be 1 minute), or the test zinc hard cylinder type格8 pull small relationship is limited, thickness is about 9~12 drying, application such as... private ^^ upper father limited to thickness ^ before the market modern redundant electronic products 喟 t = telephone, portable computer, video, multi-Wei mobile phone, etc. Both require short, L, and small batteries. The battery test battery is very limited in application. The special battery cell is a special requirement for high power, high energy density and thinness of 3C electronic products. SUMMARY OF THE INVENTION The present invention is a development of a kind of composite cross-linking (G "Qsslinked" polyethylene glycol (PVA) solid polymer electrolysis _, its thickness is only 5 () ~ 6QQMm, can be suitable for the current DEFC battery technology, The battery is made in _3C electronic products. Therefore, DEFC battery has high energy density (8 〇〇〇Wh_ and low cost of ethanol, easy to store and use, etc.); %-a very competitive fuel cell, the ethanol fuel The battery can be applied to the modern 3C f sub-products, and the size is elastic according to the product requirements. There is no leakage problem in the use of electronic products because the solid polymer electrolyte membrane is used. Currently 'PEO-PVA-KOH alkali Solid polymer electrolyte membrane (Yang et al.

Journal of Power Sources 112 (2002) p_497-503)應用在能源電 池上的研究已經有很多實例’例如:Nj/cd、Ni/Zn、Ni/MH、Zn/air 等。這些都是使用鹼性固態高分子電解質膜的應用實例,而本發 明氣備的複合式驗性固邊父聯而分子電解質膜的離子導電度大約 在10_3〜1CT2 S/cm。在文獻上研究報告指出 ,Lewsndowski 等人 製備PEO-KOH-H2〇鹼性固態高分子電解質,其離子導電度大約 在1(Τ3〜10_2S/cm之間’說明使用固態高分子電解質比使用氫氧 化卸(KOH)水溶液的電解質的還要好。|waskura等人研究發現 PAA-KOH固態高分子電解質膜,其離子導電度高達0.60S/crT1, 此離子導電度值接近32 wt_% KOH水溶液的0.68 S/cm,主要是 PAA高分子電解質具有極高的吸水特性。本發明應用複合式鹼性 1321372 固態交聯PVA/Ti〇2高分子電解質膜應用在DEFC上。 一般而言,酸性(acidic)系統的DEFC主要是使用Nation高分 子電解質膜,在25°C時離子導電度可達0.018 S/cm,此膜雖有非 常好的物理及化學性質,但目前Nafion高分子電解質膜的價格非 常高(US$800〜1〇〇〇/m2),此外,在酸性系統的DEFC使用Nafion 南分子膜時’有另一個嚴重問題’亦即在操作時有乙醇會從陽極 穿透(crossover)至陰極,乙醇分子與H+離子之傳輸機構有些相似 之處,此致使DEFC性能急速衰退,主要原因為Nafion高分子膜 阻擋乙醇分子穿透力不佳。 、Journal of Power Sources 112 (2002) p_497-503) There have been many examples of applications in energy cells, such as Nj/cd, Ni/Zn, Ni/MH, Zn/air, etc. These are all application examples using an alkaline solid polymer electrolyte membrane, and the ionic conductivity of the composite organic solid membrane of the present invention is about 10_3 to 1 CT2 S/cm. According to the research report in the literature, Lewsndowski et al. prepared PEO-KOH-H2 〇 basic solid polymer electrolyte with an ionic conductivity of about 1 (Τ3~10_2S/cm), indicating that the use of solid polymer electrolytes is better than using hydroxide. The electrolyte of the aqueous solution of KOH is better. |waskura et al. found that the PAA-KOH solid polymer electrolyte membrane has an ionic conductivity of up to 0.60 S/crT1, and the ionic conductivity value is close to that of 32 wt_% KOH aqueous solution of 0.68 S. /cm, mainly PAA polymer electrolyte has extremely high water absorption characteristics. The present invention uses a composite alkaline 1321372 solid crosslinked PVA/Ti〇2 polymer electrolyte membrane for application on DEFC. Generally, an acidic system The DEFC mainly uses Nation polymer electrolyte membrane, and the ion conductivity can reach 0.018 S/cm at 25 ° C. Although the membrane has very good physical and chemical properties, the price of Nafion polymer electrolyte membrane is very high ( US$800~1〇〇〇/m2), in addition, there is another serious problem when the DEFC of the acidic system uses the Nafion South Molecular Film, that is, ethanol will crossover from the anode to the cathode during operation. In some cases, the transport mechanism of ethanol molecules and H+ ions is somewhat similar, which causes the DEFC performance to decline rapidly. The main reason is that Nafion polymer membrane blocks the penetration of ethanol molecules.

為了改善穿透問題’使用固態聚乙稀醇(PVA)為主幹高分子電 解質膜可以應用在DMFC上。Shao和Hsing等人(JES Letter 5 (2002) ρ·Α185-Α187))製備 Nafion/PVA(V.1)高分子膜主要是應用 在酸性系統DMFC上。另外,Li和Wang等人(Materials Letters 57 (2003) M406-1410製備PVA/PWA高分子膜也是應用在酸性 的D=FC祕上’在25t:下’離子導電度可達6 27x1〇_3 $/训, 曱醇穿透係數(methanol permeability)在 1〇_7 cm2/s 左右。Xu 等 人(Solid State Ionics, 171 (2004) 121-127)製備 PVA/PWAIn order to improve the penetration problem, the use of solid polyvinyl alcohol (PVA) as the main polymer electrolyte membrane can be applied to DMFC. Shao and Hsing et al. (JES Letter 5 (2002) ρ·Α185-Α187)) Preparation of Nafion/PVA (V.1) polymer membranes is mainly applied to the acidic system DMFC. In addition, Li and Wang et al. (Materials Letters 57 (2003) M406-1410 prepared PVA/PWA polymer film is also applied to the acidic D=FC secret 'under 25t:' ionic conductivity up to 6 27x1〇_3 $/train, methanol permeability is around 1〇7 cm2/s. Xu et al. (Solid State Ionics, 171 (2004) 121-127) prepare PVA/PWA

(ph〇s_ungst丨c add))/Sj〇2複合式固態高分子膜也應用在酸性 DMFC系統上,其離子導電度可達〇 〇12〜〇 〇〇4以加之間, 醇穿透係數(P)約在1G_7〜1G_8 Cm2/S左右,這些研缺 古 分子對醇_1⑺hds)分子的紐有非常佳的_效果。回 本發明提ίϋ製備完成的複合式_、高分子轉質膜可以應用 =驗性DEFC中,-般的_直接乙醇燃料電池之乙醇產生^化 干 =_0 Wh/kg)為液態氫氣的4倍,是鋰離子_ ^㈣的 固^亩ί且了直接以乙醇為燃料,而提高移動時之安全性。因此, ϋί乙ί燃料電池是十分具有市場競爭力之新電源。該鹼性 固態直接乙醇繩電池之基本原理,是將⑽與水之混合物送至 陽極,乙醇發生氧化反應生成水(Hz〇)和二氧化碳(c〇2),並釋放 出電子’其反應式如下式(1)所示: C^HsOH + 120H 4 2C〇2+9H20+12e·, Ea_=-0.810V ⑴ IW極消耗之OH是由陰極遷移穿過中間的複合式固態高分子電解 質膜,並與陰極之氧氣反應生成OH-,其反應式如下式(2)所示: 302+ 6H20 + 12e -> 120H', Ecathode= 0.402V (2) (或 〇2+2H20 +4e -> 40ΚΓ) 而電子由陽極經環外電路轉移至陰極形成迴路,其DEFC的總反 應式為: C2H5OH + 302-> 2C〇2+ 3H20, Eoverai,= 1.21V (3) 在早期直接乙醇燃料電池可以使用選擇驗性或酸性液體電解 質^而一般的工作溫度約在60。(:,電池性能很差且電極間存在有 乙醇滲透現象。目前’採用Nafion_117高分子膜作為直接乙醇燃 料電池之電解質,因NafiQn高分子膜具有高的機械強度、有較佳 的化學及熱安定性、質輕且易加工及較高的離子導電率等優點, ,Nafion高分子膜應用於酸性直接乙醇燃料電池時,會有相當顯 著的「乙醇滲透問題」,此乃造成酸性直接乙醇燃料電池性能 的主要原因。 攸以上的說明可知驗性固態直接乙醇燃料電池(DE f〇是具 有開發潛力之電誠品,因此’本發雜服性直接乙醇燃料電 池的製法,其中該複合式鹼性固態高分子電解質膜也是重要開發 1321372 透及離子導電度之問題進行研究。—d =態ί=解質膜的合成改質,並探討在添加:材二 離子導電产的^作Ϊ件,對於複合式驗性_高分子電解質膜 高分子電t備出最佳離子導電度⑹的複合式鹼性固態 【實施方式】 炫將本發明之鹼性直接乙醇燃料電池製法敘述如下: 本發明製備電極是由電極原料特性分析做為開始,以瞭解各 ,池材料成份的舰及組成,然後從钱極的製備最後到组成 =-鹼性直接乙_料電池」,對於製備絲料電極先做電性 ^,使半電極製備條件最佳化(動力學方面),電極則重點在比電 ί = Ϊ阻值等電性分析。本發明自行製備的乙醇陽極_了黑) 行製備成的空氣陰極(|\/Ιη〇2/ΒΡ20〇〇碳里«CNTsi太芈石# 管))’搭配自行製備成的複合式鹼性_高;子電解^未 (crosslinked PVA/Ti〇2 composite _mer 阳恤嶋),組裝成棱 柱型(prismatic)驗性直接乙醇燃料電池,並依組成之不同的乙醇進 料濃度、溫度、紐、高分子電解f稱度,對此驗性直接乙醇 燃料電池(DEFC)進行全電池電性分析。其中,紐性直接乙醇姆 料電池中之陽極_可為乙醇、異丙醇或了醇,其 為α卜翻之間,亦即α卜顧.%之間,且該陽極燃料進师eed) 方式可以是液體或氣體。此外’該驗性直接乙醇燃料電池中之電 解質可為 KOH、NaOH、LiOH、NaOH+LiOH、KOH+UOH 等, 其》辰度變化為0.1〜15 Μ之間(〇_3〜45 wt.%),且該電解質進料 (feed)方式可以是液體或氣體。 、 A、乙醇陽極的製備: 本發明主要陽電極成分組成以1〜50 wt·%的鉑釕黑(ptRu 12 b^ck)觸媒粉末為主’控制極板厚度在α2〜。7晒面積為卜loo ’主要使用奈米級邮㈣:彳觸媒粉材並變化使用量或百分 二電化學實驗室之屋片機依其性質製作陽電極,分析陽電極 ,氧化電々禮度(mA/cm2)或比電量(mA/g cata|yst)。所選用之 碳粉為XC 72R碳黑或奈米碳管(諸如:SWCT(S丨叩丨_丨丨咖⑽ t^be)、MWCT(MUlti-wall ca「bon tube)),基材碳粉粉末性質對陽 電極電性的影響很大。陽電轉備時,控制溫度、速率、厚声、 時間、觸媒使用量(在卜20 mg/cm2)、乾燥(dry)在11〇〜12〇。匸,2 小時等操作條件。檢測萌電極以彳mV/s速祷描,比較各 電極中那制量下_釘黑性f為較佳,影響陽電極電性 之因素’求出最佳觸媒使用量大小,使其在定電壓下,產生 的氧化電流密度為最大。 # 其中,該乙醇陽極之基材可選自碳布、碳紙、碳纖維布、石 墨、銅網、鎳網、鈦網、鉑鈦網、金網、不銹鋼網等金屬導體材 料’或者以銅箱、鎳、鈥落、㈣、金落金屬導體材料為之, 該基材厚度為0_01〜30 mm ’其中以〇_〇1〜10 mm為較佳。 此外,該乙醇陽極的觸媒鉑釕黑之比例除前述之彳:1之外, 尚可為:PtRu(1:9)/C、PtRu(2:8)/C、PtRu(3:7)/C、PtRu(4:6)/C、 PtRu(5:5)/C、PtRu(6:4)/C、PtRU(7:3)/C、PtRu(8:2)/C 或(ph〇s_ungst丨c add))/Sj〇2 composite solid polymer membrane is also applied on acidic DMFC system, its ionic conductivity can reach 〇〇12~〇〇〇4 plus, alcohol penetration coefficient ( P) is about 1G_7~1G_8 Cm2/S, and these ancient molecules have a very good effect on the alcohol_1(7)hds). Back to the present invention, the prepared composite _, polymer transfer film can be applied = inferior DEFC, the general _ direct ethanol fuel cell ethanol production ^ dry = _0 Wh / kg) is liquid hydrogen 4 The double is the solid state of lithium ion _ ^ (4) and directly uses ethanol as fuel to improve the safety when moving. Therefore, ϋί乙ί fuel cell is a very competitive new power source. The basic principle of the alkaline solid direct ethanol rope battery is to send a mixture of (10) and water to the anode, and the oxidation reaction of ethanol to produce water (Hz〇) and carbon dioxide (c〇2), and release the electrons. Formula (1): C^HsOH + 120H 4 2C〇2+9H20+12e·, Ea_=-0.810V (1) The OH consumed by the IW is a composite solid polymer electrolyte membrane that migrates from the cathode through the middle, and It reacts with the oxygen of the cathode to form OH-, and its reaction formula is as shown in the following formula (2): 302+ 6H20 + 12e -> 120H', Ecathode = 0.402V (2) (or 〇2+2H20 +4e -> 40ΚΓ And the electrons are transferred from the anode to the cathode through the extra-loop circuit to form a loop. The total reaction formula of DEFC is: C2H5OH + 302-> 2C〇2+ 3H20, Eoverai, = 1.21V (3) In the early direct ethanol fuel cell can Use a selective or acidic liquid electrolyte ^ and a typical operating temperature of about 60. (:, battery performance is very poor and there is ethanol penetration between the electrodes. Currently, Nafion_117 polymer membrane is used as the electrolyte of the direct ethanol fuel cell, because NafiQn polymer membrane has high mechanical strength, better chemical and thermal stability. Sex, light weight, easy processing and high ionic conductivity. When Nafion polymer membrane is applied to acid direct ethanol fuel cell, there will be a significant "ethanol permeation problem", which is caused by acid direct ethanol fuel cell. The main reason for the performance. 攸 The above description can be used to identify the solid-state direct ethanol fuel cell (DE f〇 is a product with potential for development, therefore, the method for producing a hybrid ethanol fuel cell, wherein the composite alkaline The solid polymer electrolyte membrane is also an important development factor for the development of 1321372 and ionic conductivity. -d = state ί = synthetic modification of the crystallization membrane, and discussion of the addition of materials: Composite tester_polymer electrolyte membrane polymer t to prepare the best alkaline conductivity (6) composite alkaline solid state [Embodiment] Hyun will The method for preparing the alkaline direct ethanol fuel cell of the present invention is as follows: The electrode prepared by the invention is started from the analysis of the characteristics of the electrode material, to understand the composition and composition of the material of the pool, and then from the preparation of the money pole to the composition =- Alkaline direct B-cell battery, for the preparation of wire electrode first electrical ^, to optimize the preparation conditions of the semi-electrode (dynamics), the electrode is focused on the electrical analysis of the electric resistance = Ϊ resistance value. The self-prepared ethanol anode of the invention has been prepared into an air cathode (|\/Ιη〇2/ΒΡ20〇〇 carbon « «CNTsi 芈石# tube)) with a self-made composite alkaline _ High; sub-electrolysis ^ (crosslinked PVA / Ti〇2 composite _mer 嶋 阳 ,), assembled into a prismatic (prismatic) qualitative direct ethanol fuel cell, and depending on the composition of the different ethanol feed concentration, temperature, New Zealand, high Molecular electrolysis f-degrees, full-cell electrical analysis of this qualitative direct ethanol fuel cell (DEFC). Wherein, the anode in the direct ethanol powder battery may be ethanol, isopropanol or alcohol, which is between α and ,, that is, between α and Gu, and the anode fuel is eed) The method can be liquid or gas. In addition, the electrolyte in the qualitative direct ethanol fuel cell can be KOH, NaOH, LiOH, NaOH+LiOH, KOH+UOH, etc., and the change in the degree of change is between 0.1 and 15 Μ (〇_3~45 wt.%) And the electrolyte feed mode can be a liquid or a gas. Preparation of A, ethanol anode: The main anode component composition of the present invention is composed of 1 to 50 wt% of platinum black (ptRu 12 b^ck) catalyst powder. The thickness of the control plate is α2~. 7 sun area is Bu loo 'mainly using nano-grade post (four): 彳 彳 粉 粉 并 并 或 或 或 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学Degree (mA/cm2) or specific charge (mA/g cata|yst). The selected toner is XC 72R carbon black or carbon nanotubes (such as: SWCT (S丨叩丨_丨丨咖(10) t^be), MWCT (MUlti-wall ca "bon tube)), substrate toner The nature of the powder has a great influence on the electrical properties of the anode. When the anode is transferred, the temperature, rate, thickness, time, and amount of catalyst are controlled (in the case of 20 mg/cm2) and dry (dry) in the range of 11〇~12〇.匸, 2 hours and other operating conditions. Detecting the germination electrode with 彳mV/s, comparing the amount of the electrode in each electrode _nail black f is better, affecting the electrical properties of the anode 'to find the best The amount of catalyst used is such that the oxidation current density is maximized at a constant voltage. # The substrate of the ethanol anode may be selected from the group consisting of carbon cloth, carbon paper, carbon fiber cloth, graphite, copper mesh, nickel mesh, Titanium mesh, platinum-titanium mesh, gold mesh, stainless steel mesh and other metal conductor materials' or copper box, nickel, slump, (four), gold metal conductor material, the thickness of the substrate is 0_01~30 mm ' Preferably, 〇1 to 10 mm is preferable. Further, the ratio of the catalytic platinum ruthenium of the ethanol anode may be: PtRu (1:9)/C, PtRu, in addition to the above 彳:1. (2:8)/C, PtRu(3:7)/C, PtRu(4:6)/C, PtRu(5:5)/C, PtRu(6:4)/C, PtRU(7:3) /C, PtRu(8:2)/C or

PtRu(9:1 )/C等不同比例的麵釕/碳成份的化學組成;另於陽電極觸 媒鉑釕/碳(PtRu/C)觸媒中可加入不同材料的奈米微粒材料,其係 選自:Ti02、AI2〇3、Si02、Zr02或LiAINi03 ’該奈米微粒材:料大 小為1〜1000 nm之間,比表面積為卜5〇〇〇 m2/g之間。 B、空氣陰極的製備: 本發明提出製備直接乙醇燃料電池中的空氣陰極,例如:空 氣碳電極(air carbon electrode)的製備方法。目前市面上所使用Ί 空氣陰極觸媒主要是鉑/碳為主,但是鉑貴金屬價格高且容易一氧 1321372 化,吸附而中毒,使的空氣陰極極化而失去活性。在鹼性溶液中 的氧還原反應(oxygen reduction reaction, ORR),於文獻中,發 現還有其他不同觸媒可以使用’例如:perovskjte(LaCaC〇〇3)、 spinels (Co03、NiCo204)、pyrochloresj#Cc^Fe2pyrolyzed macrocycles 或錳氧化物(Μη02、ΚΜη04)等。 在驗性系統中氧氣(〇2)的還原反應式如下所示: 〇2 +2H20 + 4e*-^ 40H', E°= 0.40 V, 若以鉑為觸媒時,此為4e-電子的轉移反應,然而,使用二氧化錳 (Μη02)為觸媒時,則反應式如下: 〇2 + H20 + 2e' H02' + OH', : 此為2e-電子的轉移反應(Mn02),產生中間物(η〇2·)即 hydroperoxide,而此中間物經觸媒化學反應再生成〇2和〇H-兩 產物:Different proportions of the chemical composition of the surface enthalpy/carbon component such as PtRu(9:1)/C; and other nano-particle materials of different materials can be added to the anode electrode catalyst platinum/carbon (PtRu/C) catalyst. It is selected from the group consisting of: Ti02, AI2〇3, SiO2, Zr02 or LiAINi03 'The nanoparticle material: the material size is between 1 and 1000 nm, and the specific surface area is between 5 〇〇〇m2/g. B. Preparation of Air Cathode: The present invention proposes a method of preparing an air cathode in a direct ethanol fuel cell, such as an air carbon electrode. At present, the air cathode catalyst used in the market is mainly platinum/carbon, but the price of platinum precious metal is high and it is easy to be oxidized and poisoned, so that the air cathode is polarized and loses its activity. Oxygen reduction reaction (ORR) in alkaline solution, in the literature, it is found that there are other different catalysts that can be used, for example: perovskjte (LaCaC〇〇3), spinels (Co03, NiCo204), pyrochloresj# Cc^Fe2pyrolyzed macrocycles or manganese oxides (Μη02, ΚΜη04) and the like. The reduction reaction of oxygen (〇2) in the test system is as follows: 〇2 +2H20 + 4e*-^ 40H', E° = 0.40 V, if platinum is used as the catalyst, this is 4e-electron The transfer reaction, however, when manganese dioxide (??) is used as a catalyst, the reaction formula is as follows: 〇2 + H20 + 2e' H02' + OH', : This is a 2e-electron transfer reaction (Mn02), resulting in the middle The substance (η〇2·) is hydroperoxide, and the intermediate is chemically reacted to form 〇2 and 〇H-products:

Η〇2·1/2 02 + OH_, 在ORR反應時,主要的碳基材是XC-72R活性碳或使用 BP2000碳黑(大小10〜20 nm,1500 m2/g) ’或使用多層奈米碳管 (MWCNTs大小10〜20 nm,比表面積200〜300 m2/g)之基材。活 性碳的小孔(micropore)不易被利用,一般會以化學活化法 (chemical activation method)製造中孑L(mesopore)及大子匕 (macropore),此法以氫氧化鈉(NaOH)混合活性碳(2:1)在不同溫 度下(700、800、900、1000°C)進行活化2小時,而後經清洗、 ,燥(12〇C。,12小時)完成。奈米碳管(mwcNTs)經12N濃HN〇3 理在120 C ’ 8小時,改善表面官能基(functj〇na|ity例如:acjd sites、COOH、CHO、OH 等),清洗後備用。 太本發明使用低成本的奈米級非結晶性二氧化猛(M no》觸媒, 而不米柘末非結晶性Mn〇2觸媒(amorph〇us Μη〇2, α-Μη02)的合 ,製備方法主要可分為兩種方式,一種是利用大塊材料分解成小 f子的物理方法ϋ方法則是_離子或分子作為前驅物 ^cursor) ’例如:Μη(Ν〇3)2而形成核種,而在核種成形後控制 成長以形成奈米微粒材料,即化學方法或所謂之溶膠_凝膠法 ^州。而化學方法有製備較小奈米微粒且大小均自的粒子故 7J仍以化學方法進行製備為主要路徑方法。而製備時是利用溶 2進行還原反應製備Μη〇2奈米微粒,同時,在反應物中加入 k虽的保護劑(SLS)或有機添加劑以避免奈米微粒的聚集。另外也 調整之氧化劑或還原劑的濃度、劑量、溶劑種類、、保護劑 而1備各種形狀、大小的奈米金屬氧化物材料。 本發明提出製備-種低成本的空氣陰極的方法,主要是空氣 陰極成分的觸媒使用5〜80 wt_的Mn02/BP2000碳里+CNTs(太半 ,碳縣产|賊陰極之·板厚度在Q.2〜Μ咖上積卡 二4〜1〇〇 cm ’而奈米級Mn〇2/Bp2〇〇〇碳黑+cnTs(奈米碳 觸媒以溶膠·凝縣製備並變化娜齡域之百分率。由電化風 ^室之壓,依其性質製作陰電極,分析空氣陰極的還原電‘ ,又(mA/cm )。空氣陰極製備時控制溫度、速率、厚度、 壓力(在1。。〜5。。kg細2)、乾燥(咖在,耽,卜2 :時等二 條件完成。自行製備成的空氣陰極做陰電極掃描以】mv/^ ^比車^種不_媒用量的空氣陰極的電性,影響空氣陰極之因 度為2最佳的觸媒用量大小,使其在定電壓下產生還原電流密 其中’該空氣陰極’例如空氣碳電極係以二氧化錳(α_Μη02) 觸媒所製備而成,除前述之轉_郷法製備空氣陰極之外,其餘 之亦可以各知製法,例如水熱合成法(Hydr〇therma|)、微波法 (Microwave irradiation method)、化學沈澱法(Chemjca丨 precipitation meth〇d)或超重力反應法等技術及方法來製備而成。 C、複合式鹼性固態高分子電解質膜製備: 本發明提出開發一種聚乙烯醇(PVA)為主幹固態高分子膜,該 膜,經由溶液成膜法(SOlutj〇n casting meth〇d)製備而成合成方 法疋先選用尚親水性之聚乙稀醇(P〇|yv_ ^c〇h〇卜pvA)為基 材’然後’2並顧為纽性高比面積的二氧化鈦(Tj〇2)奈米微粒(7 nm,380 m2/g,anatase)做為填充料,該二氧化鈦奈米微粒有二個 作用.⑴可以阻礙乙醇小分?的直接穿透聚乙觸高分子膜(此膜 有,佳,阻擋能力其乙醇穿透係數(ethan〇丨permeabj|丨以)約在 10: cm2/s左右,而Nafion 117高分子臈的乙醇穿透係數在1〇-6 cm /s左右);(2)Ti〇2奈米微粒材料在聚乙烯醇高分子基材中,可 以吸附較多的氫氧化鉀電解質,所以離子導電度維持在1〇_2s/cm 良好的狀況。該固態PVA/Ti〇2(Ti〇2含量卜如讁%之間)高分子 膜’將做最後交聯(cross-linked)反應處理,使用5 v〇|%的75%戊 一酸·(glutaraldehyde,GA)交聯劑,在丙酮(acet〇ne)中加入 〇 π〜1 voio/o鹽酸(HCI)為觸媒,40°C,約1〜48小時交聯處理,可以使高 分子膜有良好的機械強度,此交聯完成的複合式高分子膜再浸潰 在32 wt·%氫氧化鉀溶液中24小時,高分子膜可量測離子導電度 及組裝成燃料電池使用。該尚分子膜經由交聯處理並提昇Defc 使用操作溫度,使得系統可以具有良好的化學穩定性及長久的操 作性。其中,所選用之父聯劑不以前述之戊二醛為限,其亦得使 用蘋果酸(malic acid)為之。 所製備的交聯的複合式鹼性固態PWn〇2高分子電解質 uzu/z 膜’做離子導電度分析、含水率(%)、電化學穩定性分析、FTIR 分析、熱性質的分析(DSC及TGA),表面觀察分析 乂 }二。構分析(例如XRD分析}、及相關電性分析檢測例如·· 料」mpedance等分析,最後進行高分子膜機械強度測試等。 Λ、、'後,將此複合式鹼性固態高分子電解質膜應用在DEFC上。本 發明不同=傳統於酸性系、_ DEFC所使用之NafiGn高分子電解 f 使用複合式驗性賴高分子電解賊。此複合式驗性 固H刀子電解質膜中有摻合丁丨〇2奈米材 ·· =料之填紐 ^之Ti(VAl2Q3、叫 j者-種以上奈米材料混合使用,藉此可改善高分子膜之数性及 度。更重要的是,降低乙醇之渗透率同時維持良好的離子 導$ PVA及Ti〇2、水混合反應形成雜度餘,然後再 形成尚》子膜_ film),最後經交聯反應處理, 容液中至少24小時。本發明製備的複合式驗性固態高分子 電解質膜具有很好的物理/化學㈣、熱安定性、高_子導電度 侧Q Q1 S/Gm)、尺寸安定性佳、機械強麟、有彈性加工 性等’很適合應用在DEFC上。 【實施例】 實施例1 : 乙醇陽極製備的主要成分係以5〜1〇〇 ^ %的(A|fa銘釘里 PtRu b_觸媒塗佈在金屬鈦網(〇.1 mm,Ti_screen,Dexmet、 C〇[p·公司生產)上,控制極板厚度在〇 2〜〇 7麵,面積為卜3〇〇 cm,日主要使用奈米級麵舒黑(pt:Ru=i:i)觸媒粉末並變化觸媒粉末 ^佈1,該陽電極的表面形態圖,則如第i圖的SEM所顯示,其 从It為’上面塗佈銘釘黑觸媒。由實驗室之壓片機依其特 乙醇陽極’並分析乙醇陽極的電化學特性,例如:乙醇氧 17 1321372 化電流密度(mA/cm2)、Eonset電位、Epeak、ipeak、RD_職等參數, 乙醇氧化鉑釕黑觸媒中可加入碳基材,可改善利用率;碳材可選 擇市售的XC72R(由Cabot公司生產)或BP2000碳琴(由Cabot 公司生產)或奈米碳管(SWCT、MWCT)等具有不同比表面積碳 材,這些碳材粉末性質對乙醇陽極有很大的影響。乙醇陽極製備 時,控制溫度、厚度、處理乾燥時間(1〜2小時)、觸媒用量(在卜10 0 mg/cm2)、乾燥溫度在80〜120°C等操作條件。裝備完成之乙醇陽 極做電性掃描分析’掃瞄速率為1 mV/s,由此可分析比較出各種 不同電極配方的陽電極性能差異,並判定最佳的鉑釕黑觸媒使用 昼,求出最佳條件的觸媒使用量範圍,使其在定電壓下產生的乙 醇氧化的電流密度為最大。 實施例2 : : 空氣陰極製作時,包含有三層結構,即:(1)一空氣擴散層 (diffusion layer)、(2)—活化層(active layer),及⑶一鎳發泡網 ' (Ni-foam);該鎳發泡網做為電流收集器,而擴散層中使用70wt.% 疏水性乙炔黑(Shawinigan acetylene b丨ack, AB50,比表面積為 φφ 80 m2/g)及 30 wt·%聚四氟乙烯(polytetrafluoroethylene, PTFE)水 溶液(Teflon-30, Dupont)。在活化層中主要使用5〜80 wt.%非結晶 性的a-Mn〇2觸媒粉末及60 wt·%之BP2000碳黑+CNTs(奈米碳 管)雙碳材及15 wt.%PTFE水溶液(Teflon-30, Dupont)、及適量異 丙醇(isopropyl alcohol, IPA)溶劑製備成油墨(ink)塗佈(spray)成活 化層,在陰電極化學組成百分率影響很大。另外,極板厚度控制 在0.3〜0.6 mm,面積大小為1〜1〇〇 cm2,該陰電極中使用的 a-Mn〇2/BP2000+ CNTs觸媒漿料主要是以溶膠-凝膠法製備而 成’成分組成之變化百分率在5〜60 wt·%之間。由實驗室之壓片 機依其性質製作成空氣陰極,分析時檢測空氣陰極的氧還原電流 18 ,度(mA/cm2)。影響空氣陰極電性的參數,例如··溫度、觸媒用 量、電極厚度、燒結時間(320〜360。〇、壓力(在100〜500 pf/cm )、電極乾燥時間等製備條件,所完成之空氣陰極的表面形 態,則如第2圖所示(SEM圖,500X下),較大倍率則如第3圖所 不(SEM,7kX下),其表面上有許多奈米碳管(CNTs)呈現。另外, 製備元成的空氣陰極做電性掃描分析(1 mV/sec),並比較各種不同 觸媒,量(a-MnOs/雙碳粉)的電性好壞,並求出最佳製備條件及觸 媒含量大小,使其在定電壓下產生〇2還原電流密度為最大。 鲁鲁實施例3 ·· 選用高親水性之聚乙烯醇(PVA)高分子(分子量約為1〇〇 〇〇〇) 為基材(M.W_大小可以在8〇,〇〇〇〜200,000之間),然後,並選用為 多孔性兩比面積的二氧化鈦(Tj〇2)奈米微粒(粒徑為5〜2〇⑽,比 ; 表面積為2〜彳000 m2/g,具有rutl’le或anatase結構)做為填充料, 加入水中展合反應形成咼點度枯液,乾燥完成獲得此複合式固態 ’ 聚乙烯醇/二氧化鈦高分子膜,最後經交聯處理,使用5 vol%的75 wt_%戊二醛(GA)交聯劑,在丙酮溶劑中加入〇 15v〇|%鹽酸(HC丨) 麵·觸媒L4〇C ’交聯處理約12〜48小時’而獲得複合式鹼性固態聚 乙烯醇/二氧化鈦高分子電解質膜,其表面形態SEM分析結果, 如第4圖所示。 另外,複合式鹼性固態聚乙烯醇/二氧化鈦高分子電解質膜表 面形態的XRD分析結果,如第5圖所示,結果顯示GA交聯劑使 得聚乙烯醇之結晶性下降,2Θ=19。之主峰明顯減弱,此有助於離 子之導電性改善。再者’交聯完成的複合式驗性關聚乙稀醇/二 氧化鈦高分子電解質膜,再浸潰於32wt %K〇H中24小時後,量 測離子導電度(d,S/cm),該複合式驗性固態聚乙烤醇/二氧化鈦高 分子電解質膜的Nyquist分析圖,則如第6圖所示。實驗結果顯 1321372 示在30°C下,此複合式鹼性固態聚乙烯醇/二氧化鈦高分子電解質 膜的離子導電度約在1CT3〜10-2S/cm左右。最終發現該複合式交 聯鹼性固態聚乙烯醇/二氧化鈦高分子電解質膜具有非常良好的機 械強度及尺寸安定性,此膜可大大提昇DEFC之使用操作溫度, 使得乙醇燃料電池系統可以具有良好的化學穩定性及長久操作 性。由TGA熱定性分析該複合式鹼性固態聚乙烯醇/二氧化鈦高分 子電解質膜’其實驗結果顯示,如第7圖所示,加入奈米級二氧 化鈦及GA交聯劑後’都具有非常好的熱穩定性,大大提昇操作 穩定性。 實施例4 : 依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 有 0.25〜4_50 mg/cm2 的銘釕黑 PtRu(1:1) black inks 量),取該陽 電極面積8 cm2,另取實施例2製備完成之空氣陰極 (Mn〇2/BP2000+CNTs),再搭配實施例3製備完成之複合式鹼性 固態南分子電解質膜(PVA/Ti〇2 (10%) composite polymer membrane crosslinked by GA) ’交聯完成的複合式鹼性固態 PVA/Ti02高分子電解質膜,再浸潰在32榭%K〇H水溶液中24 小時,此膜便應用在乙醇直接燃料電池上,該電池可組裝成正方 型、圓桂型(1水管型)、長方型、燃料匣等鹼性直接乙醇燃料電池 模組(MEA)’且該驗性高分子直接乙醇燃料電池可做成任何電壓大 小的電池堆(cell stack)。在2M KOH + 2M C2H5OH之水溶液中, 於25°C下,依實施例1之製備方法完成的鈦網陽極,組成各種不 同的鹼性直接乙醇燃料電池模組,並做單電池的電池電性檢測分 ^。於25°C(常溫)及常壓下(1 atm) ’量測各種不同的鹼性直接乙 醇燃料電池的OCV變化曲線並分析比較,結果如第8圖所示,結 果發現該等直接乙醇燃料電池的Emean 〇cv(或E〇cv)= 20 1^/1372 0.717〜0.855V之間,詳細實驗結果,如表)所示。 表1、直接乙醇 燃料電池的E〇cv變化值(含不同鉑釕黑觸媼富下、 量 (mg/brcQ 參數 0.25 0.50 1.00 2.00 4.50 ^Max. (V) 0.724 0.730 0.793 0.851 0.858 ^Min. (V) 0.702 0.705 0.778 0.840 0.848 [Mean (V) 0.717 0.723 0.792 0.845 0.855 實施例5 : 依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 有 0 25〜4 502 mg/cm2 的鉑釕黑 PtRu(1:1) black inks 量〉,取陽電 極面積8 cm2,另並取實施例2製備完成之空氣陰極 (Mn02/BP2_+CNTs),再搭配實施例3製備完成之複合式驗性 固態高分子電解_ ’將交聯完成的複合錢性_ pvA/T 分子電解質膜’再浸潰在32被桃叫巾約24小時後, =Η〇2·1/2 02 + OH_, in the ORR reaction, the main carbon substrate is XC-72R activated carbon or BP2000 carbon black (size 10~20 nm, 1500 m2/g)' or use multi-layered nano A substrate of a carbon tube (MWCNTs having a size of 10 to 20 nm and a specific surface area of 200 to 300 m 2 /g). The micropore of activated carbon is not easily utilized. Mesopore and macropore are generally produced by a chemical activation method. The method uses sodium hydroxide (NaOH) to mix activated carbon. (2:1) Activation was carried out at different temperatures (700, 800, 900, 1000 ° C) for 2 hours, followed by washing, drying (12 ° C., 12 hours). The carbon nanotubes (mwcNTs) were treated with 12N concentrated HN〇3 at 120 C '8 hours to improve surface functional groups (functj〇na|ity such as: acfd sites, COOH, CHO, OH, etc.), and washed for later use. The present invention uses a low-cost nano-scale amorphous non-crystalline oxidized (M no ) catalyst, and not a mixture of non-crystalline Mn 〇 2 catalyst (amorph〇us Μη〇2, α-Μη02). The preparation method can be mainly divided into two ways, one is a physical method of decomposing into a small f-subsequent using a bulk material, and the method is an ion or a molecule as a precursor ^cursor) 'for example: Μη(Ν〇3) 2 The nucleus is formed, and after the nucleus is formed, it is controlled to grow to form a nanoparticulate material, that is, a chemical method or a so-called sol-gel method. The chemical method has the preparation of smaller nanoparticles and the size of the particles are self-made, so 7J is still prepared by chemical method as the main path method. In the preparation, the Μη〇2 nanoparticle is prepared by the reduction reaction of the solution 2, and at the same time, a protective agent (SLS) or an organic additive of k is added to the reactant to avoid aggregation of the nanoparticle. In addition, the concentration, dosage, solvent type, and protective agent of the oxidizing agent or reducing agent are also adjusted, and nano metal oxide materials of various shapes and sizes are prepared. The invention proposes a method for preparing a low-cost air cathode, which mainly uses a gas cathode component catalyst using 5~80 wt_ Mn02/BP2000 carbon + CNTs (too half, carbon county | thief cathode plate thickness) In Q.2~Μ咖卡, the card is 2 4~1〇〇cm' and the nano-scale Mn〇2/Bp2〇〇〇 carbon black+cnTs (nano carbon catalyst is prepared by Sol. Percentage of the domain. The cathode is made by the pressure of the electrochemical chamber, and the cathode is analyzed according to its properties, and the reduction of the air cathode is analyzed, and (mA/cm). The temperature, rate, thickness, and pressure are controlled during the preparation of the air cathode (in 1. ~5..kg fine 2), dry (coffee, 耽, 卜2: when the two conditions are completed. The air cathode prepared by itself is used to scan the cathode electrode] mv/^ ^ than the vehicle type The electrical properties of the air cathode affect the air cathode. The optimum amount of catalyst is 2, which causes the reduction current to be dense at a constant voltage. The 'air cathode' such as the air carbon electrode is manganese dioxide (α_Μη02). Prepared by a catalyst, in addition to the above-mentioned air cathode, the other methods can also be known. Prepared by techniques and methods such as hydrothermal synthesis (Hydr〇therma|), microwave method (Microwave irradiation method), chemical precipitation method (Chemjca丨precipitation meth〇d) or supergravity reaction method. Preparation of solid polymer electrolyte membrane: The present invention proposes to develop a polyvinyl alcohol (PVA) as a main solid polymer membrane, which is prepared by a solution forming method (SOlutj〇n casting meth〇d). The hydrophilic polyethylene (P〇|yv_^c〇h〇bpv) is the substrate 'then' and considers the high specific area of titanium dioxide (Tj〇2) nanoparticle (7 nm, 380 m2 / g, anatase) as a filler, the titanium dioxide nanoparticle has two functions. (1) can directly block the ethanol small fraction of the direct penetration of the polyethylene polymer film (this membrane has, good, blocking ability of its ethanol The penetration coefficient (ethan〇丨permeabj|丨) is about 10: cm2/s, while the ethanol penetration coefficient of Nafion 117 polymer 臈 is about 1〇-6 cm / s); (2) Ti〇2奈The rice particulate material can adsorb more potassium hydroxide electrolyte in the polyvinyl alcohol polymer substrate. The ionic conductivity is maintained at a good condition of 1 〇 2 s / cm. The solid PVA / Ti 〇 2 (between Ti 〇 2 content and 讁 讁%) polymer film 'will be the final cross-linked reaction treatment Using 5 v〇|% of 75% glutaraldehyde (GA) crosslinker, adding 〇π~1 voio/o hydrochloric acid (HCI) to the catalyst in acetone (acetamide), 40 °C , about 1 to 48 hours of cross-linking treatment, can make the polymer film have good mechanical strength, the cross-linked composite polymer film is re-impregnated in 32 wt·% potassium hydroxide solution for 24 hours, polymer film Ion conductivity can be measured and assembled into a fuel cell. The molecular film is treated by cross-linking and the operating temperature of Defc is increased, so that the system can have good chemical stability and long-term workability. Among them, the parental agent selected for use is not limited to the above-mentioned glutaraldehyde, and it is also required to use malic acid. The prepared crosslinked composite basic solid PWn〇2 polymer electrolyte uzu/z membrane 'to conduct ion conductivity analysis, water content (%), electrochemical stability analysis, FTIR analysis, thermal property analysis (DSC and TGA), surface observation analysis 乂} two. Structural analysis (for example, XRD analysis), and related electrical analysis and detection, for example, "mpidance" analysis, and finally, polymer membrane mechanical strength test, etc. Λ,, 'after, this composite alkaline solid polymer electrolyte membrane It is applied to DEFC. The invention is different = traditionally used in acid system, _ DEFC used NafiGn polymer electrolysis f uses a composite type of inferior polymer electrolyte thief. This composite type of solid H knife electrolyte membrane has a blend of butyl丨〇2 nano-materials··=Materials of the material ^Ti (VAl2Q3, called j-type or more kinds of nano-materials mixed, which can improve the number and degree of polymer film. More importantly, reduce The permeability of ethanol is maintained at the same time as good ion conduction $ PVA and Ti 〇 2, water mixed reaction to form a heterogeneous residue, and then formed into a "sub-film" film, and finally treated by cross-linking reaction, the liquid for at least 24 hours. The composite organic polymer electrolyte membrane prepared by the invention has good physical/chemical (four), thermal stability, high _ sub-conductivity side Q Q1 S/Gm), good dimensional stability, mechanical strength, and elasticity Processability, etc. is very suitable for application on DEFC. EXAMPLES Example 1: The main component of the ethanol anode preparation was 5 to 1 〇〇% (A|fa nails were coated with a PtRu b-catalyst on a titanium metal mesh (〇.1 mm, Ti_screen, Dexmet, C〇[p·company production), the thickness of the control plate is 〇2~〇7, the area is Bu 3〇〇cm, and the day is mainly used to use the nano-surface shame (pt:Ru=i:i) The catalyst powder is changed and the catalyst powder is changed. The surface morphology of the anode electrode is as shown in the SEM of the i-th image, and it is coated with a black catalyst from the top of it. The machine is based on the ethanol anode' and analyzes the electrochemical characteristics of the ethanol anode, such as: ethanol oxygen 17 1321372 current density (mA / cm2), Eonset potential, Epeak, ipeak, RD_ grade parameters, ethanol oxidation platinum rhodium black touch The carbon substrate can be added to the medium to improve the utilization rate; the carbon material can be selected from commercially available XC72R (produced by Cabot) or BP2000 carbon (produced by Cabot) or carbon nanotube (SWCT, MWCT). Year-on-year surface area carbon material, these carbon material powder properties have a great impact on the ethanol anode. When ethanol anode preparation, control temperature, thickness, dry treatment Drying time (1~2 hours), catalyst dosage (in Bu 10 0 mg/cm2), drying temperature in 80~120 °C, etc. Equipment completed ethanol anode for electrical scanning analysis 'Scan rate is 1 mV/s, which can analyze and compare the difference of anode performance of various electrode formulations, and determine the best platinum-ruthenium black catalyst to use 昼, find the optimum conditions of the catalyst usage range, make it at constant voltage The current density of the ethanol oxidation produced is the largest. Example 2: : The air cathode is fabricated to include a three-layer structure, namely: (1) an air diffusion layer, (2) an active layer And (3) a nickel foaming net '(Ni-foam); the nickel foaming net is used as a current collector, and 70 wt.% of hydrophobic acetylene black (Shawinigan acetylene b丨ack, AB50, specific surface area is used in the diffusion layer) Φφ 80 m2/g) and 30 wt.% polytetrafluoroethylene (PTFE) aqueous solution (Teflon-30, Dupont). 5~80 wt.% amorphous a-Mn〇2 is mainly used in the active layer. Catalyst powder and 60 wt·% of BP2000 carbon black + CNTs (nanocarbon tube) double carbon and 15 wt.% PTFE aqueous solution (Teflon-30 , Dupont), and an appropriate amount of isopropyl alcohol (IPA) solvent to prepare an ink spray to form an active layer, which has a great influence on the chemical composition percentage of the cathode electrode. In addition, the thickness of the plate is controlled to be 0.3 to 0.6 mm, and the area is 1 to 1 cm 2 . The a-Mn〇2/BP2000+ CNTs catalyst slurry used in the cathode electrode is mainly prepared by a sol-gel method. The percentage change of the composition of the ingredients is between 5 and 60 wt.%. The laboratory tablet is made into an air cathode according to its properties, and the oxygen reduction current of the air cathode is measured at 18 degrees (mA/cm2) during analysis. Parameters affecting the electrical properties of the air cathode, such as temperature, amount of catalyst, electrode thickness, sintering time (320 to 360. 〇, pressure (at 100 to 500 pf/cm), electrode drying time, etc.) The surface morphology of the air cathode is as shown in Fig. 2 (SEM image, under 500X), and the large magnification is as shown in Fig. 3 (SEM, 7kX). There are many carbon nanotubes (CNTs) on the surface. In addition, the air cathode of the element was prepared for electrical scanning analysis (1 mV/sec), and the electrical properties of various amounts (a-MnOs/double carbon powder) were compared and optimized. The preparation conditions and the catalyst content are such that the reduction current density of 〇2 is maximized at a constant voltage. Lulu Example 3·· Select a highly hydrophilic polyvinyl alcohol (PVA) polymer (molecular weight is about 1〇〇) 〇〇〇) as a substrate (M.W_ can be between 8 〇, 〇〇〇~200,000), and then selected as a porous two-area area of titanium dioxide (Tj〇2) nanoparticle (particle size) 5~2〇(10), ratio; surface area 2~彳000 m2/g, with rutl'le or anatase structure) as filler, blended in water The reaction forms a dead liquid, which is dried to obtain the composite solid polyvinyl alcohol/titanium dioxide polymer film, and finally cross-linked, using 5 vol% of a 75 wt% glutaraldehyde (GA) crosslinking agent. Acetone solvent was added to 表面15v〇|% hydrochloric acid (HC丨) surface·catalyst L4〇C 'crosslinking treatment for about 12 to 48 hours' to obtain a composite alkaline solid polyvinyl alcohol/titanium dioxide polymer electrolyte membrane, the surface thereof The SEM analysis results are shown in Fig. 4. In addition, the XRD analysis results of the surface morphology of the composite alkaline solid polyvinyl alcohol/titanium dioxide polymer electrolyte membrane, as shown in Fig. 5, show that the GA crosslinker makes the polymerization The crystallinity of vinyl alcohol decreases, 2Θ=19. The main peak is obviously weakened, which contributes to the improvement of the conductivity of the ions. In addition, the cross-linked composite polyglycol/titanium dioxide polymer electrolyte membrane is completed. After immersing in 32 wt% K〇H for 24 hours, the ion conductivity (d, S/cm) was measured, and the Nyquist analysis chart of the composite in-situ solid polyethylene-alcohol/titanium dioxide polymer electrolyte membrane was as described. Figure 6 shows the experimental results shown at 1321372 at 30 Under C, the ionic conductivity of the composite alkaline solid polyvinyl alcohol/titanium dioxide polymer electrolyte membrane is about 1 CT3~10-2S/cm. The composite crosslinked basic solid polyvinyl alcohol/titanium dioxide polymer is finally found. The electrolyte membrane has very good mechanical strength and dimensional stability. This membrane can greatly improve the operating temperature of DEFC, so that the ethanol fuel cell system can have good chemical stability and long-term operation. The composite base is analyzed by TGA heat characterization. The results of the experimental results show that, as shown in Fig. 7, the addition of nano-sized titanium dioxide and GA cross-linking agent has very good thermal stability and greatly improves the operational stability. . Example 4: According to the preparation method of Example 1, different ethanol anodes (containing 0.25~4_50 mg/cm2 of black and white PtRu(1:1) black inks) were prepared by using titanium mesh, and the area of the anode electrode was 8 cm2. Further, the air cathode (Mn〇2/BP2000+CNTs) prepared in Example 2 was prepared, and the composite alkaline solid state southern molecular electrolyte membrane (PVA/Ti〇2 (10%) composite polymer prepared in Example 3 was prepared. Membrane crosslinked by GA) 'cross-linked composite alkaline solid PVA/Ti02 polymer electrolyte membrane, re-impregnated in 32榭% K〇H aqueous solution for 24 hours, the membrane is applied to ethanol direct fuel cell, The battery can be assembled into a square-shaped, round-shaped (1 water pipe type), rectangular, fuel, and other alkaline direct ethanol fuel cell module (MEA)' and the inspective polymer direct ethanol fuel cell can be made into any voltage. The size of the cell stack. In the aqueous solution of 2M KOH + 2M C2H5OH, the titanium mesh anode completed according to the preparation method of Example 1 at 25 ° C, constitutes various alkaline direct ethanol fuel cell modules, and performs battery electrical properties of single cells. Detection points ^. The OCV curves of various alkaline direct ethanol fuel cells were measured at 25 ° C (normal temperature) and normal pressure (1 atm) and analyzed and compared. The results are shown in Figure 8. The results show that these direct ethanol fuels are found. Emean 〇cv (or E〇cv) of the battery = 20 1^/1372 0.717~0.855V, detailed experimental results, as shown in the table). Table 1. E〇cv change values of direct ethanol fuel cells (including different platinum ruthenium black sputum rich, quantity (mg/brcQ parameter 0.25 0.50 1.00 2.00 4.50 ^Max. (V) 0.724 0.730 0.793 0.851 0.858 ^Min. ( V) 0.702 0.705 0.778 0.840 0.848 [Mean (V) 0.717 0.723 0.792 0.845 0.855 Example 5: According to the preparation method of Example 1, different ethanol anodes (containing 0 25 to 4 502 mg/cm 2 of platinum rhodium) were prepared using a titanium mesh. Black PtRu (1:1) black inks amount>, take the anode electrode area 8 cm2, and take the air cathode (Mn02/BP2_+CNTs) prepared in Example 2, and then complete the composite test with the preparation of Example 3. Solid polymer electrolysis _ 'Recombination of the composite money _ pvA / T molecular electrolyte membrane' re-impregnated in 32 times after the peach called towel for about 24 hours, =

^料電池上,組成正方雜性直接乙醇祕電池歡,在2M 2M C2Hs〇H之水溶液中,於25°C下,依實施例1之製備 ,ϋ成的鈦鴨極’組成各種不_驗性直接乙醇燃料電池 並做單電池的電性檢測分析。在抗(常溫)及常 二) ’,>則各種不同的驗性直接乙醇燃料電池,在定電池電 1目UMa)下’ 6醇氧化電》絲度變化曲線並比較分析,變化曲缓 池的:t間’發現触黑觸媒4塗佈愈增多,則直接乙醇燃料電 ,’=電電流密度(i_)愈大,詳細結果如表2所示。On the material battery, the composition of the square hybrid direct ethanol secret cell, in the 2M 2M C2Hs 〇H aqueous solution, at 25 ° C, according to the preparation of the first example, the composition of the titanium duck pole 'composed Slightly direct ethanol fuel cells and do electrical detection analysis of single cells. In the anti-(normal temperature) and often two) ',> different kinds of qualitative direct ethanol fuel cells, in the fixed battery electricity 1 mesh Uma) under the '6 alcohol oxidation electric' filament curve and comparative analysis, change the slow The pool: t between the 'detection of black catalyst 4 coating more, then direct ethanol fuel, '= electric current density (i_) is greater, the detailed results are shown in Table 2.

21 1321372 表2、在0.4V直接乙醇燃料電池的j_t變化值(不同麵釘黑觸媒量21 1321372 Table 2. j_t change values of 0.4V direct ethanol fuel cells (different face black inks)

實施例6 : 依實施例1之製備方法,使用鈦網製備完成不同乙醇_(含 •響有 〇.25〜4·50 mg/cm2 的翻釕黑 PtRu(l:i) black inks 量),取面積 8 cm2,另取實施例2製備完成之空氣陰極(a_Mn〇2/Bp2〇()()+ 、 CNTs),再搭配實施例3製備完成之複合式鹼性固態高分子電解質 膜,組成正方形驗性直接乙醇燃料電池模組,在κ〇Η + 2M、 ; CzHsOH之水溶液中,於25°C下,依實施例1之製備方法完成的 ; 鈦網陽極,組成各種不同的鹼性直接乙醇燃料電池,並做單電池 - 的電性檢測分析。於25°C(常溫)及常壓下(1 atm),量測各種不同 的鹼性直接乙醇燃料電池,在定電流密度下燃料電池(即i = 2〇 春春 mA/cm下)的EceH電壓變化曲線’並比較各燃料電池之性能差異, ^化曲線則如第10圖所示。結果發現直接乙醇燃料電池在定電流 法度放電下,其工作(Eceii)電壓在〇·41〜0.53V之間,發現始釕黑 觸媒量增加時,直接乙醇燃料電池的Ece"電壓愈高,實驗結果的 參數如表3所示。 22 1321372 表3、在定電流20 mA/cm2下及25°C下直接乙醇燃料電池的E_t 量(mg/cm2) 電池電壓 \\ 0.25 0.50 1.00 2.00 4.50 Ecell/ V 0.408 0.419 0.485 0.523 0.543 實施例7 :Example 6: According to the preparation method of Example 1, using a titanium mesh to prepare different ethanol _ (including • 响 〇 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 Taking an area of 8 cm2, the air cathode (a_Mn〇2/Bp2〇()()+, CNTs) prepared in Example 2 was prepared, and the composite alkaline solid polymer electrolyte membrane prepared in the same manner as in Example 3 was used. The square-inspective direct ethanol fuel cell module is completed in the aqueous solution of κ〇Η + 2M, CzHsOH at 25 ° C according to the preparation method of the first embodiment; the titanium mesh anode is composed of various alkaline direct Ethanol fuel cells, and do single cells - electrical detection analysis. Measurement of various alkaline direct ethanol fuel cells at 25 ° C (normal temperature) and atmospheric pressure (1 atm), EceH of fuel cells (ie i = 2 〇 spring mA / cm) at constant current density The voltage curve 'and compares the performance difference of each fuel cell, and the ^ curve is as shown in Fig. 10. The results show that the direct ethanol fuel cell has a working (Eceii) voltage of 〇·41~0.53V under constant current discharge. When the amount of black catalyst is increased, the Ece" voltage of the direct ethanol fuel cell is higher. The parameters of the experimental results are shown in Table 3. 22 1321372 Table 3. E_t amount (mg/cm2) of direct ethanol fuel cell at a constant current of 20 mA/cm2 and at 25 °C Battery voltage \\ 0.25 0.50 1.00 2.00 4.50 Ecell/ V 0.408 0.419 0.485 0.523 0.543 Example 7 :

依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 有 0.25M.50 mg/cm2 的鉑釕黑 PtRu (1:1) b丨ack jnks 量),取面積 8 cm2 ’另取實施例2製備完成之空氣陰極(Mn〇2/BP2〇〇〇+ CNTs),再搭配實施例3製備完成之複合式鹼性固態高分子電解質 膜,組成正方形鹼性直接乙醇燃料電池模組,在2M K〇H + 2M C2H5OH之水溶液中,於25°C下,依實施例1之製備方法完成的 鈦網陽極,組成各種不同的鹼性直接乙醇燃料電池,並做單電池 的電性檢測分析。25 C及常壓下(1 atm),量測各種不同的驗性直 接乙醇燃料電池,在OCV下的Nyquist p|〇t變化曲線並比較分 析’變化曲線則如第11圖所示。圖中結果顯示乙醇陽極(含不同 量之銘釕黑觸媒)’其電極阻抗值(Rb),仍可維持在3〜3 5 〇hm cm2 之低電阻。為由分析的Nyqujst圖中發現,此乙醇陽極的乙醇氧化 反應是在動力控制下(oxidation kinetic contro丨丨ed)。反應阻抗值 (Ret)愈來愈小釕黑觸媒量增力π時,發現反應阻抗值(u SS-TT咏从招熱。 Θ 實施例8 : 依實施例1之製備方法,使用鈦網製備完成乙醇陽極( 同量的減黑 PtRu (1:1) black, 0_25〜4.5 mg/cm2),取面積 8 23 1321372 cm2,另取實施例2製備完成之空氣陰極 (a-Mn〇2/BP2000+CNTs),再搭配實施例3製備完成之複合式鹼 性固態咼分子電解質膜,組成正方形驗性直接乙醇燃料電池,在 2M KOH + 2M C2H5〇H之水溶液中,於6〇°c下,依實施例1之 製備方法元成的鈦網%極,組成各種不同的驗性直接乙醇燃料電 池’並做單電池的電性檢測分析,結果如第12圖所示,在6〇。〇 及常壓下(1 atm)下各種不同的驗性直接乙醇燃料電池的丨_v變化 曲線’和功率密度變化曲線(p0Wer densjty curve)分析比較圖,由 圖中可以發現比較’所製備之乙醇陽極塗佈4 5〇 mg/cm2量之鉑 釕黑具有最佳的性能,因為此直接乙醇燃料電池可得到最高之功 率密度(peak power density)為約16.71 mW/cm2。從這些電極組 裝完成的鹼性直接乙醇燃料電池,發現該直接乙醇燃料電池的最 咼之功率密度可維持在mw/cm2左右之間,詳細結果如表 4所示。 \觸媒量 \ (mg/cm2) 參數 \ 0.25 0.50 1.00 2.00 4.50 0.728 0.728 0.789 0.839 0.858 Ep.max (V) 0269 0.262 0.269 0.282 0.296 ip,max (mA/cm2) 41.50 44.55 53.40 57.98 56.45 ^U.max (mW/cm^) 11.19 11.68 14.40 16.37 16.71 表4、直接乙醇燃料電池的|_v及功率密度變化值 不同PtRu black觸媳吾下、於60°C下 【圖式簡單說明】 24 第1圖.本發明乙醇陽極於掃晦式電子顯微鏡(1〇〇χ)之表面形態 圖。 第2圖.本㈣空氣陰極於掃喊電子舰鏡(5㈤X)之表面形態 圖。 ~ 第3圖·本發明空氣陰極於掃瞄式電子顯微鏡(7|〇()之表面形態圖。 第4圖:本發·合式雜_ pVA/Ti〇2高分子電解質膜於掃胳 式電子顯微鏡(500X)之表面形態圖。 第5圖.複合式驗性m u PVA/Jj()2高分?電解質膜的表面形態的 XRD分析結果圖。 第6圖:複合式鹼性固態PVA/Ti〇2高分子電解質膜的分 析圖。 第7圖:由TGA熱定性分析複合式鹼性固態pvA/Tj〇2高分子電 解質膜之分析圖。 第8圖.量測各種不同的驗性直接乙醇燃料電池的〇cv變化曲線 分析比較圖。 第9圖.量測各種不同的驗性直接乙醇燃料電池,在定電池電壓 (Ecei 1=0.40 V)下,乙醇氧化電流密度變化曲線分析比較圖。 第10圖:量測各種不同的鹼性直接乙醇燃料電池,在定電流密度 下燃料電池(即I = 20 mA/cm2下)的Ece„電壓變化曲線分析比較 圖。 第11圖:量測各種不同的驗性直接乙醇燃料電池,在〇cv下的 Nyquistplot變化曲線分析比較圖。 第12圖.依實施例1製備之鈦網陽極組成各種不同的驗性直接乙醇 燃料電池(DEFC),並做單電池的電性檢測分析圖。 25According to the preparation method of Example 1, different ethanol anodes (containing 0.25 M.50 mg/cm2 of platinum black PtRu (1:1) b丨ack jnks) were prepared by using a titanium mesh, and the area was 8 cm2. Example 2 Prepared air cathode (Mn〇2/BP2〇〇〇+ CNTs), and then combined with the composite alkaline solid polymer electrolyte membrane prepared in Example 3 to form a square alkaline direct ethanol fuel cell module. In the aqueous solution of 2M K〇H + 2M C2H5OH, the titanium mesh anode completed by the preparation method of Example 1 was formed at 25 ° C to form various alkaline direct ethanol fuel cells, and the electrical detection and analysis of the single cells were performed. . 25 C and atmospheric pressure (1 atm), measure various Nyquist direct ethanol fuel cells, Nyquist p|〇t curve under OCV and compare the analysis 'change curve as shown in Figure 11. The results show that the electrode impedance (Rb) of the ethanol anode (containing different amounts of the black catalyst) can still maintain a low resistance of 3 to 3 〇hm cm2. For the analysis of the Nyqujst plot, the ethanol oxidation reaction of this ethanol anode was under oxidation control (kinetic contro丨丨ed). The reaction resistance value (Ret) is getting smaller and smaller, and the black catalyst amount is increased by π. The reaction resistance value (u SS-TT咏 is found to be heat. 实施 Example 8: The preparation method according to Example 1 uses titanium mesh Prepare the ethanol anode (the same amount of blackened PtRu (1:1) black, 0_25~4.5 mg/cm2), take the area of 8 23 1321372 cm2, and take the air cathode prepared in Example 2 (a-Mn〇2/ BP2000+CNTs), together with the composite alkaline solid 咼 molecular electrolyte membrane prepared in Example 3, constitutes a square-inspective direct ethanol fuel cell in an aqueous solution of 2M KOH + 2M C2H5〇H at 6 ° ° C According to the preparation method of the first embodiment, the titanium mesh % pole is composed of various kinds of inspective direct ethanol fuel cells, and the electrical detection analysis of the single cells is performed. The result is shown in Fig. 12 at 6 〇. And the comparison of the 丨_v curve and the power density curve (p0Wer densjty curve) of various inspective direct ethanol fuel cells under normal pressure (1 atm), and the comparison of the prepared ethanol can be found in the figure. Anodic coating of platinum black in an amount of 4 5 〇 mg/cm 2 has the best performance because of this The highest power density of the ethanol fuel cell was about 16.71 mW/cm2. The alkaline direct ethanol fuel cell assembled from these electrodes was found to have the highest power density of the direct ethanol fuel cell. Between mw/cm2, the detailed results are shown in Table 4. \Catalyst amount\ (mg/cm2) Parameters \ 0.25 0.50 1.00 2.00 4.50 0.728 0.728 0.789 0.839 0.858 Ep.max (V) 0269 0.262 0.269 0.282 0.296 ip, Max (mA/cm2) 41.50 44.55 53.40 57.98 56.45 ^U.max (mW/cm^) 11.19 11.68 14.40 16.37 16.71 Table 4, Direct Ethanol Fuel Cell |_v and Power Density Change Values PtRu black Touched, At 60 ° C [simple description of the figure] 24 Figure 1. Surface morphology of the ethanol anode of the present invention on a broom electron microscope (1〇〇χ). Figure 2. This (4) air cathode is used to sweep the electronic ship mirror (5(5)X) Surface morphology map. ~ Fig. 3 · Surface morphology of the air cathode of the present invention on a scanning electron microscope (7|〇(). Fig. 4: This is a hybrid _ pVA/Ti〇2 Surface morphology of molecular electrolyte membranes on a scanning electron microscope (500X) Fig. Figure 5. Composite test m u PVA / Jj () 2 high score? A graph of the results of XRD analysis of the surface morphology of the electrolyte membrane. Figure 6: Analytical diagram of a composite alkaline solid PVA/Ti〇2 polymer electrolyte membrane. Figure 7: Analysis of the composite alkaline solid pvA/Tj〇2 polymer electrolyte membrane by TGA heat characterization. Figure 8. Measurement of the 〇cv curve of various different qualitative direct ethanol fuel cells. Fig. 9. Measure various comparisons of direct ethanol fuel cells, and compare the graphs of ethanol oxidation current density curves at a fixed battery voltage (Ecei 1 = 0.40 V). Figure 10: Measurement of various Ece„ voltage curve comparisons of fuel cells (ie, I = 20 mA/cm2) at various current alkaline ethanol fuel cells. Figure 11: Measurement of various Different illustrative direct ethanol fuel cells, Nyquistplot curve analysis comparison chart under 〇cv. Figure 12. Titanium mesh anode prepared according to Example 1 constitutes various kinds of qualitative direct ethanol fuel cells (DEFC), and Analysis of the electrical detection of a single battery. 25

Claims (1)

Translated fromChinese
13213721321372'申請專利範圍 令年3月鬥日修(感)正本 1. -種=性直接乙醇燃料電池之製法,其包括: -乙醇陽極’係在-導體材料之基 wt·%的齡了黑(Pt-Ru bla_媒, ?2、·且成物為2〜60 電極板厚度為G.3〜G.8mm,面積為^ 2, 一空氣陰極’其包含—擴散層和-活化層之二層結構,並以 -鎳發泡網做為電流收集器,該擴散層係使用5 ^ 乙炔黑及30〜40 wt.%之聚四氟乙婦(PTFE)水溶液;而^^ = 用5〜5幅·非結晶性的:氧缝化物及雙碳黑,咖曰 乙稀水溶液,及適量料醇溶·備觸(1〜4⑼m 佈成活化層’並控制乾燥溫度在5〇〜靴.69 m = 極之電酿職㈣在α3〜〇·8 mm,J·;;^ 以及 -複合式驗性_、高分子電解_,錢選 乙稀醇為基材,並_纽性細面積之二氧化 U (3〜驗m」3㈤〜謂,)做為填充料,加上聚乙稀=水混合 反應形成祕度絲,此複合祕性_聚乙 古八 子電解質膜經交聯反應處理完成。 一礼亿欽w刀 2. 如申請專利範圍第1酬述之製法,其中該乙醇陽極之某 材係為碳布、祕、碳纖維布、石墨、_、翻、_、^ 網、金網、補鋼網' _、賴、鈦箱、邮或的 0.01~30mm。 又场 3. 如申請專利範圍第]項所述之製法,其中該乙醇陽極 材係為碳布、碳紙、碳纖維布、石墨、鋼網、鎳網、鈦網、二 網、金網、不銹鋼、銅箔、鎳箔、鈦箔、鉑箔或金箔,厚度為〇 〇14〇 26 月ίΐ曰修 正替換頁 mm 《如申請翻範㈣1顿述之製法,其帽乙醇陽極之勒 釘黑(RRu blac_媒係為PtRu(1:1)/c ;另於陽極翻釕/碳觸媒中 可加入不_奈綠子材料,其係為取、A|2〇3、sj〇2、ζ「〇2 f ϋΑΙ=〇3 ’該奈米粒子材料之粒子大小在卜删⑽之間比 表面積為1〜5000 rri2/g之間。 括愴圍第1項所述之製法,其中該乙醇陽極另包 括/、他觸媒係為翻黑、鈿合金,PtSn、RCo、ptNi或ptRusn。 狀概圍第1項所述之製法,其中該空氣陰極之基 =Τ=?Γ72_'ΒΡ2000碳黑或奈米破管 之錳利範圍第1項所述之製法,其中該空氣陰極觸媒 或法、賴合姐、微法、化學沈殿法 中之項所述之裂法,其中該空氣陰極觸媒 能古咖第1項所述之製法,其中該複合式驗性固 ιγ〇γ5 5 =之交聯反應,係使用戊二較聯劑,在丙酮中 一「時 孔性料係為多 式高1 態複合 acid),之交聯劑係為戊二盤或蘋果酸_C 應之觸媒係為鹽酸、硫酸或_3。 12·如申請專利範圍第1項所述之製法 性高比面積的奈米材料做為填充料, Si〇v Zr〇:4 UA,Ni03 ^ ^〇3 ' 13.如申請專利範圍第1項所述之 苴 方型、圓桂型(星水管型)、長方型或 ;;中〜電池輸係為 醇燃料電池可做胁何賴別、的電堆。,且該雖直接乙 乙醇14異 糊丨_」項所述製*,其巾該陽極之燃料係為 陽極燃料進料方Q·1〜1㈣之間’且該 咖15=專=圍第3所述之製法’其中該電解質係為 0.1〜15 μ之門B a +LIOH或KOH+LiOH,濃度變化為 15 Μ之間’且該電解質進料方式係為液體或氣體。變化為'Application for the scope of the patent for the March of the year (the sense) original 1. The species = direct direct ethanol fuel cell production method, including: - ethanol anode 'based on the - conductor material base wt · % of age black ( Pt-Ru bla_media, ?2, and the composition is 2~60. The thickness of the electrode plate is G.3~G.8mm, the area is ^2, and the air cathode 'includes the diffusion layer and the activation layer. Layer structure, and a nickel-filled mesh as a current collector, the diffusion layer is made of 5 ^ acetylene black and 30 to 40 wt.% of a polytetrafluoroethylene (PTFE) aqueous solution; and ^^ = with 5~ 5 sheets · Non-crystalline: oxygen-sewn compound and double carbon black, curry ethyl acetate aqueous solution, and appropriate amount of alcohol soluble · contact (1~4 (9) m cloth into activated layer' and control drying temperature at 5〇~boots.69 m = extremely electric brewing (four) in α3 ~ 〇 · 8 mm, J · ;; ^ and - composite test _, polymer electrolysis _, money selected ethyl alcohol as a substrate, and _ new fine area Dioxide U (3~ test m" 3 (five) ~ said, as a filler, plus polyethylene = water mixed reaction to form a secret silk, this composite secretive _ poly-Bugu eight electrolyte membrane is completed by cross-linking reaction One hundred million w刀2. For the method of applying for the first part of the patent scope, the material of the ethanol anode is carbon cloth, secret, carbon fiber cloth, graphite, _, turn, _, ^ net, gold net, make steel net ' _ , Lai, Titanium box, postal or 0.01~30mm. Again 3. As described in the patent application scope, the ethanol anode material is carbon cloth, carbon paper, carbon fiber cloth, graphite, steel mesh, Nickel mesh, titanium mesh, two mesh, gold mesh, stainless steel, copper foil, nickel foil, titanium foil, platinum foil or gold foil, thickness 〇〇14〇26 month ΐ曰 ΐ曰 correction replacement page mm "If you apply for a model (four) 1 ton The method of the method, the cap of the ethanol anode is black (RRu blac_media is PtRu (1:1) / c; in addition to the anode turning / carbon catalyst can be added to the non-negative green material, which is taken, A|2〇3, sj〇2, ζ "〇2 f ϋΑΙ = 〇3 ' The particle size of the nanoparticle material is between 1 and 5000 rri2/g between the deletions (10). The method according to any one of the preceding claims, wherein the ethanol anode further comprises /, the other catalyst is blackened, bismuth alloy, PtSn, RCo, ptNi or ptRusn. Wherein the air cathode base = Τ = ? Γ 72 _ ΒΡ 2000 carbon black or nano tube breaking manganese profit range according to the method of the first item, wherein the air cathode catalyst or law, Lai Sister, micro-method, chemical Shen Dian method The cracking method according to the item, wherein the air cathode catalyst is capable of the method described in the first item of the ancient coffee, wherein the composite type of 验γγγ5 5 is a crosslinking reaction, and the bismuth is used as a crosslinking agent. In acetone, a "time-porosity system is a multi-type high-order compound acid", and the cross-linking agent is a penta-disc or malic acid-C. The catalyst system is hydrochloric acid, sulfuric acid or _3. 12. If the high-specific area nano-material described in the first paragraph of the patent application is used as a filler, Si〇v Zr〇: 4 UA, Ni03 ^ ^〇3 ' 13. As claimed in the first item The above-mentioned square type, round type (star water tube type), rectangular type or;; medium ~ battery transmission system is an electric fuel cell that can be used as a fuel cell. And the direct ethanol ethyl alcohol 14 is the same as described in the item *, the fuel of the anode is between the anode fuel feed side Q·1~1 (four) 'and the coffee 15 = special = circumference 3 The method of the invention wherein the electrolyte is 0.1 to 15 μ gate B a +LIOH or KOH+LiOH, the concentration varies between 15 ' ' and the electrolyte feed mode is liquid or gas. Change to2828
TW095144111A2006-11-292006-11-29Preparation method for high performance of alkaline direct ethanol fuel cellTWI321372B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
TW095144111ATWI321372B (en)2006-11-292006-11-29Preparation method for high performance of alkaline direct ethanol fuel cell

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
TW095144111ATWI321372B (en)2006-11-292006-11-29Preparation method for high performance of alkaline direct ethanol fuel cell

Publications (2)

Publication NumberPublication Date
TW200824175A TW200824175A (en)2008-06-01
TWI321372Btrue TWI321372B (en)2010-03-01

Family

ID=44771422

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW095144111ATWI321372B (en)2006-11-292006-11-29Preparation method for high performance of alkaline direct ethanol fuel cell

Country Status (1)

CountryLink
TW (1)TWI321372B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10195816B2 (en)2014-12-012019-02-05Industrial Technology Research InstituteMetal/polymer composite material and method for fabricating the same
US10463500B2 (en)2014-11-072019-11-05Industrial Technology Research InstituteMedical composite material, method for fabricating the same and applications thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CA2909013C (en)2015-10-142023-07-04Op-Hygiene Ip GmbhDirect isopropanol fuel cell
TWI773589B (en)*2021-11-182022-08-01元智大學Fuel cell and fuel cell manufacturing method
TWI769113B (en)*2021-11-182022-06-21元智大學Fuel cell and fuel cell manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10463500B2 (en)2014-11-072019-11-05Industrial Technology Research InstituteMedical composite material, method for fabricating the same and applications thereof
US10195816B2 (en)2014-12-012019-02-05Industrial Technology Research InstituteMetal/polymer composite material and method for fabricating the same

Also Published As

Publication numberPublication date
TW200824175A (en)2008-06-01

Similar Documents

PublicationPublication DateTitle
Sun et al.Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications
Wang et al.Strategies toward high‐performance cathode materials for lithium–oxygen batteries
Busacca et al.Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell
US11831025B2 (en)Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
Cruz et al.Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells
US9731276B2 (en)Composite, catalyst including the same, fuel cell and lithium air battery including the same
US20050112451A1 (en)Metal oxide-carbon composite catalyst support and fuel cell comprising the same
CN102422472B (en) Anode side catalyst composition for fuel cell and membrane electrode assembly (MEA) for solid polymer fuel cell
Xu et al.Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions
CN101380584B (en)High activity methanol-resistance direct methanol fuel cell cathode catalyst and production method thereof
CN101404331A (en)Catalyst used for proton exchanging film fuel battery and method for producing the same
Li et al.Nanoscale perovskites as catalysts and supports for direct methanol fuel cells
JP2022513631A (en) The catalyst, its manufacturing method, the electrodes containing it, the membrane-electrode assembly containing it, and the fuel cell containing it.
Yue et al.Ultrafine, dual-phase, cation-deficient PrBa0. 8Ca0. 2Co2O5+ δ air electrode for efficient solid oxide cells
TWI321372B (en)Preparation method for high performance of alkaline direct ethanol fuel cell
CN106999912A (en)Catalyst carrier, its manufacture method and application thereof
JP4999418B2 (en) ELECTRODE CATALYST FOR DIRECT FUEL CELL, FUEL DIRECT FUEL CELL USING THE SAME, AND ELECTRONIC DEVICE
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
Ejikeme et al.Effects of catalyst-support materials on the performance of fuel cells
Lee et al.Recent progress of low-loaded platinum on well-functionalized carbon electrocatalysts for oxygen reduction reaction
Zheng et al.Recent Progress of Bifunctional Electrocatalysts for Oxygen Electrodes in Unitized Regenerative Fuel Cells
Oh et al.Enhancing Bifunctional Catalytic Activity via a Nanostructured La (Sr) Fe (Co) O3− δ@ Pd Matrix as an Efficient Electrocatalyst for Li–O2 Batteries
JP2008123860A (en) Metal oxide-supported carbon and fuel cell electrode using the same
Kim et al.Experimental study on synthesis of Co/CeO 2-doped carbon nanofibers and its performance in supercapacitors
Ahmad et al.Structural and electrical study of nanocomposite Fe0. 2Ni00. 3Cu0. 5 anode with effect of graphene oxide (GO) for low‐temperature SOFCs

Legal Events

DateCodeTitleDescription
MM4AAnnulment or lapse of patent due to non-payment of fees

[8]ページ先頭

©2009-2025 Movatter.jp