0)588185 梦始:*r-------- (發明說明應敘明:發明所屬之技術領域、先前技術、 ,.ί; *1,·: · 1 , 内容、實施方式及圖式簡單說明) 發明領域 本發明係有關液晶顯示裝置等非發光顯示裝置、及使用 有機EL^C件等之發光顯示裝置等之顯示裝置及其製造方 法八驅動方法。尤其是有關在顯示區域内同時設有非發0) 588185 Dream start: * r -------- (The description of the invention should state: the technical field to which the invention belongs, the prior art,... Brief Description of the Invention) Field of the Invention The present invention relates to a non-light-emitting display device such as a liquid crystal display device, a display device using an organic EL ^ C device, and the like, and a manufacturing method thereof. Especially for non-
光顯不區域與發光顯示區域之顯示裝置、發光顯示裝置及 其製造方法、其驅動方法。 發明背景 近年來,行動電話等攜帶資訊終端(pDA:個人資料助理) 等非常普及。同時近年來搭載於此等終端之資訊顯示用顯 示裝置的開發亦非常盛行。Display device, light-emitting display area, light-emitting display area, light-emitting display device, manufacturing method thereof, and driving method thereof. BACKGROUND OF THE INVENTION In recent years, mobile information terminals (pDA: personal data assistant) and the like have become widespread. At the same time, the development of information display display devices mounted on these terminals has also become very popular in recent years.
上述顯示裝置大致上區分成非發光顯示裝置與發光顯示 裝置。前者係藉由光調節元件調節太陽光、室内光、背照 光或前照光等外部光源之光而進行顯示者,如熟知的液晶 顯示元件。另外,後者係不需要外部光源,藉由發光元件 本身發光而進行顯示者,如非常受矚目的電致發光(EL; Electro Luminescence)。以下,進一步詳細說明此等顯示裝 首先’利用外部光源之非發光顯示裝置的透過型液晶顯 示裝置,由於係以背照光作為光源,因此造成耗電增加及 形狀擴大,存在攜帶不便的問題。因而為求抑制上述問題 之一的耗電,係藉由以紹等反射光之金屬形成液晶層的下 部電極,並利用太陽光及室内燈等外光作為光源而開發出 的反射型液晶顯示裝置。但是,該反射型液晶顯示裝置因 -6- 5^88185 (2) 係利用外光,因此不適於在暗處使用。 為求解決此種問題,而開發出半透過型顯示裝置,其係 以半反射鏡形成液晶層的下部電極,在明亮環境下不使用 背照光而進行反射型顯示,於暗處則點亮背照光進行透過 型顯示。但是,由於上述半透過型顯示裝置係運用反射光 之部分與透過光之部分相反的特性,因此光利用效率降低 ’減少耗電未獲徹底改善。 因此,本發明人設計一種液晶顯示裝置,於明亮環境下 可當作不使用背照光的反射型,而於暗處可當作點亮背照 光的透過型(參照美國專利公報r Patent No.:US6,、195,140 Bi,Date of Patent:Feb.27,2001」)[=日本公開專利公報參 照「特開平11-101992號公報(公開日期:1999年4月13日)]。 該液晶顯示裝置與使用減少膜厚以具備半透過性之反射 板的先前液晶顯示裝置不同,係將液晶顯示裝置之各顯示 像素分割成反射區域與透過區域的兩個區域。亦即,上述 液晶顯示裝置於各顯示像素的一個區域内形成反射電極作 為反射區域,各顯示像素之其他區域内形成透過電極作為 透過區域。並使反射區域之液晶層厚度與透過區域之液晶 層厚度不同。藉此,可在反射區域及透過區域之各個區域 内實現最佳照度。 但是’上述像素分割型之液晶顯示裝置對於各像素的整 個區域’自後方照射背照光,而可利用該背照光者僅為各 像素的透過區域。因此存在背照光利用效率低的問題。尤 其是反射電極之區域比率高的情況下,透過區域必然狹窄 (3)The display device is roughly divided into a non-light-emitting display device and a light-emitting display device. The former is a display device that adjusts light from external light sources such as sunlight, indoor light, back light, or front light through a light adjustment element, such as a well-known liquid crystal display element. In addition, the latter is a person who does not require an external light source and performs display by emitting light from the light-emitting element itself, such as Electro Luminescence (EL), which has attracted much attention. In the following, these display devices will be described in further detail. First, a transmissive liquid crystal display device using a non-light-emitting display device using an external light source uses a backlight as a light source, resulting in an increase in power consumption and an enlarged shape, which causes inconvenience in carrying. Therefore, in order to suppress the power consumption of one of the above problems, a reflective liquid crystal display device was developed by forming a lower electrode of a liquid crystal layer with a metal that reflects light, such as Shao, and using external light such as sunlight and indoor lights as a light source. . However, this reflective liquid crystal display device is not suitable for use in a dark place because -6- 5 ^ 88185 (2) uses external light. In order to solve this problem, a semi-transmissive display device has been developed. The lower electrode of the liquid crystal layer is formed by a half mirror, and the reflective display is performed without using a backlight in a bright environment, and the backlight is illuminated in a dark place. Illumination for transmissive display. However, since the above-mentioned semi-transmissive display device uses the opposite characteristic of the part of the reflected light and the part of the transmitted light, the light utilization efficiency is lowered, and the power consumption is not completely improved. Therefore, the present inventor has devised a liquid crystal display device that can be regarded as a reflective type that does not use backlight in a bright environment, and a transmissive type that illuminates backlight in a dark place (refer to US Patent Publication r Patent No .: US6, 195, 140 Bi, Date of Patent: Feb. 27, 2001 ") [= Japanese Laid-Open Patent Publication refer to" Japanese Patent Application Laid-Open No. 11-101992 (publication date: April 13, 1999)]. This liquid crystal display The device is different from the previous liquid crystal display device using a reflective plate having a reduced film thickness to provide a semi-transmissive reflection plate, and each display pixel of the liquid crystal display device is divided into two areas, a reflection area and a transmission area. That is, the above-mentioned liquid crystal display device is A reflective electrode is formed as a reflective region in one region of each display pixel, and a transmissive electrode is formed as a transmissive region in other regions of each display pixel. The thickness of the liquid crystal layer in the reflective region is different from the thickness of the liquid crystal layer in the transmissive region. Optimal illuminance is achieved in each of the reflective and transmissive areas. However, the above-mentioned pixel-divided liquid crystal display device covers the entire area of each pixel. 'Backlight is irradiated from behind, and the backlight can be used only by the transmission area of each pixel. Therefore, there is a problem that the efficiency of the use of backlight is low. Especially when the area ratio of the reflective electrode is high, the transmission area must be narrow (3 )
’因此背照光的利用效率降低β 欲對上述像素分割型之液晶顯示裝置提高其背照光之利 用效率’如日本公開專利公報「特開2〇〇1-66593號公報(公 開曰期2001年3月16日)」所揭示之像素分割型之液晶顯示 裝置。該液晶顯示裝置3 〇〇如圖41所示,首先藉由在配置於 液晶面板301之各像素302…之反射電極303之一部分上設 置透過開口部304·.·,作為像素分割型之液晶顯示裝置。此 外’該液晶顯示裝置300係使用包含有機el(電致發光)元件 3 10之發光元件作為背照光,而該有機eL元件3 1〇之發光部 311…並非配置於各像素3〇2…的整個區域,而係僅配置在 對應於透過開口部304···的區域内。藉此,組合圖案化之有 機EL·元件作為背照光,因此可提高光的利用效率,並減少 耗電。 此時,使用發光顯示裝置等上述有機EL元件的顯示裝置 具有體積薄、重量輕的特徵,由於係發光元件,因此如液 晶顯示裝置般,不需要背照光亦可在黑暗環境下使用,且 將射出之大致全部的光使用於顯示上,因此光利用效率亦 高。但是,使用該有機EL元件之顯示裝置需要持續發光, 尤其在明亮環境下,為求提高顯示品質而須增加發光亮, 因而難達低耗電化。 但是,上述圖41所示之像素分割型之液晶顯示裝置為求 在液晶面板301之外側配置作為發光元件之有機el元件 310,在反射電極303之透過開口部304…與有機EL元件3 1〇 之間存在相位差板305、偏光板306與兩片玻璃基板,亦即 (4)'Therefore, the utilization efficiency of the backlight is reduced β. It is desired to improve the utilization efficiency of the backlight of the above-mentioned pixel-divided liquid crystal display device', for example, Japanese Laid-Open Patent Publication No. 2000-656593 (publication date 2001 June 16), a pixel-splitting liquid crystal display device. As shown in FIG. 41, the liquid crystal display device 3 is a pixel-divided liquid crystal display by first providing a transmission opening 304 in a part of a reflective electrode 303 of each pixel 302 ... arranged on the liquid crystal panel 301. Device. In addition, the liquid crystal display device 300 uses a light-emitting element including an organic el (electroluminescence) element 3 10 as a backlight, and the light-emitting portion 311 of the organic eL element 3 10 is not disposed in each pixel 302... The entire area is arranged only in the area corresponding to the transmission opening 304.... This makes it possible to combine the patterned organic EL element as the backlight, thereby improving the efficiency of light utilization and reducing power consumption. At this time, a display device using the above-mentioned organic EL element such as a light-emitting display device has the characteristics of thinness and light weight. Since the light-emitting element is a light-emitting element, it can be used in a dark environment like a liquid crystal display device without backlighting. Since almost all of the emitted light is used for the display, the light utilization efficiency is also high. However, a display device using the organic EL element needs to continuously emit light, and particularly in a bright environment, in order to improve display quality, it is necessary to increase luminous brightness, so it is difficult to achieve low power consumption. However, the above-mentioned pixel-divided liquid crystal display device shown in FIG. 41 is to arrange an organic el element 310 as a light emitting element on the outside of the liquid crystal panel 301, and a transparent opening 304 of the reflective electrode 303 and the organic EL element 3 1. There is a retardation plate 305, a polarizing plate 306, and two glass substrates, which is (4)
玻璃基板307及玻璃基板312。目前一般之像素間距約為80 微米’此時透過開口部3〇4之寬度僅為其2分之1至6分之1 ’約15微米至40微米。而偏光板306之厚度約為300微米, 並且500至700微米厚之玻璃存在兩片,分別為液晶面板3〇1 之玻璃基板307與有機EL元件310之玻璃基板312。因此反 射電極303之透過開口部304…與有機EL元件3 10的距離亦 开>成1300微米至1700微米。因而,即使將有機el元件310 之發光部311…設置在對應於透過開口部3〇4···的位置上, 仍無法使自有機EL元件3 10之發光部3 11射出之全部光射入 透過開口部304.··。因此依然存在有機el元件3 10照射效率 不佳的問題。 此外,圖41所示之像素分割型之液晶顯示裝置,在重疊 基板上並未改變。因而其薄型化存在受限於合計液晶顯示 裝置厚度與有機EL元件厚度的問題。再者,圖41之構造需 要固疋液日日顯不裝置之透過開口部304…與有機EL元件 310之形成部加以定位。因此需要專用之定位裝置及固定用 的機構’而有零件數量增加及成本提高的問題。 另外,如以上所述,開發反射型液晶顯示裝置之目的在 提高室外的辨識性,在外光強的室外辨識性雖佳,卻無法 使用於至内及夜間。因此反射型液晶顯示裝置亦考虞導入 自前面導入照明光之前照光加以對應以取代外光。在該前 照光上使用有機EL元件的例子,如日本公開專利公報「特 開2000-75287號公報(公開日期2000年3月14日)」所揭示者 。但是,此時亦與在透過型液晶顯示裝置内導入背照光時The glass substrate 307 and the glass substrate 312. At present, the general pixel pitch is about 80 microns. At this time, the width of the through-opening portion 304 is only about one-half to one-sixth of that's about 15 to 40 microns. The thickness of the polarizing plate 306 is about 300 micrometers, and there are two pieces of glass having a thickness of 500 to 700 micrometers, which are the glass substrate 307 of the liquid crystal panel 301 and the glass substrate 312 of the organic EL element 310. Therefore, the distance between the transmission opening 304 of the reflective electrode 303 and the organic EL element 310 is also > 1300 to 1700 m. Therefore, even if the light-emitting portions 311 ... of the organic el element 310 are provided at positions corresponding to the transmission openings 304 ..., it is still impossible to make all the light emitted from the light-emitting portions 3 11 of the organic EL element 3 10 enter Through the opening 304.... Therefore, there still remains a problem that the irradiation efficiency of the organic el elements 3 to 10 is not good. In addition, the pixel division type liquid crystal display device shown in Fig. 41 is not changed on the superposed substrate. Therefore, there is a problem that the thickness reduction is limited to the total thickness of the liquid crystal display device and the thickness of the organic EL element. Furthermore, the structure of FIG. 41 requires positioning of the formation openings of the organic EL element 310 through the openings 304, ... of the solid liquid display device. Therefore, a dedicated positioning device and a fixing mechanism are needed, and there are problems of an increase in the number of parts and an increase in cost. In addition, as described above, the purpose of developing a reflective liquid crystal display device is to improve outdoor visibility. Although outdoor visibility is strong, it cannot be used indoors or at night. Therefore, reflection-type liquid crystal display devices may also be introduced before the illumination light is introduced from the front to correspond to the external light. An example of using an organic EL element for this headlight is disclosed in Japanese Laid-Open Patent Publication "Japanese Patent Laid-Open No. 2000-75287 (publication date March 14, 2000)". However, this is also the same as when backlight is introduced into a transmissive liquid crystal display device.
588185 同樣的,存在因顯示裝置與輔助光源的厚度導致全般變厚 的問題。 此外,如以上所述,藉由在一片基板上形成液晶顯示元 件與有機EL元件,以彌補各個缺點,可在各種環境下進行 最佳顯示。 但是,上述之顯不裝置於一片基板上單純形成液晶顯示 元件與有機EL兀件時,基板内之配線及驅動電路趨於複雜 ’因而存在製造時之良率及成本等的問題。 另外,其他問題方面,於製造具有作為發光元件之有機 EL元件之發光顯示裝置時,存在以下的問題。 如曰本公開專利公報「特開2000-:[ 73770號公報(公開曰期 2000年6月23日)」中揭示有:在一個基板上形成有機£]1元 件之驅動電路的TFT(Thin Film Transistor :薄膜電晶體)電 路與在其上形成陰極之金屬電極及形成有機el層之有機 層的一部分,在另一個基板上形成陽極電極(陽極)後,在 其上形成發光層,最後合併此等兩個基板,藉由施加熱或 壓力,將有機層加熱至玻璃轉移溫度以上進行接合的方法。 此外,曰本公開專利公報「特開2〇〇1—4398()號公報(公開 曰期2001年2月16日)」中揭示有:在基板上(TFT基板亦可) 形成陽極,在其上依序堆疊構成有機EL層之空穴植入層、 空穴輸送層及發光層後,形成極薄之構成陰極之工作函數 低的金屬,之後形成透明導電層的方法。 此時,上述兩公報之自有機EL元件射出之光並非自形成 驅動該有機EL元件之電路的基板側,而可自與其對向設定 -10- 588185588185 Similarly, there is a problem that the display device and the auxiliary light source are generally thickened due to the thickness. In addition, as described above, the liquid crystal display element and the organic EL element are formed on a single substrate to compensate for various shortcomings, and optimal display can be performed in various environments. However, when the above-mentioned display device is simply formed on a substrate to form a liquid crystal display element and an organic EL element, the wiring and the driving circuit in the substrate tend to be complicated, so there are problems such as yield and cost during manufacturing. In addition, in terms of other problems, when manufacturing a light-emitting display device having an organic EL element as a light-emitting element, there are the following problems. For example, in this published patent publication "Japanese Patent Laid-Open No. 2000-: [Publication No. 73770 (publication date June 23, 2000)", it is disclosed that a thin film of a TFT (Thin Film) of a driving circuit for forming an organic element on a substrate Transistor (thin film transistor) circuit and a metal electrode forming a cathode thereon and a part of an organic layer forming an organic el layer. After forming an anode electrode (anode) on another substrate, a light emitting layer is formed thereon, and finally merged with this A method of bonding two substrates by heating or pressing the organic layers to a temperature above the glass transition temperature by applying heat or pressure. In addition, Japanese Patent Laid-Open Publication No. 2001-4398 () (published on February 16, 2001) discloses that an anode is formed on a substrate (a TFT substrate may be used), and the anode is formed thereon. A method of sequentially stacking a hole-implanting layer, a hole-transporting layer, and a light-emitting layer forming an organic EL layer in order to form a very thin metal having a low work function for forming a cathode, and then forming a transparent conductive layer. At this time, the light emitted from the organic EL element in the above two publications does not self-form the substrate side of the circuit that drives the organic EL element, but can be set from the opposite side -10- 588185
之對向基板或保護層側射出,藉此,與電路形成側射出時 比較,射出光不致被電路圖案遮蔽,因此可提高開口率, 而有效乂兩照度及發光效率與壽命及可靠性。 另外,驅動電路形成側之電路可形成至充當先前開口部 的面積,因此是一種電路設計上有餘裕,促進可靠性及良 率提高,並且可形成功能提高之電路的有效方法。具體而 言,上述特開2000-173770號公報係藉由分別形成驅動電路 側與發光層側來實現,而上述特開2〇〇1_4398〇號公報係藉 由形成極薄之陰極電極來實現。 此時,從發光功能之可靠性的觀點,有機EL元件上尤須 避免混入水分。此外,有機導體亦可能因氧化造成受體摻 雜而引起性能惡化。再者,由於使用於陰極的金屬係使用 鎂(Mg)、鋰(Li)、鈣(Ca)等工作函數低的材料,特別容易氧 化,因而形成加工困難。 因而,有機EL元件的構造雖單純,但是具有環境對所使 用之材料的性能容易造成重大影響的特徵。因此,形成有 機EL元件的情況下,須在儘量遮斷水分及氧氣的環境下全 部形成’且亦須同時形成發光層的保護層。 有關這一點,上述特開200(M7377〇號公報中,係以形成 有機EL元件之有機層的一部分實施接合,於接合時容易暴 路於含水分及氧氣的環境下,其可靠性堪慮。此外,由於 形成有機EL元件之有機層均使用約的薄膜,因此於 貼合時’在兩基板側形成其一部分,於提高溫度至玻璃轉 移點以上的過程,膜質及性能的均一性亦可能遭破壞。 -11-It is emitted toward the substrate or the protective layer side, so that the emitted light is not blocked by the circuit pattern as compared with the case where the circuit is formed. Therefore, the aperture ratio can be increased, and the illuminance, luminous efficiency, and life and reliability can be effectively reduced. In addition, the circuit on the formation side of the driving circuit can be formed to the area serving as the previous opening portion, so it is an effective method to allow room for circuit design, promote reliability and yield improvement, and form a circuit with improved functions. Specifically, the above-mentioned Japanese Patent Application Laid-Open No. 2000-173770 is realized by forming the driving circuit side and the light-emitting layer side separately, and the above-mentioned Japanese Patent Application Laid-Open No. 2000_4398 is realized by forming an extremely thin cathode electrode. In this case, from the standpoint of the reliability of the light emitting function, it is necessary to avoid the inclusion of moisture in the organic EL element. In addition, organic conductors can also cause performance degradation due to acceptor doping due to oxidation. In addition, since the metal used for the cathode uses materials with low work functions such as magnesium (Mg), lithium (Li), and calcium (Ca), it is particularly easy to be oxidized, and thus the processing is difficult. Therefore, although the structure of the organic EL element is simple, it has a feature that the environment easily affects the performance of the material used in a significant way. Therefore, in the case of forming an organic EL element, it is necessary to form all of the organic EL elements in an environment that blocks moisture and oxygen as much as possible, and also to form a protective layer of the light emitting layer at the same time. In this regard, in the above-mentioned Japanese Patent Application Laid-Open No. 200 (M73770), a part of the organic layer forming the organic EL element is bonded, and it is easy to be exposed to the environment of moisture and oxygen during bonding, and its reliability is considered to be serious. In addition, since the organic layers used to form the organic EL element use a thin film, a part of them is formed on both substrate sides during bonding, and the uniformity of film quality and performance may also be affected during the process of increasing the temperature to above the glass transition point. Destruction. -11-
588185 此外’上述特開2001-43980號公報,由於在光射出側有 包3金屬的陰極’因此,即使極薄仍存在透過損失。此外 ’由於陰極極薄,因此存在形成於其上之透明導電層及有 機導電層與所含氧氣結合造成性能惡化,以及形成透明導 ‘ 電層時之溫度影響發光層的問題。 · 再者’上述特開2000-173770號公報中,由於陽極側係透 明導電膜,電阻值高於一般的導體,因此存在形成面板時 ’因透明導電膜之電力損失而發生晝面的照度斑。 · 發明姆要 本發明之目的在提供一種促進小型化及成本降低,且自 室外至室内辨識性均佳之顯示裝置及其製造方法與其驅動 方法。 為求達成上述目的,本發明之顯示裝置的顯示區域内包 含·第一顯示區域,其係包含光調節元件使外光反射而進 仃顯示的非發光顯示元件;及第二顯示區域,其係包含發 光元件直接調卽而進行顯示的發光顯示元件,且同時設置 此等第一顯示區域與第二顯示區域。 春 因此’發光元件係朝向顯示面側自行發光而直接顯示, 因此並非如先前的使用發光元件作為背照光及前照光。藉 此,可提高來自發光元件之光的利用效率,並且顯示裝置 · 的厚度亦變薄。亦即,由於背照光之厚度通常約3〜6亳米, 因此不需要背照光而減少厚度的效果非常大。此外,不需 要背照光係表示亦不需要先前之設置於液晶面板之背面面 板與背照光之間的偏光板、相位差板及玻璃基板。因此, -12- 588185 ⑻ 不需要此等偏光板、相位差板及玻璃基板, 置的厚度更薄。 使颁不裝 此外,亦不需要固定圖案化之發光元件背照光加以定位 ’因此可省略其使料專用裝置及固定機構,可因零件數 量減少及縮短步驟等而降低成本。588185 In addition, "The above-mentioned Japanese Patent Application Laid-Open No. 2001-43980 has a metal-clad cathode on the light-emitting side", and therefore there is a transmission loss even if it is extremely thin. In addition, since the cathode is extremely thin, there are problems that the transparent conductive layer and the organic conductive layer formed thereon are combined with oxygen to cause deterioration in performance, and that the temperature at the time of forming the transparent conductive layer affects the light emitting layer. · Furthermore, in the above-mentioned Japanese Patent Application Laid-Open No. 2000-173770, since the anode side is a transparent conductive film, the resistance value is higher than that of ordinary conductors, so when forming a panel, there is a daytime illumination spot due to power loss of the transparent conductive film. . · SUMMARY OF THE INVENTION An object of the present invention is to provide a display device that promotes miniaturization and cost reduction, and has excellent visibility from outdoor to indoor, a manufacturing method thereof, and a driving method thereof. In order to achieve the above-mentioned object, the display area of the display device of the present invention includes a first display area, which is a non-light-emitting display element including a light adjustment element that reflects external light to perform display; and a second display area, which is A light-emitting display element including a light-emitting element directly adjusted for display, and the first display area and the second display area are provided at the same time. Spring Therefore, the 'light-emitting element emits light by itself toward the display surface side and displays it directly, so it is not as if the light-emitting element was used as the back light and the front light as before. As a result, the utilization efficiency of light from the light-emitting element can be improved, and the thickness of the display device can be reduced. That is, since the thickness of the backlight is usually about 3 to 6 mm, the effect of reducing the thickness without requiring backlight is very large. In addition, there is no need for a back light display, and there is no need for a polarizer, a retardation plate, and a glass substrate previously provided between the back panel and the back light of the liquid crystal panel. Therefore, -12- 588185 ⑻ does not need these polarizers, retardation plates and glass substrates, and the thickness is thinner. In addition, it is not necessary to fix the patterned light-emitting element back light for positioning. Therefore, the special device and fixing mechanism for the material can be omitted, and the cost can be reduced due to the reduction in the number of parts and steps.
再者’不需要背照光與背面側之偏光板及相位差板的優 點不僅S減少整個冑示裝置的厚度。㈣,零件數量減少 除材料費之外,組裝工時及各構件之檢查等所需成本亦減 少’因此可降低整個顯示裝置的製造成本。 此外,如本發明之像素分割方式等之顯示區域分割方式 的顯示裝置,可某種程度地任意設計第一顯示區域與第二 顯示區域的比率。因此如使用在行動電話及資訊攜帶終端 (pda)等移動型機器上時,通常係加大反射區域之第一顯示 區域的比率。如將顯示像素之像素面積中的8〇%作為反射 區域的情況下,發光區域之第二顯示區域即為2〇%,因此Furthermore, the advantage of not requiring a backlight and a polarizer and a retardation plate on the back side is not only to reduce the thickness of the entire display device. Alas, the number of parts is reduced. In addition to the material cost, the costs required for assembly man-hours and inspection of each component are also reduced ', thus reducing the manufacturing cost of the entire display device. In addition, in the display device of the display area division method such as the pixel division method of the present invention, the ratio of the first display area to the second display area can be arbitrarily designed to some extent. Therefore, when used in mobile devices such as mobile phones and information carrying terminals (PDAs), the ratio of the first display area of the reflection area is usually increased. If 80% of the pixel area of the display pixel is used as the reflection area, the second display area of the light-emitting area is 20%.
發光元件之發光面積最大只須像素面積的5分之丨即可。這 表示可減少耗電。 因此,可提供一種促進小型化及成本降低,且自室外至 室内辨識性均佳之顯示裝置。 此外,本發明之顯示裝置進一步包含彼此對向之第一基 板與第二基板,上述光調節元件及發光元件均設於上述第 基板與第二基板之間。因而光調節元件及發光元件均收 納於第一基板與第二基板之間,可確實地減少顯示裝置的 厚度。 -13-The light-emitting area of the light-emitting element only needs to be a fifth of the pixel area. This means that power consumption can be reduced. Therefore, it is possible to provide a display device that promotes miniaturization and cost reduction and has excellent visibility from outdoor to indoor. In addition, the display device of the present invention further includes a first substrate and a second substrate facing each other, and the light adjusting element and the light emitting element are both disposed between the first substrate and the second substrate. Therefore, both the light adjustment element and the light emitting element are housed between the first substrate and the second substrate, and the thickness of the display device can be reliably reduced. -13-
588185 此外,本發明之顯示裝置於上述記載之顯示裝置中,光 調節元件之光調節層與發光元件之發光層設於同一層。而 所謂同-層,未必需要兩者為同一層級,進_步包含光調 節7G件之光調節層内含有發光元件之發光層的狀態。 採用上述發明,由於發光元件設於與光調節元件之光調 節層的同一層,因此,可在先前之包含光調節元件之非發 光顯示元件厚度的範圍内收納發光元件。因而可確實地減 少顯示裝置的厚度。 此外,本發明之顯示裝置於顯示區域内同時設有··第一 顯不區域,其係包含光調節元件使外光反射而進行顯示的 非發光顯示元件;及第二顯示區域,其係包含發光元、件直 接調.節而進行顯示的發光顯示元件;並且具備彼此對向之 第一基板與第二基板,上述光調節元件及發光元件均設於 上述第一基板與第二基板之間,且上述第二顯示區域内, 在上述第一基板上依序堆疊有上述發光元件與光調節元件 的光調節層。 採用上述發明,於第二顯示區域内,在上述第一基板上 依序堆疊有上述發光元件與光調節元件的光調節層。因而 ’光調節元件及發光元件均收納於第一基板與第二基板之 間’因此可確實地減少顯示裝置的厚度。再者,即使於發 光元件的表面側堆疊有光調節層,由於發光元件係設於第 一基板與第二基板之間,因此發光元件之顯示光全部射達 第二顯示區域。因而光的利用效率非常高。 因此,可提供一種確保更高的照射效率,除明亮度提高 -14· 588185In addition, in the display device of the present invention, in the display device described above, the light-regulating layer of the light-regulating element and the light-emitting layer of the light-emitting element are provided on the same layer. The so-called same layer does not necessarily need to be at the same level. Further, the state of the light emitting layer containing the light emitting element in the light adjusting layer including the light adjusting 7G element is further required. According to the above-mentioned invention, since the light-emitting element is provided on the same layer as the light-adjusting layer of the light-adjusting element, the light-emitting element can be housed within the range of the thickness of the non-light-emitting display element including the light-adjusting element. Therefore, the thickness of the display device can be reliably reduced. In addition, the display device of the present invention is also provided with a first display area in the display area, which is a non-light-emitting display element including a light adjustment element that reflects external light for display; and a second display area, which includes The light-emitting element and the component are directly adjusted. The light-emitting display element that performs display is provided; and the first substrate and the second substrate facing each other are provided, and the light-adjusting element and the light-emitting element are both provided between the first substrate and the second substrate. In addition, in the second display area, a light adjustment layer of the light emitting element and the light adjustment element is sequentially stacked on the first substrate. According to the above invention, in the second display region, the light adjustment layer of the light emitting element and the light adjustment element is sequentially stacked on the first substrate. Therefore, 'the light adjustment element and the light emitting element are both stored between the first substrate and the second substrate', and the thickness of the display device can be reliably reduced. Furthermore, even if a light-regulating layer is stacked on the surface side of the light-emitting element, since the light-emitting element is disposed between the first substrate and the second substrate, all the display light of the light-emitting element reaches the second display area. Therefore, the utilization efficiency of light is very high. Therefore, it is possible to provide a method to ensure higher illumination efficiency and increase brightness in addition to -14 · 588185.
(ίο) 外’亦可減少顯示裝置厚度及降低構件成本的顯示裝置。 此外,本發明之顯示裝置之以上述光調節元件及發光元 件驅動配置成矩陣狀之上述各顯示區域用的各資料信號線 及各掃描信號線彼此共用。 因此,可提供一種在顯示區域内形成兩個顯示元件時, 防止電路構造複雜,可促進製造時之良率及成本降低的顯 示裝置。 此外,本發明之顯示裝置之製造方法,於製造同時設有 上述非發光顯示元件與發光顯示元件之顯示裝置時,在第 一基板上形成驅動電路,並在第二基板上形成發光元件後 ,藉由合併此等形成驅動電路之第一基板側與形成發光元 件之·第二基板側予以一體化。 因而,於製造顯示裝置時,可分別形成發光元件與驅動 發光元件及光調節元件的驅動元件。因此,形成發光元件 時,可不受形成驅動元件時之步驟溫度、藥品、及氣體等 之影響。 此外,為求解決上述問題,本發明之顯示裝置僅包含發 光顯示元件,並貼合有:第一基板側,其係在第一基板上 形成有驅動電路·,及第二基板側,其係在第二基板上形成 有至多包含兩個發光元件用電極的發光元件。 此外,本發明之顯示裝置於上述記載之顯示裝置中,發 光元件包含有機電致發光元件,形成有上述有機電致發光 70件之第二基板侧,於有機電致發光元件之陰極形成後, 與第一基板側貼合。 -15- 588185(ίο) 外 ’A display device that can also reduce the thickness of a display device and the cost of components. In addition, in the display device of the present invention, each of the data signal lines and each of the scan signal lines for driving each of the display areas arranged in a matrix form using the light adjustment element and the light emitting element are shared with each other. Therefore, it is possible to provide a display device that prevents the circuit structure from being complicated when two display elements are formed in the display area, and can promote yield and cost reduction during manufacturing. In addition, in the method for manufacturing a display device of the present invention, when a display device provided with both the non-light-emitting display element and the light-emitting display element is manufactured, a driving circuit is formed on a first substrate and a light-emitting element is formed on a second substrate. By combining the first substrate side forming the driving circuit and the second substrate side forming the light-emitting element, they are integrated. Therefore, when a display device is manufactured, a light-emitting element and a driving element that drives the light-emitting element and the light adjustment element can be formed separately. Therefore, the light-emitting element can be formed without being affected by the step temperature, chemicals, and gases when the driving element is formed. In addition, in order to solve the above-mentioned problems, the display device of the present invention includes only a light-emitting display element and is bonded to: a first substrate side, where a driving circuit is formed on the first substrate, and a second substrate side, which is A light-emitting element including at most two light-emitting element electrodes is formed on the second substrate. In addition, in the display device of the present invention, in the display device described above, the light-emitting element includes an organic electroluminescence element, the second substrate side on which the above-mentioned 70 organic electroluminescence elements are formed, and after the cathode of the organic electroluminescence element is formed, Bonded to the first substrate side. -15- 588185
Οι) 採用上述發明,僅包含發光顯示元件之形成發光元件之 有機電致發光元件(以下稱「有機EL元件」)的第二基板側 ,於有機EL元件之發光元件用電極之陰極形成後與第一基 板側貼合。 ‘ 藉此’自有機EL元件射出之光並非自形成驅動有機el元 . 件之驅動電路的基板側,而可自與其對向而設定之對向基 板或保護層側射出。由於光射出方向與前述先前技藝相同 ’因此與驅動電路形成側射出的構造比較,同樣具有以下 的基本優點。 首先,可分別形成設有驅動電路之第一基板側與有機EL 元件。由於可分別獨立納入製造步驟,因此不受溫度、氣 體及·藥品等影響,可靠性提高。 此外’藉由上述構造可使光射達形成有機EL元件的第二 基板側。藉此’由於不影響驅動電路側開口率而可擴大設 定發光區域,因此可形成高照度化。再者,因發光面積廣 ’因此可抑制獲得相同照度用之每單位面積的電流量,可 藉由長壽命化及發光效率提高而減少耗電。 · 此外,由於光未射達形成驅動電路的第一基板側,因此 第一基板側可全面地形成驅動電路。由於藉由自由設定驅 動電路之TFT(Thin Film Transistor :薄膜電晶體)的大小, · 在TFT形成區域内產生餘裕,因此可形成執行微細控制用 ♦ 的電路。再者’由於配線寬上亦有餘裕,因此可提高驅動 電路的可靠性,良率提高。 此外’本發明之顯示裝置之驅動方法係使用同時設有非 -16- (12) (12)588185 發光顯示元件與發光顯示元件之顯示裝置,並將各顯示區 域内之影像信號之單位時間的丨場分割成數個,在各分割= 間開關光調節元件與發光元件的方法。 採用上述發明,驅動同時設有非發光顯示元件與發光顯 示元件之顯示裝置的情況下,將丨場分割成數個,藉由於各 分割期間開關光調節元件與發光元件,可控制丨場之光調節 元件或發光元件之總開敢時間,並且可增加其點亮圖案的 種類並有效予以驅動。 因而,藉由在時間上控制光謂節元件或非發光顯示元件 之開啟時間,可顯示影像信號的灰階。 因而,可提供一種於顯示區域内形成兩個顯示元件時〃 防止電路構造複雜,促進製造時之良率及成本降低,且可 有效進行灰階顯示之顯示裝置的驅動方法。 本發明之其他目的、特徵及優點,藉由以下内容即可充 分瞭解。此外,本發明之好處於參照附圖之以下說明中即 可明瞭。 圖式之簡單說明 一圖1係顯示本發明之顯示裝置的一種實施形態者,且係顯 示顯示裝置之一個像素部分的剖面圖。 圖2係顯示本發明之概念者,且係顯示顯示環境與耗電的 關係圖。 圖3係顯不本發明之概念者,且係顯示顯示環境與照度的 關係圖。 圖4(a)〜圖4(〇係顯示上述顯示裝置之對向基板之製造方 588185〇ι) According to the above-mentioned invention, only the second substrate side of the organic electroluminescence element (hereinafter referred to as an "organic EL element") forming the light-emitting element including the light-emitting display element is formed with the cathode of the electrode for the light-emitting element of the organic EL element and The first substrate side is bonded. The light emitted from the organic EL element ‘by this’ is not from the substrate side of the driving circuit forming the driving organic el element, but may be emitted from the opposite substrate or protective layer side which is set to face the driving circuit. Since the light emission direction is the same as that of the aforementioned prior art, it also has the following basic advantages compared with the structure in which the driving circuit forms a side emission. First, a first substrate side provided with a driving circuit and an organic EL element can be formed separately. Since they can be incorporated into manufacturing steps independently, they are not affected by temperature, gas, and chemicals, and reliability is improved. In addition, with the above structure, light can be incident on the second substrate side where the organic EL element is formed. By this means, since the light-emitting area can be enlarged and set without affecting the aperture ratio on the side of the driving circuit, a higher illuminance can be achieved. Furthermore, since the light emitting area is wide, the amount of current per unit area for obtaining the same illuminance can be suppressed, and power consumption can be reduced by extending the life and improving the light emitting efficiency. In addition, since the light does not reach the first substrate side where the driving circuit is formed, the first substrate side can form the entire driving circuit. Since the size of the TFT (Thin Film Transistor) of the driving circuit can be freely set, a margin is generated in the TFT formation region, so a circuit for performing fine control can be formed. Furthermore, since there is a margin in the wiring width, the reliability of the driving circuit can be improved, and the yield can be improved. In addition, the method of driving the display device of the present invention uses a display device provided with both a non--16- (12) (12) 588185 light-emitting display element and a light-emitting display element, and the unit time of the image signal in each display area is丨 The field is divided into several, and the method of switching the light adjusting element and the light emitting element between each division =. According to the above invention, in the case of driving a display device provided with both a non-light emitting display element and a light emitting display element, the field is divided into several parts, and the light adjustment of the field can be controlled by switching the light adjusting element and the light emitting element during each division. The total turn-on time of the device or the light-emitting device, and the type of the lighting pattern can be increased and effectively driven. Therefore, by controlling the on-time of the light-presence element or the non-light-emitting display element in time, the gray scale of the image signal can be displayed. Therefore, it is possible to provide a driving method of a display device that prevents the circuit structure from being complicated when forming two display elements in the display area, promotes the reduction in yield and cost during manufacture, and can effectively perform grayscale display. Other objects, features and advantages of the present invention can be fully understood from the following contents. In addition, the advantages of the present invention will be apparent from the following description with reference to the drawings. Brief Description of the Drawings Fig. 1 is a cross-sectional view showing one embodiment of a display device of the present invention, and showing a pixel portion of the display device. Fig. 2 is a diagram showing the concept of the present invention, and is a diagram showing the relationship between the environment and power consumption. Fig. 3 is a diagram showing the concept of the present invention, and showing the relationship between the display environment and the illuminance. Figures 4 (a) to 4 (0) show the manufacturing method of the opposite substrate of the above display device 588185
〇3) 法的說明圖。 圖5(a)及圖5(b)係顯示上述顯示裝置之TFT基板之製造方 法的說明圖。 ° 圖6係顯示沿著有機EL元件之陽極於黑矩陣下方形成金 屬電極之顯示裝置的剖面圖。 圖7係顯示形成於有機EL元件之層構造,並於黑矩陣下方 形成金屬電極之顯示裝置的剖面圖。〇3) Illustration of the method. 5 (a) and 5 (b) are explanatory views showing a method for manufacturing a TFT substrate of the display device. ° Fig. 6 is a sectional view showing a display device in which a metal electrode is formed under a black matrix along an anode of an organic EL element. Fig. 7 is a cross-sectional view showing a display device in which a layer structure is formed on an organic EL element and a metal electrode is formed under a black matrix.
圖8(a)及圖8⑻係顯示貼合上述顯示裝置之對向基板與 TFT基板之狀態的說明圖。 圖9係上述顯示裝置中共用信號線驅動時之一個像素部 分的驅動電路圖。 μ 圖10係上述顯示裝置中共用信號線驅動時之一個像素部 刀之驅動電路之變形例的驅動電路圖。 ' 圖11係顯示上述顯示裝置之顯示狀態的特性圖。 圖12係顯示本發明之顯示裝置之其他實施形態者且係 顯不顯示裝置之一個像素部分的剖面圖。FIG. 8 (a) and FIG. 8 (a) are explanatory views showing a state where the opposite substrate and the TFT substrate of the display device are bonded together. Fig. 9 is a driving circuit diagram of one pixel portion when the common signal line is driven in the display device. Fig. 10 is a driving circuit diagram of a modified example of a driving circuit of one pixel portion when the common signal line is driven in the above display device. 'FIG. 11 is a characteristic diagram showing a display state of the display device. Fig. 12 is a sectional view showing another embodiment of the display device of the present invention and showing a pixel portion of the display device.
圖13(a)〜圖13(C)係顯示上述顯示裝置之對向基板之製造 方法的說明圖。 圖14係顯示上述顯示裝置之TFT基板之製造方法的說明 圖15⑷及圖15⑻係㈣貼合上述顯示裝置之對向基板 與TFT基板之狀態的說明圖。 圖16係顯示本發明之顯示裝置之另外實施形態者,且係 顯示顯示裝置之一個像素部分的剖面圖。 -18 - (14) (14)Figs. 13 (a) to 13 (C) are explanatory diagrams showing a method of manufacturing the opposite substrate of the display device. Fig. 14 is an explanatory view showing a method for manufacturing a TFT substrate of the above display device. Figs. 15 (a) and 15 (a) are explanatory views showing a state in which an opposite substrate and a TFT substrate of the above display device are bonded together. Fig. 16 is a sectional view showing another embodiment of the display device of the present invention, and showing a pixel portion of the display device. -18-(14) (14)
@係數層形成上述顯示裝置之凸部時的剖面圖。 圖18係上述顯示裝置之顯示晝面的平面圖。 。圖19(a)係顯不分割上述顯示裝置之一個像素部分之反射 區域及發光區域時,在反射區域内側設置發光區域之構造 的平面圖:圖19(b)係顯示分割±述顯示裝置之一個像素部 分之反射區域及發光區料,技射區域角落側設置發光 區域之構造的平面圖。 圖20係顯示本發明之顯示裝置的另外實施形態者,且係 顯示使用光感測器時的區塊圖。 圖21係顯示本發明之顯示裝置之另外實施形態者,且係 顯示顯示裝置之一個像素部分的剖面圖。 圖22係顯示上述顯示裝置之一個像素部分之圖21的a 一 A線剖面圖。 圖23係顯示上述顯示裝置的全般構造圖。 圖24係顯示於上述顯示裝置為正常白模式時,汲極電壓 Vd小於液晶用臨限值電壓Vth(LC)時之液晶顯示元件及有 機EL元件之顯示狀態的說明圖。 圖25係顯示於上述顯示裝置為正常白模式時,沒極電壓 Vd大於液晶用臨限值電壓vth(LC),且小於EL用臨限值電 壓Vth(OLED)時之液晶顯示元件及有機EL元件之顯示狀態 的說明圖。 圖26係顯示於上述顯示裝置為正常白模式時,汲極電壓 Vd大於液晶用臨限值電壓Vth(LC),且大於EL用臨限值電 壓Vth(OLED)時之液晶顯示元件及有機EL元件之顯示狀態 588185 〇5)A cross-sectional view when the @factor layer forms a convex portion of the display device. FIG. 18 is a plan view of a display day surface of the display device. . Fig. 19 (a) is a plan view showing a structure in which a light-emitting area is provided inside the reflection area when the reflective area and the light-emitting area of one pixel portion of the display device are not divided: Fig. 19 (b) is a display divided into one of the display devices described above. A plan view of a structure in which a light-emitting area is provided on a corner side of a reflective area and a light-emitting area of a pixel portion. Fig. 20 is a block diagram showing another embodiment of the display device of the present invention, and showing a case where a light sensor is used. Fig. 21 is a cross-sectional view showing another embodiment of the display device of the present invention, and showing a pixel portion of the display device. FIG. 22 is a cross-sectional view taken along a line A-A of FIG. 21 showing a pixel portion of the display device. FIG. 23 is a diagram showing a general configuration of the display device. Fig. 24 is an explanatory diagram showing the display states of a liquid crystal display element and an organic EL element when the drain voltage Vd is smaller than the threshold voltage Vth (LC) for liquid crystal when the display device is in the normal white mode. FIG. 25 shows a liquid crystal display element and an organic EL when the non-polar voltage Vd is greater than the threshold voltage vth (LC) for liquid crystal and is smaller than the threshold voltage Vth (OLED) for EL when the display device is in the normal white mode. An illustration of the display state of the component. FIG. 26 shows a liquid crystal display element and an organic EL when the drain voltage Vd is greater than the threshold voltage Vth (LC) for the liquid crystal and is greater than the threshold voltage Vth (OLED) for the EL when the display device is in the normal white mode. Element display status 588185 〇5)
的說明圖。 圖27係顯示於上述顯示裝置為正常黑模式時,汲極電壓 Vd小於共用臨限值電壓Vth時之液晶顯示元件及有機eL元 件之顯示狀態的說明圖。 圖28係顯示於上述顯示裝置為正常黑模式時,汲極電壓 Vd大於共用臨限值電壓Vth時之液晶顯示元件及有機£1^元 件之顯示狀態的說明圖。 圖29(a)係顯不顯示裝置為正常黑模式時之液晶顯示元件 之照度狀態的說明圖’圖29(b)係顯示顯示裝置為正常黑模 式時之有機EL元件之照度狀態的說明圖。 圖30係本發明之顯不裝置之另外實施形態驅動時的信號 波形圖^Illustration. Fig. 27 is an explanatory diagram showing the display states of the liquid crystal display element and the organic eL element when the drain voltage Vd is smaller than the common threshold voltage Vth when the display device is in the normal black mode. FIG. 28 is an explanatory diagram showing the display states of the liquid crystal display element and the organic element when the drain voltage Vd is greater than the common threshold voltage Vth when the display device is in the normal black mode. FIG. 29 (a) is an explanatory diagram of the illumination state of the liquid crystal display element when the display device is in the normal black mode. . Fig. 30 is a waveform diagram of signals during driving of another embodiment of the display device of the present invention ^
圖31係顯示電壓電流轉換機構之其他構造的說明圖。 圖32⑷〜圖32(c)係本發明之顯示裝置之另外實施形態驅 動時的信號波形圖。 圖33係顯示本發明之顯示裝置的另外實施形態者且係 顯示有機EL層為構造包含孔輸送層、發光層、電子輸送層 之有機EL發光元件的剖面圖。 圖34係顯示有機EL層之構造包含高分子此材料之有機 EL發光元件的剖面圖。FIG. 31 is an explanatory diagram showing another structure of the voltage-current conversion mechanism. 32 (a) to 32 (c) are signal waveform diagrams when a display device according to another embodiment of the present invention is driven. Fig. 33 is a cross-sectional view showing another embodiment of the display device of the present invention and showing that the organic EL layer is an organic EL light-emitting element having a hole transport layer, a light-emitting layer, and an electron transport layer. Fig. 34 is a cross-sectional view showing the structure of an organic EL layer including an organic EL light-emitting element including a polymer as a material.
圖35(a)〜圖35(幻係顯示圖33所 的製造方法之剖面圖。 不之顯示裝置之對向基板 圖36(a)及圖36(b)係顯示圖33所 側基板的製造方法剖面圖。 不之顯示裝置之TFT電路 • 20 - 588185Fig. 35 (a) to Fig. 35 (Fantasy shows a cross-sectional view of the manufacturing method shown in Fig. 33. Opposite substrates for display devices. Figs. 36 (a) and 36 (b) show the manufacturing of the substrate shown in Fig. 33 Method cross-section diagram. TFT circuit of display device • 20-588185
圖37(a)及圖37(b)係顯示貼合圖33所示之顯示裝置之對 向基板與TFT電路側基板的步驟剖面圖。 圖38(a)〜圖38(c)係顯示圖34所示之顯示裝置之對向基板 的製造方法剖面圖。 圖39係顯不圖34所示之顯示裝置之TFT電路側基板的製 造方法剖面圖。 圖40(a)及圖40(b)係顯示貼合圖34所示之顯示裝置之對 向基板與TFT電路側基板的步驟剖面圖。Figs. 37 (a) and 37 (b) are cross-sectional views showing steps of bonding a counter substrate and a TFT circuit-side substrate of the display device shown in Fig. 33; 38 (a) to 38 (c) are cross-sectional views showing a method of manufacturing a counter substrate of the display device shown in FIG. 34. FIG. Fig. 39 is a sectional view showing a method for manufacturing a TFT circuit-side substrate of the display device shown in Fig. 34; 40 (a) and 40 (b) are cross-sectional views showing a step of bonding a counter substrate and a TFT circuit-side substrate of the display device shown in FIG. 34. FIG.
圖41係顯示先前之顯示裝置的剖面圖。 具體實施例描述 首先,大致說明本發明。 本發明之顯示裝置的構造係在同一個顯示裝置内組裝使 外光反射而進行顯示之非發光顯示元件與自行發光之發光 顯示元件。藉此,無須附設背照光等另外光源,因此可同 時實現低耗電化與小型化。此外,在同—個顯示裝置内組 裝非發光顯示元件與自行發光之發光顯示元件時,可共用 電極、配線、驅動元件及絕緣體等構件的製造步驟,因此Fig. 41 is a sectional view showing a conventional display device. DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present invention will be roughly explained. The structure of the display device of the present invention is that a non-light-emitting display element that reflects external light and performs display is assembled in the same display device with a self-emitting light-emitting display element. This eliminates the need to attach a separate light source such as a backlight, so it is possible to achieve both low power consumption and miniaturization. In addition, when a non-light-emitting display element and a self-emission light-emitting display element are assembled in the same display device, the manufacturing steps of members such as electrodes, wiring, driving elements, and insulators can be shared.
可大幅減少先前背照光等光源製造及組裝等花費的時間與 成本。 以下,進一步詳細說明本發明的作用及效果。 首先如以上所述,通常顯示裝置大致上區分成非發光 顯不,置與發光顯示裝置。非發光顯示裝置係藉由使太陽 光至内光奇照光或前照光等外部光源之光透過非發光 顯不70件之光調節元件進行調節者,該非發光顯示元件包 -21-It can significantly reduce the time and cost of manufacturing and assembling light sources such as backlights. Hereinafter, the function and effect of the present invention will be described in more detail. First, as described above, display devices are generally divided into non-light emitting displays and light emitting display devices. The non-light-emitting display device is adjusted by passing light from an external light source such as sunlight to internal light strange light or headlight through a non-light-emitting display light adjustment element of 70 pieces.
含具有使外部光源之光反射之反射機構的反射型與不具反 射機構的透過型。另外,發光顯示元件係具有發光元件的 顯示裝置。通常稱為發光元件或發光層的部分自行發光。 另外,此處將上述光調節元件之控制透過光稱為光調節, 而將發光元件之發光稱為直接調節。There are a reflection type having a reflection mechanism for reflecting light from an external light source and a transmission type having no reflection mechanism. The light-emitting display element is a display device having a light-emitting element. A portion generally called a light emitting element or a light emitting layer emits light by itself. In addition, the control of the light transmitted by the light adjustment element is referred to herein as light adjustment, and the light emission of the light emitting element is referred to as direct adjustment.
而透過型液晶顯示裝置等透過型非發光顯示裝置,通常 自暗顯示至亮顯示’背照光的照度一定,並持續點亮。因 而透過型非發光顯示裝置的持續外部光源耗電。此外,透 過型非發光顯示裝置對光調節元件與背照光需要分別供給 及控制電源’因此零件數量多,小型化受到限制,亦難降 低成本。 另外’ EL顯示元件等發光顯示裝置因調節發光照度,因 此暗顯示與焭顯示的耗電不同,暗顯示的耗電少,亮顯示 的耗電多。 此時’比較在同一個面板内組裝此等透過型非發光顯示 元件或發光顯示元件與反射型非發光顯示元件,使用兩者On the other hand, transmissive non-emissive display devices such as transmissive liquid crystal display devices usually have a constant backlight intensity from the dark display to the bright display 'and continue to light. Therefore, the continuous external light source of the transmissive non-light-emitting display device consumes power. In addition, transmissive non-light-emitting display devices need to separately supply and control power for the light adjustment element and the backlight. Therefore, the number of parts is large, the miniaturization is limited, and it is difficult to reduce costs. In addition, a light-emitting display device such as an EL display element adjusts the light emission illuminance. Therefore, dark display consumes different power than black display, and dark display consumes less power and bright display consumes more power. At this time, 'comparing these transmissive non-light-emitting display elements or light-emitting display elements with reflective non-light-emitting display elements in the same panel, using both
進行顯示時與本發明。亦即,比較組裝透過型非發光顯示 疋件與反射型非發光顯示元件之先前顯示裝置,亦即先前 技藝中說明之像素分割型液晶顯示裝置等與本發明之顯示 裝置。 先前之液晶顯示裝置如圖2之虛線L1所示,自明亮環境下 至黑暗環境下需要使光源之背照光持續點亮,因此需要大 致一定的耗電。反之,在同一個面板内組裝發光顯示元件 與反射型非發光顯示元件之本發明的顯示裝置,可因應周 -22-The display is related to the present invention. That is, the previous display device assembled with the transmissive non-light-emitting display element and the reflective non-light-emitting display element, that is, the pixel-divided liquid crystal display device described in the prior art, and the display device of the present invention are compared. The conventional liquid crystal display device is shown as a dotted line L1 in FIG. 2. The backlight of the light source needs to be continuously lit from a bright environment to a dark environment, and therefore requires a certain amount of power consumption. On the contrary, the display device of the present invention, in which a light-emitting display element and a reflection type non-light-emitting display element are assembled in the same panel, can respond to the week -22-
588185 圍的環境而調整發光顯示元件之照度進行顯示。因而如圖2 之實線L2所示,在明亮環境下集中發光照度,可最大限度 利用反射型的非發光顯示元件,另外,在明亮環境下,可 提高發光顯示元件之發光照度以進行顯示。因此,在明亮 環境下,可儘量抑制先前之透過型非發光顯示裝置之背照 光的耗電。 因而’本發明之顯示裝置在明亮環境下之耗電低於組裝 透過型非發光顯示元件與反射型非發光顯示元件的顯示裝 置’藉由集中照度進行顯示,可實現長壽命化及可靠性提 高。再者,本發明之顯示裝置不需要另外設置背照光,因 此與先前之液晶顯示裝置比較,可達到薄型化及小型化, 由於·亦不需要電源供給機構及控制等,因此可降低成本。 此外’將本發明之顯示裝置與僅有發光顯示元件之顯示 裝置比較時,如圖3所示。亦即,如圖3中之虛線L丨,所示, 僅以發光顯示元件構成之顯示裝置,隨環境趨於明亮,若 不提高發光照度,顯示即不易看清。 另外’本發明之顯示裝置在明亮環境下,反射型非發光 顯不元件使顯示特性提高,因此發光顯示元件如該圖之實 線L2所示’可降低照度進行顯示。此為先前僅使用發光顯 不疋件時所無的概念,係藉由本發明之構造可獨自形成的 照度控制方法。 因而,採用本發明之顯示裝置可比僅有發光顯示元件時 认疋更低的最大照度,可實現長壽命化及可靠性提高。 〔第一種實施形態〕 -23- (19) 588185588185 to adjust the illumination of the light-emitting display element to display. Therefore, as shown by the solid line L2 in FIG. 2, concentrated luminous illuminance in a bright environment can maximize the use of reflective non-luminous display elements. In addition, in a bright environment, the luminous illuminance of a luminous display element can be increased for display. Therefore, in a bright environment, the power consumption of the backlight of the previous transmissive non-luminescent display device can be suppressed as much as possible. Therefore, 'the display device of the present invention consumes less power in a bright environment than a display device incorporating a transmissive non-light-emitting display element and a reflective non-light-emitting display element.' By performing concentrated display, it is possible to achieve long life and improved reliability. . Furthermore, the display device of the present invention does not need to be additionally provided with backlight, so that it can be made thinner and smaller compared with the previous liquid crystal display device, and since the power supply mechanism and control are not required, the cost can be reduced. In addition, when the display device of the present invention is compared with a display device having only a light-emitting display element, as shown in FIG. That is, as shown by the dotted line L1 in FIG. 3, a display device composed of only light-emitting display elements tends to be brighter as the environment becomes brighter, and the display is not easy to see unless the light-emitting illuminance is increased. In addition, in the display device of the present invention, the reflective non-luminous display element improves display characteristics under a bright environment, so the light-emitting display element is displayed as indicated by a solid line L2 in the figure. This is a concept previously absent when only a light emitting display was used, and it is an illuminance control method that can be formed independently by the structure of the present invention. Therefore, the display device adopting the present invention can achieve a lower maximum illuminance than that recognized when only a light-emitting display element is provided, and can achieve a longer life and improved reliability. [First embodiment] -23- (19) 588185
依據圖1、圖4至圖11,說明本發明一種實施形態如下。An embodiment of the present invention will be described below with reference to FIGS. 1, 4 to 11.
本實施形悲之顯示裝置5 0,如圖1所示,係藉由夾著作為 光調節層之液晶層26及作為發光元件之有機EL(電致發光) 元件60,在上下之TFT基板51與對向基板52而形成。下側 為作為包含玻璃等材料之第一基板之形成於絕緣性基板2 i 上的TFT(Thin Film Transistor :薄膜電晶體)基板51,各顯 示像素内形成有驅動作為光調節元件之反射型液晶顯示元 件20的液晶用TFT元件22,與驅動作為發光元件之發光型 有機EL元件60之EL用TFT元件42。此等液晶用丁ft元件22 及EL用TFT元件42可分別獨立驅動,亦可共用信號線進行 驅動。 另外,於上側同樣地設有··作為包含玻璃之透明第二基 板的絕緣性基板29 ;形成於該絕緣性基板29上的濾色器層 2 8,黑矩陣3 3 ;作為光調節元件之顯示面側電極的對向電 極27;包含作為發光元件用電極及發光元件之顯示面側電 極的陽極65、孔輸送層64、發光層63、電子輸送層62、及 作為發光元件用電極之陰極61的有機EL元件60 ;及包含偏 光板32、及相位差板31的對向基板52。 此時,本實施形態之有機EL元件60與液晶顯示元件20之 光調節層之液晶層26設於同一層,有機El元件60之光射出 側不存在液晶層26。 亦即,本實施形態之顯示裝置50於液晶顯示元件20之部 分’在作為顯示區域之各顯示像素内同時設有:反射區域 11 ’其係以液晶顯示元件20之像,素電極25使自顯示面側射 -24- 588185As shown in FIG. 1, the display device 50 of this embodiment is formed by sandwiching a liquid crystal layer 26 as a light-regulating layer and an organic EL (electroluminescence) element 60 as a light-emitting element. It is formed opposite the substrate 52. On the lower side is a TFT (Thin Film Transistor) substrate 51 formed on the insulating substrate 2 i as a first substrate including glass and the like. A reflective liquid crystal driving a light adjustment element is formed in each display pixel. The liquid crystal TFT element 22 of the display element 20 and the EL TFT element 42 that drives a light-emitting organic EL element 60 as a light emitting element. These TFT elements 22 for liquid crystal and TFT elements 42 for EL can be driven independently, or they can be driven by sharing a signal line. In addition, an insulating substrate 29 as a transparent second substrate including glass is provided on the upper side; a color filter layer 2 8 and a black matrix 3 3 are formed on the insulating substrate 29; Counter electrode 27 of display surface-side electrode; anode 65, hole transport layer 64, light-emitting layer 63, electron-transport layer 62, and cathode as light-emitting element electrode including light-emitting element electrode and display surface-side electrode of light-emitting element An organic EL element 60 of 61; and a counter substrate 52 including a polarizing plate 32 and a retardation plate 31. At this time, the organic EL element 60 of this embodiment is provided on the same layer as the liquid crystal layer 26 of the light adjustment layer of the liquid crystal display element 20, and the liquid crystal layer 26 does not exist on the light emitting side of the organic El element 60. That is, the display device 50 of this embodiment is provided in a portion of the liquid crystal display element 20 'in each display pixel as a display region: a reflection region 11' which is an image of the liquid crystal display element 20, and the element electrode 25 is Display surface side shot-24- 588185
(20) 入之外光反射’以液晶層26調節進行顯示,作為第一顯示 區域;及發光區域12a,其係以有機EL元件60自行發光,在 顯示面側射出其光作為第二顯示區域。 此外,本實施形態之顯示裝置5〇形成有機EL元件60之射 出光不易通過液晶層26的構造。因而有機EL元件60之射出 光不致因液晶而散亂、被吸收,因此不易引起照度降低。 本實施形態之上述有機EL元件60形成於對向基板52的陽 極65上。此表示本實施形態之有機el元件60可採與TFT電 路不同的步驟製作。 亦即,有機EL元件60形成於對向基板52側,所形成之有 機EL元件60的光射達對向基板52側。因而於形成對向基板 52時可自如包含ITO(Indium Tin Oxide :銦錫氧化物)之 透明陽極65依序形成孔輸送層64、發光層63、電子輸送層 62及陰極61,可使用先前所提出之形成方法,並且因對向 基板52側無驅動電路,因此有機EL元件60之開口率不受驅 動電路的限制,可獲得接近100%的開口率。 此外,因TFT製造步驟與對向基板52之製造步驟分離,因 此可避免TFT製造步驟產生之熱的影響,尤其可分離成使 用引起使用有機材料之發光層63特性惡化之水、藥液的光 钱刻及姓刻步驟。 因此,分別形成TFT基板5 1及有機EL元件60,有助於維 持有機EL元件60的性能。 此時,使用於本實施形態之發光層不論是使用低分子型 EL材料者或使用高分子型EL材料者均可。該圖所示之有機 -25- 588185(20) External light reflection is adjusted and displayed by the liquid crystal layer 26 as the first display area; and the light-emitting area 12a is an organic EL element 60 that emits light by itself, and emits its light on the display surface side as the second display area . The display device 50 of this embodiment has a structure in which the emitted light of the organic EL element 60 does not easily pass through the liquid crystal layer 26. Therefore, the light emitted from the organic EL element 60 is not scattered and absorbed by the liquid crystal, so that it is difficult to cause a decrease in illumination. The organic EL element 60 of this embodiment is formed on the anode 65 of the counter substrate 52. This shows that the organic el element 60 of this embodiment can be manufactured by a different step from the TFT circuit. That is, the organic EL element 60 is formed on the counter substrate 52 side, and the light of the formed organic EL element 60 reaches the counter substrate 52 side. Therefore, when forming the counter substrate 52, a transparent anode 65 including ITO (Indium Tin Oxide) can be freely formed into a hole transport layer 64, a light emitting layer 63, an electron transport layer 62, and a cathode 61 in this order. Since the proposed formation method has no driving circuit on the opposing substrate 52 side, the aperture ratio of the organic EL element 60 is not limited by the driving circuit, and an aperture ratio close to 100% can be obtained. In addition, since the manufacturing steps of the TFT are separated from the manufacturing steps of the counter substrate 52, the influence of the heat generated by the manufacturing steps of the TFT can be avoided. In particular, it can be separated into light that uses water or a chemical solution that causes deterioration of the characteristics of the light-emitting layer 63 using an organic material. Money carved and surname carved steps. Therefore, forming the TFT substrate 51 and the organic EL element 60 separately contributes to maintaining the performance of the handheld EL element 60. In this case, the light-emitting layer used in this embodiment may be any one using a low-molecular EL material or a high-molecular EL material. Organic -25- 588185 shown in the figure
(21) EL元件60係顯示使用低分子型el材料之發光層63的適用 例’且在發光層63的兩面設置電子輸送層62與孔輸送層64 。但是’並非必須設置此等電子輸送層62與孔輸送層64 , 不過使用低分子型EL材料的發光層63設置電子輸送層62 及孔輸送層64,發光效率較佳。(21) The EL element 60 shows an application example of the light-emitting layer 63 using a low-molecular-type el material, and an electron transport layer 62 and a hole transport layer 64 are provided on both sides of the light-emitting layer 63. However, it is not necessary to provide such an electron transporting layer 62 and a hole transporting layer 64, but a light emitting layer 63 using a low-molecular type EL material is provided with the electron transporting layer 62 and the hole transporting layer 64, and the luminous efficiency is better.
此外’本實施形態之顯示裝置50於TFT基板51之像素電極 25與有機EL元件60之間設有作為凸部之導電性接觸層$6 ,藉此,電性連接有有機EL元件60與像素電極25及EL用TFT 元件42。該導電性接觸層66係為調整高度而設。 其次’說明具備包含上述低分子型EL材料之發光層63之 有機EL元件60的顯示裝置50製造方法。首先說明形成對向 基板52。In addition, in the display device 50 of the present embodiment, a conductive contact layer $ 6 is provided as a convex portion between the pixel electrode 25 of the TFT substrate 51 and the organic EL element 60, whereby the organic EL element 60 and the pixel electrode are electrically connected 25 and EL TFT element 42. The conductive contact layer 66 is provided for height adjustment. Next, a method of manufacturing the display device 50 including the organic EL element 60 including the light-emitting layer 63 of the above-mentioned low-molecular EL material will be described. First, the formation of the counter substrate 52 will be described.
低分子型EL材料之發光層63通常使用掩模蒸鍍形成有機 EL元件60。因此於形成對向基板52時,如圖4(a)所示,首 先將掩模55設於對向基板52之對向電極27及陽極65側的預 定位置上。另外,本實施形態如後述,係採用液晶顯示元 件20與有機EL元件60共用信號線進行驅動的方法。因此, 在構造上,於對向電極27與陽極65之間形成有溝,以避免 導通。但是獨立驅動液晶顯示元件20與有機EL元件60時, 對向電極27與陽極65亦可導通。 其次,如圖4(b)及圖4(c)所示,通過掩模55之窗55a依序 形成孔輸送層64、發光層63、電子輸送層62及陰極61。 另外,於形成TFT基板51時,如圖5(a)及圖5(b)所示,在 形成有液晶用TFT元件22、EL用TFT元件42及像素電極25 -26-The light-emitting layer 63 of a low-molecular-type EL material is usually formed by mask evaporation to form an organic EL element 60. Therefore, when forming the counter substrate 52, as shown in Fig. 4 (a), the mask 55 is first set at predetermined positions on the counter electrode 27 and anode 65 sides of the counter substrate 52. The present embodiment is a method of driving the liquid crystal display element 20 and the organic EL element 60 using a common signal line, as described later. Therefore, a groove is formed between the counter electrode 27 and the anode 65 in structure to prevent conduction. However, when the liquid crystal display element 20 and the organic EL element 60 are driven independently, the counter electrode 27 and the anode 65 may be conducted. Next, as shown in Figs. 4 (b) and 4 (c), a hole transport layer 64, a light emitting layer 63, an electron transport layer 62, and a cathode 61 are sequentially formed through a window 55a of a mask 55. In forming the TFT substrate 51, as shown in FIGS. 5 (a) and 5 (b), the liquid crystal TFT element 22, the EL TFT element 42, and the pixel electrode 25 are formed.
588185 之丁 FT基板51上塗敷感光性導電樹脂後,進行掩模曝光, 僅導電性接觸層66保留導電樹脂。此時本實施形態之像素 電極25亦設於配置有有機el元件60的區域。該像素電極25 包含紹(A1)專具有反射性的導電膜,不過由於有機el元件 60僅在與像素電極25相反的顯示面側發光,因此像素電極 25的存在不影響光透過。此外,由於不需要另外形成有機 EL元件60背面的反射板,因此亦可減少步驟工時。 此外,上述陰極61通常係以金屬形成,不過並不限定於 此,亦可使用如導電性樹脂。另外,亦可以金屬或導電性 樹脂形成陰極61後,再形成導電性樹脂。再者,導電性樹 脂亦可使用噴墨進行塗敷。 此外’因本實施形態係對對向基板52射出有機El元件6〇 發出之光,因此須自對向基板52側流入電流至tft基板5 i 側。因而形成於對向基板52側之透明陽極65的電阻值高的 情況下,亦有可能降低發光效率,為求消除此問題,如圖6 所示,可沿著有機EL元件60之透明陽極65形成金屬電極65a ,以降低電阻值。該金屬電極65a可利用之材料須為鈦(Ti) 、组(Ta)專反射率低的材料。此外,為求進一步低電阻, 如圖7所示,亦可將包含鋁(A1)等低電阻金屬之金屬電極 65b與鈦(Ti)、鈕(Ta)等低反射率的金屬電極65 c形成疊層構 ie ’並A著黑矩陣3 3形成。此時使用低反射金屬係因以金 屬電極65a,65b反射外光,避免反差降低。此外,亦可沿著 黑矩陣33形成同樣目的的金屬電極。此種情況下,由於不 直接射達祐黑矩陣3 3所遮光的顯示面側,因此不限於反射 -27- 588185After the photosensitive conductive resin is coated on the FT substrate 51 of 588185, a mask exposure is performed, and only the conductive contact layer 66 retains the conductive resin. At this time, the pixel electrode 25 of this embodiment is also provided in a region where the organic el element 60 is arranged. The pixel electrode 25 includes a reflective conductive film (A1). However, since the organic el element 60 emits light only on the display surface side opposite to the pixel electrode 25, the presence of the pixel electrode 25 does not affect light transmission. In addition, since it is not necessary to separately form a reflective plate on the back of the organic EL element 60, the number of steps can be reduced. The cathode 61 is usually formed of a metal, but is not limited to this. For example, a conductive resin may be used. Alternatively, after the cathode 61 is formed of a metal or a conductive resin, a conductive resin may be formed. Furthermore, the conductive resin may be applied using inkjet. In addition, since this embodiment emits light from the organic El element 60 to the counter substrate 52, a current must flow from the counter substrate 52 side to the tft substrate 5 i side. Therefore, when the resistance value of the transparent anode 65 formed on the counter substrate 52 is high, the luminous efficiency may be reduced. In order to eliminate this problem, as shown in FIG. 6, the transparent anode 65 The metal electrode 65a is formed to reduce the resistance value. The material usable for the metal electrode 65a must be a material with low specific reflectance of titanium (Ti) and group (Ta). In addition, in order to further reduce the resistance, as shown in FIG. 7, a metal electrode 65 b including a low resistance metal such as aluminum (A1) and a metal electrode 65 c having a low reflectance such as titanium (Ti) and a button (Ta) may be formed The laminated structure ie 'and A is formed with a black matrix 3 3. In this case, a low-reflection metal system is used because the metal electrodes 65a and 65b reflect external light to avoid a decrease in contrast. Alternatively, metal electrodes with the same purpose may be formed along the black matrix 33. In this case, since the display surface side that is blocked by Dayou Black Matrix 3 3 is not directly hit, it is not limited to reflection -27- 588185
率低的材料。另外,圖7係顯示具有以高分子型El材料構 成發光層73的有機EL元件70,而使用上述低反射金屬之方 法均可運用於有機EL元件60 · 70。Low rate material. Fig. 7 shows an organic EL element 70 having a light-emitting layer 73 composed of a polymer-type El material. The method using the above-mentioned low reflection metal can be applied to organic EL elements 60 · 70.
再者’本實施形態於有機EL元件60與液晶層26的邊界上 未特別設置任何元件,不過並不限定於此,如亦可設置與 後述之第二種實施形態說明之有機EL元件7〇相同的遮光 層。於本實施形態之有機EL元件60上形成遮光層的情況下 ’因係將有機EL元件60形成層狀,因此在壁面上塗敷遮光 材料即可。 其次,如圖8(a)及圖8(b)所示,形成有機EL元件60之對向 基板52與TFT基板51彼此對準、貼合加以固定。此時,有 機EL·元件60係藉由導電性接觸層66電性連接於TFT基板51 ’不過宜在此等TFT基板51及對向基板52兩者上預先形成 導電性樹脂,以各導電性樹脂進行電性接觸。此係可防止 因金屬表面之氧化膜等造成接觸不良,並利用樹脂具有的 彈性容易取得接觸。Furthermore, in this embodiment, no element is particularly provided on the boundary between the organic EL element 60 and the liquid crystal layer 26, but it is not limited to this. For example, an organic EL element 7 described in the second embodiment described later may be provided. The same light-shielding layer. In the case where a light-shielding layer is formed on the organic EL element 60 of this embodiment, the organic EL element 60 is formed in a layered manner, so that a light-shielding material may be applied to the wall surface. Next, as shown in Figs. 8 (a) and 8 (b), the opposing substrate 52 and the TFT substrate 51 forming the organic EL element 60 are aligned, bonded, and fixed. At this time, the organic EL element 60 is electrically connected to the TFT substrate 51 through a conductive contact layer 66. However, it is preferable to form a conductive resin in advance on both of the TFT substrate 51 and the counter substrate 52 so as to have various conductivity. The resin makes electrical contact. This system prevents poor contact due to the oxide film on the metal surface, etc., and makes use of the elasticity of the resin to make contact easier.
而後,植入液晶。植入時可於貼合TFT基板51及對向基板 52後,以真空植入方法植入。 其次,說明有機EL元件60上使用之各構件的材質等。 首先,有機EL元件60可使用發出白色光之發光層63,並 直接使用液晶顯示元件20顯示上使用之濾色器層28。另外 ,並不限定於此,亦可使用發出紅(R)、綠(G)、藍(B)之任 何一種顏色的發光層63。此時亦可使濾色器層28的一部分 透明。 -28- 588185Then, a liquid crystal is implanted. During the implantation, the TFT substrate 51 and the counter substrate 52 are bonded together and then implanted by a vacuum implantation method. Next, materials and the like of each member used in the organic EL element 60 will be described. First, the organic EL element 60 may use a light-emitting layer 63 that emits white light, and directly use the color filter layer 28 for display on the liquid crystal display element 20. In addition, the invention is not limited to this, and a light-emitting layer 63 that emits any one of red (R), green (G), and blue (B) colors may be used. In this case, a part of the color filter layer 28 may be made transparent. -28- 588185
亦即,發光層63之發光,因紅(R)、綠(G)、藍(B)各色, 其發光照度的時間性惡化不同。因此顯示元件上使用發光 層63時,隨時間的經過色平衡被破壞。有關這一點,於使 用發出白色光之發光層63的情況下,可防止此種時間性色 平衡的惡化。另外,使用發出白色光之發光層63並且使用 各色之濾色器層28的情況下,因透過率藉由各色之遽色器 層28而變成1/3,因此光利用效率降低。That is, the light emission of the light-emitting layer 63 is different in the temporal degradation of the luminous illuminance due to the colors of red (R), green (G), and blue (B). Therefore, when the light-emitting layer 63 is used on a display element, the color balance is deteriorated over time. In this regard, when the light emitting layer 63 that emits white light is used, it is possible to prevent such a temporal color balance from being deteriorated. In addition, when the light emitting layer 63 emitting white light is used and the color filter layers 28 of each color are used, the transmittance is reduced to 1/3 by the color filter layers 28 of each color, so the light utilization efficiency is lowered.
因而,由於任何情況均有利弊,因此,考慮使用期間較 短之顯示裝置及比正確之色平衡更重視明亮度的顯示裝置 ’且使用紅(R)、綠(G)、藍(B)各種發光色的發光層63。另 外’要求長時間色平衡性能之電視等用途上,宜使用發出 白色·光的發光層63。Therefore, since there are advantages and disadvantages in any case, consider a display device with a shorter period of use and a display device that values brightness more than a correct color balance. A light emitting layer 63 of a light emitting color. In addition, for applications such as televisions that require long-term color balance performance, a light-emitting layer 63 that emits white and light is suitable.
其次’可使用於包含發出各色之低分子型發光材料之發 光層6 3的材料如:茶、蔥、菲 '祐、四氫蔥、螢光素、苑 、酞茈、莕茈、perinone、酞并周因酮、naphthaloperinone 、二苯丁二烯、四苯丁二烯、氧染莕鄰酮、喹啉金屬錯體 、亞胺、二苯蔥、diaminocarbazole、口奎 4 _、rubulan等。 另外發出白色光之發光層63的材料如使用藍色金屬錯體 (Znbox2:Zinc-benzoxyazol2)與黃色金屬錯體 (Znsq2:Zinc-styrylquinoline2)。亦可使用於其内摻雜螢光色 素 及 DCMl(4-(Dicyanomethylene)-2-methyl-6-Secondly, materials that can be used for the light-emitting layer 63 containing low-molecular-type light-emitting materials emitting various colors, such as: tea, green onion, phenanthrene, tetrahydroonion, fluorescein, yuan, phthalocyanine, pyrene, perinone, Benzophenone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxanthone, quinoline metal complex, imine, diphenyl onion, diaminocarbazole, Kou Kui 4 and rubulan. In addition, the material of the light emitting layer 63 that emits white light is, for example, a blue metal complex (Znbox2: Zinc-benzoxyazol2) and a yellow metal complex (Znsq2: Zinc-styrylquinoline2). It can also be used for doping with fluorescein and DCMl (4- (Dicyanomethylene) -2-methyl-6-
(4-dimethylaminostyryl)-4H-pyran)者。此外,亦可使用聚 合物材料之疊層及於聚乙烯咔唑中分散PBD (2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-l,3,4-oxadiazole) -29- 588185(4-dimethylaminostyryl) -4H-pyran). Alternatively, PBD (2- (4-Biphenylyl) -5- (4-tert-butylphenyl) -l, 3,4-oxadiazole) -29- 588185
(25) 的單層材料等。 此外,孔輸送層64之 材料如 菁naphthalocyanine 化合物、卟啉類、氧二氮茂、三氮雜茂、二氮雜茂、四氫 化二 氮雜茂 、氧氮 再者,電子輸送層62之材料如芴酮、anthraquinodimetan r 、diphenykinon、thiopyrandioxido、氧二氮茂、硫二氮雜 茂、四氮雜茂、perylene tetracarboxylic acid等0 陰極61之電極材料如紹(Al)、鎮(Mg)、銀(Ag)專金属。此 外,亦可在此等上堆疊鎳(Ni)、鈦(Ti)、钽(Ta)、金(Au)等 金屬材料以提高接觸性。 再者,連接TFT基板51與對向基板52用之導電性接觸層66 的連接導電性樹脂,可利用如特開平11-249299號公報中記 載之導電性粒子分散之感光性樹脂(富士 FILM株式會社製) 及雜諸「1986 The Chemical Society of Japan」之 「CHEMISTRY LETTERS,pp.469-472,1986」等記載之使 用聚氮茂的感光性導電聚合物。另外,詳細而言’特開平 11-249299號公報中係揭示有關碳黑等導電性粒子分散之 鲁 感光性分散物及感光性板的技術,並提及可藉由曝光及顯 像以形成圖案。此外,「CHEMISTRY LETTERS, ρρ.469-472, 1986」中揭示:使氮茂單體光化學聚合,使其具導電性以 · 形成聚氮茂,亦揭示:使用經過圖案化的電極材料° 其次,說明形成於對向基板52之相位差板31及偏光板32 的特性。此等相位差板3 1及偏光板32係用於在液晶顯示元 件20中除去特定之液晶模式,以構成除去特定液晶模式之 -30- (26) 反射型液晶顯示裝置,此時之相位差板31通常為1/4又。而 本實施形態之有機EL元件60的陰極61為提高反射效果而 使用鋁(A1)等金屬。因而於有機EL元件60不發光時,因陰 極61之光反射以致反差降低。因此,通常為防止反射,而 在有機EL元件60的顯示面側需要偏光板32與1/4又的相位 差板3 1。有關這一點,本實施形態於反射型之液晶顯示元 件20内預先設有同構造的偏光板32及相位差板31,因此無 須重新設置即可共用。 其次,參照圖9說明具備上述構造之顯示裝置50的驅動電 路。該驅動電路須主動驅動形成矩陣狀之作為顯示區域的 各顯示像素10…,就液晶顯示元件20及有機EL元件60之驅 動,係共用信號線及掃描信號線之閘極匯流排線3…及信號 線及資料信號線之源極匯流排線2a…。但是,本發明並不 限定於此,亦可適用於單純矩陣。此外,就詳細的驅動電 路於第七種實施形態中詳述。 如該圖所示,顯示裝置50之一個像素部分之電路構造係 液晶用TFT元件22之閘極連接於閘極匯流排線3,源極匯流 排線2a連接於液晶用TFT元件22的源極。此外,液晶用TFT 元件22之汲極22a與液晶顯示元件20、液晶輔助電容35及EL 用TFT元件42的閘極連接。此外,EL用TFT元件42之源極連 接於電流供給線2b,EL用TFT元件42之汲極連接於有機EL 元件60的陰極61。另外,上述構造之有機EL元件60係設於 EL用TFT元件42的汲極側,不過並不限定於此,如圖1 0所 示,亦可設於EL用TFT元件42的源極側。 588185(25) single-layer materials, etc. In addition, the material of the pore transport layer 64 such as cyanine naphthalocyanine compounds, porphyrins, oxadiazepines, triazacenes, diazepines, tetrahydrodiazepines, oxygen nitrogen, and the material of the electron transport layer 62 Such as acetophenone, anthraquinodimetan r, diphenykinon, thiopyrandioxido, oxodiazepine, thiadiazepine, tetrazamo, perylene tetracarboxylic acid, etc. 0 cathode 61 electrode materials such as Shao (Al), town (Mg), silver ( Ag) Special metals. In addition, metal materials such as nickel (Ni), titanium (Ti), tantalum (Ta), and gold (Au) may be stacked on top of each other to improve contact. The conductive resin for connecting the TFT substrate 51 and the conductive contact layer 66 for the counter substrate 52 may be a photosensitive resin (Fuji FILM Co., Ltd.) in which conductive particles are dispersed as described in Japanese Patent Application Laid-Open No. 11-249299. Co., Ltd.), and a photosensitive conductive polymer using polyazene as described in "CHEMISTRY LETTERS, pp. 469-472, 1986" and "Miscellaneous" 1986 The Chemical Society of Japan ". In addition, JP 11-249299 discloses in detail the technology of a photosensitive photosensitive dispersion and a photosensitive plate in which conductive particles such as carbon black are dispersed, and mentions that patterns can be formed by exposure and development . In addition, "CHEMISTRY LETTERS, ρρ.469-472, 1986" revealed: photochemical polymerization of nitrogenlocene monomers to make them conductive so as to form polynitrogenlocenes, and also revealed the use of patterned electrode materials ° Second The characteristics of the retardation plate 31 and the polarizing plate 32 formed on the counter substrate 52 will be described. These retardation plates 31 and the polarizing plate 32 are used to remove a specific liquid crystal mode from the liquid crystal display element 20 to form a -30- (26) reflective liquid crystal display device except a specific liquid crystal mode. The phase difference at this time The plate 31 is usually 1/4 again. The cathode 61 of the organic EL element 60 of this embodiment uses a metal such as aluminum (A1) to improve the reflection effect. Therefore, when the organic EL element 60 does not emit light, the contrast is reduced due to the reflection of light from the cathode 61. Therefore, in order to prevent reflection, a polarizing plate 32 and a quarter retardation plate 31 are required on the display surface side of the organic EL element 60. In this regard, in the present embodiment, a polarizing plate 32 and a retardation plate 31 having the same structure are provided in the reflective liquid crystal display element 20 in advance, and therefore they can be shared without re-setting. Next, a driving circuit of the display device 50 having the above-mentioned structure will be described with reference to Fig. 9. The driving circuit must actively drive the display pixels 10, which are matrix-shaped display areas, and the driving of the liquid crystal display element 20 and the organic EL element 60 is a gate bus line 3 of a common signal line and a scanning signal line ... and Source busbars 2a of signal lines and data signal lines. However, the present invention is not limited to this, and can be applied to a simple matrix. The detailed drive circuit will be described in detail in the seventh embodiment. As shown in the figure, the circuit structure of one pixel portion of the display device 50 is such that the gate of the liquid crystal TFT element 22 is connected to the gate bus line 3, and the source bus line 2a is connected to the source of the liquid crystal TFT element 22 . The drain electrode 22 a of the liquid crystal TFT element 22 is connected to the gate of the liquid crystal display element 20, the liquid crystal storage capacitor 35, and the EL TFT element 42. The source of the EL TFT element 42 is connected to the current supply line 2b, and the drain of the EL TFT element 42 is connected to the cathode 61 of the organic EL element 60. The organic EL element 60 having the above structure is provided on the drain side of the TFT element 42 for EL, but it is not limited to this. As shown in FIG. 10, it may be provided on the source side of the TFT element 42 for EL. 588185
(27)(27)
如此構成之顯示裝置50的驅動電路,以輸入於閘極匯流 排線3···之掃描線信號Vg開關液晶用TFT元件22,源極匯流 排線2a…之資料線信號Vs輸入於液晶顯示元件20。液晶顯 示元件20之亮燈狀態藉由液晶輔助電容35保持。此外,本 實施形態之EL用TFT元件42的EL用臨限值電壓Vth(OLED) 設定成高於液晶顯示元件20的動作範圍電壓。亦即,源極 匯流排線2a…之資料線信號Vs之電壓超過液晶顯示元件20 之驅動電壓範圍時,液晶顯示元件20飽和,且EL用TFT元 件42處於開啟狀態,有機EL元件60發光。 另外,液晶顯示元件20設定成正常白,於飽和狀態下變 成黑。因而,於有機EL元件60發光的電壓範圍,液晶顯示 元件·20形成有機EL元件60的黑矩陣,不因液晶顯示元件20 造成反差降低。The driving circuit of the display device 50 thus configured switches the liquid crystal TFT element 22 with the scanning line signal Vg input to the gate bus line 3 ···, and the data line signal Vs of the source bus line 2a ... Element 20. The lighting state of the liquid crystal display element 20 is maintained by the liquid crystal auxiliary capacitor 35. The EL threshold voltage Vth (OLED) of the EL TFT element 42 of this embodiment is set to be higher than the operating range voltage of the liquid crystal display element 20. That is, when the voltage of the data line signal Vs of the source bus line 2a ... exceeds the driving voltage range of the liquid crystal display element 20, the liquid crystal display element 20 is saturated, and the EL TFT element 42 is turned on, and the organic EL element 60 emits light. The liquid crystal display element 20 is set to be normally white, and becomes black in a saturated state. Therefore, in the voltage range in which the organic EL element 60 emits light, the liquid crystal display element 20 forms a black matrix of the organic EL element 60, and the contrast is not reduced by the liquid crystal display element 20.
此外,於僅液晶顯示元件20動作的電壓範圍,發光區域 12a不發光,並藉由設於面板顯示面之偏光板32與相位差板 31而形成黑的狀態。因而不因有機EL元件60造成液晶顯示 元件20的反差降低。 具體而言,如圖11所示,資料線信號Vs於EL用TFT元件 42未達EL用臨限值電壓Vth(OLED)時,有機EL元件60不發 光,而液晶顯示元件20反應,自亮顯示進行暗顯示,亦即 進行黑顯示。此外,資料線信號Vs大於EL用TFT元件42之 EL用臨限值電壓Vth(OLED)的情況下,液晶顯示元件20進 行暗顯示,不過,EL用TFT元件42之汲流因資料線信號Vs 而變化,並調整有機EL元件60的發光量進行發光型顯示。 -32- (28)In addition, in the voltage range in which only the liquid crystal display element 20 operates, the light emitting region 12a does not emit light, and a black state is formed by the polarizing plate 32 and the retardation plate 31 provided on the panel display surface. Therefore, the contrast of the liquid crystal display element 20 is not reduced by the organic EL element 60. Specifically, as shown in FIG. 11, when the data line signal Vs does not reach the EL threshold voltage Vth (OLED) for the EL TFT element 42, the organic EL element 60 does not emit light, and the liquid crystal display element 20 responds and self-lightens. The display performs a dark display, that is, a black display. When the data line signal Vs is greater than the EL threshold voltage Vth (OLED) of the TFT element 42 for EL, the liquid crystal display element 20 performs a dark display. However, the current drawn by the data line signal Vs for the EL TFT element 42 is caused by the data line signal Vs. Instead, the light emission amount of the organic EL element 60 is adjusted to perform a light-emitting display. -32- (28)
588185 另外有機EL元件60之發光量調整亦可藉由調整供給電壓 Vdd來進行。此外,本實施形態之顯示裝置$㈣驅動方法 並",、限疋,亦可使用其他的驅動方法,不過圖Η所示之驅 動方法其驅動電路為共用,因此最適宜。 、 另外,與上述驅動方法不同,上述有機EL元件6〇及液晶 、 .4示元件20兩者之顯示未予以一體化的情況下,驅動電路 可认计成可分別獨立驅動。此時之液晶顯示元件2〇須實施 正韦黑设定,使液晶顯示元件2〇於關閉狀態變成黑。此因 馨 液晶顯不το件20不動作時,液晶顯示元件2〇不致浪費電力 ’以提高顯示反差。 再者,組合透過型液晶顯示元件與反射型液晶顯示元件 之先.前的液晶顯示裝置内需要透過型顯示用的光源及其使 用的電源,而在同一個面板内組裝有機£1^元件6〇與反射型 液晶顯示元件20之本實施形態的顯示裝置5〇,如預先在驅 動器部具備電源時,亦可照度調節。 因此,本實施形態之顯示裝置5〇無須光源用之電源即可 降低成本、減少零件數量及小型化。另外,共用信號配線 藉由彳§號配線之電壓切換發光顯示元件及利用外光進行 顯示之非發光顯示元件的情況下,如前述圖2所示,相當於 自行發光照度之點W降至〇。 因而,本實施形態之顯示裝置50於各顯示像素1〇·••内同 · 時設有包含液晶顯示元件20反射外光以進行顯示之非發光 · 顯示元件的反射區域11 ;與包含有機EL元件60直接調節以 進行顯示之發光顯示元件的發光區域12a。 •33-588185 In addition, the light emission amount of the organic EL element 60 can be adjusted by adjusting the supply voltage Vdd. In addition, the driving method of the display device of this embodiment is not limited to other driving methods, but the driving method shown in FIG. 2 is the most suitable because its driving circuit is shared. In addition, unlike the driving method described above, when the display of the organic EL element 60 and the liquid crystal display element 20 is not integrated, the driving circuit can be considered to be driven independently. At this time, the liquid crystal display element 20 must be set to be positive black, so that the liquid crystal display element 20 becomes black in the off state. For this reason, when the liquid crystal display device 20 is not operated, the liquid crystal display element 20 does not waste power to increase the display contrast. Furthermore, the combination of a transmissive liquid crystal display element and a reflective liquid crystal display element. The front liquid crystal display device requires a light source for transmissive display and the power source used in it, and organic components are assembled in the same panel. 6 The display device 50 of this embodiment of the 〇 and reflective liquid crystal display element 20 can also be adjusted in illuminance if it has a power supply in the driver section in advance. Therefore, the display device 50 of this embodiment can reduce the cost, the number of parts, and the miniaturization without requiring a power source for the light source. In addition, in the case where the common signal wiring switches the light-emitting display element and the non-light-emitting display element using external light for voltage display, as shown in FIG. 2 described above, the point W corresponding to the self-luminous illuminance is reduced to 0. . Therefore, the display device 50 of this embodiment is provided with a non-light-emitting display element 11 including a liquid crystal display element 20 that reflects external light for display at the same time as each display pixel 10; The light emitting region 12a of the light emitting display element that the element 60 directly adjusts for display. • 33-
588185 由於在一對絕緣性基板21與絕緣性基板29之間同時設有 液晶顯示元件20與有機EL元件6〇,因此可減少顯示裝置的 厚度。 由於有機ELtc件60係朝向顯示面側自行發光直接進行顯 示,因此並非如先前般使用有機£乙元件6〇作為背照光及前 ,- 照光。因此可提高來自有機EL元件6〇之光的利用效率,並 且減少顯示裝置的厚度。亦即,背照光及前照光之厚度通 常約為3〜6毫米,不需要背照光而減少厚度的效果非常大。 · 此外,不需要背照光係表示亦不需要先前設置於液晶面板 之背面面板與背照光之間的背面側偏光板、相位差板及玻 璃基板。因此,藉由不需要此等背面側之偏光板、相位差 板及玻璃基板,亦可進一步減少顯示裝置的厚度。 再者,不需要背照光與背面側之偏光板及相位差板的效 果不僅是減少整個顯示裝置的厚度。亦即零件數量減少方 面,除材料費之外,亦可減少組裝工時及各個構件檢查等 所需的成本,因而可降低整個顯示裝置的製造成本。 因此,可提供一種促進小型化及成本降低,且自室外至 · 室内辨識性均佳的顯示裝置5〇。 此外,本實施形態之顯示裝置50具備彼此對向之絕緣性 基板2 1與絕緣性基板29 ,液晶顯示元件2〇及有機EL元件6〇 · 均設於絕緣性基板21與絕緣性基板21之間。由於液晶顯示 元件20及有機元件60均收納於絕緣性基板2丨與絕緣性 , 基板21之間,因此可確實減少顯示裝置5〇的厚度。 此外,本實施形態之顯示裝置5〇於發光區域12a内不存在 -34· 588185588185 Since the liquid crystal display element 20 and the organic EL element 60 are provided simultaneously between the pair of the insulating substrate 21 and the insulating substrate 29, the thickness of the display device can be reduced. Since the organic ELtc element 60 emits light directly on the display surface side for direct display, the organic EL element 60 is not used as the back light and the front light as before. Therefore, the utilization efficiency of the light from the organic EL element 60 can be improved, and the thickness of the display device can be reduced. That is, the thickness of the back light and the front light is usually about 3 to 6 mm, and the effect of reducing the thickness without the back light is very large. · In addition, no backlight is required, and no back polarizer, retardation plate, or glass substrate that was previously installed between the back panel of the LCD panel and the backlight is required. Therefore, the thickness of the display device can be further reduced by eliminating the need for such a polarizing plate, a retardation plate, and a glass substrate on the back side. Furthermore, the effect of not requiring a backlight and a polarizer and a retardation plate on the back side is not only to reduce the thickness of the entire display device. That is, in terms of reducing the number of parts, in addition to the material cost, the costs required for assembly man-hours and inspection of each component can be reduced, thereby reducing the manufacturing cost of the entire display device. Therefore, it is possible to provide a display device 50 that promotes miniaturization and cost reduction and has excellent visibility from outdoor to indoors. In addition, the display device 50 of this embodiment includes an insulating substrate 21 and an insulating substrate 29 facing each other, and the liquid crystal display element 20 and the organic EL element 60 are both provided on the insulating substrate 21 and the insulating substrate 21. between. Since the liquid crystal display element 20 and the organic element 60 are both housed between the insulating substrate 2 and the insulating substrate 21, the thickness of the display device 50 can be reliably reduced. In addition, the display device 50 of this embodiment does not exist in the light emitting region 12a. -34 · 588185
(30)(30)
液晶顯示元件20的液晶層26。亦即有機EL元件60之發光層 63的顯示面側不存在液晶顯示元件20的液晶層26。亦即表 示,自有機EL元件60向顯示面方向射出之光不通過液晶層 26,而係向顯示裝置50外射出。另外,發光層63之顯示面 側不存在液晶層26的狀態,除本實施形態之外,如第三種 實施形態所示,液晶層26之顯示面側的端面存在於顯示面 側,而非發光層63之顯示面侧的端面,但是藉由絕緣性凸 部81等絕緣層的存在,有時發光層63之顯示面側,亦即發 光區域12a之液晶層26被排除《此外,其他的構造,可考慮 發光層63存在於液晶顯示元件20之顯示面側的型式。 由於有機EL元件60之射出光不因液晶顯示元件20之液晶 層26而散亂並被吸收,因此不易引起照度降低。因此可提 高有機EL元件60的顯示品質。The liquid crystal layer 26 of the liquid crystal display element 20. That is, the liquid crystal layer 26 of the liquid crystal display element 20 does not exist on the display surface side of the light emitting layer 63 of the organic EL element 60. That is to say, the light emitted from the organic EL element 60 toward the display surface does not pass through the liquid crystal layer 26 but is emitted outside the display device 50. In addition, in a state where the liquid crystal layer 26 does not exist on the display surface side of the light emitting layer 63, except for this embodiment, as shown in the third embodiment, the end face of the display surface side of the liquid crystal layer 26 exists on the display surface side instead of The end surface on the display surface side of the light emitting layer 63. However, due to the presence of an insulating layer such as an insulating convex portion 81, the display surface side of the light emitting layer 63, that is, the liquid crystal layer 26 in the light emitting region 12a may be excluded. As the structure, a type in which the light emitting layer 63 exists on the display surface side of the liquid crystal display element 20 can be considered. Since the light emitted from the organic EL element 60 is not scattered and absorbed by the liquid crystal layer 26 of the liquid crystal display element 20, it is difficult to cause a decrease in illumination. Therefore, the display quality of the organic EL element 60 can be improved.
此外,本實施形態之顯示裝置50之液晶顯示元件20的液 晶層26與有機EL元件60的發光層63設於同一層。而所謂同 一層,未必須要兩者為同一層級,亦包含於液晶顯示元件 20之液晶層26内含有有機EL元件60的發光層63。 因而,可在先前之包含液晶顯示元件20之非發光顯示元 件的厚度範圍内收納有機EL元件60。因此,可確實地減少 顯示裝置50的厚度。 此外·,本實施形態之顯示裝置50,其驅動有機EL元件60 及液晶顯示元件20之液晶用TFT元件22及EL用TFT元件42 等驅動元件係形成於一個TFT基板51側,並在與該TFT基板 5 1對向之對向基板52側形成有有機EL元件60。 -35- 588185In addition, the liquid crystal layer 26 of the liquid crystal display element 20 of the display device 50 of this embodiment and the light emitting layer 63 of the organic EL element 60 are provided on the same layer. The so-called same layer does not necessarily need to be the same layer, and the light-emitting layer 63 containing the organic EL element 60 is also included in the liquid crystal layer 26 of the liquid crystal display element 20. Therefore, the organic EL element 60 can be housed within the thickness range of the non-light-emitting display element including the liquid crystal display element 20 previously. Therefore, the thickness of the display device 50 can be reliably reduced. In addition, in the display device 50 of this embodiment, driving elements such as the liquid crystal TFT element 22 and the EL TFT element 42 that drive the organic EL element 60 and the liquid crystal display element 20 are formed on one TFT substrate 51 side, and An organic EL element 60 is formed on the TFT substrate 51 facing the opposing substrate 52 side. -35- 588185
(31) 因而,於製造顯示裝置50時,可分別形成有機EL元件60 與液晶用TFT元件22及EL用TFT元件42等的驅動元件。因此 於形成有機EL元件60時’可不受液晶用tft元件22及EL用 TFT元件42等驅動元件形成時之步驟溫度、藥品、及氣體 等的影響。 ' 再者,由於有機EL元件60之射出光係射達對向基板52側 ,因此未被驅動有機EL元件60之EL用TFT元件42遮蔽,可 有效地利用光。再者,由於可自陽極65之透明導電層形成 · 發光層63,因此可以先前相同的構造形成發光層63。 再者,將有機EL元件60設於與液晶顯示元件2〇之液晶層 26同一層時,有機EL元件60之形成高度與液晶顯示元件2〇 之液·晶層26的厚度不限定為一致。 有關這一點,本實施形態係在TFT基板51上設有調整高度 用的導電性接觸層66,並且在該導電性接觸層66上形成有 有機EL元件60。 因此,可確實地將有機EL元件60設於與液晶顯示元件20 之液晶層26的同一層上。 0 此外,本實施形態之顯示裝置50的導電性接觸層66係以 導電性樹脂形成❶因此,藉由自TFT基板51形成包含導電 性樹脂之導電性接觸層66,可輕易地自tft基板5 1側調整 · 高度。 此外,本實施形態之顯示裝置5〇,於有機el元件60之陰 極61與TFT基板5 1側的接合面上設有導電性漿液或導電性 樹脂等導電性材料。 -36· 588185(31) Therefore, when the display device 50 is manufactured, driving elements such as the organic EL element 60, the liquid crystal TFT element 22, and the EL TFT element 42 can be formed separately. Therefore, when the organic EL element 60 is formed, it is not affected by the step temperature, chemicals, and gas when the driving elements such as the liquid crystal tft element 22 and the EL TFT element 42 are formed. In addition, since the emitted light of the organic EL element 60 reaches the opposite substrate 52 side, it is not shielded by the EL TFT element 42 that drives the organic EL element 60, and light can be effectively used. Furthermore, since the light emitting layer 63 can be formed from the transparent conductive layer of the anode 65, the light emitting layer 63 can be formed with the same structure as before. When the organic EL element 60 is provided on the same layer as the liquid crystal layer 26 of the liquid crystal display element 20, the formation height of the organic EL element 60 is not limited to the thickness of the liquid crystal layer 26 of the liquid crystal display element 20. In this regard, in this embodiment, a conductive contact layer 66 for height adjustment is provided on the TFT substrate 51, and an organic EL element 60 is formed on the conductive contact layer 66. Therefore, the organic EL element 60 can be reliably provided on the same layer as the liquid crystal layer 26 of the liquid crystal display element 20. 0 In addition, the conductive contact layer 66 of the display device 50 of this embodiment is formed of a conductive resin. Therefore, by forming the conductive contact layer 66 containing a conductive resin from the TFT substrate 51, the tft substrate 5 can be easily formed. 1 side adjustment and height. In the display device 50 of this embodiment, a conductive material such as a conductive slurry or a conductive resin is provided on a bonding surface of the cathode 61 of the organic el element 60 and the TFT substrate 51 side. -36 · 588 185
(32) 導電性漿液或導電性樹脂,一般而言即使硬化依然柔軟 而具有彈性。因此,可確實電性接合有機EL元件60之陰極 61與TFT基板51側。 此外,本實施形態之顯示裝置50之有機EL元件60與液晶 顯示元件20係共用源極匯流排線2a···及閘極匯流排線3… 進行驅動。(32) In general, a conductive slurry or a conductive resin is soft and elastic even when hardened. Therefore, the cathode 61 of the organic EL element 60 and the TFT substrate 51 side can be electrically bonded. In addition, the organic EL element 60 and the liquid crystal display element 20 of the display device 50 of this embodiment are driven by sharing the source bus line 2a ... and the gate bus line 3 ....
因而,可提供一種防有機EL元件60與液晶顯示元件20 之驅動電路構造趨於複雜,確實地減少顯示裝置之厚度及 構件成本的顯示裝置50。 此外,本實施形態之顯示裝置50的有機EL元件60與液晶 顯示元件20亦可彼此獨立驅動。因而可個別驅動有機EL元 件60與液晶顯示元件20。另外,彼此獨立驅動有機EL元件 60與液晶顯示元件20之構造,如有機EL元件60與液晶顯示 元件20分別具有源極匯流排線2a···及閘極匯流排線3···,或 分別設置源極匯流排線2a…,而共用閘極匯流排線3···。Therefore, it is possible to provide a display device 50 in which the structure of the driving circuit of the organic EL element 60 and the liquid crystal display element 20 tends to be complicated, and the thickness and the component cost of the display device are reliably reduced. In addition, the organic EL element 60 and the liquid crystal display element 20 of the display device 50 of this embodiment may be driven independently of each other. Therefore, the organic EL element 60 and the liquid crystal display element 20 can be individually driven. In addition, the structures that drive the organic EL element 60 and the liquid crystal display element 20 independently of each other, for example, the organic EL element 60 and the liquid crystal display element 20 have a source bus line 2a ... and a gate bus line 3 ... respectively, or The source busbars 2a ... are provided separately, and the common gate busbars 3 ... are provided.
此外,本實施形態之顯示裝置50之驅動有機EL元件60及 液晶顯示元件20之EL用TFT元件42及液晶用TFT元件22係 形成於一個基板之TFT基板51上。因此,藉由在TFT基板51 上形成EL用TFT元件42及液晶用TFT元件22,可更輕易地製 造顯示裝置50,且可避免構造複雜度。 此外,本實施形態之顯示裝置50的光調節元件係反射型 之液晶顯示元件20,發光顯示元件係有機EL元件60。 因而,藉由將反射型之液晶顯示元件20構成光調節元件 ,可輕易地在各顯示像素10…内同時設置液晶顯示元件20 -37-In addition, the EL TFT element 42 and the liquid crystal TFT element 22 for driving the organic EL element 60 and the liquid crystal display element 20 of the display device 50 of this embodiment are formed on a TFT substrate 51 of one substrate. Therefore, by forming the TFT element 42 for EL and the TFT element 22 for liquid crystal on the TFT substrate 51, the display device 50 can be manufactured more easily, and the structural complexity can be avoided. The light adjusting element of the display device 50 of this embodiment is a reflective liquid crystal display element 20, and the light emitting display element is an organic EL element 60. Therefore, by constituting the light-adjusting element with the reflective liquid crystal display element 20, it is possible to easily set the liquid crystal display element 20 at the same time in each display pixel 10 ...
588185 及有機EL元件60。 因而’可提供一種確實促進小型化及成本降低,並自室 外至室内辨識性均佳的顯示裝置5 〇。 此外,本實施形態之顯示裝置5〇係藉由相同材料將液晶 ’ 顯示元件20之對向電極27與有機EL元件60之陽極65形成 · · 於同一層上。因此可共用製造步驟,可簡化製程。 此外’本實施形態之顯示裝置5〇係在一個基板上之丁FT 基板51上形成液晶用TFT元件22及EL用TFT元件42,並在另 參 一個基板上之對向基板52上形成有機EL元件60後,藉由合 併此等TFT基板51與對向基板52予以一體化。 因而’於製造顯示裝置5〇時,可分別形成有機EL元件60 與液·晶用TFT元件22及EL用TFT元件42。因此於形成有機 EL元件60時,可不受形成液晶用TFT元件22及EL用TFT元 件42時之步驟溫度、藥品、及氣體等的影響。 此外本實施形態之顯示裝置5〇的製造方法,亦可先形成 有機EL元件60與核心部77 · 77之任何一個。因而可優先進 行可輕易形成有機EL元件60或核心部77 · 77的步驟。 春 此外,本實施形態之顯示裝置50,於有機EL元件60之陰 極61與TFT基板51側的接合面上設置導電性漿液或導電性 樹脂後,貼合TFT基板51與對向基板52。 · 因而,藉由在有機EL元件60之陰極61與TFT基板51側之 接合面塗敷各樹脂或樹脂與漿液,可藉由各樹脂與漿液之 彈性提高接觸性能。 〔第二種實施形態〕 •38- (34) (34)588185 and organic EL element 60. Therefore, it is possible to provide a display device 50 that reliably promotes miniaturization and cost reduction and has excellent visibility from outside to inside. In the display device 50 of this embodiment, the counter electrode 27 of the liquid crystal 'display element 20 and the anode 65 of the organic EL element 60 are formed from the same material on the same layer. Therefore, manufacturing steps can be shared, and the manufacturing process can be simplified. In addition, the display device 50 of this embodiment forms a TFT element 22 for liquid crystal and a TFT element 42 for EL on a FT substrate 51 on one substrate, and an organic EL is formed on a counter substrate 52 on the other substrate. After the element 60, the TFT substrate 51 and the counter substrate 52 are integrated by integrating them. Therefore, when the display device 50 is manufactured, the organic EL element 60, the liquid crystal TFT element 22, and the EL TFT element 42 can be formed separately. Therefore, when the organic EL element 60 is formed, it is not affected by the process temperature, chemicals, and gases when the TFT element 22 for liquid crystal and the TFT element 42 for EL are formed. In addition, in the manufacturing method of the display device 50 of this embodiment, either the organic EL element 60 or the core portion 77 · 77 may be formed first. Therefore, a step that can easily form the organic EL element 60 or the core portion 77 · 77 can be performed preferentially. In addition, in the display device 50 of this embodiment, a conductive slurry or a conductive resin is provided on the bonding surface of the cathode 61 of the organic EL element 60 and the TFT substrate 51, and then the TFT substrate 51 and the counter substrate 52 are bonded together. Therefore, by applying each resin or resin and slurry to the joint surface of the cathode 61 and the TFT substrate 51 side of the organic EL element 60, the contact performance can be improved by the elasticity of each resin and the slurry. [Second Embodiment] • 38- (34) (34)
參照圖12至圖l 5說明本發明其他實施形態如下。另外, 為便於說明,具有與前述第一種實施形態之圖式顯示之構 件相同功能的構件註記相同符號,並省略其說明。 本貫施形態係說明以高分子型EL材料形成有機E]L元件。 如圖12所示,本實施形態之有機el元件70的發光層73係 以南分子型EL材料構成,並且於該發光層73上下直接接合 有陰極61及陽極65。亦即,本實施形態之有機E]L元件7〇省 略存在於前述第一種實施形態之有機EL元件6〇内之孔輸 送層64及電子輸送層62。不過本實施形態亦可設置此等孔 輸送層64及電子輸送層62。 此外’本實施形態形成有核心部77 · 77,作為於發光層 73之兩側與液晶層26絕緣用的保護層。另外,於形成發光 層73時,可先形成核心部77 · 77 ,並在其中噴射塗敷或印 刷EL材料以形成發光層73。 上述核心部77 · 77可以光阻、聚醯亞胺等材料作成。此 外’核心部77 · 77宜為遮光性材料。此因自發光層73射出 之光橫方向洩漏的光若進入液晶層26造成迷光,而導致反 差降低。 以下說明上述有機EL元件70的製造方法。 首先’如圖13(a)所示,在對向基板52之對向電極27及陽 極65側形成核心部77 · 77。其係以使用光阻或聚醯亞胺之 光姓刻步驟及噴墨塗敷方式形成。 其次’如圖13(b)所示,在該部分如以噴墨塗敷方式形成 包含高分子型EL材料的發光層73。高分子型EL材料如: -39- (35)12 to FIG. 15 to explain another embodiment of the present invention as follows. In addition, for convenience of explanation, components having the same functions as those of the component shown in the first embodiment in the figure are denoted by the same reference numerals, and descriptions thereof are omitted. This embodiment describes the formation of an organic E] L device using a polymer-type EL material. As shown in FIG. 12, the light-emitting layer 73 of the organic el element 70 of this embodiment is made of a south molecular type EL material, and a cathode 61 and an anode 65 are directly bonded to the light-emitting layer 73 above and below. That is, the organic E] L element 70 of this embodiment omits the hole transport layer 64 and the electron transport layer 62 existing in the organic EL element 60 of the aforementioned first embodiment. However, in this embodiment, such a hole transporting layer 64 and an electron transporting layer 62 may be provided. In addition, in this embodiment, core portions 77 · 77 are formed as protective layers for insulating the liquid crystal layer 26 on both sides of the light emitting layer 73. In addition, when the light emitting layer 73 is formed, the core portion 77 · 77 may be formed first, and an EL material may be spray-coated or printed thereon to form the light emitting layer 73. The core portion 77 · 77 can be made of a material such as photoresist and polyimide. The core portion 77 · 77 is preferably a light-shielding material. This is because the light leaked from the light emitting layer 73 in the transverse direction enters the liquid crystal layer 26 and causes stray light, resulting in a decrease in contrast. A method for manufacturing the organic EL element 70 will be described below. First, as shown in Fig. 13 (a), core portions 77 · 77 are formed on the counter electrode 27 and the anode 65 side of the counter substrate 52. It is formed by a photoresisting step using a photoresist or polyimide and an inkjet coating method. Next, as shown in Fig. 13 (b), a light-emitting layer 73 containing a polymer-type EL material is formed in this portion by, for example, inkjet coating. Polymer type EL materials such as: -39- (35)
588185 P〇iyPhenyienevinylene、p〇lyflu〇rene、多塞吩、 polyvinylcarbazole等。 最後,如圖13(c)所示,亦可在其上塗敷導電性高分子材 料以形成陰極61。此外,亦可於形成鋁(A1)、鎂(Mg)、鋁(A1) ,· 鎂(Mg)合金等金屬材料、金屬漿液後,塗敷導電性高分 ·· 子材料作為陰極61,不過圖上並未顯示。 另外’如圖14所示’ TFT基板51側可在形成有液晶用TFT 疋件22、EL用丁FT元件42及像素電極25之TFT基板51上,以 _ 喷墨塗敷方式塗敷感光性導電樹脂,以形成導電性接觸層 66 〇 其次’如圖15(a)及圖15(b)所示,將形成有機EL元件70 之對向基板52與TFT基板51彼此對準,與前述第一種實施 形態同樣地貼合固定。 而後,植入、封裝液晶。此時所形成之核心部77 · 77在 掃描線方向上涵蓋顯示面板寬度形成時,可自顯示面板端 面沿著掃描線真空植入。 另外,其他構造及該有機EL元件70之驅動動作、及顯示 方法等與前述第一種實施形態相同,因此省略其說明。 因而本實施形態之有機EL元件70至少包含發光層73及形 成於該發光層73兩側之陰極61及陽極65。 因此,如於形成包含高分子型EL材料之發光層73時,可 自最小限度之構造要素形成有機EL元件70。 再者,上述之顯示裝置50的有機EL元件70係設於與液晶 顯不元件20之液晶層26的同一層,因此液晶顯不元件20之 -40- 588185588185 Poiyi Phenyienevinylene, polyfluene, docephene, polyvinylcarbazole and the like. Finally, as shown in Fig. 13 (c), a conductive polymer material may be applied to form the cathode 61. In addition, after forming metal materials such as aluminum (A1), magnesium (Mg), aluminum (A1), and magnesium (Mg) alloys and metal slurries, a conductive material with high conductivity is used as the cathode 61, but Not shown on the figure. In addition, as shown in FIG. 14, on the TFT substrate 51 side, the TFT substrate 51 on which the TFT element 22 for liquid crystal, the FT element 42 for EL and the pixel electrode 25 is formed can be coated with an inkjet coating method. A conductive resin is used to form a conductive contact layer 66. Secondly, as shown in FIGS. 15 (a) and 15 (b), the opposing substrate 52 and the TFT substrate 51 forming the organic EL element 70 are aligned with each other, as described above. One embodiment is similarly attached and fixed. Then, the liquid crystal is implanted and encapsulated. At this time, when the core portion 77 · 77 is formed to cover the width of the display panel in the scanning line direction, it can be vacuum implanted from the end of the display panel along the scanning line. The other structures, the driving operation of the organic EL element 70, and the display method are the same as those of the first embodiment described above, and therefore descriptions thereof are omitted. Therefore, the organic EL element 70 of this embodiment includes at least a light emitting layer 73 and a cathode 61 and an anode 65 formed on both sides of the light emitting layer 73. Therefore, when the light-emitting layer 73 containing a polymer-type EL material is formed, the organic EL element 70 can be formed from the minimum structural elements. Furthermore, the organic EL element 70 of the display device 50 described above is disposed on the same layer as the liquid crystal layer 26 of the liquid crystal display element 20, so the liquid crystal display element 20 of -40-588185
(36) 液晶層26與有機EL元件60可能彼此影響。如有機el元件70 亦可能因液晶顯示元件20之液晶等之液晶層26與有機el 元件70接觸而造成兩者性能降低、材料惡化。此外,亦可 能因有機EL元件70與空氣及水分接觸而造成惡化。 但是’本實施形態係經由核心部77 · 77鄰接有機EL元件 70之發光層73與液晶顯示元件20之液晶層26。 因此,可防止有機EL元件70之發光層73與液晶顯示元件 20之液晶層26彼此影響。亦即,將有機el元件70設於與液 晶顯示元件2 0之液晶層2 6同一層後,可防止兩者性能降低 及材料惡化。此外,於顯示裝置50之製造過程中,如在對 向基板52側形成有機EL元件70時,藉由以核心部77 · 77及 陰極61保護發光層73,可防止發光層73與空氣及水分接觸 而惡化。 再者,亦考慮有機EL元件70所發出之光可能洩漏至鄰接 之液晶顯示元件20。 有關這一點,由於本實施形態之顯示裝置5〇的核心部77 • 77具有遮光功能,因此可防止有機el元件70所發出之光 )¾漏至液晶顯不元件20的液晶層26。 〔第三種實施形態〕 參照圖16至圖19說明本發明另外實施形態如下。另外, 為便於說明’具有與刖述第一種實施形態及第二種實施形 態之圖式顯示之構件相同功能的構件註記相同符號,並省 略其說明。 如圖16所示,本實施形態之顯示裝置5〇在對向基板52側 -41 ·(36) The liquid crystal layer 26 and the organic EL element 60 may affect each other. If the organic el element 70 is in contact with the organic el element 70, the liquid crystal layer 26 of the liquid crystal display element 20 or the like may cause the performance and material degradation of the two. In addition, the organic EL element 70 may be deteriorated by contact with air and moisture. However, in this embodiment, the light emitting layer 73 of the organic EL element 70 and the liquid crystal layer 26 of the liquid crystal display element 20 are adjacent to each other via the core portion 77 · 77. Therefore, it is possible to prevent the light emitting layer 73 of the organic EL element 70 and the liquid crystal layer 26 of the liquid crystal display element 20 from affecting each other. That is, when the organic el element 70 is provided on the same layer as the liquid crystal layer 26 of the liquid crystal display element 20, it is possible to prevent the performance and material degradation of the two. In addition, in the manufacturing process of the display device 50, when the organic EL element 70 is formed on the opposing substrate 52 side, the light emitting layer 73 is protected by the core portion 77 · 77 and the cathode 61, thereby preventing the light emitting layer 73 and air and moisture. Worsened by contact. Furthermore, it is considered that light emitted from the organic EL element 70 may leak to the adjacent liquid crystal display element 20. In this regard, since the core portion 77 • 77 of the display device 50 of this embodiment has a light shielding function, it is possible to prevent the light emitted from the organic el element 70 from leaking to the liquid crystal layer 26 of the liquid crystal display element 20. [Third Embodiment] Another embodiment of the present invention will be described below with reference to Figs. 16 to 19. In addition, for the convenience of explanation, components having the same functions as those of the components shown in the first embodiment and the second embodiment are shown with the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 16, the display device 50 of this embodiment is on the opposite substrate 52 side -41 ·
588185 設置硬質且透明之凸部的絕緣性凸部81,於TFT基板5 1側 設置有機EL元件70。上述絕緣性凸部81為控制液晶層26之 厚度用的柱。 亦即,液晶層26之厚度通常多設置成3〜5em。而有機EL 元件70之厚度約為〇·1〜〇.5// m。前述第一種實施形態及第 ' 二種實施形態顯示之圖1及圖12之有機EL元件60及有機EL 元件70係以連接樹脂之導電性接觸層66調整其厚度差。 反之,本實施形態係設置預先考慮液晶層26與有機EL元 · 件70厚度差之高度的絕緣性凸部81,另外,圖16中雖未明 確記載連接部,不過實際存在連接部。 形成上述絕緣性凸部81之材料須使用高透過率樹脂材料 。如可使用JSR株式會社製之感光性間隔片材料,製品名稱 為「OPTOMER — NN系列」。該高透過率樹脂材料之形成後 硬度高於前述導電性接觸層66及連接部所使用之連接樹脂 。基於該性質,因此可藉由設定高度有效地保持一定之對 向基板52與TFT基板51的距離。 先前之液晶層26的厚度受到散佈於該液晶層26之間隔片 · 的限制,但因位於液晶層26的像素顯示面上,因而引起反 差降低、散亂及圖像品質降低。此外,即使藉由間隔片仍 未能控制足夠的厚度。 但是,本實施形態係藉由該絕緣性凸部8丨控制液晶層26 的厚度’可提高液晶層26厚度的控制精度,並且亦可提高 面板強度。 另外,本實施形態之絕緣性凸部81雖僅使用於控制上述 -42- 588185588185 An insulating convex portion 81 having a hard and transparent convex portion is provided, and an organic EL element 70 is provided on the TFT substrate 51 side. The insulating convex portion 81 is a pillar for controlling the thickness of the liquid crystal layer 26. That is, the thickness of the liquid crystal layer 26 is usually set to 3 to 5 em. The thickness of the organic EL element 70 is about 0.1 to 0.5 / m. The organic EL element 60 and the organic EL element 70 of FIGS. 1 and 12 shown in the aforementioned first embodiment and the second embodiment are adjusted in thickness difference by connecting the conductive contact layer 66 of the resin. In contrast, this embodiment is provided with an insulating convex portion 81 that takes into consideration the height difference between the thickness of the liquid crystal layer 26 and the organic EL element 70. In addition, although the connection portion is not explicitly described in FIG. 16, the connection portion actually exists. As the material for forming the insulating convex portion 81, a high transmittance resin material must be used. If a photosensitive spacer material made by JSR Corporation is used, the product name is "OPTOMER — NN series". The hardness of the high-transmittance resin material is higher than that of the connection resin used for the conductive contact layer 66 and the connection portion. Due to this property, it is possible to effectively maintain a certain distance between the opposing substrate 52 and the TFT substrate 51 by setting the height. Previously, the thickness of the liquid crystal layer 26 was limited by the spacers scattered on the liquid crystal layer 26. However, the liquid crystal layer 26 was located on the pixel display surface of the liquid crystal layer 26, which caused a decrease in contrast, scattering, and image quality. In addition, even with a spacer, a sufficient thickness cannot be controlled. However, in the present embodiment, the thickness of the liquid crystal layer 26 is controlled by the insulating convex portion 8 丨 to increase the control accuracy of the thickness of the liquid crystal layer 26 and also increase the panel strength. In addition, the insulating convex portion 81 of this embodiment is used only for controlling the above-42- 588185.
(38)(38)
的厚度,但是並不限定於此,亦可利用該絕緣性凸部8 1作 為控制來自有機EL元件70之光的構件,亦即,亦可作為控 制來自有機EL元件70之光的光學元件。基於此目的,如圖 17所示,可形成包含將兩層折射率不同之數個透明樹脂形 成鋸齒狀凸部之鋸齒狀凸部82a · 82b的絕緣性凸部82。藉 由此種構造。可使自有機EL元件70射出之光具有指向性。 此外,藉由改變鑛齒形狀,可改變指向特性,因此可獲得 與液晶顯示裝置同樣的視野角特性。 此時自顯示面觀察本實施形態之有機EL元件70時,如圖 18所示,W、L所決定之範圍相當於一個顯示像素,並 被分割成各個反射區域11與發光區域12a。此外,如該圖所 示,反射區域11與發光區域12a分別形成有連接像素電極25 與液晶用TFT元件22或EL用TFT元件42的通孔25a。The thickness is not limited to this, and the insulating convex portion 81 can be used as a member for controlling light from the organic EL element 70, that is, it can also be used as an optical element for controlling light from the organic EL element 70. For this purpose, as shown in FIG. 17, an insulating protrusion 82 including a saw-toothed protrusion 82a, 82b in which a plurality of transparent resins having different refractive indices are formed into a saw-toothed protrusion can be formed. By this structure. The light emitted from the organic EL element 70 can be made directional. In addition, by changing the shape of the tines, the directivity characteristics can be changed, so that the same viewing angle characteristics as those of a liquid crystal display device can be obtained. At this time, when the organic EL element 70 of this embodiment is viewed from the display surface, as shown in Fig. 18, the range determined by W and L corresponds to one display pixel, and is divided into each of the reflection region 11 and the light-emitting region 12a. In addition, as shown in the figure, the reflection region 11 and the light-emitting region 12a are formed with through holes 25a connecting the pixel electrode 25 and the liquid crystal TFT element 22 or the EL TFT element 42, respectively.
另外,上述顯示像素10…之反射區域11與發光區域12 a之 分割配置並不限定於此,如圖19(a)所示,亦可以有機EL元 件70之發光區域12a被液晶顯示元件20之反射區域11包圍 之形狀的方式,反射區域11與發光區域12a之任何一方被另 一方包圍。該圖所示之有機EL元件70之發光區域12 a被液晶 顯示元件20之反射區域11包圍的形狀,於有機EL元件70發 光時,四周之液晶顯示元件20的反射區域11全部變成黑時 ,由於鄰接之顯示元件係發揮黑矩陣功能,因此與前述圖 18所示之形狀比較,可有效提高反差。 此外,即使如圖19(b)所示的形狀,於敷設有顯示像素1〇 …時,由於有機EL元件80之發光區域12a被液晶顯示元件20 -43- 588185In addition, the divisional arrangement of the reflective region 11 and the light emitting region 12 a of the display pixels 10... Is not limited to this. As shown in FIG. 19 (a), the light emitting region 12 a of the organic EL element 70 may be replaced by the liquid crystal display element 20. The shape of the shape surrounded by the reflection region 11 is such that either one of the reflection region 11 and the light-emitting region 12 a is surrounded by the other. In the figure, the light emitting area 12 a of the organic EL element 70 is surrounded by the reflective area 11 of the liquid crystal display element 20. When the organic EL element 70 emits light, all the reflective areas 11 of the surrounding liquid crystal display element 20 become black. Since the adjacent display elements function as a black matrix, compared with the shape shown in FIG. 18 described above, the contrast can be effectively improved. In addition, even in the shape shown in FIG. 19 (b), when the display pixels 10 are laid, the light-emitting area 12a of the organic EL element 80 is replaced by the liquid crystal display element 20-43-588185.
(39) 之反射區域11包圍,因此可期待相同的效果。 此外,發光區域12a與反射區域11之面積可依顯示裝置的 用途來決定。 另外,本實施形態係說明包含高分子型EL材料之發光層 73的有機EL元件70,不過並不限定於此,即使是包含低分 子型EL材料之發光層63的有機EL元件60仍可適用本實施 形態。(39) is surrounded by the reflection area 11, so the same effect can be expected. The areas of the light-emitting area 12a and the reflection area 11 can be determined according to the application of the display device. In this embodiment, the organic EL element 70 including the light-emitting layer 73 of a polymer-type EL material is described, but the organic EL element 60 is not limited to this. The organic EL element 60 including the light-emitting layer 63 of a low-molecular-type EL material is applicable. This embodiment.
此外,其他構造與前述第一種實施形態及第二種實施形 態相同,因此省略其說明。 因而,本實施形態之顯示裝置50,在對向基板52上設有 形成高度調整用之絕緣性凸部81或絕緣性凸部82,並且在 該絕·緣性ώ部8 1或絕緣性凸部82上形成有有機EL元件70。 因此,將有機EL元件70設於與液晶顯示元件20之液晶層 26同一層時,即使有機EL元件70之高度與液晶顯示元件20 之液晶層26的厚度不一致,仍可確實地將有機EL元件70設 於與液晶顯示元件20之液晶層26同一層上。In addition, other structures are the same as those of the first embodiment and the second embodiment described above, so descriptions thereof are omitted. Therefore, in the display device 50 of this embodiment, an insulating convex portion 81 or an insulating convex portion 82 for height adjustment is provided on the counter substrate 52, and an insulating convex portion 81 or an insulating convex portion is formed on the opposite substrate 52. An organic EL element 70 is formed on the portion 82. Therefore, when the organic EL element 70 is provided on the same layer as the liquid crystal layer 26 of the liquid crystal display element 20, even if the height of the organic EL element 70 does not match the thickness of the liquid crystal layer 26 of the liquid crystal display element 20, the organic EL element can be reliably 70 is provided on the same layer as the liquid crystal layer 26 of the liquid crystal display element 20.
此外,本實施形態之顯示裝置50的絕緣性凸部8 1或絕緣 性凸部82包含硬質之絕緣層。因此藉由自對向基板52側形 成包含硬質之絕緣層的絕緣性凸部8 1或絕緣性凸部82,可 自對向基板52側輕易地調整高度。此外,藉由以硬質之絕 緣層形成絕緣性凸部8 1或絕緣性凸部82,可發揮使液晶顯 示元件20之液晶層26的間隔保持一定用之間隔片的功能。 另外,本實施形態可將包含硬質之絕緣層之絕緣性凸部 82形成兩層,且將其界面形成鋸齒狀,以形成鋸齒狀凸部 -44· 588185In addition, the insulating convex portion 81 or the insulating convex portion 82 of the display device 50 of this embodiment includes a hard insulating layer. Therefore, by forming the insulating convex portion 81 or the insulating convex portion 82 including a hard insulating layer from the facing substrate 52 side, the height can be easily adjusted from the facing substrate 52 side. In addition, by forming the insulating convex portion 81 or the insulating convex portion 82 with a hard insulating layer, it is possible to function as a spacer for maintaining a constant interval between the liquid crystal layers 26 of the liquid crystal display element 20. In addition, in this embodiment, the insulating convex portion 82 including a hard insulating layer can be formed into two layers, and the interface can be formed into a zigzag shape to form a zigzag projection -44 · 588185
82a· 821^藉此,可使自有機EL元件6〇發出之光具有指向 性。因而絕緣性凸部82亦可發揮有機EL元件60之光控制構 件的功能。82a · 821 ^ This makes it possible to make the light emitted from the organic EL element 60 directivity. Therefore, the insulating convex portion 82 can also function as a light control member of the organic EL element 60.
此外,本實施形態之像素分割方式之顯示裝置5〇可某種 程度任思地设計反射區域11與發光區域12 a之比率。因而, 如使用於行動電話及資訊攜帶終端(PDA)等移動機器時,通 常係增加反射區域之反射區域^的比率。如將顯示像素1〇 之像素面積中的80%作為反射區域時,因發光區域12a為 20 /〇,因此,有機el元件60之發光面積最大只須像素面積 的5分之1即可。 因此,可提供一種促進小型化及成本降低,且自室外至 室内·辨識性均佳之顯示裝置。In addition, the display device 50 of the pixel division method of this embodiment can arbitrarily design the ratio of the reflection area 11 and the light-emitting area 12 a to some extent. Therefore, when used in mobile devices such as mobile phones and information carrying terminals (PDAs), the ratio of the reflection area ^ of the reflection area is usually increased. For example, when 80% of the pixel area of the display pixel 10 is used as the reflection area, the light emitting area 12a is 20/0. Therefore, the maximum light emitting area of the organic el element 60 only needs to be 1/5 of the pixel area. Therefore, it is possible to provide a display device that promotes miniaturization and cost reduction and has excellent visibility from outdoor to indoor.
此外’本實施形態之顯示裝置5〇的液晶顯示元件2〇為亮 顯示狀態時,有機EL元件70可選擇無發光狀態。因而在明 焭環境下使用時,有機EL元件70處於無發光狀態,藉由僅 液晶顯示元件20進行顯示,可防止有機el元件70的惡化, 達到長壽命化,並可節約耗電。 此外’本實施形態之顯示裝置50的液晶顯示元件2〇及有 機EL元件70配置成鄰接狀態,並且液晶顯示元件2〇及有機 ELtl件70之任一方為亮顯示狀態時,另一方處於暗顯示狀 態。 藉此’一方形成黑矩陣33,顯示時不致降低反差。 〔第四種實施形態〕 參照圖20說明本發明另外實施形態如下。另外,為便於 -45-In addition, when the liquid crystal display element 20 of the display device 50 of this embodiment is in a bright display state, the organic EL element 70 may select a non-light emitting state. Therefore, when used in a bright environment, the organic EL element 70 is in a non-light-emitting state. By performing the display only with the liquid crystal display element 20, the deterioration of the organic el element 70 can be prevented, the lifetime can be extended, and power consumption can be saved. In addition, when the liquid crystal display element 20 and the organic EL element 70 of the display device 50 of this embodiment are arranged in an adjacent state, and either one of the liquid crystal display element 20 and the organic EL element 70 is in a bright display state, the other is in a dark display. status. In this way, the black matrix 33 is formed, and the contrast is not reduced during display. [Fourth Embodiment] Another embodiment of the present invention will be described with reference to Fig. 20 as follows. Also, for convenience -45-
588185 說明’具有與前述第一種實施形態至第三種實施形態之圖 式顯示之構件相同功能的構件註記相同符號,並省略其說 明。此外’前述第一種實施形態至第三種實施形態所述之 各種特徵亦適用於本實施形態。 、 本實施形態係說明以光感測器檢測外光,並依據其檢測 、 結果進行有機EL元件60或有機EL元件70之照度調節。 亦即,如圖20所示,顯示裝置50設有作為顯示控制機構 的控制電路91及電源電路92,該控制電路91接收圖像顯示 ·588185 Description ′ Components that have the same functions as the components shown in the drawings of the first to third embodiments described above are marked with the same symbols, and their descriptions are omitted. In addition, various features described in the aforementioned first to third embodiments are also applicable to this embodiment. The present embodiment describes the use of a light sensor to detect external light and adjust the illuminance of the organic EL element 60 or the organic EL element 70 based on the detection and results. That is, as shown in FIG. 20, the display device 50 is provided with a control circuit 91 and a power supply circuit 92 as a display control mechanism, and the control circuit 91 receives an image display.
的信號,並經由電源部90在源極驅動器6内產生信號,並且 亦向閘極驅動器7產生信號。本實施形態於該控制電路9 J 上’經由測定電路23連接有作為外光檢測機構的光感測器 93 〇 而控制電路91係進行光感測器93之控制與外光測定之控 制。光感測器9 3如以光電晶體等構成。 此外,由於本實施形態之發光元件係使用有機EL元件60 或有機EL元件70,並且光調節元件係使用液晶顯示元件2〇 ’因此上述電源部90作為比液晶驅動更需要驅動能力之有 · 機EL元件60或有機EL元件70驅動用的穩流或穩壓電源。因 此僅液晶顯示時不使用電源部90。 以下說明上述光感測器93之控制與外光測定之控制。 < 首先,於黑暗環境下,控制電路91依據來自光感測器93 之信號瞭解周圍黑暗,而產生驅動有機EL元件60或有機el 元件70用的資料線信號及閘極線信號。此時,在控制電路 91側進行有機EL元件60或有機EL元件70之灰階顯示時,自、. -46- (42)The signal is generated in the source driver 6 via the power supply unit 90, and a signal is also generated to the gate driver 7. In this embodiment, a light sensor 93, which is an external light detection mechanism, is connected to the control circuit 9J via a measurement circuit 23. The control circuit 91 controls the light sensor 93 and the external light measurement. The photo sensor 93 is formed of, for example, a photoelectric crystal. In addition, since the light-emitting element of this embodiment uses the organic EL element 60 or the organic EL element 70 and the light-adjusting element uses the liquid crystal display element 20 ′, the power supply unit 90 described above has a function that requires more driving power than liquid crystal driving A constant current or regulated power supply for driving the EL element 60 or the organic EL element 70. Therefore, the power supply section 90 is not used for liquid crystal display only. The control of the light sensor 93 and the control of external light measurement will be described below. < First, in a dark environment, the control circuit 91 understands the surrounding darkness according to a signal from the light sensor 93, and generates a data line signal and a gate line signal for driving the organic EL element 60 or the organic el element 70. At this time, when the gray-scale display of the organic EL element 60 or the organic EL element 70 is performed on the control circuit 91 side, the self-leveling. -46- (42)
控制電路91供給信號至電源部90 ° 另外,於明亮環境下’依據來自光感測器93之信號’產 生驅動反射型之液晶顯示元件20用的資料線信號及閘極線 信號。此時如前所述,因與電源部90無關,因此無須自控 制電路91控制直接電源之信號。The control circuit 91 supplies a signal to the power supply unit 90 °. In a bright environment, a data line signal and a gate line signal for driving the reflective liquid crystal display element 20 are generated based on a signal from the light sensor 93. At this time, as described above, since it is not related to the power supply section 90, the self-control circuit 91 is not required to control the signal of the direct power supply.
使有機EL元件60或有機EL元件70與液晶顯示元件20兩 者同時顯示的情況下’自控制電路91傳送各顯示用的源極 信號。藉此,由於各顯示可調整照度,因此可因應四周環 境選擇最佳的顯示狀態。 因而,藉由以光感測器93測定外光,除可自動地使有機 EL元件60或有機EL元件70發光,或切換成使液晶顯示元件 20進行反射顯示,亦可選擇環境上最佳的顯示狀態。 如以上所述,本實施形態之顯示裝置50於控制電路91上 ,依據光感測器93之外光檢測結果,而選擇顯示有機el元 件60或有機EL元件70及液晶顯示元件2〇兩者或任何一方。When both the organic EL element 60 or the organic EL element 70 and the liquid crystal display element 20 are displayed at the same time, the source signal for each display is transmitted from the control circuit 91. This allows each display to adjust its illuminance, so it is possible to select the optimal display state according to the surrounding environment. Therefore, by measuring the external light with the light sensor 93, in addition to automatically causing the organic EL element 60 or the organic EL element 70 to emit light, or switching to the liquid crystal display element 20 for reflective display, it is also possible to select an environmentally optimal Display state. As described above, the display device 50 of this embodiment is selected to display both the organic el element 60 or the organic EL element 70 and the liquid crystal display element 20 on the control circuit 91 based on the light detection result other than the light sensor 93. Or either party.
因此,因應四周之明亮度自動地選擇有機£乙元件6〇、有 機EL元件70或液的顯示元件2〇的顯示,可確保最佳顯示狀 態0 〔第五種實施形態〕 參照圖21至圖26說明本發明另外實施形態如下。另外 為便於說明,具有與前述第一種實施形態至第四種實施: 態之圖式顯不之構件相同功能的構件註記相同符號,並 略其說明。此外’前述第一種實施形態至第四種實施形 所述之各種特徵亦適用於本實施形態。 ‘ -47- (43) 588185Therefore, the display of the organic element B 60, the organic EL element 70, or the liquid display element 20 is automatically selected in accordance with the brightness of the surroundings, and the optimal display state 0 can be ensured. [Fifth Embodiment] Referring to FIGS. 21 to FIG. 26 describes another embodiment of the present invention as follows. In addition, for the convenience of explanation, components having the same functions as the components of the first embodiment to the fourth embodiment: the modes shown in the figure are marked with the same symbols, and their descriptions are omitted. In addition, various features described in the aforementioned first to fourth embodiments are also applicable to this embodiment. ‘-47- (43) 588185
2!2,1戶 1?,本實施形態之顯示裝置1藉由於縱方向設有 ”貝料^號線之源極匯流排線2a〜與於橫方向設有數條 :描信號線之閘極匯流排線3···,作為顯示區域之各顯示像 素10…形成矩陣狀。2! 2, 1 household 1 ?, the display device 1 of this embodiment is provided with a "source material bus line 2a" of the "bei material ^" line in the vertical direction and several lines in the horizontal direction: gates for signal lines The bus lines 3... Each display pixel 10 as a display area is formed in a matrix.
本實施形態之上述顯示像素10係分割形成作為具有反射 性之第一顯示區域之反射區域“與作為具有透過性之第二 顯示區域的透過區域12。亦即,如圖22所示,上述反射區 域11内形成有像素電極25,其係包含構成作為光調節元件 之反射型液晶顯示元件20之鋁(A1)等金屬,藉此,外光4被 該像素電極25反射。The above-mentioned display pixels 10 of this embodiment are divided into a reflective region “a reflective first display region” and a “transmissive second display region 12”. That is, as shown in FIG. A pixel electrode 25 is formed in the region 11 and includes a metal such as aluminum (A1) constituting the reflective liquid crystal display element 20 as a light adjustment element, whereby the external light 4 is reflected by the pixel electrode 25.
另外,如該圖所示,於像素電極25之中央部形成有矩形 的開·口部25a,該開口部25a構成上述透過區域12。於像素 電極25之開口部25a下方,亦即像素電極25的後方,經由透 明絕緣層24 5又有作為發光元件的有機EL元件40,該有機EL 元件40藉由自行發出顯示光5直接進行顯示。亦即,本實施 形態並非如先前地使用有機EL元件作為背照光及前照光 ’而係有機EL元件40直接進行顯示,因此本實施形態之顯 示裝置1可說是以液晶顯示元件20構成之反射型液晶顯示 裝置與以有機EL元件40構成之有機EL顯示裝置加以一體 化的顯示裝置。 此時,上述有機EL元件40可形成與透過區域12之面積大 致相同或比其小的面積。亦即,有機EL元件40無須形成於 整個透過區域12内,只須因應所需的畫面照度在所需的面 積内形成即可。因而藉由使有機EL元件40之面積小於透過 -48-As shown in the figure, a rectangular opening / opening portion 25a is formed in a central portion of the pixel electrode 25, and the opening portion 25a constitutes the transmission region 12 described above. Below the opening 25a of the pixel electrode 25, that is, behind the pixel electrode 25, there is an organic EL element 40 as a light emitting element through the transparent insulating layer 245. The organic EL element 40 directly displays by emitting display light 5 by itself . That is, the present embodiment does not directly display the organic EL element 40 using the organic EL element as the back light and the front light. Therefore, the display device 1 of this embodiment can be said to be a reflection formed by the liquid crystal display element 20 A liquid crystal display device is a display device in which an organic EL display device including an organic EL element 40 is integrated. At this time, the organic EL element 40 described above may have an area substantially the same as or smaller than the area of the transmission region 12. That is, the organic EL element 40 does not need to be formed in the entire transmission region 12, and only needs to be formed in a required area in accordance with a required screen illuminance. Therefore, by making the area of the organic EL element 40 smaller than the transmission -48-
588185 區域12,可減少有機£L元件40的耗電。此外,有機EL元件 40與透過區域12之面積大致相同,係表示有機EL元件4〇亦 可比透過區域12的面積稍大。亦即,有機EL元件4〇比透過 區域12之面積稍大時,不影響有機el元件40的照射效率。 、 此外,即使有機EL元件40比透過區域12的面積稍大,像素 ' 電極25仍可發揮黑矩陣的功能,因此不構成問題。 如該圖所示,上述顯示裝置1於作為玻璃基板等第一基板 的絕緣性基板21上具有液晶用TFT元件22。如圖2 1所示, 鲁 該液晶用TFT元件22連接於閘極匯流排線3…及源極匯流 排線2a…,發揮通過汲極22&施加電壓於像素電極25用之切 換元件的功能。 另外,如該圖所示,上述液晶顯示元件2〇之汲極22a連接 於驅動有機EL元件40用之EL用TFT元件42的閘極42a。此外 ,該EL用TFT元件42之源極側連接有電流供給線2b,藉由 EL用TFT元件42開啟,藉由後述之供給電壓vdd,通過電流 供給線2b及EL用TFT元件42之汲極42a,在有機EL元件40 之有機EL層41内流入驅動電流,使有機EL層41發光。另外 · ’有機EL層41係前述具有低分子型EL材料之發光層63的有 機EL元件60中,由電子輸送層62、發光層63、孔輸送層64 構成,另外於前述具有高分子型EL材料之發光層73的有機 · EL元件70中僅由發光層73構成者。 , 以下,兼顧須進一,步詳細說明製造方法之說明,參照圖 21及圖22,說明上述顯示裝置1之構造如下。 首先,如圖21所示,在玻璃基板等絕緣性基板21上形成 -49· 588185588185 Area 12, which reduces the power consumption of organic £ 40 components. The area of the organic EL element 40 and the transmission region 12 is substantially the same, which means that the area of the organic EL element 40 may be slightly larger than that of the transmission region 12. That is, when the area of the organic EL element 40 is slightly larger than the area of the transmission region 12, the irradiation efficiency of the organic el element 40 is not affected. In addition, even if the area of the organic EL element 40 is slightly larger than the area of the transmission region 12, the pixel electrode 25 can still function as a black matrix, so it does not pose a problem. As shown in the figure, the display device 1 includes a liquid crystal TFT element 22 on an insulating substrate 21 as a first substrate such as a glass substrate. As shown in FIG. 21, the liquid crystal TFT element 22 is connected to the gate bus line 3 ... and the source bus line 2a ..., and functions as a switching element for applying a voltage to the pixel electrode 25 through the drain 22 & . As shown in the figure, the drain electrode 22a of the liquid crystal display element 20 is connected to the gate electrode 42a of the EL TFT element 42 for driving the organic EL element 40. A current supply line 2b is connected to the source side of the EL TFT element 42. The EL TFT element 42 is turned on, and the supply voltage vdd to be described later passes through the current supply line 2b and the drain of the EL TFT element 42. 42a, a driving current flows into the organic EL layer 41 of the organic EL element 40, and the organic EL layer 41 emits light. In addition, the 'organic EL layer 41 is the organic EL element 60 having the light-emitting layer 63 of the low-molecular-type EL material, and includes an electron transport layer 62, a light-emitting layer 63, and a hole transport layer 64. The organic EL element 70 of the light emitting layer 73 of the material is composed of only the light emitting layer 73. In the following, the manufacturing method will be described in detail step by step while taking into account the following steps. The structure of the display device 1 will be described with reference to FIGS. 21 and 22. First, as shown in FIG. 21, -49 · 588185 is formed on an insulating substrate 21 such as a glass substrate.
(45) 液晶用TFT元件22。此時,亦同時形成EL用TFT元件42。其 次,藉由感光性之丙烯基樹脂形成如厚度為2 μιη的平坦化 膜23後,藉由濺射法,以鉻(Cr)形成厚度為2000Α之構成有 機EL元件40的反射性陽極43。並藉由濺射法形成厚度為 ’ 2000A的二氧化矽(si〇2),並藉由蝕刻成特定形狀以形成絕 ' 緣層44。 繼續,藉由蒸鍍法形成發光層之有機EL層41。有機EL層 41係藉由掩模蒸鍍,對應於各個顯示像素1〇〜形成紅、綠 · 、藍的發光材料。其次,為求有效將電子植入有機EL層41 内,藉由蒸鍍法形成厚度為1〇〇 A之鎂與銀之無圖式的合金 後’藉由濺射法形成厚度為2000A之銦一鋅的氧化物(IZO) ’作為具有透明性的陰極45。其次,藉由濺射法形成厚度 為7000人之五氧化鉅(丁4〇5),作為透明絕緣層24後,藉由 銘(A1)形成驅動構成液晶顯示元件2〇之液晶層26用之具有 反射性的像素電極25。 另外,在作為另一方玻璃基板等透明之第二基板的絕緣 性基板29上,依序形成濾色器層28與包含銦—錫氧化物 鲁 (ITO : Indium Tin Oxide)的對向電極27。 其次,藉由自旋塗敷法塗敷後燒成以形成具有對絕緣性 基板29垂直配向液晶分子之性質而無圖式的配向膜(商品 . 名稱「JALS204(日本合成橡膠社製)」。 其次,經由以僅於形成有機EL元件4〇部分以外之區域曝 . 光的方式,形成開口部之無圖式的掩模,在絕緣性基板21 側的成形基板上照射紫外光。另外,亦對絕緣性基板29側 -50- 588185(45) TFT element 22 for liquid crystal. At this time, the TFT element 42 for EL is also formed at the same time. Next, a planarization film 23 having a thickness of 2 µm is formed from a photosensitive acrylic resin, and then a reflective anode 43 having an organic EL element 40 having a thickness of 2000 A is formed by chromium (Cr) by a sputtering method. Then, a silicon dioxide (SiO 2) having a thickness of 2000 A is formed by a sputtering method, and a specific shape is formed by etching to form an insulating layer 44. Continuing, an organic EL layer 41 of a light emitting layer is formed by a vapor deposition method. The organic EL layer 41 is formed by mask evaporation to form red, green, and blue light-emitting materials corresponding to each of the display pixels 10 to 10. Next, in order to effectively implant electrons into the organic EL layer 41, an unpatterned alloy of magnesium and silver having a thickness of 100 A is formed by a vapor deposition method, and an indium having a thickness of 2000 A is formed by a sputtering method. A zinc oxide (IZO) is used as the cathode 45 having transparency. Next, a pentoxide (D04) with a thickness of 7000 is formed by a sputtering method, and is used as the transparent insulating layer 24. Then, the liquid crystal layer 26 for driving the liquid crystal display element 20 is formed by the inscription (A1). A reflective pixel electrode 25. In addition, a color filter layer 28 and a counter electrode 27 including Indium Tin Oxide (ITO) are sequentially formed on an insulating substrate 29 that is a transparent second substrate such as another glass substrate. Next, a spin coating method is applied and fired to form a patternless alignment film (trade name: "JALS204 (manufactured by Nippon Synthetic Rubber Co., Ltd.)") which has the property of vertically aligning liquid crystal molecules with respect to the insulating substrate 29 and then baked. Next, ultraviolet light is irradiated on the molded substrate on the insulating substrate 21 side by forming a patternless mask in the opening portion so as to expose light only to areas other than the 40 portion where the organic EL element is formed. For insulating substrate 29 side -50- 588185
(46) 之成形基板貼合絕緣性基板21時,在與有機EL元件40對向 部分以外的區域照射紫外光。藉由摩擦此等兩片成形基板 ’在無圖式之配向膜上實施單轴配向處理,經由密封樹脂 貼合後’植入介電異方性為正,△ η為〇.〇6之液晶材料 (MERUKU社製),製造液晶顯示元件2〇。並於絕緣性基板 29之表面,藉由依序貼附相位差板31與偏光板32,完成顯 示裝置1。另外,相位差板31之相位差使用對又=55〇 nm 之光為1/4者。 在外光4之下,於無施加電壓的狀態下觀察如此製成的顯 不裝置1時,位於有機EL元件40上部之部分形成黑顯示, 未形成有機EL元件40之部分形成白顯示。此因藉由照射紫 外光之部分被發現配向膜之垂直配向性的官能基切斷,液 晶分子對絕緣性基板21及絕緣性基板29平行配向。 因而,液晶層26之顯示模式在無施加電壓的狀態下顯示 白’藉由施加電壓逐漸減少反射率,而形成黑顯示之正常 白模式。 其次’說明一種驅動上述構造之顯示裝置1用的驅動電路。 如圖23所示,顯示裝置1上,依序傳送資料線信號用之源 極驅動器6連接於源極匯流排線2心··,選擇顯示像素1〇…之 閘極驅動器7連接於閘極匯流排線3…β此外,一個顯示像 素10内之顯不電路係藉由光調節元件之液晶顯示元件2〇與 發光元件之有機EL元件40構成。 此等液晶顯示元件2〇及有機EL元件4〇分別於顯示裝置j 的顯不區域内排列成矩陣狀,液晶顯示元件2〇之對向電極 -51·When the insulating substrate 21 is bonded to the molded substrate (46), ultraviolet light is irradiated to a region other than the portion facing the organic EL element 40. By rubbing these two shaped substrates, a uniaxial alignment process is performed on an unpatterned alignment film, and after bonding with a sealing resin, the implanted dielectric anisotropy is positive and Δη is 0.06 in the liquid crystal. Material (manufactured by MERUKU) to manufacture a liquid crystal display device 20. The display device 1 is completed by sequentially attaching the retardation plate 31 and the polarizing plate 32 to the surface of the insulating substrate 29. In addition, the retardation of the retardation plate 31 is 1/4 of a pair of light = 55 nm. When the display device 1 thus produced was observed under an external light 4 under no applied voltage, a black display was formed in a portion above the organic EL element 40, and a white display was formed in a portion where the organic EL element 40 was not formed. This is because the vertical alignment functional groups of the alignment film were cut off by irradiating the ultraviolet light, and the liquid crystal molecules were aligned in parallel to the insulating substrate 21 and the insulating substrate 29. Therefore, the display mode of the liquid crystal layer 26 displays white in a state where no voltage is applied, and gradually reduces the reflectance by the applied voltage to form a normal white mode for black display. Next, a driving circuit for driving the display device 1 having the above structure will be described. As shown in FIG. 23, on the display device 1, a source driver 6 for sequentially transmitting data line signals is connected to the source bus line 2 ..., and a gate driver 7 for selecting display pixels 10 is connected to the gate. Bus line 3 ... β In addition, a display circuit in one display pixel 10 is constituted by a liquid crystal display element 20 of a light adjustment element and an organic EL element 40 of a light emitting element. These liquid crystal display elements 20 and organic EL elements 40 are arranged in a matrix in the display area of the display device j, and the counter electrode of the liquid crystal display element 20 is -51 ·
588185 27、EL用TFT元件42之電流供給線2b及有機EL·元件40之陰 極45分別共用連接於各液晶顯示元件2〇及有機el元件40 。亦即’該驅動電路就須主動驅動之形成矩陣狀顯示區域 · 之各顯示像素10…之液晶顯示元件2〇及有機EL元件40的 驅動’係共用信號線及掃描信號線之閘極匯流排線3…及信 ' 號線及資料信號線之源極匯流排線2a…者。但是,本發明 並不限定於此,亦可適用於單純矩陣。 因而,驅動該顯示裝置1時,適用前述第一種實施形態所 · 示之圖9、圖10及圖11顯示的驅動方法。另外就驅動方法之 詳細說明,如前所述,因此省略。 參照圖24〜圖26詳細說明上述顯示動作。而圖24〜圖26中 記載·反射率最高條件之液晶層26無施加電壓時的複折射為 λ /4時的光狀態。 首先,在外光4下使用顯示裝置1的情況下,資料線信號 Vs無施加電壓時,或液晶用TFT元件22之没極電壓Vd未達 液晶用臨限值電壓Vth(LC)時,如圖24所示,外光4透過偏 光板32及相位差板31後,形成圓偏光射入液晶層26。其次 φ ,因液晶層26具有;I /4的相位差,因此於到達反射性之像 素電極25的時間形成;1/2的相位差,而反射直線偏光。反 射後,因外光4經由與入射時相反的路徑形成直線偏光,因 、 此,透過偏光板32形成白顯示。此時,因液晶用TFT元件 22之汲極電壓Vd未達EL用TFT元件42動作的EL用臨限值 ’ 電壓Vth(OLED),因此有機EL元件40内無電流供給而處於 非發光狀態。 • 52 ·588185 27. The current supply line 2b of the TFT element 42 for EL and the cathode 45 of the organic EL element 40 are connected to the liquid crystal display element 20 and the organic el element 40 in common, respectively. That is, 'the driving circuit must be actively driven to form a matrix-shaped display area · driving of the liquid crystal display element 20 and the organic EL element 40 of each display pixel 10 ...' is a gate bus of a common signal line and a scanning signal line Line 3 ... and the source bus line 2a of the signal line and the data signal line. However, the present invention is not limited to this, and can be applied to a simple matrix. Therefore, when the display device 1 is driven, the driving method shown in Figs. 9, 10, and 11 shown in the first embodiment is applied. The detailed description of the driving method is as described above, so it is omitted. The display operation will be described in detail with reference to FIGS. 24 to 26. On the other hand, the liquid state of the liquid crystal layer 26 with the highest reflectance described in Figs. 24 to 26 is the light state when the birefringence is λ / 4 when no voltage is applied. First, when the display device 1 is used under external light 4, when no voltage is applied to the data line signal Vs, or when the electrode voltage Vd of the liquid crystal TFT element 22 does not reach the threshold voltage Vth (LC) for the liquid crystal, as shown in FIG. As shown at 24, after the external light 4 passes through the polarizing plate 32 and the retardation plate 31, circularly polarized light is incident on the liquid crystal layer 26. Next, φ is formed by the liquid crystal layer 26; the phase difference of I / 4 is formed at the time when it reaches the reflective pixel electrode 25; the phase difference of 1/2 is reflected by linearly polarized light. After the reflection, the external light 4 forms linearly polarized light through a path opposite to that at the time of incidence, and therefore, a white display is formed through the polarizing plate 32. At this time, since the drain voltage Vd of the liquid crystal TFT element 22 does not reach the EL threshold voltage Vth (OLED) at which the EL TFT element 42 operates, no current is supplied to the organic EL element 40 and the light is in a non-light emitting state. • 52 ·
588185 其次,說明在外光4下使用顯示裝置!的情況下,大於液 晶用臨限值電壓Vth(LC),液晶用TFT元件22施加沒極電壓 Vd時之液晶顯示元件20的黑顯示。 如圖25所示’因液晶層26之複折射大致為零,因此外光4 於到達反射性之像素電極25時保持如右圓偏光的圓偏光狀 、 態,而於反射時形成如左圓偏光之反周期的圓偏光。因而 外光4之反射光透過相位差板31後,形成與偏光板32之透過 轴直交90度之角度的直線偏光《以致外光4的反射光無法透 Φ 過偏光板32而形成黑顯示。 此外,由於此時液晶用TFT元件22之汲極電壓Vd未達EL 用TFT元件42動作的EL用臨限值電壓Vth(OLED),因此有 機EL元件40内無電流供給而維持非發光狀態。 其次,說明外光4之強度弱的情況下,有機EL元件40發光 時。 此種情況下,如圖26所示,液晶用TFT元件22之汲極電壓 Vd大於EL用TFT元件42動作之EL用臨限值電壓Vth(OLED) 。藉此,有機EL元件40内供給有電流而發光。此時,如前 · 述圖11所示,汲極電壓Vd充分提高,液晶層26形成黑顯示 ,因此不影響有機EL元件40的發光。 此時,本實施形態之構成有機EL元件40的陽極43包含反 , 射性的金屬,不論顯示信號為何而始終反射光。行動電話 零 等多在室外使用的製品搭載有機EL顯示裝置的情況下,在 使用人側需要貼附圓偏光板,而本實施形態如圖26所示, 液晶層26顯示上所需之偏光板32與具有;I /4波長之相位差 -53- 588185588185 Next, the use of a display device under external light 4 will be explained! In the case where the voltage is larger than the threshold voltage Vth (LC) for the liquid crystal, the black display of the liquid crystal display element 20 when the electrodeless voltage Vd is applied to the liquid crystal TFT element 22. As shown in FIG. 25 'Because the birefringence of the liquid crystal layer 26 is substantially zero, the external light 4 maintains a circularly polarized light state such as right circularly polarized light when it reaches the reflective pixel electrode 25, and forms a left circular shape when reflected. Circularly polarized light with counter-periodic polarization. Therefore, after the reflected light of the external light 4 passes through the retardation plate 31, it forms linearly polarized light at an angle of 90 degrees orthogonal to the transmission axis of the polarizing plate 32 so that the reflected light of the external light 4 cannot pass through the polarizing plate 32 to form a black display. In addition, since the drain voltage Vd of the liquid crystal TFT element 22 at this time does not reach the EL threshold voltage Vth (OLED) at which the EL TFT element 42 operates, no current is supplied to the organic EL element 40 and the non-light-emission state is maintained. Next, when the intensity of the external light 4 is weak, when the organic EL element 40 emits light will be described. In this case, as shown in FIG. 26, the drain voltage Vd of the liquid crystal TFT element 22 is larger than the EL threshold voltage Vth (OLED) for the EL TFT element 42 to operate. As a result, a current is supplied to the organic EL element 40 to emit light. At this time, as shown in FIG. 11 described above, since the drain voltage Vd is sufficiently increased, and the liquid crystal layer 26 forms a black display, the light emission of the organic EL element 40 is not affected. At this time, the anode 43 constituting the organic EL element 40 of this embodiment includes a reflective and transmissive metal, and always reflects light regardless of the display signal. When an organic EL display device is mounted on a large number of outdoor products such as mobile phones, a circular polarizer needs to be attached to the user side. In this embodiment, as shown in FIG. 26, the liquid crystal layer 26 displays the required polarizer. Phase difference between 32 and having; I / 4 wavelength -53- 588185
(49) 的相位差板3 1具有使此種外光4之反射幾乎為零的功能。此 外,在有機EL元件40與偏光板32之間雖存在液晶層26,但 是該部分之液晶層26的對向電極27等電極僅形成於絕緣性 基板29側。因而液晶層26不論是否施加電壓而始終處於關 · 閉狀態,不致對抑制外光4之反射造成不良影響。 ' 另外,本實施形態中,由於透明絕緣層24係以覆蓋整個 有機EL元件40的方式形成,液晶層26之液晶不致浸透於有 機EL元件40内,因此可提高有機EL元件40的可靠性。 修 因而,本實施形態之顯示裝置1於各顯示像素10…内同時 設有包含液晶顯示元件20反射外光4以進行顯示之非發光 顯示元件的反射區域11 ;與包含有機EL元件40直接調節以 進行顯示之發光顯示元件的透過區域12。 因此,與前述第一種實施形態〜第四種實施形態所示之 顯示裝置50同樣地,可提高有機EL元件40的光係用效率, 並且亦可減少顯示裝置的厚度。 此外,由於不需要背照光與背面側之偏光板及相位差板 ,因此構件數量減少。因而,除材料費之外,組裝工時及 · 各構件檢查等所需成本亦減少,因此可降低整個顯示裝置 的製造成本。 此外,本實施形態之像素分割方式的顯示裝置1 ,可某種 · 程度地任意設計反射區域11與透過區域12的比率。因此可 減少耗電。 此外’本實施形態具備彼此對向之絕緣性基板2 1與絕緣 性基板2 9 ’有機EL元件40及液晶顯示元件2〇均設於絕緣性 -54- 588185The phase difference plate 31 of (49) has a function of making the reflection of such external light 4 almost zero. In addition, although the liquid crystal layer 26 is present between the organic EL element 40 and the polarizing plate 32, electrodes such as the counter electrode 27 of the liquid crystal layer 26 in this portion are formed only on the insulating substrate 29 side. Therefore, the liquid crystal layer 26 is always closed or closed regardless of whether a voltage is applied or not, and does not adversely affect the reflection of the external light 4. In addition, in this embodiment, since the transparent insulating layer 24 is formed so as to cover the entire organic EL element 40, the liquid crystal of the liquid crystal layer 26 does not penetrate into the organic EL element 40, so the reliability of the organic EL element 40 can be improved. Therefore, the display device 1 of this embodiment is provided with a reflection area 11 including a liquid crystal display element 20 that reflects external light 4 for non-light-emitting display elements in each display pixel 10... And a direct adjustment with an organic EL element 40 The transmissive region 12 of the light-emitting display element is displayed. Therefore, similarly to the display device 50 described in the first to fourth embodiments, the optical efficiency of the organic EL element 40 can be improved, and the thickness of the display device can be reduced. In addition, since the polarizing plate and the retardation plate on the back side and the back side are not required, the number of components is reduced. Therefore, in addition to the material cost, the cost of assembly man-hours and inspection of each component is also reduced, so that the manufacturing cost of the entire display device can be reduced. In addition, the display device 1 of the pixel division method according to this embodiment can arbitrarily design the ratio of the reflection area 11 to the transmission area 12 to a certain degree. Therefore, power consumption can be reduced. In addition, this embodiment includes an insulating substrate 2 1 and an insulating substrate 2 9 facing each other. The organic EL element 40 and the liquid crystal display element 20 are both provided with an insulating property. -54- 588185
(50)(50)
基板21與絕緣性基板29之間《而透過區域12内,在絕緣性 基板21上依序维疊有有機EL元件40及液晶顯示元件20的 液晶層26。因而液晶顯示元件20及有機EL元件40均收納於 絕緣性基板21與絕緣性基板29之間,因此可確實減少顯示 裝置1的厚度。再者,即使於有機EL元件40表面側堆疊有 液晶層26 ’由於在絕緣性基板21與絕緣性基板29之間設有 有機EL元件40,因此有機EL元件40之顯示光全部射達透過 區域12。因此光的利用效率非常高。 因此,可提供一種促進小型化及成本降低,且自室外至 室内辨識性均佳的顯示裝置1。 再者,有掩EL元件40無須形成於整個透過區域12,只須 因應所需之晝面照度形成於必要面積即可。有關這一點, 本實施形態之顯示裝置1的有機EL元件40具有與透過區域 12之面積大致相同或比其小的面積。因此有機el元件40可 進一步減少耗電。Between the substrate 21 and the insulating substrate 29, the organic EL element 40 and the liquid crystal layer 26 of the liquid crystal display element 20 are sequentially stacked on the insulating substrate 21 in the transmission region 12. Therefore, since both the liquid crystal display element 20 and the organic EL element 40 are housed between the insulating substrate 21 and the insulating substrate 29, the thickness of the display device 1 can be reliably reduced. Furthermore, even if the liquid crystal layer 26 ′ is stacked on the surface side of the organic EL element 40, since the organic EL element 40 is provided between the insulating substrate 21 and the insulating substrate 29, all the display light of the organic EL element 40 reaches the transmission region. 12. Therefore, the utilization efficiency of light is very high. Therefore, it is possible to provide a display device 1 that promotes miniaturization and cost reduction and has excellent visibility from outdoor to indoor. Furthermore, the masked EL element 40 does not need to be formed in the entire transmission region 12, and only needs to be formed in a necessary area in accordance with the required day-time illumination. In this regard, the organic EL element 40 of the display device 1 according to this embodiment has an area which is substantially the same as or smaller than the area of the transmission region 12. Therefore, the organic el element 40 can further reduce power consumption.
此外,本實施形態之顯示裝置1的發光元件包含有機EL 元件40。因此可輕易地將液晶顯示元件2〇與有機el元件40 内藏於一對絕緣性基板21與絕緣性基板29之間。 此外’藉由發光元件使用電流驅動型的有機EL元件40 , 發光元件之耗電與發光面積成正比,因此本實施形態之顯 示裝置1的耗電與使用有機EL元件40作為背照光時比較, 耗電為5分之1。因此可確實減少耗電。 此外’本實施形態之顯示裝置1的光調節元件為液晶顯示 元件20。因此,輕易地在一個像素内形成液晶顯示元件2〇 -55· 588185The light-emitting element of the display device 1 of this embodiment includes an organic EL element 40. Therefore, the liquid crystal display element 20 and the organic el element 40 can be easily built between the pair of insulating substrates 21 and 29. In addition, by using a current-driven organic EL element 40 as the light-emitting element, the power consumption of the light-emitting element is proportional to the light-emitting area. Therefore, the power consumption of the display device 1 of this embodiment is compared with that when the organic EL element 40 is used as the backlight. Power consumption is 1/5. Therefore, power consumption can be reliably reduced. The light adjustment element of the display device 1 of this embodiment is a liquid crystal display element 20. Therefore, it is easy to form a liquid crystal display element in a pixel 20-55 · 588185
(51) 及有機EL元件40時,藉由以更高之照射效率使光射入開口 部25a’可提供一種促進小型化及成本降低,且自室外至室 内辨識性均佳的顯示裝置1。 此外,本實施形態之顯示裝置1的有機EL元件40與液晶顯 示元件20係共用源極匯流排線2a…及閘極匯流排線3…加 、 以驅動。因此可防止有機EL元件40與液晶顯示元件20之驅 動電路構造趨於複雜,可提供一種可確實地減少顯示裝置i 厚度及降低構件成本的顯示裝置1。 · 再者’本實施形態於有機EL元件40發光時,如進行白顯 示,液晶顯示元件20進行白顯示時,一個顯示像素1〇的反 差降低。 因此,本實施形態之液晶顯示元件2〇的液晶層26在反射 區域11内係水平配向模式,且透過區域12内係垂直配向模 式。因此,於液晶顯示元件20内無施加電壓的狀態下,反 射區域11係白顯示,而於液晶顯示元件2〇内施加電壓時, 反射率為零,反射區域11形成黑顯示。 因此,本實施形態由於有機EL元件40顯示區域之透過區 · 域12的四周形成黑顯示,因此可防止因發光驅動有機el元 件40造成反差降低。 此外,液晶顯示元件20之液晶層26中,水平配向有機EL · 元件40進行顯示之透過區域12時,形成有驅動液晶顯示元 . 件20用的像素電極25,因此維持初期配向的平行配向。因 此,尤其在室外等外光4多的場所使用該顯示裝置〗時,維 持水平配向之透過區域12之外光4的反射光增加。亦即,係 -56- 588185(51) and the organic EL element 40, by allowing light to enter the opening portion 25a 'with a higher irradiation efficiency, it is possible to provide a display device 1 that promotes miniaturization and cost reduction, and has excellent visibility from outdoor to indoor. In addition, the organic EL element 40 and the liquid crystal display element 20 of the display device 1 of this embodiment share a source bus line 2a ... and a gate bus line 3 ... to drive. Therefore, it is possible to prevent the drive circuit structures of the organic EL element 40 and the liquid crystal display element 20 from becoming complicated, and it is possible to provide a display device 1 capable of reliably reducing the thickness of the display device i and reducing the component cost. · Furthermore, in this embodiment, when the organic EL element 40 emits light, if white display is performed, and when the liquid crystal display element 20 performs white display, the contrast of one display pixel 10 decreases. Therefore, the liquid crystal layer 26 of the liquid crystal display element 20 of this embodiment is in a horizontal alignment mode in the reflection region 11 and is in a vertical alignment mode in the transmission region 12. Therefore, in a state where no voltage is applied in the liquid crystal display element 20, the reflective region 11 is displayed in white, and when a voltage is applied in the liquid crystal display element 20, the reflectance is zero, and the reflective region 11 forms a black display. Therefore, in this embodiment, since a black display is formed around the transmission area of the display area of the organic EL element 40, the area 12 is prevented from reducing the contrast caused by driving the organic el element 40 by light emission. In addition, in the liquid crystal layer 26 of the liquid crystal display element 20, when the organic EL · element 40 is horizontally aligned in the transmission region 12 for display, the pixel electrode 25 for driving the liquid crystal display element 20 is formed, so that the parallel alignment of the initial alignment is maintained. Therefore, especially when the display device is used in a place where there is a lot of external light 4 such as outdoors, the reflected light of the light 4 outside the transmission area 12 that maintains the horizontal alignment increases. That is, Department -56- 588185
(52) 因外光4透過液晶顯示元件20,再以有機EL元件40反射。 有關這一點,本實施形態之堆疊於有機EL元件40之液晶 層26的配向係垂直配向,且反射區域11之液晶層26的配向 係水平配向。因此,不驅動液晶顯示元件20而僅有機EL元 件40發光時,可防止透過區域12中因外光4之反射光重疊造 ’ 成的反差降低及對顯示品質的不良影響。 此外,本實施形態係將形成於絕緣性基板29上之濾色器 層28形成於與反射區域11及透過區域12對向的整個部分, Φ 不過並不限定於此,如亦可在與透過區域12對向部分,亦 即與有機EL元件40對向的區域形成濾色器層28。藉此,自 有機EL層41發出的光未被濾色器層28吸收,因此可更明亮 的顯示。此外,通常有機EL層41之色純度優於濾色器層28 的色純度,因此可更鮮豔的顯示。 另外,本實施形態係說明組合液晶顯示元件20與有機EL 元件40之顯示裝置,不過並不限定於此,上述有機el元件 40亦可替換成前述之有機EL元件60, 70, 80。 〔第六種實施形態〕 φ 參照圖27至圖29說明本發明另外實施形態如下。另外, 為便於說明,具有與前述第一種實施形態至第五種實施形 態之圖式顯示之構件相同功能的構件註記相同符號,並省 . 略其說明。此外,前述第一種實施形態至第五種實施形態 所述之各種特徵亦適用於本實施形態。 本實施形態係說明同時驅動液晶顯示元件2〇與有機£[元 件40。另外’此時之驅動並非表示僅在液晶顯示元件2〇上 •57- 588185(52) The external light 4 passes through the liquid crystal display element 20 and is reflected by the organic EL element 40. In this regard, the alignment of the liquid crystal layer 26 stacked on the organic EL element 40 in this embodiment is vertical alignment, and the alignment of the liquid crystal layer 26 in the reflective region 11 is horizontal alignment. Therefore, when only the organic EL element 40 emits light without driving the liquid crystal display element 20, it is possible to prevent a decrease in the contrast caused by the overlap of the reflected light of the external light 4 in the transmission region 12 and an adverse effect on the display quality. In addition, in this embodiment, the color filter layer 28 formed on the insulating substrate 29 is formed on the entire portion facing the reflection region 11 and the transmission region 12, but Φ is not limited to this. The color filter layer 28 is formed in a portion facing the region 12, that is, a region facing the organic EL element 40. Thereby, the light emitted from the organic EL layer 41 is not absorbed by the color filter layer 28, so that a brighter display can be achieved. In addition, since the color purity of the organic EL layer 41 is generally better than that of the color filter layer 28, it is possible to display more vividly. In addition, the present embodiment describes a display device that combines the liquid crystal display element 20 and the organic EL element 40, but it is not limited to this. The organic el element 40 may be replaced with the organic EL elements 60, 70, and 80 described above. [Sixth Embodiment] Another embodiment of the present invention will be described with reference to Figs. 27 to 29 as follows. In addition, for the convenience of explanation, components having the same functions as those of the components shown in the first embodiment to the fifth embodiment are denoted by the same symbols, and their descriptions are omitted. In addition, the various features described in the first to fifth embodiments are also applicable to this embodiment. In this embodiment, the liquid crystal display element 20 and the organic element 40 are driven simultaneously. In addition, 'driving at this time does not mean that it is only on the liquid crystal display element 20 • 57- 588185
(53) 施加有電壓,僅在有機el元件40内流入電流的狀態,而係 指因應顯示資訊控制其電壓或電流,反射光強度及發光元 件之發光強度改變而進行顯示的狀態。(53) A state where a voltage is applied and a current flows only in the organic el element 40, and refers to a state in which display is performed in response to display information to control the voltage or current, the intensity of reflected light, and the intensity of light emission of the light-emitting element.
本實施形態於製造顯示裝置1時,如前述圖22所示,於形 成具有使液晶分子對絕緣性基板29垂直配向之性質而無圖 式的配向膜(商品名稱「JALS204(曰本合成橡膠社製)」)後 ’精由摩擦實施配向處環後,經由無圖式之密封樹脂,貼 合絕緣性基板29側之成形基板與絕緣性基板21側之成形基 板的兩片成形基板’植入作為夜晶層26之介電異方性為負 的液晶材料(商品名稱「MLC6608(MERUJU社製)」),作成 液晶顯示元件20。並藉由於絕緣性基板29表面依序貼附相 位差板31與偏光板32,完成顯示裝置i。另外,本實施形態 亦可使用相位差板31之相位差對又= 550 nm之光為1/4者。In the present embodiment, when the display device 1 is manufactured, as shown in FIG. 22 described above, an alignment film having a property of vertically aligning liquid crystal molecules to the insulating substrate 29 without a pattern is formed (brand name “JALS204 "Production" ") after" finish the alignment ring by friction, through the unillustrated sealing resin, two molded substrates bonded to the molded substrate on the insulating substrate 29 side and the molded substrate on the insulating substrate 21 side "are implanted The liquid crystal display element 20 was fabricated as a liquid crystal material (trade name “MLC6608 (Merju) Co., Ltd.)” having a negative dielectric anisotropy of the night crystal layer 26. The phase difference plate 31 and the polarizing plate 32 are sequentially attached to the surface of the insulating substrate 29 to complete the display device i. In addition, in this embodiment, a light having a retardation pair of the retardation plate 31 and a wavelength of 550 nm which is 1/4 may be used.
另外,本實施形態之驅動電路使用與前述第五種實施形 態不同的驅動電路。亦即,本實施形態之液晶顯示元件2〇 與有機EL元件40係彼此獨立驅動。 參照圖27至圖29說明上述構造之顯示裝置i的具體顯示 動作。 首先,如圖27所示,液晶層26之顯示模式如以上所述, 係使用包含介電異方性為負之液晶材料的液晶層%與垂直 配向性而無圖式的配向膜,因此在無施加電壓的狀態下顯 不黑,另外如圖28所示,藉由施加電壓逐漸增加反射率, 而進行白顯示的正常黑模式。 亦即,外光4下使用顯示裝置旧,無施加電壓或没極電 -58- 588185In addition, the driving circuit of this embodiment uses a driving circuit different from the aforementioned fifth embodiment. That is, the liquid crystal display element 20 and the organic EL element 40 of this embodiment are driven independently of each other. A specific display operation of the display device i configured as described above will be described with reference to Figs. 27 to 29. First, as shown in FIG. 27, the display mode of the liquid crystal layer 26 is as described above, and the liquid crystal layer containing a liquid crystal material with negative dielectric anisotropy is used. In the state where no voltage is applied, it is not black, and as shown in FIG. 28, the normal black mode of white display is performed by gradually increasing the reflectance with the applied voltage. That is, the display device used under external light 4 is old, no applied voltage or no pole electricity -58- 588185
(54) 壓Vd未達共用臨限值電壓vth時,如圖27所示,外光4透過 偏光板32及相位差板31後,變成圓偏光而射入液晶層%。 耩由液晶用TFT元件22在液晶層26上施加有未達共用臨限 值電壓Vth之汲極電壓Vd時,液晶層26的複折射為〇,因此 ' 於到達反射性之像素電極25時,保持如右圓偏光的圓偏光 ' 狀態’而於以像素電極25反射時,形成如左圓偏光的反周 期圓偏光。因此,反射光透過相位差板31後,形成與偏光 板32之透過軸直交90度之角度的直線偏光。藉此,外光4 · 之反射光無法透過偏光板32而成黑顯示。因此,如圖29(a) 所示,液晶顯示元件20之照度大致為〇。此外,此時如圖 29(b)所示,有機EL元件40亦為未達共用臨限值電壓vth, 因此處於關閉狀態,前述有機EL層41亦無電流供給而處於 非發光狀態。 其次,參照圖28說明施加電壓而進行白顯示。而該圖係 記載反射率最1¾條件之液晶層26的複折射為A /4之光的狀 態。 如圖28所示,在液晶層26上施加有共用臨限值電壓vth以 · 上之汲極電壓Vd的情況下,由於液晶層26具有複折射性, 因此無法保持圓偏光狀態。因而來自反射性之像素電極25 之外光4的反射光透過偏光板32,如圖29 (a)所示,液晶顯 . 示元件20之照度顯示為白。 此時,如圖28所示,因EL用TFT元件42亦為開啟狀態, 因此藉由自前述電流供給線2b所供給之電流,如圖29(b)所 示,有機、EL元件40處於發光狀態。 -59· 588185(54) When the voltage Vd does not reach the common threshold voltage vth, as shown in FIG. 27, after the external light 4 passes through the polarizing plate 32 and the retardation plate 31, it becomes circularly polarized light and enters the liquid crystal layer%. (2) When the drain voltage Vd of the liquid crystal layer 26 is applied to the liquid crystal layer 26 by the TFT element 22 for liquid crystal, the birefringence of the liquid crystal layer 26 is 0. Therefore, when the reflective pixel electrode 25 is reached, When the circularly polarized light 'state' such as right circularly polarized light is maintained and reflected by the pixel electrode 25, counter-cyclic circularly polarized light such as left circularly polarized light is formed. Therefore, after the reflected light passes through the retardation plate 31, linearly polarized light is formed at an angle of 90 degrees perpendicular to the transmission axis of the polarizing plate 32. Thereby, the reflected light of the external light 4 · cannot be transmitted through the polarizing plate 32 to form a black display. Therefore, as shown in FIG. 29 (a), the illuminance of the liquid crystal display element 20 is approximately zero. In addition, at this time, as shown in FIG. 29 (b), the organic EL element 40 is also in the off state because it has not reached the common threshold voltage vth, and the aforementioned organic EL layer 41 is also in a non-emission state without current supply. Next, a white display is performed by applying a voltage with reference to FIG. 28. This figure shows the state where the birefringence of the liquid crystal layer 26 with the reflectance of 1¾ is the light of A / 4. As shown in FIG. 28, when the drain voltage Vd of the common threshold voltage vth or more is applied to the liquid crystal layer 26, the liquid crystal layer 26 cannot maintain a circularly polarized state because it has birefringence. Therefore, the reflected light from the light 4 other than the reflective pixel electrode 25 passes through the polarizing plate 32. As shown in FIG. 29 (a), the illuminance of the liquid crystal display element 20 is white. At this time, as shown in FIG. 28, the EL TFT element 42 is also turned on. Therefore, as shown in FIG. 29 (b), the organic and EL elements 40 are emitting light by the current supplied from the current supply line 2b. status. -59 · 588 185
(55) 此時,如前述圖22所示,構成有機EL元件40之陽極43包 含反射性的金屬,不論顯示信號為何始終反射光。行動電 話等多在室外使用的製品搭載有機EL顯示裝置的情況下 ,在使用人側需妻貼附圓偏光板,而本實施形態之液晶層 · 26顯示上所需之偏光板32與具有λ /4波長之相位差的相位 < · 差板3 1具有使此種外光4之反射幾乎為零的功能。 此外,在有機EL元件40與偏光板32之間雖存在液晶層26 ,但是該透過區域12之液晶層26的部分,對向電極27等電 · 極僅形成於絕緣性基板2 9側。因而,如圖2 7及圖2 8所示, 液晶層26不論是否施加電壓而始終處於關閉狀態,並維持 垂直配向性,因此不致對抑制外光4之反射造成不良影響。 另外,本實施形態係以同時驅動液晶層26與有機EL元件 40為例,然於外光4強的情況下,亦可藉由停止對有機el 元件40供給電流’僅液晶層26進行顯示而減少耗電^ 此外,本實施形態與前述第五種實施形態同樣地,透明 絕緣層24係以覆蓋整個有機EL元件40的方式形成,液晶層 26之液晶並未浸透有機EL元件40,因此可提高有機el元件 參 4〇的可靠性, 因而本實施形態之顯示裝置1的有機EL元件40與液晶顯 示元件20係彼此獨立驅動。因而可個別地驅動有機el元件 - 40與液晶顯示元件20。另外,彼此獨立驅動有機el元件40 與液晶顯示元件20用的構造如:有機EL元件40與液晶顯示 元件20分別具有源極匯流排線2a…及閘極匯流排線3…時 ,或分別設有源極匯流排鎳2a…而共用閘極匯流排線3···時。 -60- 588185(55) At this time, as shown in the aforementioned FIG. 22, the anode 43 constituting the organic EL element 40 contains a reflective metal and always reflects light regardless of a display signal. When an organic EL display device is mounted on outdoor products such as mobile phones, a circular polarizer is required to be attached to the user, and the liquid crystal layer 26 of this embodiment requires a polarizer 32 and a λ The phase of the phase difference of the / 4 wavelength < The difference plate 31 has a function of making such reflection of the external light 4 almost zero. Although a liquid crystal layer 26 is present between the organic EL element 40 and the polarizing plate 32, portions of the liquid crystal layer 26 in the transmissive region 12 are provided with electrodes such as a counter electrode 27 only on the insulating substrate 29 side. Therefore, as shown in FIGS. 27 and 28, the liquid crystal layer 26 is always turned off regardless of whether a voltage is applied and maintains vertical alignment, so that it does not adversely affect the reflection of the external light 4. In addition, in this embodiment, the liquid crystal layer 26 and the organic EL element 40 are driven at the same time as an example. However, when the external light is strong, the supply of current to the organic el element 40 can be stopped. Reduce power consumption ^ In addition, as in the fifth embodiment, the transparent insulating layer 24 is formed so as to cover the entire organic EL element 40. The liquid crystal of the liquid crystal layer 26 does not penetrate the organic EL element 40. The reliability of the organic el element 40 is improved, so the organic EL element 40 and the liquid crystal display element 20 of the display device 1 of this embodiment are driven independently of each other. Therefore, the organic EL element-40 and the liquid crystal display element 20 can be individually driven. In addition, the structures for driving the organic el element 40 and the liquid crystal display element 20 independently of each other are, for example, when the organic EL element 40 and the liquid crystal display element 20 respectively have a source bus line 2a ... and a gate bus line 3 ..., or are provided separately When the source bus bar is nickel 2a ... and the common gate bus line 3 ... is used. -60- 588185
(56) 此外,本實施形態之顯示裝置1的液晶顯示元件20形成正 常黑。因此,獨立驅動液晶顯示元件20與有機EL元件40時 ,於不驅動液晶顯示元件20而僅驅動有機EL元件40的情況 下’有機EL元件40顯示區域之透過區域12的四周未反射光 而形成黑顯示。 ' 因此,可防止僅有機EL元件40發光驅動時之反差的降低。 另外,本實施形態除液晶顯示元件20形成正常黑的構造 之外,具有與第一種實施形態相同的構造及功能。 · 此外,本實施形態係說明組合液晶顯示元件2〇與有機El 元件40之顯示裝置,不過並不限定於此,上述有機el元件 40亦可替換成前述之有機el元件60 · 70 · 80。 〔第七種實施形態〕 參照圖30及圖3 1說明本發明另外實施形態如下。另外, 為便於說明,具有與前述第一種實施形態至第六種實施形 態之圖式顯示之構件相同功能的構件註記相同符號,並省 略其說明。此外,前述第一種實施形態至第六種實施形態 所述之各種特徵亦適用於本實施形態。 · 如前所述,液晶顯示裝置與有機EL顯示裝置分別具有體 積薄、重量輕的特徵,並且於亮處反射型液晶顯示裝置對 耗電有效,另外於暗處,因光利用效率及形狀,而有機£乙 - 顯示裝置有效。因此考慮藉由在一片基板上形成液晶顯示 , 疋件與有機EL顯示元件,彌補彼此的缺點,在各種環境下 進行最佳顯示。 但是,上述顯示裝置1中,在一片基板上單純地形成液晶 ,61 · (57)(56) In addition, the liquid crystal display element 20 of the display device 1 of this embodiment is formed normally black. Therefore, when the liquid crystal display element 20 and the organic EL element 40 are driven independently, when the liquid crystal display element 20 is not driven and only the organic EL element 40 is driven, 'the organic EL element 40 does not reflect light around the transmission region 12 around the display region 12 and is formed. Black display. 'Therefore, it is possible to prevent a decrease in contrast when only the organic EL element 40 is driven. The present embodiment has the same structure and function as the first embodiment except that the liquid crystal display element 20 has a normally black structure. In addition, this embodiment describes a display device in which a liquid crystal display element 20 and an organic El element 40 are combined, but it is not limited to this, and the organic el element 40 may be replaced with the organic el element 60 · 70 · 80 described above. [Seventh Embodiment] Another embodiment of the present invention will be described with reference to Figs. 30 and 31. In addition, for convenience of explanation, components having the same functions as those of the components shown in the first to sixth embodiments are shown with the same symbols, and their descriptions are omitted. In addition, the various features described in the first to sixth embodiments are also applicable to this embodiment. · As mentioned earlier, liquid crystal display devices and organic EL display devices have the characteristics of thinness and light weight, and reflective liquid crystal display devices are effective in power consumption in bright places, and in the dark, due to light utilization efficiency and shape, And organic £ B-display device is effective. Therefore, it is considered that by forming a liquid crystal display, a component, and an organic EL display element on a substrate, the shortcomings of each other are compensated for, and optimal display is performed in various environments. However, in the display device 1 described above, the liquid crystal is simply formed on one substrate. 61 · (57)
顯示元件與有機EL顯示元件時,基板内之配線及驅動電路 趨於複雜,而存在製造時之良率及成本等的問題。 因而顯示裝置1藉由形成前述第五種實施形態之圖23的 構造’就液晶顯示元件20及有機EL元件40之驅動,藉由共 用信號線及掃描信號線之閘極匯流排線3…及信號線及資 料信號線之源極匯流排線2a…,以解決上述問題。 本實施形態詳述該顯示·裝置1之驅動電路的驅動方法。 如圖30所示,來自閘極匯流排線3···之掃描線信號Vg,於 選擇時,提高電壓使液晶用TFT元件22處於開啟狀態,另 外,於非選擇時,藉由降低電壓使液晶用TFT元件22處於 關閉狀態。此外,來自源極匯流排線2a…之資料線信號Vs 於反射型顯示時,對COM信號Vcom進行反轉驅動,藉由與 COM信號Vcom之差分的信號調整反射光量進行顯示。 此時,因來自源極匯流排線2a…之資料線信號Vs未超過 EL用TFT元件42之EL用臨限值電壓Vth(OLED),因此有機 EL元件40内無電流流入無法進行發光顯示。另外,來自源 極匯流排線2a…之資料線信號Vs於超過EL用TFT元件42之 EL用臨限值電壓Vth(OLED)時,電流流入有機EL元件40内 而進行發光顯示。 於發光型顯示時,係以對GND之信號值控制發光量,因 此來自源極匯流排線2a…之資料線信號Vs不進行反轉驅動。 此外,本實施形態之液晶顯示元件2〇係使用正常白型液 晶。因此COM信號Vcom與來自源極匯流排線2a…之資料線 信號V s的差分大時,係進行暗顯示,因此反射型顯示部分 -62-In the case of display elements and organic EL display elements, wiring and driving circuits in the substrate tend to be complicated, and there are problems such as yield and cost during manufacturing. Therefore, the display device 1 drives the liquid crystal display element 20 and the organic EL element 40 by forming the structure of FIG. 23 of the fifth embodiment described above, and the gate bus line 3 of the common signal line and the scanning signal line ... and The source bus lines 2a ... of the signal lines and data signal lines solve the above problems. This embodiment details a method of driving the driving circuit of the display device 1. As shown in FIG. 30, when the scanning line signal Vg from the gate bus line 3 ... is selected, the voltage is increased so that the liquid crystal TFT element 22 is turned on. In addition, when not selected, the voltage is lowered so that The liquid crystal TFT element 22 is turned off. In addition, when the data line signal Vs from the source bus bar 2a ... is in a reflective type display, the COM signal Vcom is driven in reverse, and the reflected light amount is adjusted for display by a signal different from the COM signal Vcom. At this time, since the data line signal Vs from the source bus line 2a ... does not exceed the EL threshold voltage Vth (OLED) of the EL TFT element 42, no current flows in the organic EL element 40 and the light-emitting display cannot be performed. In addition, when the data line signal Vs from the source bus line 2a ... exceeds the EL threshold voltage Vth (OLED) of the EL TFT element 42, a current flows into the organic EL element 40 and a light-emitting display is performed. In the light-emitting type display, the light-emission amount is controlled by the signal value of GND, so the data line signal Vs from the source bus lines 2a ... is not driven in the reverse direction. The liquid crystal display device 20 of this embodiment uses a normal white liquid crystal. Therefore, when the difference between the COM signal Vcom and the data line signal V s from the source bus line 2a is large, a dark display is performed. Therefore, the reflective display portion -62-
588185 可不使外光4反射而進行發光型顯示。 此外,本實施形態為求防止液晶顯示元件20的圖像保留 ,即使於進行發光顯示時,構成對向電極27之COM信號 Vcom藉由對液晶顯示元件20進行交流驅動來防止圖像保 留。 ' 另外,本實施形態之電壓電流轉換機構,係以一個EL用 TFT元件42構成’不過並不限定於此。亦即,如圖31所示 ,為求抑制顯示裝置1面内的不均一,亦可採用兩個以上的 · 元件,形成藉由來自源極匯流排線2a…之資料線信號Vs可 控制動作電壓之臨限值及發光量的構造即可。 如以上所述,本實施形態係以液晶顯示元件20及有機EL 元件40驅動配置成矩陣狀之上述各顯示像素1〇…用的源極 匯流排線2a···及閘極匯流排線3…彼此共用。 此外,本實施形態之顯示裝置1藉由對液晶顯示元件20在 源極匯流排線2a···及閘極匯流排線3…上施加驅動信號,可 驅動有機EL元件40。因此,可以驅動液晶顯示元件20用之 源極匯流排線2a…及閘極匯流排線3…驅動有機EL元件40 · 。此因亦將源極驅動器6及閘極驅動器7等各驅動器予以共 用化。因而不增加源極匯流排線2a…及閘極匯流排線3···即 可進行液晶顯示元件20及有機EL元件40的各個顯示。 - 另外,本實施形態之液晶顯示元件20的特性係形成正常 白。此因在液晶顯示元件20上未施加電壓的狀態下,反射 區域11為白顯示,另外,於液晶顯示元件2〇上施加電壓時 ’反射率為零,反射區域11形成黑顯示。此外,來自源極 -63-588185 Can emit light type display without reflecting external light 4. In addition, in the present embodiment, in order to prevent the image retention of the liquid crystal display element 20, the COM signal Vcom constituting the counter electrode 27 prevents the image retention by AC driving the liquid crystal display element 20 even during light emission display. 'In addition, the voltage-current conversion mechanism of this embodiment is constituted by one TFT element 42 for EL', but it is not limited to this. That is, as shown in FIG. 31, in order to suppress unevenness in the display device 1, two or more elements may be used to form a controllable operation by a data line signal Vs from the source bus line 2a ... The structure of the voltage threshold and the amount of light emission is sufficient. As described above, the present embodiment uses the liquid crystal display element 20 and the organic EL element 40 to drive the above-mentioned source bus bars 2a, ... for each display pixel 10 arranged in a matrix, and the gate bus bars 3 … Share each other. In addition, the display device 1 of this embodiment can drive the organic EL element 40 by applying a driving signal to the source bus line 2a ... and the gate bus line 3 ... of the liquid crystal display element 20. Therefore, it is possible to drive the source bus lines 2a ... and the gate bus lines 3 for the liquid crystal display element 20 to drive the organic EL element 40 ·. For this reason, the drivers such as the source driver 6 and the gate driver 7 are shared. Therefore, each of the liquid crystal display element 20 and the organic EL element 40 can be displayed without increasing the source bus line 2a ... and the gate bus line 3 ... -In addition, the characteristics of the liquid crystal display element 20 of this embodiment are normally white. This is because when the voltage is not applied to the liquid crystal display element 20, the reflective region 11 is white, and when a voltage is applied to the liquid crystal display element 20, the reflectance is zero, and the reflective region 11 forms a black display. In addition, from the source -63-
588185 匯流排線2a…之對液晶顯示元件20施加的電壓愈大,愈進 行黑顯示。因此驅動有機EL元件40時,如以上所述,液晶 顯示元件20處於驅動狀態,且其顯示為黑。 因而,由於有機EL元件40顯示區域之透過區域12四周形 成黑顯示,因此可防止因發光驅動有機EL元件40造成反差 降低。 此外,本實施形態之顯·示裝置1的光調節元件包含液晶顯 示元件20。因而,藉由在一個顯示像素1 〇内形成液晶顯示 元件20及有機EL元件40,可提供可促進液晶顯示元件2〇低 耗電化與有機EL元件40高度光利用效率化的顯示裝置1。 此時,液晶用TFT元件22的特性上,液晶顯示元件2〇對對 向電極27之電位需要反轉驅動,亦即需要交流驅動。另外 ,如以上所述,有機EL元件40只須藉由電流非反轉驅動, 亦即直流驅動即可。 有關這一點,本實施形態之顯示裝置1設有具有外光反射 性的像素電極25,且在整個對向基板側之顯示像素丨〇上設 有與該像素電極25對向的對向電極27。此外,藉由液晶顯 示元件20進行顯示時,係對對向電極27的電位反轉驅動, 另外藉由有機EL元件40進行顯示時,係對陰極45之電位, 亦即對GND電位非反轉驅動。 因此,使用液晶顯示元件20作為光調節元件的情況下, 可確實且適切地驅動液晶顯示元件2〇及有機el元件40。 此外,本實施形態之顯示裝置i的有機El元件4〇係設於具 有外光反射性之像素電極25的更後方側。因而有機el元件 -64- 588185588185 The larger the voltage applied to the liquid crystal display element 20 by the bus bars 2a ..., the blacker the display becomes. Therefore, when the organic EL element 40 is driven, as described above, the liquid crystal display element 20 is in a driving state, and its display is black. Therefore, since a black display is formed around the transmission region 12 of the display area of the organic EL element 40, it is possible to prevent the organic EL element 40 from being lowered in contrast due to light emission. The light adjustment element of the display / display device 1 according to this embodiment includes a liquid crystal display element 20. Therefore, by forming the liquid crystal display element 20 and the organic EL element 40 in one display pixel 10, it is possible to provide a display device 1 that can promote the reduction in power consumption of the liquid crystal display element 20 and the high light use efficiency of the organic EL element 40. At this time, in terms of the characteristics of the liquid crystal TFT element 22, the potential of the liquid crystal display element 20 opposite to the counter electrode 27 needs to be driven in the reverse direction, that is, an AC drive is required. In addition, as described above, the organic EL element 40 only needs to be driven by non-inverting current, that is, DC driving. In this regard, the display device 1 of this embodiment is provided with a pixel electrode 25 having external light reflectivity, and a counter electrode 27 opposed to the pixel electrode 25 is provided on the entire display pixel on the counter substrate side. . In addition, when the display is performed by the liquid crystal display element 20, the potential of the counter electrode 27 is reversely driven, and when the display is performed by the organic EL element 40, the potential of the cathode 45 is non-inverted, that is, the GND potential is not inverted. drive. Therefore, when the liquid crystal display element 20 is used as the light adjustment element, the liquid crystal display element 20 and the organic el element 40 can be driven reliably and appropriately. In addition, the organic El element 40 of the display device i of this embodiment is provided further behind the pixel electrode 25 having external light reflectivity. Thus organic el element -64- 588185
(60) 4〇朝向前方自行發光時,僅在透過區域12上進行顯示,光 並未透過存在像素電極25的反射區域11。 因此’驅動有機EL元件40時,液晶顯示元件20之像素電 極25發揮黑矩陣的功能。因此可維持有機el元件4〇的反差 、 〇 另外’本實施形態係說明有機EL元件40設於像素電極25 後方時的驅動電路,不過並不限定於此,即使第一種實施 形態〜第四種實施形態所示之有機EL元件40設於與液晶 · 層26的同一層,本實施形態說明之驅動電路仍可適用。 此外’本實施形態係說明組合液晶顯示元件2〇與有機El 元件40之顯示裝置,不過並不限定於此,上述有機El元件 40亦可替換成前述之有機el元件60, 70, 80。 再者’上述第一種實施形態至第七種實施形態係使用反 射型之液晶顯示元件20作為光調節元件,不過並不限定於 此’亦可使用以反射鏡等使光之反射量改變而進行顯示的 顯示元件。此外,亦可使用電湧型顯示裝置、扭轉球型顯 示裝置、使用微細棱鏡膜之反射型顯示裝置、數位反射鏡 · 裝置等光調節元件。 再者,第一種實施形態至第七種實施形態之發光元件係 使用有機EL元件40, 60, 70, 80,不過並不限定於此,如亦 - 可使用無機EL元件、發光二極體(LED; Light Emitting Diode)等發光照度可變的元件。此外,亦可使用場致發射 顯示裝置(FED)、電漿顯示裝置等發光元件。 此外,上述第一種實施形態〜第七種實施形態中記載之 -65- (61)588185(60) 40. When emitting light by itself toward the front, the display is performed only on the transmission region 12, and light does not pass through the reflection region 11 where the pixel electrode 25 is present. Therefore, when the organic EL element 40 is driven, the pixel electrode 25 of the liquid crystal display element 20 functions as a black matrix. Therefore, the contrast of the organic el element 40 can be maintained. In addition, this embodiment describes a driving circuit when the organic EL element 40 is provided behind the pixel electrode 25, but it is not limited to this, even if the first embodiment to the fourth embodiment The organic EL element 40 shown in this embodiment is provided on the same layer as the liquid crystal and layer 26, and the driving circuit described in this embodiment is still applicable. In addition, the present embodiment describes a display device that combines the liquid crystal display element 20 and the organic El element 40, but it is not limited to this. The organic El element 40 may be replaced with the organic el elements 60, 70, and 80 described above. Furthermore, 'the first to seventh embodiments described above use the reflective liquid crystal display element 20 as the light adjustment element, but it is not limited to this.' It is also possible to use a reflector or the like to change the amount of light reflection Display element for display. In addition, light adjustment elements such as a surge type display device, a twist ball type display device, a reflective display device using a fine prism film, and a digital mirror / device can be used. In addition, the light-emitting elements of the first to seventh embodiments use organic EL elements 40, 60, 70, 80, but are not limited to this, as well-inorganic EL elements, light-emitting diodes can be used (LED; Light Emitting Diode). In addition, light emitting elements such as field emission display (FED) and plasma display devices can also be used. In addition, in the first to seventh embodiments described above, -65- (61) 588185
絕緣性基板29無須為硬質者,亦可為膜狀者。 再者,上述第一種實施形態〜第七種實施形態中,驅動 液晶顯示元件20之切換元件係使用液晶用TFT元件22,不 過並不限定於此’如亦可使用液晶用金屬絕緣體金屬 (MIM; Metal Insulator Metal)元件。 〔第八種實施形態〕The insulating substrate 29 does not need to be rigid, and may be a film-like one. Furthermore, in the first to seventh embodiments, the switching element that drives the liquid crystal display element 20 uses the liquid crystal TFT element 22, but it is not limited to this. MIM; Metal Insulator Metal). [Eighth Embodiment]
參照圖32說明本發明其他實施形態如下。另外,為便於 說明,具有與前述第一種實施形態至第七種實施形態之圖 式顯示之構件相同功能的構件註記相同符號,並省略其說 明。此外,前述第一種實施形態至第七種實施形態所述之 各種特徵亦適用於本實施形態。 如前所述,液晶顯示裝置與有機EL顯示裝置分別具有體 積薄、重量輕的特徵,並且於亮處反射型液晶顯示裝置對 耗電有效,另外於暗處,因光利用效率及形狀,而有機£]: 顯示裝置有效。因此考慮藉由在一片基板上形成液晶顯示Referring to Fig. 32, another embodiment of the present invention will be described below. In addition, for the convenience of explanation, components having the same functions as those of the components shown in the drawings of the first to seventh embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. In addition, various features described in the aforementioned first to seventh embodiments are also applicable to this embodiment. As mentioned earlier, liquid crystal display devices and organic EL display devices have the characteristics of thinness and light weight, respectively, and reflective liquid crystal display devices are effective in power consumption in bright places, and in the dark, due to light utilization efficiency and shape, Organic]: The display is active. So consider forming a liquid crystal display on a substrate
元件與有機EL顯示元件,彌補彼此的缺點,在各種環境下 進行最佳顯示。 但是,前述顯示裝置1中,在一片基板上單純地形成液晶 顯示元件與有機EL顯示元件時,基板内之配線及驅動電路 趨於複雜,而存在製造時之良率及成本等的問題。 因而,上述顯示裝置1藉由形成前述第五種實施形態之圖 23的構造,就液晶顯示元件2〇及有機el元件4〇之驅動,藉 由共用信號線及掃描信號線之閘極匯流排線3…及信號線 及S料彳5破線之源極匯流排線2 a…,以解決上問題。 -66- 588185The element and the organic EL display element make up for each other's shortcomings and perform optimal display in various environments. However, in the display device 1 described above, when a liquid crystal display element and an organic EL display element are simply formed on a single substrate, wiring and driving circuits in the substrate tend to be complicated, and there are problems such as yield and cost during manufacturing. Therefore, the above display device 1 drives the liquid crystal display element 20 and the organic el element 40 by forming the structure of FIG. 23 of the fifth embodiment, and the gate bus of the common signal line and the scanning signal line is driven. Line 3 ... and signal line and S material 5 break the source bus line 2a ... to solve the above problem. -66- 588185
(62) 本實施形態就該顯示裝置1之驅動電路的驅動方法,詳述 與前述第五種實施形態不同的方法。另外,驅動電路與圖 23所示者相同。 首先,如圖32(a)所示,將一個顯示像素1〇之影像信號之 單位時間的1場以1T顯示。 本實施形態如圖32(b)(c)所示,來自上述閘極匯流排線3 …之掃描線信號Vg,於選擇時提高電壓,使圖23所示之液 晶用TFT元件22處於開啟狀態,另外,於非選擇時,藉由 降低電壓使液晶用TFT元件22處於關閉狀態。 此外,掃描線信號Vg於1場T之間被選擇數次而處於開啟 狀態。此外,選擇該掃描線信號Vg之時間間隔並非等間隔 ,而係2的乘方間隔。亦即該圖(13)中,將1場丁分割成2〇 : 21 : 22。因而1場T形成(1/7)T,(2/7)T,(4/7)T的各間隔。另 外,即使將時間間隔形成等間隔在驅動上亦無問題,不過 藉由形成2乘方的間隔,可減少掃描線信號Vg的選擇次數 ,而增加灰階數。亦即,如此藉由將1場T區分成20 : 21 : 22 ’使各分割部分個別地處於亮燈狀態,考慮1場τ内之總 免燈時間時,可顯示8種灰階。 另外,本實施形態於1場T之間,藉由如使3次之掃描線信 號Vg處於開啟狀態,而顯示8種灰階,不過並不限定於此 ,藉由增加其次數,可進一步增加顯示上的灰階數。亦即 ,一般而言,將影像信號單位時間之1場T分割數個時,各 分割寬可分割成1(=20) : 21 : 22 :…:2n(n為正整數)的間隔 。藉此,可顯示2η+1個灰階。此外,減少掃描線信號Vg的 -67·(62) In this embodiment, a method of driving the driving circuit of the display device 1 will be described in detail, which is different from the fifth embodiment. The driving circuit is the same as that shown in FIG. 23. First, as shown in FIG. 32 (a), one field per unit time of an image signal of a display pixel 10 is displayed at 1T. In this embodiment, as shown in FIG. 32 (b) (c), the scanning line signal Vg from the above-mentioned gate bus bar 3 ... increases the voltage when selecting, so that the TFT element 22 for liquid crystal shown in FIG. 23 is turned on In addition, when not selected, the liquid crystal TFT element 22 is turned off by reducing the voltage. In addition, the scanning line signal Vg is selected several times between one field T and is turned on. In addition, the time interval for selecting the scanning line signal Vg is not an equal interval but a power interval of 2. That is, in the figure (13), one field D is divided into 20:21:22. Therefore, one field T forms intervals of (1/7) T, (2/7) T, and (4/7) T. In addition, there is no problem in driving evenly spaced time intervals, but by forming a power interval of two, it is possible to reduce the number of selections of the scanning line signal Vg and increase the number of gray levels. That is, by dividing one field T into 20:21:22 'in this way, each divided portion is individually turned on. When considering the total light-off time within one field τ, eight types of gray scales can be displayed. In addition, in this embodiment, between one field T, if three scanning line signals Vg are turned on, eight kinds of gray levels are displayed, but it is not limited to this. By increasing the number of times, it can be further increased. The number of gray levels on the display. That is, in general, when a field T of a video signal unit time is divided into a plurality of times, each division width can be divided into intervals of 1 (= 20): 21: 22: ...: 2n (n is a positive integer). Thereby, 2n + 1 gray scales can be displayed. In addition, the scan line signal Vg is reduced by -67 ·
588185 選擇次數可增加灰階數。 以下說明具體之反射型顯示及發光顯示的驅動方法。 首先,進行反射型顯示的情況下,如圖3 2(b)所示,來自 圖23所示之源極匯流排線2a…的資料線信號Vs對COM信 號Vcom進行反轉驅動,藉由COM信號Vcom與2值信號改變 反射光量。此外,於3次之掃描線信號Vg内進行開啟、關 閉,時間性地調整反射光量進行顯示。亦即,藉由增減反 射時間以調整反射光量。 β 此外,本實施形態之液晶顯示元件20係使用正常白型液 晶,因此圖32(b)所示之驅動信號於期間(4/7)Τ及其間(1/7)Τ 時形成亮狀態,另外於期間(2/7)Τ形成暗狀態,第1場及第2 場均顯示第五灰階。亦即,如期間(2/7)Τ時COM信號Vcom 為開啟狀態,而資料線信號Vs為關閉狀態。因而形成於液 晶顯示元件20内施加有電壓的狀態,因此期間(2/7)T處於暗 狀態。 此時,來自上述源極匯流排線2a…之資料線信號Vs並未 超過圖23所示之EL用TFT元件42的EL用臨限值電壓 ·588185 Select the number to increase the number of gray levels. Hereinafter, a specific driving method of the reflective display and the light-emitting display will be described. First, in the case of a reflective display, as shown in FIG. 32 (b), the data line signal Vs from the source bus line 2a ... shown in FIG. 23 reversely drives the COM signal Vcom, The signal Vcom and the binary signal change the amount of reflected light. In addition, the scanning line signal Vg is turned on and off three times, and the amount of reflected light is adjusted in time to display. That is, the amount of reflected light is adjusted by increasing or decreasing the reflection time. β In addition, the liquid crystal display element 20 of this embodiment uses a normal white liquid crystal. Therefore, the driving signal shown in FIG. In addition, during the period (2/7) T, a dark state was formed, and the first field and the second field both displayed the fifth gray scale. That is, if the COM signal Vcom is on and the data line signal Vs is off during the period (2/7) T. Therefore, a state where a voltage is applied in the liquid crystal display element 20 is formed, and therefore, the period (2/7) T is in a dark state. At this time, the data line signal Vs from the above-mentioned source bus line 2a ... does not exceed the EL threshold voltage of the EL TFT element 42 shown in FIG. 23
Vth(OLED),因此有機EL元件40内無電流流入,不進行發 光顯示。 另外,進行發光顯示時,如圖32(c)所示,來自上述源極 · 匯流排線2a…之資料線信號Vs藉由超過EL用TFT元件42之 · EL用臨限值電壓Vth(OLED),電流流入有機EL元件40而進 行發光顯示。此外,比EL用TFT元件42之EL用臨限值電壓 Vth(OLED)小的情況下不進行發光。 -68- 588185Since Vth (OLED), no current flows in the organic EL element 40, and no light emission display is performed. In addition, during light-emitting display, as shown in FIG. 32 (c), the data line signal Vs from the source / bus line 2a ... exceeds the EL threshold voltage Vth (OLED for the EL TFT element 42) ), A current flows into the organic EL element 40 and a light-emitting display is performed. In addition, when the voltage is smaller than the threshold voltage Vth (OLED) for EL of the TFT element 42 for EL, no light is emitted. -68- 588185
(64) 本實施形態於1場T之間使3次掃描線信號Vg處於開啟狀 態,在3次之掃描線信號Vg内進行有機EL元件40的開啟、 關閉,與前述液晶顯示元件20同樣地,時間性地調整發光 · 光量而進行顯示。具體而言,如圖23(c)所示,於期間(4/7)T 及(1/7)T時處於開啟狀態,另外於期間(2/7)T處於關閉狀態 ’ ,第1場及第2場均顯示第五灰階。 此時,進行發光顯示時,係以對於GND之信號控制發光 的開啟、關閉,因此COM信號Vcom—定且來自源極匯流排 鲁 線2a…之資料線信號Vs不進行反轉驅動。此外,本實施形 態之液晶顯示元件2 0 ’如以上所述,係使用正常白型液晶 。因此,COM信號Vcom與來自源極匯流排線2a…之資料線 信號Vs的差分形成極大值,因此液晶始終為暗顯示,反射 型顯示部分不反射外光4而可進行發光型顯示。 此外’本實施形態於進行發光顯示的情況下,使C〇M信 號Vcom保持一定,使來自源極匯流排線2心··之資料線信號 Vs改變。因此,藉由進行有機EL元件40之開啟、關閉,對 於COM信號Vcom,於液晶顯示元件20内進行交流驅動,以 鲁 防止圖像保留。 另外,本實施形態之電壓電流轉換機構係以1個EL用TFT 元件42構成’不過並不限定於此。亦即,如圖μ所示,為 · 求抑制顯示裝置1面内的不均一,亦可採用兩個以上的元件 ’形成藉由來自源極匯流排線2a…之資料線信號…可控制 動作電壓之臨限值的構造即可。 如U上所述,本實施形態係以液晶顯示元件2〇及有機el -69- 588185(64) In this embodiment, the scanning line signal Vg is turned on three times between one field T, and the organic EL element 40 is turned on and off within the scanning line signal Vg three times, similarly to the liquid crystal display element 20 described above. Display the display by adjusting the light emission and light quantity over time. Specifically, as shown in FIG. 23 (c), during the period (4/7) T and (1/7) T, it is turned on, and during the period (2/7) T is turned off ', the first field And the second field showed the fifth gray level. At this time, when the light-emitting display is performed, the light emission is controlled to be turned on and off by a signal for GND. Therefore, the COM signal Vcom—the data line signal Vs from the source bus line 2a ... is not driven in the reverse direction. In addition, as described above, the liquid crystal display element 20 'of this embodiment uses a normal white liquid crystal. Therefore, the difference between the COM signal Vcom and the data line signal Vs from the source bus line 2a ... forms a maximum value, so the liquid crystal is always displayed in a dark state, and the reflective display portion does not reflect external light 4 and can perform a light-emitting display. In addition, in the present embodiment, when the light emitting display is performed, the com signal Vcom is kept constant, and the data line signal Vs from the source bus line 2 core is changed. Therefore, by turning on and off the organic EL element 40, the COM signal Vcom is AC-driven in the liquid crystal display element 20 to prevent image retention. In addition, the voltage-current conversion mechanism of this embodiment is constituted by one TFT element 42 for EL ', but it is not limited to this. That is, as shown in FIG. Μ, in order to suppress unevenness in the display device 1 surface, two or more elements may be used to form a data line signal from the source bus line 2a ... controllable operation The configuration of the voltage threshold is sufficient. As described above, this embodiment uses a liquid crystal display element 20 and an organic el -69- 588185.
(65) 元件40驅動配置成矩陣狀之上述各顯示像素丨〇…用的源極 匯流排線2 a…及閘極匯流排線3…彼此共用。(65) The element bus 40 drives the above-mentioned display pixels 丨 ... arranged in a matrix, and the source bus lines 2 a ... and the gate bus lines 3 ... are shared with each other.
此外,本實施形態之顯示裝置1藉由對液晶顯示元件20在 源極匯流排線2a…及閘極匯流排線3···上施加驅動信號,可 驅動有機EL元件40。因此,可以驅動液晶顯示元件20用之 源極匯流排線2a…及閘極匯流排線3…驅動有機EL元件40 。此因亦將源極驅動器6·及閘極驅動器7等各驅動器予以共 用化。因而不增加源極匯流排線2a…及閘極匯流排線3.··即 可進行液晶顯示元件20及有機EL元件40的各個顯示。 另外,本實施形態之液晶顯示元件20的特性係形成正常 白。此因在液晶顯示元件20上未施加電壓的狀態下,反射 區域11為白顯示,另外,於液晶顯示元件20上施加電壓時 ,反射率為零,反射區域11形成黑顯示。此外,來自源極 匯流排線2a…之對液晶顯示元件20施加的電壓愈大,愈進 行黑顯示。In addition, the display device 1 of this embodiment can drive the organic EL element 40 by applying a driving signal to the source bus line 2a ... and the gate bus line 3 ... of the liquid crystal display element 20. Therefore, it is possible to drive the source bus lines 2a ... and the gate bus lines 3 for the liquid crystal display element 20 to drive the organic EL element 40. For this reason, drivers such as the source driver 6 and the gate driver 7 are also used in common. Therefore, each of the liquid crystal display element 20 and the organic EL element 40 can be displayed without increasing the source bus line 2a ... and the gate bus line 3. In addition, the characteristics of the liquid crystal display element 20 of this embodiment are normally white. This is because when the voltage is not applied to the liquid crystal display element 20, the reflective region 11 is displayed in white. When a voltage is applied to the liquid crystal display element 20, the reflectance is zero, and the reflective region 11 forms a black display. In addition, the larger the voltage applied to the liquid crystal display element 20 from the source bus lines 2a ..., the blacker the display becomes.
因此驅動有機EL元件40時’如以上所述,液晶顯示元件 20處於驅動狀態,且其顯示為黑。 因而,由於有機EL元件40顯示區域之透過區域12四周形 成黑顯示,因此可防止因發光驅動有機EL元件40造成反差 降低。 此外,本實施形態之顯示裝置1的光調節元件包含液晶顯 示元件20。因而,藉由在一個顯示像素1〇内形成液晶顯示 元件20及有機EL元件40,可提供可促進液晶顯示元件20優 點之低耗電化與有機EL元件40優點之高度光利用效率化 -70-Therefore, when the organic EL element 40 is driven ', as described above, the liquid crystal display element 20 is in a driving state, and its display is black. Therefore, since a black display is formed around the transmission region 12 of the display area of the organic EL element 40, it is possible to prevent the organic EL element 40 from being lowered in contrast due to light emission. The light adjusting element of the display device 1 of this embodiment includes a liquid crystal display element 20. Therefore, by forming the liquid crystal display element 20 and the organic EL element 40 in one display pixel 10, it is possible to provide a reduction in power consumption that can promote the advantages of the liquid crystal display element 20 and a high degree of light utilization efficiency of the advantages of the organic EL element 40. -
588185 的顯示裝置1。 此時’液晶用TFT元件22的特性上,液晶顯示元件2〇對對 向電極27之電位需要反轉驅動’亦即需要交流驅動。另外 ,如以上所述,有機EL元件40只須藉由電流非反轉驅動, 、 亦即直流驅動即可。 、 有關這一點,本實施形態之顯示裝置1設有具有外光反射 性的像素電極25,且在整個對向基板側之顯示像素i 〇上設 有與該像素電極25對向的對向電極27。此外,藉由液晶顯 示元件20進行顯示時,係對對向電極27的電位反轉驅動, 另外稭由有機EL元件40進行顯示時,係對陰極45之電位, 亦即對GND電位非反轉驅動。 因此,使用液晶顯示元件20作為光調節元件的情況下, 可確實且適切地驅動液晶顯示元件2〇及有機EL元件4〇。 此外’本實施形態之顯示裝置1的有機El元件40係設於具 有外光反射性之像素電極25的更後方側。因而有機EL元件 4〇朝向前方自行發光時,僅在透過區域12上進行顯示,光 並未透過存在像素電極25的反射區域11。 · 因此,驅動有機EL元件40時,液晶顯示元件20之像素電 極25發揮黑矩陣的功能。因此可維持有機el元件40的反差 〇 β 此外’本實施形態之顯示裝置1的驅動方法係將各顯示區 , 域丨〇内之影像信號之單位時間的〗場丁分割成數個,於各分 割期間開啟、關閉液晶顯示元件20或有機EL元件40。 再者’可控制1場Τ之液晶顯示元件20或有機EL元件40的 -71·588185 的 Display 装置 1. At this time, 'the characteristics of the liquid crystal TFT element 22 requires that the potential of the liquid crystal display element 20 opposite to the counter electrode 27 be reversely driven', that is, AC driving is required. In addition, as described above, the organic EL element 40 only needs to be driven by non-inverting current, that is, DC driving. In this regard, the display device 1 of this embodiment is provided with a pixel electrode 25 having external light reflectivity, and a counter electrode facing the pixel electrode 25 is provided on the entire display pixel i 0 on the counter substrate side. 27. In addition, when the display is performed by the liquid crystal display element 20, the potential of the counter electrode 27 is driven in reverse, and when the organic EL element 40 is displayed, the potential of the cathode 45, that is, the GND potential is not inverted. drive. Therefore, when the liquid crystal display element 20 is used as the light adjustment element, the liquid crystal display element 20 and the organic EL element 40 can be driven reliably and appropriately. In addition, the organic El element 40 of the display device 1 of this embodiment is provided further behind the pixel electrode 25 having external light reflectivity. Therefore, when the organic EL element 40 emits light by itself toward the front, the display is performed only on the transmissive region 12, and light is not transmitted through the reflective region 11 where the pixel electrode 25 is present. Therefore, when the organic EL element 40 is driven, the pixel electrode 25 of the liquid crystal display element 20 functions as a black matrix. Therefore, the contrast of the organic el element 40 can be maintained. In addition, the driving method of the display device 1 of this embodiment is to divide each display area and field of the video signal unit time into a plurality of fields, and divide them During this period, the liquid crystal display element 20 or the organic EL element 40 is turned on and off. Furthermore, the -71 · of the liquid crystal display element 20 or the organic EL element 40 that can control one field T
588185 總開啟時間,並且增加其亮燈圖案的種類,且可有效予以 驅動。 此外’如此藉由在時間上控制液晶顯示元件2 〇或有機el 元件40的開啟時間,可顯示影像信號的灰階。 因此可提供一種在顯示區域1〇内形成兩個顯示元件之液 晶顯不元件20及有機EL元件40時,防止電路構造趨於複雜 ’提高製造時的良率及降低成本,且可有效進行灰階顯示 之顯示裝置1的驅動方法。 此外’本實施形態之顯示裝置1的驅動方法,將各顯示區 域1〇内之影像信號之單位時間的丨場分割成數個時,係分割 成各分割寬為1(=20) : 21 : 22 :…:2n(n為正整數)的間隔。 亦即,將1場Τ分割成2乘方的間隔,在其分割期間,亦即 分別於期間(4/7)Τ、期間(2/7)Τ及期間(1/7)Τ,藉由使液晶 顯示元件20或有機EL元件40處於開啟狀態,可控制1場丁之 液晶顯示元件20或有機EL元件40的總開啟時間,並可增加 其焭燈圖案的種類,且有效予以驅動。 因而,藉由該分割方法,可顯示2η+1個灰階,並且可減少 # 線信號的選擇次數而增加灰階數。 另外’本實施形態係說明有機EL元件40設於像素電極25 後方時的驅動電路,不過並不限定於此,即使有機EL元件 40設於與液晶層26的同一層,本實施形態說明之驅動電路 仍可適用。 此外,上述實施形態係使用反射型之液晶顯示元件20作 為光調節元件,不過並不限定於此,亦可使用以反射鏡等 -72-588185 total on time, and increase the variety of lighting patterns, and can be effectively driven. In addition, by controlling the ON time of the liquid crystal display element 20 or the organic el element 40 in time as described above, a gray scale of an image signal can be displayed. Therefore, when a liquid crystal display element 20 and an organic EL element 40 in which two display elements are formed in the display area 10 can be provided, the circuit structure can be prevented from becoming complicated. 'Improve the yield during manufacturing and reduce costs, and can effectively perform grayscale Method for driving the display device 1 of the step display. In addition, when the driving method of the display device 1 of this embodiment divides a field of a video signal per unit time in each display area 10 into a plurality of times, it is divided into division widths of 1 (= 20): 21: 22 : ...: 2n (n is a positive integer) interval. That is, 1 field T is divided into 2-power intervals, and during the division period, that is, in the period (4/7) T, the period (2/7) T, and the period (1/7) T, respectively, When the liquid crystal display element 20 or the organic EL element 40 is turned on, the total turn-on time of the liquid crystal display element 20 or the organic EL element 40 in one field can be controlled, and the type of the lamp pattern can be increased and effectively driven. Therefore, by this segmentation method, 2η + 1 gray levels can be displayed, and the number of selections of the # line signal can be reduced to increase the number of gray levels. In addition, this embodiment describes a driving circuit when the organic EL element 40 is provided behind the pixel electrode 25, but it is not limited to this. Even if the organic EL element 40 is provided on the same layer as the liquid crystal layer 26, the driving described in this embodiment is The circuit is still applicable. In addition, in the above embodiment, a reflective liquid crystal display element 20 is used as the light adjustment element, but it is not limited to this, and a mirror or the like may be used.
588185 使光之反射量開啟、關閉而進行顯示的顯示元件。此外, 亦可使用電湧型顯示裝置、扭轉球型顯示裝置、使用微細 稜鏡膜之反射型顯示裝置、數位反射鏡裝置等光調節元件。 此外,係使用有機EL元件40作為發光元件,不過並不限 定於此’如亦可使用有機EL元件60 · 70 · 80 ,並且還可使 ’ 用可控制無機EL元件、發光二極體(LED; Light Emitting Diode)等發光之開啟、關閉的元件。此外,亦可使用場致 發射顯示裝置(FED)、電漿顯示裝置等發光元件。 · 此外,上述實施形態中記載之絕緣基板29無須為硬質者 ,亦可為膜狀者。 再者,上述實施形態中,驅動液晶顯示元件2〇之切換元 件係使用液晶用TFT元件22,不過並不限定於此,如亦可 使用液晶用金屬絕緣體金屬(MIM; Metal Insulat〇r MeUl) 元件。 〔第九種實施形態〕 參照圖33至圖40說明本發明另外實施形態如下β另外, 為便於說明,具有與前述第一種實施形態至第八種實施形 · 態之圖式顯示之構件相同功能的構件註記相同符號,並省 略其說明。此外,前述第一種實施形態至第八種實施形態 所述之各種特徵亦適用於本實施形態。 本實施形態係說明製造單獨之發光元件的有機el顯示裝 置。 · 首先,本實施形態之有機EL顯示裝置1〇〇,如圖33所示, 在兩片之第一基板及第二基板之絕緣性基板12i、129之間 -73-588185 A display element that displays the amount of light reflection on and off. In addition, light adjustment elements such as a surge type display device, a twist ball type display device, a reflective display device using a fine diaphragm, and a digital mirror device can also be used. In addition, the organic EL element 40 is used as a light-emitting element, but it is not limited to this. 'If an organic EL element 60 · 70 · 80 can also be used, and an inorganic EL element and a light emitting diode (LED that can be controlled can also be used) Light Emitting Diode) and other light-emitting on and off components. In addition, light emitting elements such as field emission display (FED) and plasma display devices can also be used. In addition, the insulating substrate 29 described in the above embodiment does not need to be hard, and may be a film. Furthermore, in the above embodiment, the switching element for driving the liquid crystal display element 20 is a liquid crystal TFT element 22, but it is not limited to this. For example, a metal insulator metal (MIM; Metal Insulator MeUl) for liquid crystal may be used. element. [Ninth Embodiment] Referring to Figs. 33 to 40, another embodiment of the present invention will be described as follows. In addition, for convenience of explanation, it has the same components as those shown in the first to eighth embodiments and modes. Functional components are marked with the same symbols, and descriptions thereof are omitted. In addition, various features described in the aforementioned first to eighth embodiments are also applicable to this embodiment. This embodiment mode describes an organic el display device for manufacturing a single light emitting element. · First, as shown in FIG. 33, the organic EL display device 100 of this embodiment is between the two insulating substrates 12i and 129 of the first substrate and the second substrate.
588185 形成有TFT驅動電路部與EL層。 在一方之絕緣性基板121上形成有TFT電路142,在該TFT 電路142上形成有構成保護膜之絕緣性的平坦化膜123,該 平坦化膜123上形成有像素電極125。該像素電極125通過設 於平坦化膜123内之通孔,與上述TFT電路142連接。平坦 、 化膜123具有防止水分等侵入TFT電路142,並且將TFT電路 142上面予以平坦化的功能。上述絕緣性基板12 1、TFT電 路142、平坦化膜123及像素電極125為形成TFT電路側基板 馨 151 者。 另外,在設於與上述TFT電路側基板1 5 1對向位置的另一 方的絕緣性基板129上,設有封閉元件間隙,遮斷來自發光 層之橫方向之光的黑矩陣133,並且於黑矩陣133上,沿著 黑矩陣133形成有供給電力至EL層的電極線165a。並於其上 形成有構成EL層之陽極之包含透明導電膜的陽極165。 上述陽極165通常係以ITO之氧化物形成,不過氧化物構 成之導體的電阻值大於金屬。因此,不能忽略因距構成電 力供給源之基板端面的距離,包含透明導電膜之陽極165 的電力損失。基於以上理由,本實施形態係以沿著黑矩陣 133之形態形成電極線165a,作為包含金屬電極的上述電力 供給用電極。 Λ 上述1%極165上形成有有機EL層166,此時該有機el層 166之構造包含孔輸送層164、發光層163、電子輸送層丨62 。並於電子輸送層162上形成有陰極161。自絕緣性基板129 至該陰極161完成EL的構造。另外,藉由陽極165、孔輸送 •74- 588185588185 A TFT driving circuit portion and an EL layer are formed. A TFT circuit 142 is formed on one of the insulating substrates 121. An insulating planarizing film 123 constituting a protective film is formed on the TFT circuit 142, and a pixel electrode 125 is formed on the planarizing film 123. The pixel electrode 125 is connected to the TFT circuit 142 through a through hole provided in the planarizing film 123. The flattening film 123 has a function of preventing moisture or the like from entering the TFT circuit 142, and flattening the upper surface of the TFT circuit 142. The insulating substrate 121, the TFT circuit 142, the planarizing film 123, and the pixel electrode 125 are those forming a TFT circuit-side substrate 151. In addition, a black matrix 133 is provided on the other insulating substrate 129 provided on the other side opposite to the TFT circuit-side substrate 151 to close the element gap to block light from the lateral direction of the light-emitting layer. On the black matrix 133, electrode lines 165a for supplying power to the EL layer are formed along the black matrix 133. An anode 165 including a transparent conductive film constituting an anode of the EL layer is formed thereon. The anode 165 is usually formed of an oxide of ITO, but the resistance of the conductor made of the oxide is greater than that of the metal. Therefore, the power loss of the anode 165 including the transparent conductive film due to the distance from the end surface of the substrate constituting the power supply source cannot be ignored. For the above reasons, the present embodiment forms the electrode line 165a along the black matrix 133 as the aforementioned power supply electrode including a metal electrode. Λ An organic EL layer 166 is formed on the 1% electrode 165. At this time, the structure of the organic el layer 166 includes a hole transport layer 164, a light emitting layer 163, and an electron transport layer 62. A cathode 161 is formed on the electron transport layer 162. The structure of the EL is completed from the insulating substrate 129 to the cathode 161. In addition, it is transported through the anode 165 and holes. 74-588185
(70) 層164、發光層163、電子輸送層162及陰極161構成有機EL 元件160。 本實施形態於陰極1 61之後形成保護陰極1 61之陰極保護 電極材料167。如此設計係因陰極161容易被氧及水分氧化 ,藉由形成於陰極161上,以保護陰極161,並且容易與TFT 、 電路側基板1 5 1連接。亦即,該陰極保護電極材料167係著 眼於與陰極161之連接形成的可靠性。 此外,以連接電極168連接TFT電路側基板151與形成有機 · EL元件160的絕緣性基板129。該連接電極168係以導電性 聚液及導電性樹脂形成。亦可在兩方的基板側形成此等後 貼合。此外,亦可僅在一方的基板上形成。再者,亦可使 用數個此等材料形成層狀以進行連接。 另外,上述圖20之有機EL層166的構造係包含孔輸送層 164、發光層163、電子輸送層162,不過並不限定於此,如 圖34所示,亦可在有機£]:層上使用高分子el材料〗73,形 成時以噴墨塗敷裝置塗敷該高分子EL材料173。另外,以 噴墨塗敷裝置進行塗敷的情況下,為求防止高分子EL材料 · 173流至周邊,而在黑矩陣us的下方位至設置導引溝174 。亦即,預先將導引溝174形成方框狀,在該導引溝174内 部以噴墨塗敷塗敷高分子EL材料173。另外,有機EL層166 ‘ 係塗敷一層,不過與前述同樣地,亦可層狀地重疊塗敷形 成數個高分子EL材料173···。 其次,參照圖35〜圖40說明上述有機EL顯示裝置1〇〇的製 造方法。 -75- ^8185(70) The layer 164, the light-emitting layer 163, the electron transport layer 162, and the cathode 161 constitute an organic EL element 160. In this embodiment, a cathodic protective electrode material 167 for protecting the cathode 16 is formed after the cathode 161. This design is because the cathode 161 is easily oxidized by oxygen and moisture, and is formed on the cathode 161 to protect the cathode 161, and is easily connected to the TFT and the circuit-side substrate 151. That is, the cathodic protective electrode material 167 focuses on the reliability of connection formation with the cathode 161. The connection electrode 168 connects the TFT circuit-side substrate 151 and the insulating substrate 129 forming the organic EL element 160. The connection electrode 168 is formed of a conductive polymer solution and a conductive resin. These subsequent bondings may be formed on both substrate sides. Alternatively, it may be formed on only one substrate. Furthermore, a plurality of these materials may be used to form a layer for connection. In addition, the structure of the organic EL layer 166 shown in FIG. 20 includes a hole transport layer 164, a light-emitting layer 163, and an electron transport layer 162, but it is not limited to this. The polymer EL material 173 is used, and the polymer EL material 173 is applied by an inkjet coating device during formation. In addition, in the case of coating with an inkjet coating device, in order to prevent the polymer EL material · 173 from flowing to the periphery, a guide groove 174 is provided below the black matrix us. That is, the guide groove 174 is formed in a rectangular shape in advance, and the polymer EL material 173 is applied by inkjet coating inside the guide groove 174. In addition, the organic EL layer 166 'is coated in one layer, but similar to the foregoing, a plurality of polymer EL materials 173 may be applied by lamination in a layered manner ... Next, a method for manufacturing the organic EL display device 100 will be described with reference to FIGS. 35 to 40. -75- ^ 8185
(71) 首先,如圖35(a)所示,使用包含氧化鉻、或氮化鈦、氧 化鈦之微粒子的遮光材料,在絕緣性基板129上形成黑矩陣 133。黑矩陣133之厚度可形成約1〇〇〇〜2〇〇〇人的厚度。氧化 絡可使用濺射或蒸鍍等之真空成膜 而形成。此外,亦可使 氮化鈦、氧化鈦之微粒子分散於光阻内,經塗敷後予以掩 模曝光、顯像及烘烤以形成圖案。(71) First, as shown in FIG. 35 (a), a black matrix 133 is formed on an insulating substrate 129 using a light-shielding material containing fine particles of chromium oxide, or titanium nitride or titanium oxide. The thickness of the black matrix 133 may be about 1,000 to 2,000 people. The oxide can be formed by vacuum film formation such as sputtering or evaporation. In addition, fine particles of titanium nitride and titanium oxide may be dispersed in a photoresist, and after being coated, they may be exposed by masking, developing, and baking to form a pattern.
其次,形成電力供給用之電極線165a,其形成如下,亦 即,以鋁(A1)、鈦(Ti)之順序全面地連續濺射後,使用光阻 形成圖案’以乾式姓刻形成電極圖案。鋁(A1)如為3〇〇〇人, 鈦(Τι)為8〇oA。而後在其上,以濺射法形成1〇〇〇入的17〇膜 ’以形成陽極165。該圖(a)〜該圖〇)係顯示在如此形成之絕 緣性基板129上以掩模蒸鍍法形成有機eL層ι66的方法。 首先’如圖35(a)所示,將陰影掩模155配置於基板上面, 通過陰影掩模155的間隙依序形成構成有機el層166的材 料。具體而言,如圖35(a)、圖35(b)所示,依序堆積孔輸送 層164、發光層163及電子輸送層162。Next, an electrode line 165a for power supply is formed, which is formed as follows. That is, after a full continuous sputtering in the order of aluminum (A1) and titanium (Ti), an electrode pattern is formed with a dry name using a photoresist formation pattern. . If aluminum (A1) is 3,000 people, titanium (Ti) is 80oA. Then, a 7000 film of 1000 Å was formed thereon by a sputtering method to form an anode 165. The figures (a) to (0) show a method for forming an organic eL layer 66 by the mask evaporation method on the insulating substrate 129 thus formed. First, as shown in FIG. 35 (a), the shadow mask 155 is arranged on the substrate, and the materials constituting the organic el layer 166 are sequentially formed through the gaps of the shadow mask 155. Specifically, as shown in Figs. 35 (a) and 35 (b), the hole transport layer 164, the light emitting layer 163, and the electron transport layer 162 are sequentially stacked.
此外,孔輸送層164之材料如··酞菁化合物、 naphthalocyanine化合物、卟啉類、氧二氮茂、三氮雜茂、 二氮雜茂、四氫化二氮雜茂 其次’可使用於包含發出各色之低分子型發光材料之發 光層163的材料如:莕、蔥、菲、芘、四氫蔥、螢光素、茈 、酞茈、莕茈、pednone、酞并周因酮、naphthal〇perin〇ne 、二苯丁二烯、四苯丁二烯、氧染莕鄰酮、喹啉金屬錯體 、亞胺一本慧、diaminocarbazole、峻 r丫洞、rubulan 等。 •76- 588185In addition, the materials of the pore transport layer 164 such as phthalocyanine compounds, naphthalocyanine compounds, porphyrins, oxadiazepines, triazacene, diazacene, tetrahydrodiazine, etc. The materials of the light-emitting layer 163 of the low-molecular-type light-emitting materials of various colors are: osmium, shallot, phenanthrene, osmium, tetrahydroallium, fluorescein, osmium, phthalocyanine, osmium, pednone, phthalozone, naphthalopain One, diphenylbutadiene, tetraphenylbutadiene, oxanthone, quinoline metal complex, imine monobenzyl, diaminocarbazole, Junryadong, rubulan, etc. • 76- 588185
(72) 再者,電子輸送層162之材料如芴酮、anthraquinodimetan 、diphenykinon、thiopyrandioxido、氧二氮茂、硫二氮雜 茂、四氮雜茂、perylene tetracarboxylic acid等0 其次,如圖35(c)所示,在有機EL層166上形成工作函數 · 值小之電極材料作為陰極161。另外,所謂工作函數係指自 〜 導體、半導體等固體將電子取至外界所需的最小能量。 上述陰極161可使用鎂(Mg)、鈣(Ca)、鋰(Li)、鎂銀合金 、鋰鋁合金等材料。 · 陰極保護電極材料167可利用鋁(A1)、鎳(Ni)、鈦(Ti)、钽 (Ta)、金(Au)等金屬。此時係連續形成鋰鋁合金5〇〇〜8〇〇人 作為陰極161,形成金(Au)100〇A作為陰極保護電極材料167〇 如此形成有具有有機EL層166側的基板。另外,而後移動 陰影掩模155至下一個像素,形成同樣者。因而如圖33所示 ,在某個像素之有機EL·層166與其鄰接之像素的有機]£]1層 166間形成空隙。 其-人,參照圖36(a)及圖36(b),說明形成與TFT電路側基 板15丨之有機EL元件160側基板貼合連接用之接觸層之連 · 接電極168的步驟。 如圖36(a)所示,於TFT電路側基板151中,在像素電極125 上形成有連接電極16 8。 ★該連接電極168之材料可利用導電性聚液及導電性樹月旨 專。尤其是將具有毫微尺寸之粒徑的微粒子金屬使用於導 電性漿液時,微粒子金屬因其粒徑* $ u六祖彳工大小而接觸於粒子間及 電極的概率高,因此可確實進行電性接合。 -77- (73)588185(72) Furthermore, the materials of the electron transporting layer 162 such as fluorenone, anthraquinodimetan, diphenykinon, thiopyrandioxido, oxodiazepine, thiodiazepine, tetrazapine, perylene tetracarboxylic acid, etc. Second, as shown in Fig. 35 (c ), An electrode material having a small work function and a small value is formed on the organic EL layer 166 as the cathode 161. In addition, the so-called work function refers to the minimum energy required for solids such as conductors and semiconductors to take electrons to the outside world. The cathode 161 may be made of materials such as magnesium (Mg), calcium (Ca), lithium (Li), magnesium-silver alloy, and lithium aluminum alloy. · The cathodic protection electrode material 167 can use metals such as aluminum (A1), nickel (Ni), titanium (Ti), tantalum (Ta), and gold (Au). At this time, 500 to 800 people of lithium aluminum alloy were continuously formed as the cathode 161, and gold (Au) 100A was formed as the cathode protective electrode material 167. Thus, the substrate having the organic EL layer 166 side was formed. In addition, the shadow mask 155 is then moved to the next pixel to form the same. Therefore, as shown in FIG. 33, a gap is formed between the organic EL layer 166 of a certain pixel and the organic layer of adjacent pixels]. The process of forming a contact layer 168 for forming a contact layer for the lamination of the organic EL element 160 side substrate of the TFT circuit side substrate 15 with reference to FIGS. 36 (a) and 36 (b) will be described. As shown in FIG. 36 (a), in the TFT circuit-side substrate 151, a connection electrode 168 is formed on the pixel electrode 125. ★ The material of the connection electrode 168 can be made of conductive polymer and conductive tree. In particular, when a fine particle metal having a nanometer-sized particle size is used in a conductive slurry, the fine particle metal has a high probability of being in contact with particles and electrodes due to its particle size *, so the electricity can be reliably performed. Sexual engagement. -77- (73) 588185
此外,導電性樹脂,可利用如特開平11-249299號公報中 記載之導電性粒子分散之感光性樹脂(富士 FILM株式會社 製)及雜諸「1986 The Chemical Society of japan」之 r CHEMISTRY LETTERS,ρρ·469-472, 1986」等記載之使用 聚氮茂的感光性導電聚合物。另外,詳細而言,特開平 11-249299號公報中係揭示有關碳黑等導電性粒子分散之 感光性分散物及感光性板的技術,並提及可藉由曝光及顯In addition, as the conductive resin, a photosensitive resin in which conductive particles are dispersed (manufactured by Fuji Film Co., Ltd.) described in Japanese Patent Application Laid-Open No. 11-249299 and CHEMISTRY LETTERS mixed with "1986 The Chemical Society of Japan" ρρ · 469-472, 1986 "and other photosensitive conductive polymers using polyazene. In addition, in Japanese Patent Application Laid-Open No. 11-249299, the technology of a photosensitive dispersion and a photosensitive plate in which conductive particles such as carbon black are dispersed is disclosed.
像以形成圖案。此外,「CHEMISTRY LETTERS,ΡΡ.469-472, 1986」中揭示:使氮茂單體光化學聚合,使其具導電性以 形成聚氮茂,亦揭示:使用經過圖案化的電極材料。 另外’此時如圖36(a)所示,如在TFT電路側基板151上塗 敷使碳黑分散於光阻中之感光性導電性材料後,使用陰影 掩模155進行曝光、顯像,如圖36(b)所示,進行运各像素 部殘留連接電極168的加工。Image to form a pattern. In addition, "CHEMISTRY LETTERS, PP. 469-472, 1986" discloses that photochemical polymerization of azine monomers makes them conductive to form polyazenes. It also discloses the use of patterned electrode materials. In addition, at this time, as shown in FIG. 36 (a), after a photosensitive conductive material in which carbon black is dispersed in a photoresist is coated on the TFT circuit-side substrate 151, the shadow mask 155 is used for exposure and development, such as As shown in FIG. 36 (b), the process of processing the residual connection electrode 168 for each pixel portion is performed.
其次,如圖37(a)及圖37(b)所示,TFT電路側基板151與有 機EL元件160側的對向基板152彼此對準、貼合加以固定。 此時,有機EL元件160係藉由連接電極168電性連接於TFT 電路側基板151,不過宜在此等TFT電路側基板151及對向 基板152兩者上預先形成導電性樹脂,以各導電性樹脂進行 電性接觸。此係可防止因金屬表面之氧化膜等造成接觸不 良’並利用樹脂具有的彈性容易取得接觸。 其次’說明使用高分子EL材料173形成於有機EL層166時。 如圖38(a)所示,在對向基板152之陽極165上形成導引溝 174。該導引溝174係使用光阻或聚醯亞胺,藉由光蝕刻步 -78- 588185Next, as shown in Figs. 37 (a) and 37 (b), the TFT circuit-side substrate 151 and the opposing substrate 152 on the organic EL element 160 side are aligned, bonded, and fixed. At this time, the organic EL element 160 is electrically connected to the TFT circuit-side substrate 151 through the connection electrode 168. However, it is preferable to form a conductive resin in advance on both of the TFT circuit-side substrate 151 and the counter substrate 152 to conduct electrical conduction The resin is in electrical contact. This system prevents poor contact due to the oxide film on the metal surface, etc., and makes it easy to obtain contact using the elasticity of the resin. Next, a case where the polymer EL material 173 is used to form the organic EL layer 166 will be described. As shown in FIG. 38 (a), a guide groove 174 is formed on the anode 165 of the counter substrate 152. The guide groove 174 uses a photoresist or polyimide, and is subjected to a photo-etching step -78- 588185
(74) 驟及喷墨塗敷而形成。圖38(b)係顯示在導引溝174内藉由 喷墨塗敷形成包含高分子EL材料173之有機EL層。高分子 EL材料 173如·· polyphenylenevinylene、polyfluorene、多塞 吩、聚乙稀叶唾(polyvinylcarbazole)等。 其次,如圖38(c)所示,形成陰極161及陰極保護電極材料 167後,塗敷作為接觸層之連接電極168的導電性高分子材 料。陰極161如前所述,可使用鋁(A1)、鎂(Mg)、鋁鎂、銘 鐘材料等。此時係以蒸鍍法形成約1000A的鋁鋰金屬材料 。並在其上形成導電性高分子材料作為上述連接電極168 。另外,如圖39所示,以喷墨裝置塗敷感光性導電樹脂之 連接電極168以形成TFT電路側基板151。 其次’如圖40(a)及圖40(b)所示,貼合TFT電路側基板151 與對向基板152。亦即,TFT電路側基板151與有機EL元件 160之對向基板1 52彼此對準貼合加以固定。此時之有機el 元件160係藉由連接電極168電性連接於TFT電路側基板 151 ’不過,此等TFT電路側基板151及對向基板152兩者宜 預先形成導電性樹脂,並以各導電性樹脂取得電性接觸。 此因可防止因金屬表面之氧化膜等造成接觸不良,並利用 樹脂具有之彈性容易取得接觸。 此外,黏合層之連接電極168亦可於所貼合之TFT電路側 基板151及對向基板152之貼合面外周塗敷環氧樹脂等黏合 劑’於貼合時硬化黏合。亦可在像素間之黑矩陣133所遮蔽 的部分塗敷黏合劑。 因而,本實施形態之有機EL顯示裝置1〇〇及其製造方法, •79- 588185(74) and inkjet coating. Fig. 38 (b) shows the formation of an organic EL layer containing a polymer EL material 173 in the guide groove 174 by inkjet coating. Polymer EL materials 173 such as polyphenylenevinylene, polyfluorene, docephene, polyvinylcarbazole, and the like. Next, as shown in FIG. 38 (c), after the cathode 161 and the cathode protective electrode material 167 are formed, a conductive polymer material as the contact electrode 168 is applied as a contact layer. As described above, the cathode 161 may be made of aluminum (A1), magnesium (Mg), aluminum magnesium, or a bell material. At this time, an aluminum lithium metal material of about 1000 A was formed by a vapor deposition method. A conductive polymer material is formed thereon as the connection electrode 168. In addition, as shown in FIG. 39, a connection electrode 168 of a photosensitive conductive resin is applied by an inkjet device to form a TFT circuit-side substrate 151. Next, as shown in FIGS. 40 (a) and 40 (b), the TFT circuit-side substrate 151 and the counter substrate 152 are bonded together. That is, the TFT circuit-side substrate 151 and the opposing substrate 152 of the organic EL element 160 are aligned and bonded to each other and fixed. At this time, the organic el element 160 is electrically connected to the TFT circuit-side substrate 151 through the connection electrode 168. However, it is preferable that both of the TFT circuit-side substrate 151 and the counter substrate 152 are formed with a conductive resin in advance, and each conductive Resin makes electrical contact. This prevents poor contact caused by an oxide film on the metal surface, and makes it easy to obtain contact using the elasticity of the resin. In addition, the connection electrode 168 of the adhesive layer can also be coated with an adhesive such as epoxy resin 'on the periphery of the bonding surfaces of the TFT circuit-side substrate 151 and the opposing substrate 152 to be hardened and bonded during bonding. An adhesive may be applied to a portion masked by the black matrix 133 between pixels. Therefore, the organic EL display device 100 and its manufacturing method according to this embodiment are • 79-588185.
(75) 於單獨包含發光顯示元件中,形成發光元件之有機el元件 160的對向基板152,形成至有機EL元件160之發光元件用 電極之陰極161後,與TFT電路側基板151貼合。 藉此,自有機EL元件160射出之光,並非自形成驅動有機 EL元件160之驅動電路之TFT電路側基板151,而可自與其 對向而設定之對向基板152射出。由於光射出方向與前述先 前技藝相同,因此與射達TFT電路側基板15 1側之構造比較 ,同樣具有以下的基本優點。 首先,可分別形成設有驅動電路之TFT電路側基板151與 有機EL元件1 60。由於可分別獨立納入製造步驟,因此不 受溫度、氣體及藥品等影響,可靠性提高。 此外,藉由上述構造可使光射達形成有機EL元件160的對 向基板1 52。藉此,由於不影響驅動電路側開口率而可擴大 設定發光區域,因此可形成高照度化。再者,因發光面積 廣,因此可抑制獲得相同照度用之每單位面積的電流量, 可藉由長壽命化及發光效率提高而減少耗電。 此外,由於光未射達形成驅動電路的TFT電路側基板151 ,因此TFT電珞側基板15彳可全面地形成驅動電路。由於藉 由自由設定驅動電路之TFT(Thin Film Transistor:薄膜電 晶體)的大小,在TFT形成區域内產生餘裕,因此可形成執 行微細控制用的電路。再者,由於配線寬上亦有餘裕,因 此可提高驅動電路的可靠性,良率提高。 再者’上述有機EL顯示裝置1〇〇之有機el元件160的陰極 161需要使用二作函數值小的材料。作為此種材料之金屬材 -80-(75) A counter substrate 152 of an organic el element 160 forming a light-emitting element among the light-emitting display elements alone is formed, and the cathode 161 of the light-emitting element electrode of the organic EL element 160 is formed, and then bonded to the TFT circuit-side substrate 151. Thereby, the light emitted from the organic EL element 160 is not emitted from the TFT circuit-side substrate 151 that forms the driving circuit for driving the organic EL element 160, but can be emitted from the opposite substrate 152 that is set to face the opposite. Since the light emission direction is the same as the previous technique, it has the following basic advantages compared with the structure on the side of the substrate 15 1 on the TFT circuit side. First, a TFT circuit-side substrate 151 provided with a driving circuit and an organic EL element 160 can be formed separately. Since they can be independently incorporated into manufacturing steps, they are not affected by temperature, gas, and chemicals, and reliability is improved. In addition, by the above-described structure, light can be made to reach the counter substrate 152 forming the organic EL element 160. Thereby, since the light emitting area can be enlarged and set without affecting the aperture ratio on the side of the driving circuit, a higher illuminance can be achieved. In addition, since the light emitting area is wide, the amount of current per unit area for obtaining the same illuminance can be suppressed, and power consumption can be reduced by extending the life and improving the light emitting efficiency. In addition, since the light does not reach the TFT circuit-side substrate 151 forming the driving circuit, the TFT electric-side substrate 15 can form the driving circuit in its entirety. Since the size of the TFT (Thin Film Transistor) of the driving circuit can be freely set, a margin is generated in the TFT formation region, so that a circuit for performing fine control can be formed. Furthermore, since there is a margin in the wiring width, the reliability of the driving circuit can be improved, and the yield can be improved. Furthermore, the cathode 161 of the organic el element 160 of the organic EL display device 100 described above needs to use a material having a small dual function value. Metal material as this material -80-
588185 料如··鎂(Mg)、鈣(Ca)、鈣(Ca)及鋰(Li)等,不過此等材料 為不穩定材料,容易因環境中的水分及氧產生惡化。此外 ’因所接觸之材料,會自該材料奪去氧而引起化學反應, 因此宜於形成後立即以構成保護之穩定金屬覆蓋。但是, 、 前述先前技藝均無法採用保護陰極161的構造。 〜· 反之’本實施形態形成至有機EL元件160之陰極161的對 向基板152 ’在陰極161之.上進一步形成作為保護該陰極16ι 之保護電極的陰極保護電極材料167後,與TFT電路側基板 · 151貼合。 亦即,將形成至陰極161之對向基板152與TFT電路側基板 151貼合的情況下,藉由設置保護陰極161之陰極保護電極 材料167,可防止於貼合時,因暴露於環境中之水分及氧氣 中造成陰極161的性能惡化。 此外,宜藉由以同一步驟連續形成陰極161與保護其之陰 極保護電極材料167,進一步可防止陰極161的惡化。此時 ,由於可自由地設定陰極保護電極材料167的形成厚度,因 此可構成陰極161具有避免氧氣等產生惡化成分進入的足 · 夠厚度。 此外,本實施形態之有機EL顯示裝置1〇〇及其製造方法, 形成至有機EL元件160之陰極161的對向基板152,與TFT電 路側基板151之驅動電路電極之像素電極125的接觸面上形 · 成導電性漿液、導電性樹脂等接觸層後,與TFT電路側基 板151之像素電極125接合。 因而,由於更確實地取得貼合時的電性接觸,因此接合 -81 -588185 Materials such as magnesium (Mg), calcium (Ca), calcium (Ca), and lithium (Li), etc. However, these materials are unstable materials and are prone to deterioration due to moisture and oxygen in the environment. In addition, because the contacted material will deprive oxygen from the material and cause a chemical reaction, it is suitable to be covered with a stable and stable metal immediately after formation. However, the foregoing prior art cannot adopt the structure of the protective cathode 161. On the contrary, 'the opposite substrate 152 formed to the cathode 161 of the organic EL element 160 in this embodiment is formed on the cathode 161, and a cathode protective electrode material 167 is formed on the cathode 161 as a protective electrode to protect the cathode 16m. Board · 151 bonding. That is, when the opposing substrate 152 formed to the cathode 161 and the TFT circuit-side substrate 151 are bonded, the cathode protective electrode material 167 that protects the cathode 161 can be prevented from being exposed to the environment during bonding. The moisture and oxygen cause the performance of the cathode 161 to deteriorate. In addition, it is desirable to prevent the deterioration of the cathode 161 by forming the cathode 161 and the cathode protective electrode material 167 which protects the cathode 161 continuously in the same step. At this time, since the formation thickness of the cathodic protective electrode material 167 can be freely set, the cathode 161 can be formed to have a sufficient thickness to prevent the ingress of degraded components such as oxygen. In addition, in the organic EL display device 100 of this embodiment and a method for manufacturing the same, a contact surface between the opposite substrate 152 to the cathode 161 of the organic EL element 160 and the pixel electrode 125 of the driving circuit electrode of the TFT circuit-side substrate 151 is formed. After forming a contact layer such as a conductive slurry or a conductive resin, it is bonded to the pixel electrode 125 of the TFT circuit-side substrate 151. Therefore, since the electrical contact at the time of bonding is more reliably obtained, the bonding -81-
588185 面上無斷線及點接觸,可消除照度斑而提高畫質。 再者,本實施形態之有機el顯示裝置1〇〇及其製造方法, 將形成至陰極161之對向基板152與TFT電路側基板151貼 合的情況下,與射出光側相反之陰極161係與TFT電路側基 、 板151對向。 . 再者,由於透明電極通常係使用氧化物的導體,因此與 金屬比較時電阻較高。因而具有多數像素之顯示面板同時 使全部像素發光時,透明電極於初期可能引起電壓下降。 · 而將TFT電路側基板151作為陽極之先前技藝,對驅動電路 之TFT的電力供給係金屬配線因此無問題,但是電阻比高 於金屬約2位數的透明導體則無法忽略電壓下降產生的照 度斑、 因而,本實施形態係於對向基板丨52中,在射出光側設有 包含有機EL元件160之透明電極的陽極165,並且在陽極 165内同時設有作為電力供給用電極的電極線165&。 因此,如藉由沿著射出側之黑矩陣133同時設置包含金屬 配線之電極線165a,可抑制電壓下降,因此不產生照度斑。 · 另外,本實施形態係說明單獨包含發光顯示元件之有機 EL顯示裝置100的特徵,而該特徵亦可適用於前述第卜罐 實施形態中說明之同時設有非發光顯示元件與發錢示& . 件者’並係具有相同之作用效果者。 圖式代表符號說明 1 顯示裝置 ’ 2a 源極匯流排線 •82- (78) (78)588185 There are no broken lines and point contact on the surface, which can eliminate the spot of illumination and improve the image quality. In addition, in the organic el display device 100 and the manufacturing method thereof of the present embodiment, when the opposing substrate 152 formed to the cathode 161 is bonded to the TFT circuit-side substrate 151, the cathode 161 opposite to the light emission side is Opposite the TFT circuit side base and the plate 151. In addition, since transparent electrodes are usually oxide-based conductors, they have higher resistance than metals. Therefore, when a display panel with a large number of pixels emits all pixels at the same time, the transparent electrode may cause a voltage drop in the initial stage. · In the prior art using the TFT circuit-side substrate 151 as the anode, the power supply to the TFT of the drive circuit is metal wiring, so there is no problem, but the transparent conductor with a resistance ratio higher than about two digits of the metal cannot ignore the illuminance caused by the voltage drop. Therefore, the present embodiment is based on the counter substrate 52, and an anode 165 including a transparent electrode of the organic EL element 160 is provided on the light emitting side, and an electrode line serving as an electrode for power supply is also provided in the anode 165 165 &. Therefore, if the electrode lines 165a including metal wirings are simultaneously provided along the black matrix 133 on the emission side, the voltage drop can be suppressed, so that no illuminance spots are generated. · In addition, this embodiment describes the features of the organic EL display device 100 that includes a light-emitting display element separately, and this feature can also be applied to the non-light-emitting display element and the money issuing &.;. "Persons" and those who have the same effect. Explanation of Symbols of the Drawings 1 Display device ’2a Source busbar • 82- (78) (78)
電流供給線 間極匯流排線 源極驅動器 閘極驅動器 顯不像素 反射區域 發光區域 液晶顯不兀件 絕緣性基板 液晶用TFT元件 汲極 透明絕緣層 像素電極 液晶層 對向電極 絕緣性基板 相位差板 偏光板 有機EL元件 EL用TFT元件 陰極 有機EL元件 陰極 電極輸送層 -83- 588185 (79)Current supply line pole bus line source driver gate driver display pixel reflection area light emitting area liquid crystal display device insulating substrate liquid crystal TFT element drain transparent insulating layer pixel electrode liquid crystal layer counter electrode insulating substrate phase difference Plate Polarizing Plate Organic EL Element TFT Element for EL Cathode Organic EL Element Cathode Electrode Transport Layer -83- 588185 (79)
63 64 65 65a 66 73 77 81 90 91 93 121 125 129 133 151 152 160 161 162 163 164 165 165a 發光層 孔輸送層 陽極 金屬電極 導電性接觸層 發光層 核心部. 絕緣性凸部 電源部 控制電路 光感測器 絕緣性基板 像素電極 絕緣性基板 黑矩陣 TFT電路側基板 對向基板 有機EL元件 陰極 電子輸送層 發光層 孔輸送層 陽極 電極線 588185 166 有機EL層 167 陰極保護電極材料 168 連接電極 Vdd 供給電壓 Vth 共用臨限值電壓 Vth(LC) 液晶用臨限值電壓 Vth(OLED) EL用臨.限值電壓 Vs 資料線信號63 64 65 65a 66 73 77 81 90 91 93 121 125 129 133 151 152 160 161 162 163 164 165 165a light emitting layer hole transport layer anode metal electrode conductive contact layer light emitting layer core part. Insulating convex part power part control circuit light Sensor Insulating Substrate Pixel Electrode Insulating Substrate Black Matrix TFT Circuit Side Substrate Opposing Substrate Organic EL Element Cathode Electron Transport Layer Light Emitting Layer Hole Transport Layer Anode Electrode Line 588185 166 Organic EL Layer 167 Cathodic Protective Electrode Material 168 Connection Electrode Vdd Supply Voltage Vth Common threshold voltage Vth (LC) LCD threshold voltage Vth (OLED) EL threshold. Limit voltage Vs Data line signal
-85--85-
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001271058AJP3898012B2 (en) | 2001-09-06 | 2001-09-06 | Display device |
| JP2001271061 | 2001-09-06 | ||
| JP2001271057 | 2001-09-06 | ||
| JP2002194960AJP4176400B2 (en) | 2001-09-06 | 2002-07-03 | Display device |
| JP2002196253AJP4043864B2 (en) | 2001-09-06 | 2002-07-04 | Display device and driving method thereof |
| Publication Number | Publication Date |
|---|---|
| TW588185Btrue TW588185B (en) | 2004-05-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW091120311ATW588185B (en) | 2001-09-06 | 2002-09-05 | Display, method of manufacturing the same, and method of driving the same |
| Country | Link |
|---|---|
| KR (2) | KR100630475B1 (en) |
| CN (2) | CN1293412C (en) |
| TW (1) | TW588185B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7781759B2 (en) | 2005-11-17 | 2010-08-24 | Samsung Electronics Co., Ltd. | Display device and method for manufacturing the same |
| TWI580022B (en)* | 2011-02-07 | 2017-04-21 | Sharp Kk | Organic EL display device and manufacturing method thereof |
| US9837478B2 (en) | 2015-10-01 | 2017-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
| US9851820B2 (en) | 2015-04-13 | 2017-12-26 | Semiconductor Energy Laboratory Co., Ltd. | Display device comprising a first transistor and a second transistor wherein an insulating film is located between a first display element and a conductive film |
| US9964800B2 (en) | 2015-11-11 | 2018-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
| US9977285B2 (en) | 2016-07-29 | 2018-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
| US10073551B2 (en) | 2005-08-07 | 2018-09-11 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, information processing device, and driving method of display panel |
| US10147780B2 (en) | 2015-10-12 | 2018-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
| US10181295B2 (en) | 2015-10-23 | 2019-01-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display panel comprising pixel having plurality of display elements |
| US10429999B2 (en) | 2015-12-18 | 2019-10-01 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, input/output device, data processing device, and method for manufacturing display panel |
| US10607575B2 (en) | 2016-09-30 | 2020-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Display system and electronic device |
| US10854145B2 (en) | 2015-08-19 | 2020-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Information processing device |
| US11204658B2 (en) | 2016-10-21 | 2021-12-21 | Semiconductor Energy Laboratory Co., Ltd. | Touch sensor, display device, display module, and electronic device |
| TWI782444B (en)* | 2017-03-31 | 2022-11-01 | 日商Ctnb股份有限公司 | Light distribution control element |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100989708B1 (en)* | 2004-01-26 | 2010-10-26 | 엘지전자 주식회사 | Dual display panel control unit of mobile communication terminal |
| KR20050112878A (en) | 2004-05-28 | 2005-12-01 | 삼성전자주식회사 | Electro phoretic indication display |
| GB0805751D0 (en) | 2008-03-29 | 2008-04-30 | Pelikon Ltd | Electoluminescent displays |
| US20060273717A1 (en)* | 2005-06-03 | 2006-12-07 | Jian Wang | Electronic device including workpieces and a conductive member therebetween |
| US20070075935A1 (en)* | 2005-09-30 | 2007-04-05 | Ralph Mesmer | Flat-panel display with hybrid imaging technology |
| CN100403100C (en)* | 2005-11-25 | 2008-07-16 | 群康科技(深圳)有限公司 | flat panel display device |
| KR101252083B1 (en)* | 2005-12-22 | 2013-04-12 | 엘지디스플레이 주식회사 | Organic electro-luminescence display device and fabricating method thereof |
| KR101288591B1 (en)* | 2006-10-10 | 2013-07-22 | 엘지디스플레이 주식회사 | Liquid Crystal Display Pannel And Fabricating Method Thereof |
| KR101108164B1 (en)* | 2010-02-03 | 2012-02-06 | 삼성모바일디스플레이주식회사 | Organic light emitting display |
| KR101084195B1 (en) | 2010-02-19 | 2011-11-17 | 삼성모바일디스플레이주식회사 | Organic light emitting display |
| JP2012093985A (en) | 2010-10-27 | 2012-05-17 | Nitto Denko Corp | Display panel device with touch input function, optical unit for display panel device and manufacturing method thereof |
| KR101482628B1 (en)* | 2011-05-03 | 2015-01-14 | 삼성디스플레이 주식회사 | Organic light emitting display device |
| CN102890906A (en)* | 2011-07-22 | 2013-01-23 | 胜华科技股份有限公司 | Display structure |
| CN103474453B (en)* | 2013-09-23 | 2016-09-21 | 京东方科技集团股份有限公司 | El light emitting device and preparation method thereof |
| KR102053403B1 (en) | 2013-09-24 | 2019-12-10 | 한국전자통신연구원 | Display device and driving method thereof |
| KR102132883B1 (en)* | 2013-12-10 | 2020-07-13 | 삼성디스플레이 주식회사 | Organic light emitting display device and method of manufacturing thereof |
| KR102358935B1 (en) | 2014-02-12 | 2022-02-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Electronic device |
| KR102398677B1 (en)* | 2015-04-06 | 2022-05-16 | 삼성디스플레이 주식회사 | Display device |
| TWI543361B (en)* | 2015-04-30 | 2016-07-21 | 友達光電股份有限公司 | Pixel unit of display panel and fabrication method thereof |
| WO2017064587A1 (en) | 2015-10-12 | 2017-04-20 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, input/output device, data processor, and method for manufacturing display panel |
| KR102665737B1 (en)* | 2015-12-09 | 2024-05-10 | 엘지디스플레이 주식회사 | Reflective display device |
| CN107293264B (en) | 2016-04-04 | 2021-07-20 | 株式会社半导体能源研究所 | Display device, display module and electronic equipment |
| TWI753908B (en) | 2016-05-20 | 2022-02-01 | 日商半導體能源硏究所股份有限公司 | Semiconductor device, display device, and electronic device |
| KR102787780B1 (en) | 2018-12-24 | 2025-03-27 | 삼성디스플레이 주식회사 | Organic light emitting diode display and manufacturing method thereof |
| CN109976030B (en)* | 2019-05-20 | 2022-04-19 | 京东方科技集团股份有限公司 | Total reflection display screen, control method thereof and display device |
| KR102813657B1 (en)* | 2019-12-20 | 2025-05-27 | 엘지디스플레이 주식회사 | Optical film and display device comprising the same |
| TWI795341B (en)* | 2022-11-17 | 2023-03-01 | 友達光電股份有限公司 | Display device |
| CN115951525B (en)* | 2023-03-02 | 2023-05-26 | 惠科股份有限公司 | Display panel and display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6025894A (en)* | 1996-09-04 | 2000-02-15 | Casio Computer Co., Ltd. | Scatter control member for organic electroluminescent light source for passing light with or without scattering depending upon an incident angle |
| US6175345B1 (en)* | 1997-06-02 | 2001-01-16 | Canon Kabushiki Kaisha | Electroluminescence device, electroluminescence apparatus, and production methods thereof |
| JP3482827B2 (en)* | 1997-08-04 | 2004-01-06 | 凸版印刷株式会社 | Transflective liquid crystal display |
| JP3738549B2 (en)* | 1997-12-22 | 2006-01-25 | カシオ計算機株式会社 | Liquid crystal display element |
| JP4446500B2 (en)* | 1998-02-27 | 2010-04-07 | 三洋電機株式会社 | Liquid crystal display |
| JP3870591B2 (en)* | 1998-12-28 | 2007-01-17 | 凸版印刷株式会社 | SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DISPLAY ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DISPLAY ELEMENT |
| JP4341100B2 (en)* | 1999-02-12 | 2009-10-07 | カシオ計算機株式会社 | Liquid crystal display element |
| JP2000241811A (en)* | 1999-02-22 | 2000-09-08 | Toyota Motor Corp | Field sequential liquid crystal display |
| JP4771501B2 (en)* | 1999-03-23 | 2011-09-14 | カシオ計算機株式会社 | Organic EL light emitting device |
| JP2001142416A (en)* | 1999-11-10 | 2001-05-25 | Kawaguchiko Seimitsu Co Ltd | Light emitting display plate and equipment provided with the same |
| JP2001147432A (en)* | 1999-11-24 | 2001-05-29 | Kawaguchiko Seimitsu Co Ltd | Illuminating structure of liquid crystal display device |
| JP3617458B2 (en)* | 2000-02-18 | 2005-02-02 | セイコーエプソン株式会社 | Substrate for display device, liquid crystal device and electronic device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10073551B2 (en) | 2005-08-07 | 2018-09-11 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, information processing device, and driving method of display panel |
| US7781759B2 (en) | 2005-11-17 | 2010-08-24 | Samsung Electronics Co., Ltd. | Display device and method for manufacturing the same |
| US8044392B2 (en) | 2005-11-17 | 2011-10-25 | Samsung Electronics Co., Ltd. | Display device and method for manufacturing the same |
| TWI580022B (en)* | 2011-02-07 | 2017-04-21 | Sharp Kk | Organic EL display device and manufacturing method thereof |
| US10831291B2 (en) | 2015-04-13 | 2020-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, data processor, and method for manufacturing display panel |
| US11016329B2 (en) | 2015-04-13 | 2021-05-25 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, data processor, and method for manufacturing display panel |
| US9851820B2 (en) | 2015-04-13 | 2017-12-26 | Semiconductor Energy Laboratory Co., Ltd. | Display device comprising a first transistor and a second transistor wherein an insulating film is located between a first display element and a conductive film |
| US11754873B2 (en) | 2015-04-13 | 2023-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, data processor, and method for manufacturing display panel |
| TWI734696B (en)* | 2015-08-07 | 2021-08-01 | 日商半導體能源研究所股份有限公司 | Display panel, information processing device, and driving method of display panel |
| TWI776519B (en)* | 2015-08-19 | 2022-09-01 | 日商半導體能源研究所股份有限公司 | Information processing device |
| TWI730975B (en)* | 2015-08-19 | 2021-06-21 | 日商半導體能源研究所股份有限公司 | Information processing device |
| US11348537B2 (en) | 2015-08-19 | 2022-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Information processing device |
| US10854145B2 (en) | 2015-08-19 | 2020-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Information processing device |
| US9837478B2 (en) | 2015-10-01 | 2017-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
| US10147780B2 (en) | 2015-10-12 | 2018-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
| US10181295B2 (en) | 2015-10-23 | 2019-01-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display panel comprising pixel having plurality of display elements |
| US9964800B2 (en) | 2015-11-11 | 2018-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
| US10976872B2 (en) | 2015-12-18 | 2021-04-13 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, input/output device, data processing device, and method for manufacturing display panel |
| US10429999B2 (en) | 2015-12-18 | 2019-10-01 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, input/output device, data processing device, and method for manufacturing display panel |
| US9977285B2 (en) | 2016-07-29 | 2018-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
| US10607575B2 (en) | 2016-09-30 | 2020-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Display system and electronic device |
| US11204658B2 (en) | 2016-10-21 | 2021-12-21 | Semiconductor Energy Laboratory Co., Ltd. | Touch sensor, display device, display module, and electronic device |
| TWI777984B (en)* | 2016-10-21 | 2022-09-21 | 日商半導體能源硏究所股份有限公司 | Touch sensor, display device, display module, and electronic device |
| US11614816B2 (en) | 2016-10-21 | 2023-03-28 | Semiconductor Energy Laboratory Co., Ltd. | Touch sensor, display device, display module, and electronic device |
| TWI782444B (en)* | 2017-03-31 | 2022-11-01 | 日商Ctnb股份有限公司 | Light distribution control element |
| Publication number | Publication date |
|---|---|
| KR20040074658A (en) | 2004-08-25 |
| CN1293412C (en) | 2007-01-03 |
| CN1403856A (en) | 2003-03-19 |
| CN1967328B (en) | 2010-08-25 |
| CN1967328A (en) | 2007-05-23 |
| KR20030022049A (en) | 2003-03-15 |
| KR100630475B1 (en) | 2006-10-02 |
| Publication | Publication Date | Title |
|---|---|---|
| TW588185B (en) | Display, method of manufacturing the same, and method of driving the same | |
| US7248235B2 (en) | Display, method of manufacturing the same, and method of driving the same | |
| JP4176400B2 (en) | Display device | |
| JP3898012B2 (en) | Display device | |
| JP4122828B2 (en) | Display device and driving method thereof | |
| JP3993221B2 (en) | Display device | |
| TWI297253B (en) | ||
| US7176991B2 (en) | Display | |
| KR101003338B1 (en) | Transflective Display with Full Color OLED Backlight | |
| US6954239B2 (en) | Display unit | |
| US20040164292A1 (en) | Transflective display having an OLED backlight | |
| US7948161B2 (en) | Display device | |
| JP2004221081A (en) | Organic light emitting diode display | |
| CN101000922A (en) | Emissive device and electronic apparatus | |
| KR20010062490A (en) | El display device | |
| US11782302B2 (en) | Display device | |
| US20070057881A1 (en) | Transflective display having an OLED region and an LCD region | |
| JP2002156633A (en) | Illuminated liquid crystal display device and method of manufacturing planar light emitting element light source | |
| JP3185736B2 (en) | Display device | |
| TWI299239B (en) | Organic light emitting display | |
| JP2002196705A (en) | Image display device | |
| JP2004342521A (en) | Self-luminous device | |
| US7667790B2 (en) | Liquid crystal display device comprising a filter layer lying in a same plane as a self-luminous body including a first electrode, an organic substance layer and a second electrode | |
| KR20060034039A (en) | Array substrate and liquid crystal display device having the same | |
| KR20060061878A (en) | Array substrate and liquid crystal display device having the same |
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |