Movatterモバイル変換


[0]ホーム

URL:


TW202529587A - Semiconductor film manufacturing method, light detection element manufacturing method and image sensor manufacturing method - Google Patents

Semiconductor film manufacturing method, light detection element manufacturing method and image sensor manufacturing method

Info

Publication number
TW202529587A
TW202529587ATW113131939ATW113131939ATW202529587ATW 202529587 ATW202529587 ATW 202529587ATW 113131939 ATW113131939 ATW 113131939ATW 113131939 ATW113131939 ATW 113131939ATW 202529587 ATW202529587 ATW 202529587A
Authority
TW
Taiwan
Prior art keywords
ligand
semiconductor
quantum dots
film
manufacturing
Prior art date
Application number
TW113131939A
Other languages
Chinese (zh)
Inventor
高田真宏
柳下幸一
岩本和也
Original Assignee
日商富士軟片股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士軟片股份有限公司filedCritical日商富士軟片股份有限公司
Publication of TW202529587ApublicationCriticalpatent/TW202529587A/en

Links

Classifications

Landscapes

Abstract

Provided is a method for manufacturing a semiconductor film that contains an aggregate of semiconductor quantum dots including indium and a group 15 element, and a ligand that is coordinated to the semiconductor quantum dots, the method including: a step for forming a film of an aggregate of semiconductor quantum dots by coating a substrate with a dispersion liquid containing semiconductor quantum dots, a first ligand, and a solvent; and a step for applying a ligand solution containing a second ligand and a solvent to the film of the aggregate of the semiconductor quantum dots to coordinate the second ligand to the semiconductor quantum dots. One of the first ligand and the second ligand has a thiol group, and the other contains halogen. Also provided are methods for manufacturing a light detection element and an image sensor that comprise the aforementioned method for manufacturing a semiconductor film.

Description

Translated fromChinese
半導體膜之製造方法、光檢測元件之製造方法及影像感測器之製造方法Semiconductor film manufacturing method, light detection element manufacturing method and image sensor manufacturing method

本發明係有關一種包含半導體量子點之半導體膜、光檢測元件及影像感測器之製造方法。The present invention relates to a method for manufacturing a semiconductor film containing semiconductor quantum dots, a light detection element, and an image sensor.

近年來,在智慧手機或監視攝影機、行車紀錄器等領域中,能夠檢測紅外區域的光之光檢測元件備受關注。In recent years, photodetection components capable of detecting light in the infrared region have attracted considerable attention in applications such as smartphones, surveillance cameras, and dashcams.

以往,在影像感測器等中所使用之光檢測元件中,使用了將矽晶圓用作為光電轉換層的原材料之矽光二極體。然而,矽光二極體在波長為900nm以上的紅外區域中,靈敏度低。Conventionally, photodetection elements used in image sensors and other devices have employed silicon photodiodes (SiPDs), whose photoelectric conversion layers are made of silicon wafers. However, SiPDs have low sensitivity in the infrared region with wavelengths above 900nm.

又,已知為近紅外光的受光元件之InGaAs系半導體材料的課題為,為了實現高量子效率而需要外延生長和基板的貼合步驟等需要非常高成本的製程,並且沒有得到普及。Furthermore, the problem with InGaAs-based semiconductor materials, which are known for near-infrared light-receiving elements, is that achieving high quantum efficiency requires very costly processes such as epitaxial growth and substrate bonding, and this has prevented their widespread use.

又,近年來,亦對在光檢測元件中使用量子點進行了研究。Furthermore, in recent years, research has also been conducted on the use of quantum dots in light detection elements.

在專利文獻1中記載有在光檢測元件的光電轉換層中使用PbS量子點。Patent Document 1 describes the use of PbS quantum dots in the photoelectric conversion layer of a light detection element.

在專利文獻2中記載有在光檢測元件的光電轉換層中使用InSb量子點。Patent Document 2 describes the use of InSb quantum dots in the photoelectric conversion layer of a light detection element.

[專利文獻1]日本特開2020-150251號公報 [專利文獻2]美國專利第11581501號說明書[Patent Document 1] Japanese Patent Application Publication No. 2020-150251[Patent Document 2] U.S. Patent No. 11581501

近年來,隨著影像感測器等的高性能化的要求,亦要求進一步提高有關在該等中所使用之光檢測元件所要求之各種特性。例如,作為光檢測元件中所要求之特性之一,有如下特性等:對藉由光檢測元件檢測之目標波長的光具有高外部量子效率,並且光檢測元件的外部量子效率在面內的變化少。藉由提高光檢測元件的外部量子效率,能夠提高光檢測元件中的光的檢測精度等。又,藉由抑制光檢測元件的外部量子效率在面內的變化,而能夠抑制雜訊等的產生。In recent years, with the demand for higher performance in image sensors and other devices, the various properties required of the photodetectors used in these applications have also been further improved. For example, among the properties required of photodetectors are high external quantum efficiency for light of the target wavelength to be detected by the photodetector and minimal in-plane variation in the external quantum efficiency of the photodetector. Improving the external quantum efficiency of a photodetector can improve the light detection accuracy of the photodetector. Furthermore, suppressing in-plane variation in the external quantum efficiency of a photodetector can suppress the generation of noise.

又,在光檢測元件中,暗電流小為較佳。藉由減少光檢測元件的暗電流,在影像感測器中,能夠獲得更高的訊號雜訊比(SN比)。暗電流係指不照射光時流動之電流。Furthermore, in photodetectors, it is preferable to have a low dark current. By reducing the dark current of photodetectors, a higher signal-to-noise ratio (S/N ratio) can be achieved in image sensors. Dark current refers to the current flowing when no light is irradiated.

本發明人對將包含In元素及第15族元素之半導體量子點用於光電轉換層之光檢測元件進行了研究,其結果,發現了該等特性尚有進一步改善的空間。The inventors have conducted research on light detection devices using semiconductor quantum dots containing In and Group 15 elements in the photoelectric conversion layer and have discovered that these properties can be further improved.

因此,本發明的目的為提供一種外部量子效率高、外部量子效率的面內均勻性優異,並且減少了暗電流之半導體膜、光檢測元件及影像感測器之製造方法。Therefore, the object of the present invention is to provide a method for manufacturing a semiconductor film, a light detection element, and an image sensor that has high external quantum efficiency, excellent in-plane uniformity of external quantum efficiency, and reduced dark current.

本發明提供以下。The present invention provides the following.

<1>一種半導體膜之製造方法,前述半導體膜包括包含In元素及第15族元素之半導體量子點的集合體及與上述半導體量子點配位之配位體,前述半導體膜之製造方法包括: 將包括包含In元素及第15族元素之半導體量子點、第1配位體及溶劑之分散液塗布於基材上而形成半導體量子點的集合體的膜之步驟;及 對上述半導體量子點的集合體的膜賦予包含第2配位體及溶劑之配位體溶液,而使上述第2配位體與上述半導體量子點配位之步驟, 上述第1配位體及上述第2配位體中的任一者為具有硫醇基之配位體,另一者為包含鹵素元素之配位體。 <2>如<1>所述之半導體膜之製造方法,其中 上述第1配位體為具有硫醇基之配位體,上述第2配位體為包含鹵素元素之配位體。 <3>如<1>或<2>所述之半導體膜之製造方法,其中 上述包含鹵素元素之配位體為包含碘元素之配位體。 <4>如<1>至<3>之任一項所述之半導體膜之製造方法,其中 上述包含鹵素元素之配位體包含In元素。 <5>如<1>至<4>之任一項所述之半導體膜之製造方法,其中 上述半導體量子點所包含之上述第15族元素包含Sb元素。 <6>一種光檢測元件之製造方法,其包括<1>至<5>之任一項所述之半導體膜之製造方法。 <7>一種影像感測器之製造方法,其包括<1>至<5>之任一項所述之半導體膜之製造方法。 [發明效果]<1> A method for producing a semiconductor film comprising an aggregate of semiconductor quantum dots containing In and a Group 15 element and a ligand coordinated with the semiconductor quantum dots, the method comprising:coating a dispersion comprising semiconductor quantum dots containing In and a Group 15 element, a first ligand, and a solvent onto a substrate to form a film of the aggregate of semiconductor quantum dots; andapplying a ligand solution comprising a second ligand and a solvent to the film of the aggregate of semiconductor quantum dots to coordinate the second ligand with the semiconductor quantum dots,either the first ligand or the second ligand being a ligand having a thiol group, and the other being a ligand containing a halogen element. <2> The method for manufacturing a semiconductor film as described in <1>, wherein the first ligand is a ligand having a thiol group and the second ligand is a ligand containing a halogen element.<3> The method for manufacturing a semiconductor film as described in <1> or <2>, wherein the ligand containing a halogen element is a ligand containing an iodine element.<4> The method for manufacturing a semiconductor film as described in any one of <1> to <3>, wherein the ligand containing a halogen element contains an In element.<5> The method for manufacturing a semiconductor film as described in any one of <1> to <4>, wherein the Group 15 element contained in the semiconductor quantum dot contains an Sb element.<6> A method for manufacturing a photodetector element, comprising the method for manufacturing a semiconductor film as described in any one of <1> to <5>. <7> A method for manufacturing an image sensor, comprising the method for manufacturing a semiconductor film according to any one of <1> to <5>.[Effects of the Invention]

依據本發明,能夠提供一種外部量子效率高、外部量子效率的面內均勻性優異,並且減少了暗電流之半導體膜、光檢測元件及影像感測器之製造方法。According to the present invention, a method for manufacturing a semiconductor film, a light detection element, and an image sensor can be provided, which have high external quantum efficiency, excellent in-plane uniformity of external quantum efficiency, and reduced dark current.

以下,對本發明的內容進行詳細說明。 在本說明書中,“~”係指以記載於其前後之數值作為下限值及上限值而包含之含義來使用。 在本說明書中的基(原子團)的標記中,未標有經取代及未經取代之標記包含不具有取代基之基(原子團),並且亦包含具有取代基之基(原子團)。例如,“烷基”不僅包含不具有取代基之烷基(未經取代之烷基),亦包含具有取代基之烷基(經取代之烷基)。The present invention is described in detail below.In this specification, "to" is used to include the numerical values listed before and after it as lower and upper limits.In the notation of groups (atomic groups) in this specification, the notation "unsubstituted" and "unsubstituted" include both groups (atomic groups) without substituents and groups (atomic groups) with substituents. For example, "alkyl" includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).

<半導體膜之製造方法> 本發明的半導體膜之製造方法為包括包含In元素及第15族元素之半導體量子點的集合體及與上述半導體量子點配位之配位體之半導體膜之製造方法,其特徵為包括: 將包括包含In元素及第15族元素之半導體量子點、第1配位體及溶劑之分散液塗布於基材上而形成半導體量子點的集合體的膜之步驟;及 對上述半導體量子點的集合體的膜賦予包含第2配位體及溶劑之配位體溶液,而使上述第2配位體與上述半導體量子點配位之步驟, 上述第1配位體及上述第2配位體中的任一者為具有硫醇基之配位體,另一者為包含鹵素元素之配位體。<Method for Producing a Semiconductor Film>The method for producing a semiconductor film of the present invention is a method for producing a semiconductor film comprising an aggregate of semiconductor quantum dots containing In and a Group 15 element and a ligand coordinated with the semiconductor quantum dots. The method is characterized by comprising:a step of applying a dispersion comprising semiconductor quantum dots containing In and a Group 15 element, a first ligand, and a solvent onto a substrate to form a film of the aggregate of semiconductor quantum dots; anda step of applying a ligand solution comprising a second ligand and a solvent to the film of the aggregate of semiconductor quantum dots to coordinate the second ligand with the semiconductor quantum dots.One of the first ligand and the second ligand is a ligand having a thiol group, and the other is a ligand comprising a halogen element.

依據本發明,推測為藉由在上述第1配位體及上述第2配位體中的任一者中使用具有硫醇基之配位體,另一者則使用包含鹵素元素之配位體,並且經過上述之步驟來製造半導體膜,能夠適當地保持半導體量子點之間的距離,並且減少半導體量子點的表面缺陷。因此,能夠製造外部量子效率高、外部量子效率的面內均勻性優異,並且暗電流受到抑制之半導體膜。According to the present invention, by using a ligand containing a thiol group as either the first ligand or the second ligand, and a ligand containing a halogen element as the other, and then fabricating a semiconductor film through the aforementioned steps, it is speculated that the distance between semiconductor quantum dots can be appropriately maintained, and surface defects in the semiconductor quantum dots can be reduced. Consequently, it is possible to fabricate a semiconductor film with high external quantum efficiency, excellent in-plane uniformity of external quantum efficiency, and suppressed dark current.

在本發明的半導體膜之製造方法中,第1配位體為具有硫醇基之配位體,並且第2配位體為包含鹵素元素之配位體為較佳。依據該態樣,能夠獲得更高的配位體覆蓋率,並且能夠製造外部量子效率的面內均勻性更優異之半導體膜。In the semiconductor film manufacturing method of the present invention, the first ligand is preferably a ligand having a thiol group, and the second ligand is preferably a ligand containing a halogen element. This aspect achieves higher ligand coverage and enables the production of a semiconductor film with improved in-plane uniformity of external quantum efficiency.

半導體量子點為包含In元素及Sb元素者為較佳。亦即,上述半導體量子點所包含之上述第15族元素為包含Sb元素者為較佳。 關於半導體膜,Sb元素相對於鹵素元素的莫耳比(Sb元素的莫耳數/鹵素元素的莫耳數)為0.30~3.20為較佳,0.50~3.00為更佳。Sb元素相對於鹵素元素的莫耳比的下限值為0.60以上為較佳,1.00以上為更佳。Sb元素相對於鹵素元素的莫耳比的上限值為2.90以下為較佳,2.80以下為更佳。Semiconductor quantum dots preferably contain In and Sb. Specifically, the Group 15 element contained in the semiconductor quantum dots preferably includes Sb.For the semiconductor film, the molar ratio of Sb to halogen elements (molar number of Sb element/molar number of halogen element) is preferably 0.30 to 3.20, and more preferably 0.50 to 3.00. The lower limit of the molar ratio of Sb to halogen elements is preferably 0.60 or greater, and more preferably 1.00 or greater. The upper limit of the molar ratio of Sb to halogen elements is preferably 2.90 or less, and more preferably 2.80 or less.

在本說明書中,關於半導體膜的“Sb元素相對於鹵素元素的莫耳比”,能夠藉由X射線光電子能譜法來測定半導體膜的元素組成比而算出。In this specification, the "molar ratio of Sb element to halogen element" in a semiconductor film can be calculated by measuring the elemental composition ratio of the semiconductor film using X-ray photoelectron spectroscopy.

藉由本發明而獲得之半導體膜能夠用於光檢測元件或影像感測器。更具體而言,上述半導體膜能夠用於光檢測元件或影像感測器的光電轉換層。因此,藉由本發明而獲得之半導體膜較佳地用作光檢測元件或影像感測器的光電轉換層。The semiconductor film obtained by the present invention can be used in photodetection devices or image sensors. More specifically, the semiconductor film can be used as the photoelectric conversion layer of a photodetection device or image sensor. Therefore, the semiconductor film obtained by the present invention is preferably used as the photoelectric conversion layer of a photodetection device or image sensor.

藉由本發明而獲得之半導體膜對紅外區域的波長的光具有優異之靈敏度,因此將藉由本發明而獲得之半導體膜用於光電轉換層之影像感測器能夠特佳地用作紅外線感測器。因此,藉由本發明而獲得之半導體膜較佳地用作紅外線感測器的光電轉換層。The semiconductor film obtained by the present invention has excellent sensitivity to light with wavelengths in the infrared region. Therefore, image sensors using the semiconductor film obtained by the present invention for the photoelectric conversion layer can be particularly well-suited for use as infrared sensors. Therefore, the semiconductor film obtained by the present invention is preferably used as the photoelectric conversion layer of infrared sensors.

半導體膜的厚度並無特別限制,但從獲得高導電性之觀點考慮,10~1000nm為較佳。厚度的下限為20nm以上為較佳,30nm以上為更佳。厚度的上限為600nm以下為較佳,550nm以下為更佳,500nm以下為進一步較佳,450nm以下為特佳。The thickness of the semiconductor film is not particularly limited, but from the perspective of achieving high conductivity, a thickness of 10 to 1000 nm is preferred. The lower limit is preferably 20 nm or greater, and more preferably 30 nm or greater. The upper limit is preferably 600 nm or less, more preferably 550 nm or less, even more preferably 500 nm or less, and particularly preferably 450 nm or less.

半導體膜具有包含In元素及第15族元素之半導體量子點的集合體。半導體量子點中的上述第15族元素包含Sb元素為較佳。再者,半導體量子點的集合體係指,多個(例如,每1μm2為100個以上)的半導體量子點彼此接近而配置之形態。又,在本說明書中的“半導體”係指,比電阻值為10-2Ωcm以上且108Ωcm以下的物質。The semiconductor film comprises an aggregate of semiconductor quantum dots containing In and a Group 15 element. Preferably, the Group 15 element in the semiconductor quantum dots includes Sb. Furthermore, an aggregate of semiconductor quantum dots refers to a configuration in which a plurality (e.g., 100 or more per 1μm² ) of semiconductor quantum dots are arranged in close proximity. Furthermore, the term "semiconductor" in this specification refers to a substance having a specific resistance of10⁻² Ωcm or greater and10⁻¹ Ωcm or less.

作為構成半導體量子點之半導體量子點材料,可舉出包含In元素及第15族元素之化合物半導體,包含In元素及Sb元素之化合物半導體為較佳。再者,化合物半導體係指,由2種以上的元素構成之半導體。因此,在本說明書中,“包含In元素及第15族元素之化合物半導體”係指包含In元素及第15族元素作為構成化合物半導體之元素之化合物半導體。Semiconductor quantum dot materials that constitute semiconductor quantum dots include compound semiconductors containing In and a Group 15 element, with compound semiconductors containing In and Sb being preferred. Furthermore, a compound semiconductor refers to a semiconductor composed of two or more elements. Therefore, in this specification, "compound semiconductors containing In and a Group 15 element" refers to compound semiconductors containing In and a Group 15 element as constituent elements of the compound semiconductor.

上述半導體量子點中,In元素的個數相對於第15族元素的個數的比率為1.1以上為較佳,1.5以上為更佳,2.0以上為進一步較佳。上限為3.0以下為較佳。In the semiconductor quantum dot, the ratio of the number of In elements to the number of Group 15 elements is preferably 1.1 or greater, more preferably 1.5 or greater, and even more preferably 2.0 or greater. The upper limit is preferably 3.0 or less.

在本說明書中,半導體量子點的In元素的個數相對於第15族元素的個數的比率的值能夠藉由X射線光電子能譜法來測定半導體量子點的元素組成比而算出。例如,使用半導體量子點的分散液來形成膜,關於該膜,能夠藉由X射線光電子能譜法來測定半導體量子點的元素組成比而算出。In this specification, the ratio of the number of In elements to the number of Group 15 elements in semiconductor quantum dots can be calculated by measuring the elemental composition ratio of the semiconductor quantum dots using X-ray photoelectron spectroscopy. For example, the ratio can be calculated by measuring the elemental composition ratio of the semiconductor quantum dots in a film formed using a dispersion of semiconductor quantum dots using X-ray photoelectron spectroscopy.

關於半導體量子點,作為將In元素的個數相對於第15族元素的個數的比率設為1.1以上之方法,可舉出(1)在合成半導體量子點時,調整包含In元素之化合物A與包含Sb元素之化合物B的混合比率之(例如,將In元素相對於Sb元素的莫耳比設為2.1以上等)方法、(2)在合成半導體量子點時,控制還原劑(三乙基硼氫化鋰的二辛醚等)的添加量或注入速度等之方法、(3)控制反應的到達溫度或保留時間、升溫速度等溫度曲線之方法等。Regarding semiconductor quantum dots, as methods for setting the ratio of the number of In elements to the number of Group 15 elements to 1.1 or more, there are (1) a method of adjusting the mixing ratio of compound A containing In elements and compound B containing Sb elements (for example, setting the molar ratio of In elements to Sb elements to 2.1 or more) when synthesizing semiconductor quantum dots, (2) a method of controlling the addition amount or injection rate of a reducing agent (such as dioctyl ether of triethyllithium borohydride) when synthesizing semiconductor quantum dots, and (3) a method of controlling the temperature curve such as the reaction reaching temperature or retention time, or the temperature rising rate.

半導體量子點為包含In元素及Sb元素者為較佳。半導體量子點可以進一步包含除了In元素及Sb元素以外的元素。作為進一步包含之元素,可舉出Mg元素、Ca元素、Sr元素、Ba元素、Zn元素、Cd元素、Hg元素、B元素、Al元素、Ga元素、N元素、P元素、As元素及Bi元素等,Zn元素、Al元素、Ga元素、P元素、As元素及Bi元素為較佳。Semiconductor quantum dots preferably contain In and Sb. Semiconductor quantum dots may further contain elements other than In and Sb. Examples of such further elements include Mg, Ca, Sr, Ba, Zn, Cd, Hg, B, Al, Ga, N, P, As, and Bi, with Zn, Al, Ga, P, As, and Bi being preferred.

作為半導體量子點的具體例,可舉出InSb及InSbAs等。Specific examples of semiconductor quantum dots include InSb and InSbAs.

關於半導體量子點的晶體結構,並無特別限定。依據構成半導體量子點之元素的種類或元素的組成比,能夠採用各種晶體結構,但從容易適當地控制作為半導體的帶隙,並且容易實現高結晶性的原因考慮,立方晶系或六方晶系的晶體結構為較佳。在純InSb在整個粒子中所佔比例多的情況下,從容易實現高結晶性的原因考慮,閃鋅礦結構為較佳。半導體量子點的晶體結構能夠藉由X射線繞射法或電子束繞射法進行測定。There are no particular restrictions on the crystal structure of semiconductor quantum dots. Various crystal structures can be adopted depending on the type and composition ratio of the elements that comprise the semiconductor quantum dot. However, cubic or hexagonal crystal structures are preferred because they facilitate proper control of the semiconductor's band gap and the achievement of high crystallinity. When pure InSb accounts for a large proportion of the particle, a zinc flash structure is preferred because it facilitates the achievement of high crystallinity. The crystal structure of semiconductor quantum dots can be determined using X-ray diffraction or electron beam diffraction.

半導體量子點的帶隙為1.2eV以下為較佳,1.0eV以下為更佳。半導體量子點的帶隙的下限值並無特別限定,但0.3eV以上為較佳,0.5eV以上為更佳。The band gap of the semiconductor quantum dot is preferably 1.2 eV or less, more preferably 1.0 eV or less. The lower limit of the band gap of the semiconductor quantum dot is not particularly limited, but is preferably 0.3 eV or more, more preferably 0.5 eV or more.

半導體量子點的平均粒徑為3~20nm為較佳。半導體量子點的平均粒徑的上限值為15nm以下為較佳,10nm以下為更佳。只要半導體量子點的平均粒徑在上述範圍內,則能夠設為對紅外區域的波長的光具有更高的外部量子效率之光檢測元件。再者,在本說明書中,半導體量子點的平均粒徑的值為任意選擇之10個半導體量子點的粒徑的平均值。在半導體量子點的粒徑的測定中,可以使用穿透式電子顯微鏡。The average particle size of semiconductor quantum dots is preferably 3 to 20 nm. The upper limit of the average particle size of semiconductor quantum dots is preferably 15 nm or less, and more preferably 10 nm or less. When the average particle size of semiconductor quantum dots is within this range, a photodetection element can be provided that has a higher external quantum efficiency for light with wavelengths in the infrared region. Furthermore, in this specification, the average particle size of semiconductor quantum dots is the average of the particle sizes of 10 randomly selected semiconductor quantum dots. A transmission electron microscope can be used to measure the particle size of semiconductor quantum dots.

半導體膜包含與半導體量子點配位之配位體。配位體包括具有硫醇基之配位體及包含鹵素元素之配位體。The semiconductor film includes ligands coordinated with the semiconductor quantum dots. The ligands include ligands having thiol groups and ligands containing halogen elements.

包含鹵素元素之配位體為包含鹵素元素之無機配位體為較佳。包含鹵素元素之無機配位體容易配位於半導體量子點,並且能夠抑制表面缺陷的產生。The ligand containing a halogen element is preferably an inorganic ligand containing a halogen element. Inorganic ligands containing a halogen element are easily coordinated to semiconductor quantum dots and can suppress the generation of surface defects.

上述包含鹵素元素之配位體包含In元素為較佳。尤其,在半導體量子點為以InSb為母晶者之情況下,並且在上述包含鹵素元素之配位體包含In元素之情況下,認為容易配位於半導體量子點的Sb位點,能夠進一步抑制表面缺陷的產生。The ligand containing a halogen element preferably contains In. In particular, when the semiconductor quantum dot is based on InSb as a matrix, the ligand containing a halogen element is believed to be more likely to coordinate with the Sb site of the semiconductor quantum dot, further suppressing the generation of surface defects.

作為包含鹵素元素之配位體中所包含之鹵素元素,可舉出氟元素、氯元素、溴元素及碘元素,碘元素為較佳。Examples of the halogen element contained in the ligand containing a halogen element include fluorine, chlorine, bromine and iodine, with iodine being preferred.

作為包含鹵素元素之配位體的具體例,可舉出碘化鋅、溴化鋅、氯化鋅、碘化銦、溴化銦、氯化銦、碘化鎘、溴化鎘、氯化鎘、碘化鎵、溴化鎵、氯化鎵等,碘化銦為較佳。Specific examples of the ligand containing a halogen element include zinc iodide, zinc bromide, zinc chloride, indium iodide, indium bromide, indium chloride, cadmium iodide, cadmium bromide, cadmium chloride, gallium iodide, gallium bromide, and gallium chloride, with indium iodide being preferred.

再者,在包含鹵素元素之配位體中,亦有從前述的配位體解離鹵素離子並且在半導體量子點的表面上配位有鹵素離子之情況。又,關於前述的配位體的除了鹵素元素以外的部位,亦存在配位於半導體量子點的表面上之情況。若舉出具體例來進行說明,在碘化銦之情況下,有時碘化銦配位於半導體量子點的表面上,有時碘離子或銦離子亦配位於半導體量子點的表面上。Furthermore, in ligands containing halogen elements, halogen ions may dissociate from the aforementioned ligands and become coordinated to the surface of semiconductor quantum dots. Furthermore, sites other than halogen elements in the aforementioned ligands may also be coordinated to the surface of semiconductor quantum dots. To illustrate this, in the case of indium iodide, in some cases the indium iodide is coordinated to the surface of the semiconductor quantum dot, while in other cases the iodine ions or indium ions are also coordinated to the surface of the semiconductor quantum dot.

具有硫醇基之配位體可以為單齒的有機配位體,亦可以為包含2個以上的配位部之多齒的有機配位體。在多齒配位體之情況下,存在複數個之配位部中的至少一個為硫醇基。在多齒配位體之情況下,可以進一步具有胺基、羥基、羧基、磺基、磷酸基、膦酸基等除了硫醇基以外的配位部。Ligands containing thiol groups may be mono- or poly- halogenated organic ligands containing two or more coordination moieties. In the case of poly- halogenated ligands, at least one of the multiple coordination moieties is a thiol group. Poly- halogenated ligands may further contain coordination moieties other than thiol groups, such as amino groups, hydroxyl groups, carboxyl groups, sulfo groups, phosphate groups, and phosphonic acid groups.

作為單齒的配位體的具體例,可舉出4-甲基苯硫醇、3,5-二甲基苯硫醇、4-氯苯硫醇、4-甲氧基苯硫醇等。Specific examples of monocyclic ligands include 4-methylbenzenethiol, 3,5-dimethylbenzenethiol, 4-chlorobenzenethiol, and 4-methoxybenzenethiol.

作為多齒配位體,可舉出由式(A)~(C)中的任一個表示之配位體。 [化學式1]Examples of polydentate ligands include those represented by any of formulas (A) to (C). [Chemical Formula 1]

式(A)中,XA1及XA2分別獨立地表示硫醇基、胺基、羥基、羧基、磺基、磷酸基或膦酸基,XA1及XA2中的至少一個為硫醇基, LA1表示烴基。In formula (A),XA1 andXA2 each independently represent a thiol group, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, a phosphoric acid group, or a phosphonic acid group, at least one ofXA1 andXA2 is a thiol group, andLA1 represents a alkyl group.

式(B)中,XB1及XB2分別獨立地表示硫醇基、胺基、羥基、羧基、磺基、磷酸基或膦酸基,XB1及XB2中的至少一個為硫醇基, XB3表示S、O或NH, LB1及LB2分別獨立地表示烴基。In formula (B),XB1 andXB2 each independently represent a thiol group, an amine group, a hydroxyl group, a carboxyl group, a sulfo group, a phosphoric acid group, or a phosphonic acid group; at least one ofXB1 andXB2 is a thiol group;XB3 represents S, O, or NH; andLB1 andLB2 each independently represent a alkyl group.

式(C)中,XC1~XC3分別獨立地表示硫醇基、胺基、羥基、羧基、磺基、磷酸基或膦酸基,XC1~XC3中的至少一個為硫醇基, XC4表示N, LC1~LC3分別獨立地表示烴基。In formula (C), XC1 to XC3 each independently represent a thiol group, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, a phosphoric acid group, or a phosphonic acid group, at least one of XC1 to XC3 is a thiol group, XC4 represents N, and LC1 to LC3 each independently represent a alkyl group.

在XA1、XA2、XB1、XB2、XC1、XC2及XC3所表示之胺基中,並不限定於-NH2,亦包含取代胺基及環狀胺基。作為取代胺基,可舉出單烷基胺基、二烷基胺基、單芳基胺基、二芳基胺基、烷基芳基胺基等。作為該等基所表示之胺基,-NH2、單烷基胺基、二烷基胺基為較佳,-NH2為更佳。The amino groups represented byXA1, XA2,XB1 ,XB2 ,XC1 ,XC2 , andXC3 are not limited to-NH2 and also include substituted amino groups and cyclic amino groups. Examples of substituted amino groups include monoalkylamino groups, dialkylamino groups, monoarylamino groups, diarylamino groups, and alkylarylamino groups. Preferred amino groups are-NH2 , monoalkylamino groups, and dialkylamino groups, with-NH2 being more preferred.

作為LA1、LB1、LB2、LC1、LC2及LC3所表示之烴基,脂肪族烴基或包含芳香環之基為較佳,脂肪族烴基為更佳。脂肪族烴基可以為飽和脂肪族烴基,亦可以為不飽和脂肪族烴基。烴基的碳數為1~20為較佳。碳數的上限為10以下為較佳,6以下為更佳,3以下為進一步較佳。作為烴基的具體例,可舉出伸烷基、伸烯基、伸芳基及伸炔基。The alkyl groups represented by LA1 , LB1 , LB2 , LC1 , LC2 , and LC3 are preferably aliphatic alkyl groups or groups containing an aromatic ring, and more preferably aliphatic alkyl groups. The aliphatic alkyl group may be either saturated or unsaturated. The alkyl group preferably has 1 to 20 carbon atoms. The upper limit of the carbon number is preferably 10 or less, more preferably 6 or less, and even more preferably 3 or less. Specific examples of the alkyl group include alkylene groups, alkenylene groups, arylene groups, and alkynylene groups.

關於伸烷基,可舉出直鏈伸烷基、支鏈伸烷基及環狀伸烷基,直鏈伸烷基或支鏈伸烷基為較佳,直鏈伸烷基為更佳。關於伸烯基,可舉出直鏈伸烯基、支鏈伸烯基及環狀伸烯基,直鏈伸烯基或支鏈伸烯基為較佳,直鏈伸烯基為更佳。關於伸炔基,可舉出直鏈伸炔基及支鏈伸炔基,直鏈伸炔基為較佳。伸芳基可以為單環,亦可以為多環。單環的伸芳基為較佳。作為伸芳基的具體例,可舉出伸苯基、伸萘基等,伸苯基為較佳。伸烷基、伸烯基、伸炔基及伸芳基亦可以進一步具有取代基。取代基為原子數1以上且10以下的基為較佳。作為原子數1以上且10以下的基的較佳的具體例,可舉出碳數1~3的烷基〔甲基、乙基、丙基及異丙基〕、碳數2~3的烯基〔乙烯基及丙烯基〕、碳數2~4的炔基〔乙炔基、丙炔基等〕、環丙基、碳數1~2的烷氧基〔甲氧基及乙氧基〕、碳數2~3的醯基〔乙醯基及丙醯基〕、碳數2~3的烷氧基羰基〔甲氧基羰基及乙氧羰基〕、碳數2的醯氧基〔乙醯氧基〕、碳數2的醯胺基〔乙醯胺基〕、碳數1~3的羥烷基〔羥甲基、羥乙基、羥丙基〕、醛基、羥基、羧基、磺基、磷酸基、胺甲醯基、氰基、異氰酸酯基、硫醇基、硝基、硝氧基、異硫氰酸酯基、氰酸酯基、硫氰酸酯基、乙醯氧基、乙醯胺基、甲醯基、甲醯氧基、甲醯胺基、磺酸胺基、亞磺酸基、胺磺醯基、膦醯基、乙醯基、鹵素原子及鹼金屬原子等。Examples of alkylene groups include linear, branched, and cyclic alkylene groups, with linear or branched alkylene groups being preferred, and linear alkylene groups being more preferred. Examples of alkenylene groups include linear, branched, and cyclic alkenylene groups, with linear or branched alkenylene groups being preferred, and linear alkenylene groups being more preferred. Examples of alkynylene groups include linear and branched alkynylene groups, with linear alkynylene groups being preferred. Arylene groups may be monocyclic or polycyclic, with monocyclic arylene groups being preferred. Specific examples of arylene groups include phenylene and naphthylene groups, with phenylene groups being preferred. The alkylene, alkenylene, alkynylene and arylene groups may further have a substituent. The substituent is preferably a group having 1 or more and 10 or less atoms. Preferred specific examples of the group having 1 or more and 10 or less atoms include alkyl groups having 1 to 3 carbon atoms (methyl, ethyl, propyl and isopropyl), alkenyl groups having 2 to 3 carbon atoms (vinyl and propenyl), alkynyl groups having 2 to 4 carbon atoms (ethynyl, propynyl, etc.), cyclopropyl, alkoxy groups having 1 to 2 carbon atoms (methoxy and ethoxy), acyl groups having 2 to 3 carbon atoms (acetyl and propionyl), alkoxycarbonyl groups having 2 to 3 carbon atoms (methoxycarbonyl and ethoxycarbonyl), acyloxy groups having 2 carbon atoms (ethoxycarbonyl and propionyl), acyloxy group], an amide group having 2 carbon atoms [acetamido], a hydroxyalkyl group having 1 to 3 carbon atoms [hydroxymethyl, hydroxyethyl, hydroxypropyl], an aldehyde group, a hydroxy group, a carboxyl group, a sulfo group, a phosphate group, a carbamoyl group, a cyano group, an isocyanate group, a thiol group, a nitro group, a nitroxy group, an isothiocyanate group, a cyanate group, a thiocyanate group, an acetoxy group, an acetamido group, a formyl group, a formyloxy group, a formamido group, a sulfonamido group, a sulfinic acid group, a sulfonamido group, a phosphonyl group, an acetyl group, a halogen atom, and an alkaline metal atom, etc.

在式(A)中,XA1和XA2被LA1隔開1~10個原子為較佳,隔開1~6個原子為更佳,隔開1~4個原子為進一步較佳,隔開1~3個原子為更進一步較佳,隔開1個或2個原子為特佳。In formula (A),XA1 andXA2 are preferably separated byLA1 by 1 to 10 atoms, more preferably by 1 to 6 atoms, further preferably by 1 to 4 atoms, even more preferably by 1 to 3 atoms, and particularly preferably by 1 or 2 atoms.

在式(B)中,XB1和XB3被LB1隔開1~10個原子為較佳,隔開1~6個原子為更佳,隔開1~4個原子為進一步較佳,隔開1~3個原子為更進一步較佳,隔開1個或2個原子為特佳。又,XB2和XB3被LB2隔開1~10個原子為較佳,隔開1~6個原子為更佳,隔開1~4個原子為進一步較佳,隔開1~3個原子為更進一步較佳,隔開1個或2個原子為特佳。In formula (B),XB1 andXB3 are preferably separated byLB1 by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, even more preferably by 1 to 3 atoms, and particularly preferably by 1 or 2 atoms. Furthermore,XB2 andXB3 are preferably separated byLB2 by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, even more preferably by 1 to 3 atoms, and particularly preferably by 1 or 2 atoms.

在式(C)中,XC1和XC4被LC1隔開1~10個原子為較佳,隔開1~6個原子為更佳,隔開1~4個原子為進一步較佳,隔開1~3個原子為更進一步較佳,隔開1個或2個原子為特佳。又,XC2和XC4被LC2隔開1~10個原子為較佳,隔開1~6個原子為更佳,隔開1~4個原子為進一步較佳,隔開1~3個原子為更進一步較佳,隔開1個或2個原子為特佳。又,XC3和XC4被LC3隔開1~10個原子為較佳,隔開1~6個原子為更佳,隔開1~4個原子為進一步較佳,隔開1~3個原子為更進一步較佳,隔開1個或2個原子為特佳。In formula (C), XC1 and XC4 are preferably separated byLC1 by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, even more preferably by 1 to 3 atoms, and particularly preferably by 1 or 2 atoms. Furthermore, XC2 and XC4 are preferably separated byLC2 by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, even more preferably by 1 to 3 atoms, and particularly preferably by 1 or 2 atoms. Furthermore, XC3 and XC4 are preferably separated byLC3 by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, even more preferably by 1 to 3 atoms, and particularly preferably by 1 or 2 atoms.

再者,XA1和XA2被LA1隔開1~10個原子係指,構成連接XA1與XA2之最短距離的分子鏈之原子的數量為1~10個。例如,在下述式(A1)之情況下,XA1和XA2被隔開2個原子,在下述式(A2)及式(A3)之情況下,XA1和XA2被隔開3個原子。以下的結構式中所附帶之數字表示構成連接XA1與XA2之最短距離的分子鏈之原子的排列順序。 [化學式2]Furthermore, "XA1 andXA2 are separated by 1 to 10 atoms byLA1 " means that the number of atoms forming the shortest molecular chain connectingXA1 andXA2 is 1 to 10. For example, in the following formula (A1),XA1 andXA2 are separated by 2 atoms, while in the following formulas (A2) and (A3),XA1 andXA2 are separated by 3 atoms. The numbers attached to the following structural formulas indicate the order of arrangement of the atoms forming the shortest molecular chain connectingXA1 andXA2 . [Chemical Formula 2]

若舉出具體的化合物來進行說明,3-巰基丙酸為如下結構之化合物(下述結構的化合物),對應於XA1的部位為羧基,對應於XA2的部位為硫醇基,對應於LA1的部位為伸乙基。在3-巰基丙酸中,XA1(羧基)和XA2(硫醇基)被LA1(伸乙基)隔開2個原子。 [化學式3]To illustrate this with a specific compound, 3-pentylpropionic acid has the following structure (compound with the following structure): the site corresponding to XA1 is a carboxyl group, the site corresponding to XA2 is a thiol group, and the site corresponding to LA1 is an ethylidene group. In 3-pentylpropionic acid, XA1 (carboxyl group) and XA2 (thiol group) are separated by two atoms by LA1 (ethylidene group). [Chemical Formula 3]

關於XB1和XB3被LB1隔開1~10個原子、XB2和XB3被LB2隔開1~10個原子、XC1和XC4被LC1隔開1~10個原子、XC2和XC4被LC2隔開1~10個原子、XC3和XC4被LC3隔開1~10個原子之含義與上述亦相同。XB1 andXB3 are separated byLB1 by 1 to 10 atoms,XB2 andXB3 are separated byLB2 by 1 to 10 atoms,XC1 andXC4 are separated byLC1 by 1 to 10 atoms,XC2 andXC4 are separated byLC2 by 1 to 10 atoms, andXC3 andXC4 are separated byLC3 by 1 to 10 atoms, have the same meanings as described above.

作為多齒配位體的具體例,可舉出3-巰基丙酸、巰基乙酸、2-胺基乙硫醇、2-巰基乙醇、4-巰基丁酸、3-巰基丙醇、1-硫代甘油、二巰基丙醇、1-巰基-2-丁醇、1-巰基-2-戊醇、3-巰基-1-丙醇、2,3-二巰基-1-丙醇、2-[(2-胺基乙基)胺基]乙硫醇、雙(2-巰基乙基)胺、2-胺基乙烷-1-硫醇、1,2-苯二硫醇、1,3-苯二硫醇、1,4-苯二硫醇、2-巰基苯甲酸、3-巰基苯甲酸、4-巰基苯甲酸及該等的衍生物。Specific examples of polyhalogenated ligands include 3-alkylpropionic acid, alkylacetic acid, 2-aminoethanethiol, 2-alkylethanol, 4-alkylbutyric acid, 3-alkylpropanol, 1-thioglycerol, dialkylpropanol, 1-alkyl-2-butanol, 1-alkyl-2-pentanol, 3-alkyl-1-propanol, 2,3-dialkyl-1-propanol, 2-[(2-aminoethyl)amino]ethanethiol, bis(2-alkylethyl)amine, 2-aminoethane-1-thiol, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 2-alkylbenzoic acid, 3-alkylbenzoic acid, 4-alkylbenzoic acid, and derivatives thereof.

半導體膜中的、半導體量子點及配位體的合計含量為80質量%以上為較佳,90質量%以上為更佳,95質量%以上為進一步較佳。The total content of the semiconductor quantum dots and the ligand in the semiconductor film is preferably 80 mass % or more, more preferably 90 mass % or more, and even more preferably 95 mass % or more.

以下,對本發明的半導體膜之製造方法的各步驟進行說明。The following describes each step of the method for manufacturing a semiconductor film according to the present invention.

在形成半導體量子點的集合體的膜之步驟中,將包含半導體量子點、第1配位體及溶劑之分散液塗布於基材上而形成半導體量子點的集合體的膜。In the step of forming a film of an aggregate of semiconductor quantum dots, a dispersion containing semiconductor quantum dots, a first ligand, and a solvent is applied to a substrate to form a film of an aggregate of semiconductor quantum dots.

分散液中所包含之上述半導體量子點包括包含In元素及第15族元素之半導體量子點。作為這種半導體量子點,可舉出上述之半導體量子點。分散液中的半導體量子點的含量為10~500mg/mL為較佳。下限為50mg/mL以上為較佳,80mg/mL以上為更佳。上限為300mg/mL以下為較佳,200mg/mL以下為更佳。The semiconductor quantum dots contained in the dispersion include those containing In and a Group 15 element. Examples of such semiconductor quantum dots include the aforementioned semiconductor quantum dots. The content of the semiconductor quantum dots in the dispersion is preferably 10 to 500 mg/mL. The lower limit is preferably 50 mg/mL or greater, and more preferably 80 mg/mL or greater. The upper limit is preferably 300 mg/mL or less, and more preferably 200 mg/mL or less.

作為分散液中所包含之第1配位體,可舉出上述之具有硫醇基之配位體及包含鹵素元素之配位體。第1配位體為具有硫醇基之配位體為較佳。Examples of the first ligand contained in the dispersion include the aforementioned ligands having a thiol group and ligands containing a halogen element. Preferably, the first ligand is a ligand having a thiol group.

分散液可以包含如下配位體:作為與半導體量子點配位之配位體而發揮作用,並且具有容易成為空間位阻的分子結構,亦作為將半導體量子點分散於溶劑中之分散劑而發揮作用。作為這種配位體,可舉出主鏈的碳數為至少6以上之配位體,主鏈的碳數為10以上的配位體為較佳。上述配位體可以為飽和化合物,亦可以為不飽和化合物。作為具體例,可舉出癸酸、月桂酸、肉荳蔻酸、棕櫚酸、硬脂酸、二十二酸、油酸、芥酸、油胺、硬脂胺、1-胺基癸烷、十二胺、苯胺、十二烷硫醇、1,2-十六烷硫醇、三丁基膦、三己基膦、三辛基膦、三丁基氧化膦、三辛基氧化膦及十六烷基三甲基溴化銨等。The dispersion may contain a ligand that functions as a ligand for the semiconductor quantum dots and has a molecular structure that easily provides steric hindrance. It also functions as a dispersant for dispersing the semiconductor quantum dots in the solvent. Examples of such ligands include those with a main chain carbon number of at least 6, preferably 10 or more. These ligands may be either saturated or unsaturated compounds. Specific examples include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, erucic acid, oleylamine, stearylamine, 1-aminodecane, dodecylamine, aniline, dodecylmercaptan, 1,2-hexadecylmercaptan, tributylphosphine, trihexylphosphine, trioctylphosphine, tributylphosphine oxide, trioctylphosphine oxide, and hexadecyltrimethylammonium bromide.

分散液中的配位體的含量為0.2mol/L~3.0mol/L為較佳,0.2mol/L~0.5mol/L為更佳。The content of the ligand in the dispersion is preferably 0.2 mol/L to 3.0 mol/L, more preferably 0.2 mol/L to 0.5 mol/L.

分散液中所包含之溶劑並無特別限制,但難以溶解半導體量子點並且容易溶解配位體之溶劑為較佳。作為溶劑,有機溶劑為較佳。作為具體例,可舉出烷烴類(正己烷、正辛烷等)、烯烴類(十八烯等)、苯及甲苯等。本發明的分散液中所包含之溶劑可以僅為1種,亦可以為將2種以上混合而得之混合溶劑。The solvent contained in the dispersion is not particularly limited, but preferably a solvent that dissolves the semiconductor quantum dots poorly but readily dissolves the ligand is preferred. Organic solvents are preferred. Specific examples include alkanes (such as n-hexane and n-octane), alkenes (such as octadecene), benzene, and toluene. The dispersion of the present invention may contain a single solvent or a mixture of two or more solvents.

分散液中的溶劑的含量為50~99質量%為較佳,70~99質量%為更佳,90~98質量%為進一步較佳。The content of the solvent in the dispersion is preferably 50 to 99 mass %, more preferably 70 to 99 mass %, and even more preferably 90 to 98 mass %.

上述分散液能夠藉由在溶劑中使上述第1配位體與上述半導體量子點配位來製造。The dispersion can be produced by coordinating the first ligand to the semiconductor quantum dots in a solvent.

對塗布分散液之基板的形狀、結構、大小等並無特別限制,能夠根據目的而適當選擇。基板的結構可以為單層結構,亦可以為積層結構。作為基板,例如,能夠使用由矽、玻璃、YSZ(Yttria-Stabilized Zirconia;釔穩定化氧化鋯)等無機材料、樹脂、樹脂複合材料等構成之基板。又,在基板上可以形成有電極、絕緣膜等。此時,對基板上的電極和絕緣膜上亦賦予了分散液。The shape, structure, and size of the substrate onto which the dispersion is applied are not particularly limited and can be appropriately selected depending on the intended purpose. The substrate can be either a single-layer or multilayer structure. Examples of substrates that can be used include those made of inorganic materials such as silicon, glass, Yttria-Stabilized Zirconia (YSZ), resins, and resin composites. Furthermore, electrodes, insulating films, and the like can be formed on the substrate. In this case, the dispersion is also applied to the electrodes and insulating film on the substrate.

將分散液塗布於基板上之方法並無特別限定。可舉出旋塗法、浸塗法、噴墨法、自動塗膠機(dispenser)法、網版印刷法、凸版印刷法、凹版印刷法及噴塗法等塗布方法。The method for applying the dispersion onto the substrate is not particularly limited. Examples of coating methods include spin coating, dip coating, inkjet coating, dispenser coating, screen printing, letterpress printing, gravure printing, and spray coating.

塗布分散液而形成之半導體量子點的集合體的膜的膜厚為3nm以上為較佳,10nm以上為更佳,20nm以上為進一步較佳。上限為200nm以下為較佳,150nm以下為更佳,100nm以下為進一步較佳。The film thickness of the semiconductor quantum dot aggregate formed by applying the dispersion is preferably 3 nm or greater, more preferably 10 nm or greater, and even more preferably 20 nm or greater. The upper limit is preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.

在使第2配位體與半導體量子點配位之步驟中,對上述步驟中所獲得之半導體量子點的集合體的膜賦予包含第2配位體及溶劑之配位體溶液,而使第2配位體與半導體量子點配位。In the step of coordinating the second ligand with the semiconductor quantum dots, a ligand solution containing the second ligand and a solvent is applied to the film of the semiconductor quantum dot aggregate obtained in the above step, thereby coordinating the second ligand with the semiconductor quantum dots.

作為配位體溶液中所包含之第2配位體,可舉出上述之具有硫醇基之配位體及包含鹵素元素之配位體。第2配位體為包含鹵素元素之配位體為較佳。第2配位體可以為包括包含鹵素元素之配位體及具有硫醇基之配位體者。配位體溶液可以僅包含1種第2配位體,亦可以包含2種以上的第2配位體。Examples of the second ligand contained in the ligand solution include the aforementioned ligands containing a thiol group and ligands containing a halogen element. Preferably, the second ligand is a ligand containing a halogen element. The second ligand may include a ligand containing a halogen element and a ligand containing a thiol group. The ligand solution may contain only one second ligand or two or more second ligands.

配位體溶液中所包含之溶劑根據配位體溶液中所包含之配位體的種類而適當選擇為較佳,容易溶解配位體之溶劑為較佳。又,配位體溶液中所包含之溶劑為介電常數高的有機溶劑為較佳。作為具體例,可舉出乙醇、丙酮、甲醇、乙腈、二甲基甲醯胺、二甲基亞碸、丁醇及丙醇等。又,配位體溶液中所包含之溶劑為難以殘留在所形成之半導體膜中的溶劑為較佳。從容易乾燥,並且容易藉由清洗來去除之觀點考慮,低沸點的醇或酮、腈為較佳,甲醇、乙醇、丙酮或乙腈為更佳。配位體溶液中所包含之溶劑為不與分散液中所包含之溶劑混合者為較佳。作為較佳的溶劑的組合,在分散液中所包含之溶劑為己烷、辛烷等烷烴或甲苯之情況下,配位體溶液中所包含之溶劑使用甲醇、丙酮等極性溶劑為較佳。The solvent contained in the ligand solution is preferably selected appropriately according to the type of ligand contained in the ligand solution, and a solvent that easily dissolves the ligand is preferred. In addition, the solvent contained in the ligand solution is preferably an organic solvent with a high dielectric constant. Specific examples include ethanol, acetone, methanol, acetonitrile, dimethylformamide, dimethylsulfoxide, butanol, and propanol. In addition, the solvent contained in the ligand solution is preferably a solvent that is unlikely to remain in the formed semiconductor film. From the perspective of easy drying and easy removal by washing, low-boiling-point alcohols, ketones, and nitriles are preferred, and methanol, ethanol, acetone, or acetonitrile is even more preferred. The solvent contained in the ligand solution is preferably immiscible with the solvent contained in the dispersion. A preferred solvent combination is that when the solvent contained in the dispersion is an alkane such as hexane or octane, or toluene, the solvent contained in the ligand solution is preferably a polar solvent such as methanol or acetone.

可以使沖洗液與賦予配位體溶液之後的膜接觸而進行沖洗之步驟(沖洗步驟)。藉由進行沖洗步驟,能夠去除半導體膜中所包含之過量的配位體或從半導體量子點脫離之配位體。又,沖洗步驟可以使用2種以上的極性(相對介電常數)不同之沖洗液來進行複數次。例如,首先使用相對介電常數高的沖洗液(亦稱為第1沖洗液)進行沖洗之後,使用與第1沖洗液相比相對介電常數低的沖洗液(亦稱為第2沖洗液)進行沖洗為較佳。第1沖洗液的相對介電常數為15~50為較佳,20~45為更佳,25~40為進一步較佳。第2沖洗液的相對介電常數為1~15為較佳,1~10為更佳,1~5為進一步較佳。After the ligand solution has been applied, a rinsing step (rinsing step) can be performed by contacting the membrane with a rinsing solution. This rinsing step can remove excess ligands contained in the semiconductor membrane or ligands that have dissociated from the semiconductor quantum dots. Furthermore, the rinsing step can be performed multiple times using two or more rinsing solutions with different polarities (relative dielectric constants). For example, it is preferable to first rinse with a rinsing solution with a higher relative dielectric constant (also referred to as the first rinsing solution), followed by rinsing with a rinsing solution with a lower relative dielectric constant than the first rinsing solution (also referred to as the second rinsing solution). The relative dielectric constant of the first rinsing liquid is preferably 15 to 50, more preferably 20 to 45, and even more preferably 25 to 40. The relative dielectric constant of the second rinsing liquid is preferably 1 to 15, more preferably 1 to 10, and even more preferably 1 to 5.

本發明的半導體膜之製造方法可以交替重複進行複數次形成上述之半導體量子點的集合體的膜之步驟及使上述之第2配位體與半導體量子點配位之步驟。The method for manufacturing a semiconductor film of the present invention can alternately repeat the steps of forming a film of the semiconductor quantum dot aggregate and coordinating the second ligand with the semiconductor quantum dots multiple times.

本發明的半導體膜之製造方法可以包括乾燥步驟。藉由進行乾燥步驟,能夠去除殘留在半導體膜中之溶劑。乾燥時間為1~100小時為較佳,1~50小時為更佳,5~30小時為進一步較佳。乾燥溫度為10~100℃為較佳,20~90℃為更佳,20~60℃為進一步較佳。乾燥步驟可以在包含氧氣之氣氛下進行,亦可以在氮氣氣氛下進行。相對於半導體膜總量,半導體膜中所包含之殘留溶劑量為5質量%以下為較佳,3質量%以下為更佳,1質量%以下為進一步較佳。關於下限,例如,能夠設為0.0001質量%。半導體膜可以包含水,並且相對於半導體膜總量為5質量%以下為較佳,3質量%以下為更佳,1質量%以下為進一步較佳。關於下限,例如,能夠設為0.0001質量%。在半導體膜之製造步驟中,半導體量子點及配位體可以被氧化。The method for manufacturing a semiconductor film of the present invention may include a drying step. By performing the drying step, the solvent remaining in the semiconductor film can be removed. The drying time is preferably 1 to 100 hours, more preferably 1 to 50 hours, and even more preferably 5 to 30 hours. The drying temperature is preferably 10 to 100°C, more preferably 20 to 90°C, and even more preferably 20 to 60°C. The drying step can be performed in an atmosphere containing oxygen or in a nitrogen atmosphere. The amount of residual solvent contained in the semiconductor film is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less, relative to the total amount of the semiconductor film. The lower limit can be, for example, 0.0001 mass%. The semiconductor film may contain water, preferably 5 mass% or less, more preferably 3 mass% or less, and even more preferably 1 mass% or less, relative to the total amount of the semiconductor film. The lower limit can be, for example, 0.0001 mass%. During the semiconductor film manufacturing process, semiconductor quantum dots and ligands may be oxidized.

<光檢測元件之製造方法> 本發明的光檢測元件之製造方法包括上述之本發明的半導體膜之製造方法。具體而言,使用上述之本發明的半導體膜之製造方法來形成光檢測元件的光電轉換層為較佳。<Photodetection Element Manufacturing Method>The photodetection element manufacturing method of the present invention includes the aforementioned method for manufacturing a semiconductor film of the present invention. Specifically, the aforementioned method for manufacturing a semiconductor film of the present invention is preferably used to form the photoelectric conversion layer of the photodetection element.

作為光檢測元件的種類,可舉出光電二極體(photodiode)型的光檢測元件、光二極體型的光檢測元件。其中,從容易獲得高訊號雜訊比(SN比)的原因考慮,光二極體型的光檢測元件為較佳。Types of photodetectors include photodiode-type and photodiode-type. Of these, photodiode-type photodetectors are preferred because they easily achieve a high signal-to-noise ratio (SN ratio).

藉由本發明而獲得之半導體膜對紅外區域的波長的光具有優異之靈敏度,因此將該半導體膜用於光電轉換層之光檢測元件較佳地用作檢測紅外區域的波長的光之光檢測元件。亦即,上述光檢測元件較佳地用作紅外光檢測元件。The semiconductor film obtained by the present invention has excellent sensitivity to light with infrared wavelengths. Therefore, a photodetector element using this semiconductor film as a photoelectric conversion layer is preferably used as a photodetector element that detects light with infrared wavelengths. In other words, the photodetector element is preferably used as an infrared light detector element.

上述紅外區域的波長的光為波長為超過700nm之波長的光為較佳,波長為800nm以上的光為更佳,波長為900nm以上的光為進一步較佳。又,紅外區域的波長的光為波長為3000nm以下的光為較佳,波長為2000nm以下的光為更佳,波長為1600nm以下的光為進一步較佳。The infrared light preferably has a wavelength exceeding 700 nm, more preferably 800 nm or greater, and even more preferably 900 nm or greater. Furthermore, the infrared light preferably has a wavelength of 3000 nm or less, more preferably 2000 nm or less, and even more preferably 1600 nm or less.

光檢測元件可以為同時檢測紅外區域的波長的光及可見光區域的波長的光(較佳為在波長為400~700nm的範圍內的光)之光檢測元件。The light detection element can be a light detection element that detects light with a wavelength in the infrared region and light with a wavelength in the visible light region (preferably light with a wavelength in the range of 400 to 700 nm).

圖1中,示出光檢測元件的一實施形態。圖1係表示光二極體型的光檢測元件的一實施形態之圖。再者,圖中的箭頭表示向光檢測元件的入射光。圖1所示之光檢測元件1包含:第2電極12;第1電極11,與第2電極12對向而設置;光電轉換層13,設置於第2電極12與第1電極11之間;電子傳輸層21,設置於第1電極11與光電轉換層13之間;及電洞傳輸層22,設置於第2電極12與光電轉換層13之間。使用圖1所示之光檢測元件1以使光從第1電極11的上方入射。再者,雖未圖示,但亦可以在第1電極11的光入射側的表面上配置透明基板。作為透明基板的種類,可舉出玻璃基板、樹脂基板及陶瓷基板等。FIG1 shows one embodiment of a photodetection element. FIG1 is a diagram illustrating one embodiment of a photodiode-type photodetection element. The arrows in the figure indicate incident light on the photodetection element. The photodetection element 1 shown in FIG1 includes: a second electrode 12; a first electrode 11 disposed opposite the second electrode 12; a photoelectric conversion layer 13 disposed between the second electrode 12 and the first electrode 11; an electron transport layer 21 disposed between the first electrode 11 and the photoelectric conversion layer 13; and a hole transport layer 22 disposed between the second electrode 12 and the photoelectric conversion layer 13. The photodetection element 1 shown in FIG1 is used so that light is incident on the first electrode 11 from above. Although not shown, a transparent substrate may be disposed on the light incident side surface of the first electrode 11. Examples of the transparent substrate include a glass substrate, a resin substrate, and a ceramic substrate.

(第1電極) 第1電極11為由相對於藉由光檢測元件檢測之目標光的波長實質上透明的導電材料形成之透明電極為較佳。再者,在本說明書中,“實質上為透明”係指,光的透過率為50%以上,60%以上為較佳,80%以上為更佳。作為第1電極11的材料,可舉出導電性金屬氧化物等。作為具體例,可舉出氧化錫、氧化鋅、氧化銦、氧化銦鎢、氧化銦鋅(indium zinc oxide:IZO)、氧化銦錫(indium tin oxide:ITO)及摻雜了氟之氧化錫(fluorine-doped tin oxide:FTO)等。(First Electrode)The first electrode 11 is preferably a transparent electrode formed from a conductive material that is substantially transparent to the wavelength of the target light detected by the photodetector. In this specification, "substantially transparent" means a light transmittance of 50% or greater, preferably 60% or greater, and even more preferably 80% or greater. Examples of materials for the first electrode 11 include conductive metal oxides. Specific examples include tin oxide, zinc oxide, indium oxide, indium tungsten oxide, indium zinc oxide (IZO), indium tin oxide (ITO), and fluorine-doped tin oxide (FTO).

第1電極11的膜厚並無特別限定,0.01~100μm為較佳,0.01~10μm為更佳,0.01~1μm為進一步較佳。各層的膜厚能夠藉由使用掃描式電子顯微鏡(scanning electron microscope:SEM)等觀察光檢測元件1的截面來測定。The thickness of the first electrode 11 is not particularly limited, but is preferably 0.01 to 100 μm, more preferably 0.01 to 10 μm, and even more preferably 0.01 to 1 μm. The thickness of each layer can be measured by observing a cross section of the light detection element 1 using a scanning electron microscope (SEM) or the like.

(電子傳輸層) 電子傳輸層21為具有將光電轉換層13中所產生之電子傳輸到電極之功能之層。電子傳輸層亦稱為電洞阻擋層。電子傳輸層由能夠發揮該功能之電子傳輸材料形成。(Electron Transport Layer)The electron transport layer 21 is a layer that transports electrons generated in the photoconversion layer 13 to the electrode. This layer is also called a hole-blocking layer. It is formed from an electron-transmitting material capable of performing this function.

作為電子傳輸材料,可舉出[6,6]-Phenyl-C61-Butyric Acid Methyl Ester([6,6]-苯基-C61-丁酸甲酯)(PC61BM)等富勒烯化合物、苝四羧基二醯亞胺等苝化合物、四氰基醌二甲烷、氧化鈦、氧化錫、氧化鋅、氧化銦、氧化銦鎢、氧化銦鋅、氧化銦錫及摻雜了氟之氧化錫等。電子傳輸材料可以為粒子。電子傳輸材料為氧化鋅為較佳。又,從減少有機殘留成分及增大與光電轉換層的接觸面積之觀點考慮,氧化鋅為粒子(氧化鋅粒子)為較佳。Examples of electron transport materials include fullerene compounds such as [6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PC61BM), perylene compounds such as perylene tetracarboxylic diimide, tetracyanoquinodimethane, titanium oxide, tin oxide, zinc oxide, indium oxide, indium tungsten oxide, indium zinc oxide, indium tin oxide, and fluorine-doped tin oxide. The electron transport material may be in the form of particles. Zinc oxide is preferably used as the electron transport material. Furthermore, from the perspectives of reducing organic residual components and increasing the contact area with the photoelectric conversion layer, zinc oxide in the form of particles (zinc oxide particles) is preferred.

氧化鋅可以為摻雜有除了Zn以外的金屬原子之氧化鋅。以下,將摻雜有除了Zn以外的金屬原子之氧化鋅亦稱為摻雜氧化鋅。Zinc oxide may be doped with metal atoms other than Zn. Hereinafter, zinc oxide doped with metal atoms other than Zn is also referred to as doped zinc oxide.

摻雜氧化鋅中的上述除了Zn以外的金屬原子為1~3價的金屬原子為較佳,包含選自Li、Mg、Al及Ga中之至少1種者為更佳,Li、Mg、Al或Ga為進一步較佳,Li或Mg為特佳。The metal atoms other than Zn in the doped zinc oxide are preferably monovalent to trivalent metal atoms, more preferably at least one selected from Li, Mg, Al, and Ga, further preferably Li, Mg, Al, or Ga, and particularly preferably Li or Mg.

在摻雜氧化鋅中,除了Zn以外的金屬原子相對於Zn及除了Zn以外的金屬原子的合計的比例為1原子%以上為較佳,2原子%以上為更佳,4原子%以上為進一步較佳。從抑制晶體缺陷的增加之觀點考慮,上限為20原子%以下為較佳,15原子%以下為更佳,12原子%以下為進一步較佳。再者,關於摻雜氧化鋅的上述除了Zn以外的金屬原子的比例,能夠藉由高頻感應耦合電漿(ICP)法進行測定。In doped zinc oxide, the ratio of metal atoms other than Zn to the total of Zn and metal atoms other than Zn is preferably 1 atomic % or greater, more preferably 2 atomic % or greater, and even more preferably 4 atomic % or greater. From the perspective of suppressing the increase in crystal defects, the upper limit is preferably 20 atomic % or less, more preferably 15 atomic % or less, and even more preferably 12 atomic % or less. The ratio of metal atoms other than Zn in doped zinc oxide can be measured by high-frequency inductively coupled plasma (ICP) spectroscopy.

氧化鋅粒子的平均粒徑為2~30nm為較佳。又,氧化鋅粒子的平均粒徑的上限值為20nm以下為較佳,15nm以下為更佳。只要氧化鋅粒子的平均粒徑在上述範圍內,則容易獲得與光電轉換層的接觸面積大,並且平坦度高的膜。再者,在本說明書中,氧化鋅粒子的平均粒徑的值為任意選擇之10個的粒徑的平均值。在氧化鋅粒子的粒徑的測定中,可以使用穿透式電子顯微鏡。The average particle size of the zinc oxide particles is preferably 2 to 30 nm. Furthermore, the upper limit of the average particle size of the zinc oxide particles is preferably 20 nm or less, and more preferably 15 nm or less. When the average particle size of the zinc oxide particles is within this range, a film with a large contact area with the photoelectric conversion layer and high flatness is easily obtained. Furthermore, in this specification, the average particle size of the zinc oxide particles is the average of the particle sizes of 10 randomly selected particles. The particle size of the zinc oxide particles can be measured using a transmission electron microscope.

電子傳輸層可以為單層膜,亦可以為2層以上的積層膜。電子傳輸層的厚度為10~1000nm為較佳。上限為800nm以下為較佳。下限為20nm以上為較佳,50nm以上為更佳。又,電子傳輸層的厚度為光電轉換層13的厚度的0.05~10倍為較佳,0.1~5倍為更佳,0.2~2倍為進一步較佳。The electron transport layer can be a single layer or a laminate of two or more layers. The thickness of the electron transport layer is preferably 10 to 1000 nm. The upper limit is preferably 800 nm or less. The lower limit is preferably 20 nm or more, and more preferably 50 nm or more. Furthermore, the thickness of the electron transport layer is preferably 0.05 to 10 times the thickness of the photoelectric conversion layer 13, more preferably 0.1 to 5 times, and even more preferably 0.2 to 2 times.

可以對上述電子傳輸層進行紫外線臭氧處理。尤其在電子傳輸層為由奈米粒子構成之層之情況下,進行紫外線臭氧處理為較佳。藉由進行紫外線臭氧處理,能夠改善量子點分散液對電子傳輸層之潤濕性、或分解和去除電子傳輸層中的殘留有機物,從而獲得高元件性能。作為照射之紫外線的波長,能夠在波長100~400nm之間選擇。從尤其容易獲得上述效果並且能夠避免對膜的過度損壞的原因考慮,在波長200~300nm之間具有峰值強度為較佳,在波長240~270nm之間具有峰值強度為更佳。作為紫外線的照射強度,並無特別限制,但從容易獲得上述效果並且能夠避免對膜的過度損壞的原因考慮,1~100mW/cm2為較佳,10~50mW/cm2為更佳。關於處理時間並無特別限定,但從容易獲得上述效果並且能夠避免對膜的過度損壞的原因考慮,1~60分鐘為較佳,1~20分鐘為更佳,3~15分鐘為進一步較佳。The electron transport layer can be treated with ultraviolet ozone. This treatment is particularly preferred when the electron transport layer is composed of nanoparticles. Ultraviolet ozone treatment can improve the wettability of the quantum dot dispersion to the electron transport layer, decompose and remove residual organic matter in the electron transport layer, and thereby achieve high device performance. The wavelength of the irradiated ultraviolet light can be selected between 100 and 400 nm. To achieve the aforementioned effects more easily and avoid excessive damage to the membrane, peak intensity is preferably between 200 and 300 nm, and even more preferably between 240 and 270 nm. The UV irradiation intensity is not particularly limited, but from the perspective of easily achieving the aforementioned effects while avoiding excessive damage to the membrane, 1 to 100 mW/cm² is preferred, and 10 to 50 mW/cm² is more preferred. The treatment time is not particularly limited, but from the perspective of easily achieving the aforementioned effects while avoiding excessive damage to the membrane, 1 to 60 minutes is preferred, 1 to 20 minutes is more preferred, and 3 to 15 minutes is even more preferred.

(光電轉換層) 光電轉換層13能夠藉由上述之本發明的半導體膜之製造方法來製造。光電轉換層13的厚度為10~1000nm為較佳。厚度的下限為20nm以上為較佳,30nm以上為更佳。厚度的上限為600nm以下為較佳,550nm以下為更佳,500nm以下為進一步較佳,450nm以下為特佳。能夠將光電轉換層13對於藉由光檢測元件檢測之目標波長的光的折射率設為1.5~5.0。(Photoelectric Conversion Layer)The photoelectric conversion layer 13 can be manufactured using the semiconductor film manufacturing method of the present invention described above. The thickness of the photoelectric conversion layer 13 is preferably 10 to 1000 nm. The lower limit of the thickness is preferably 20 nm or greater, and more preferably 30 nm or greater. The upper limit of the thickness is preferably 600 nm or less, more preferably 550 nm or less, even more preferably 500 nm or less, and particularly preferably 450 nm or less. The refractive index of the photoelectric conversion layer 13 for light of the target wavelength to be detected by the photodetection element can be set to 1.5 to 5.0.

(電洞傳輸層) 電洞傳輸層22為具有將光電轉換層13中所產生之電洞傳輸到電極之功能之層。電洞傳輸層亦稱為電子阻擋層。(Hole Transport Layer)The hole transport layer 22 is a layer that transfers holes generated in the photoconversion layer 13 to the electrode. This layer is also called an electron blocking layer.

電洞傳輸層22由能夠發揮該功能之電洞傳輸材料形成。例如,作為電洞傳輸材料,可舉出PEDOT:PSS(聚(3,4-伸乙基二氧噻吩)與聚(4-苯乙烯磺酸)的複合物)、PTB7(聚{4,8-雙[(2-乙基己基)氧基]苯并[1,2-b:4,5-b’]二噻吩-2,6-二基-lt-alt-3-氟-2-[(2-乙基己基)羰基]噻吩并[3,4-b]噻吩-4,6-二基})、PTB7-Th(聚([2,6’-4,8-二(5-乙基己基噻吩基)苯并[1,2-b;3,3-b]二噻吩]{3-氟-2[(2-乙基己基l)羰基]噻吩并[3,4-b]噻吩二基}))、聚(3-己基噻吩-2,5-二基)、聚(3-正辛氧基噻吩)、聚(9,9’-二辛基芴-共-聯噻吩)、聚(3,3’’’-二十二烷基四噻吩)、聚(3,6-二辛基噻吩并[3,2-b]噻吩)、聚(2,5-雙(3-癸基噻吩-2-基)噻吩并[3,2-b]噻吩)、聚(3,4-二癸基噻吩-共-噻吩并[3,2-b]噻吩)、聚(3,6-二辛基噻吩并[3,2-b]噻吩-共-噻吩并[3,2-b]噻吩)、聚(3,6-二辛基噻吩并[3,2-b]噻吩-共-噻吩)、聚(3,6-二辛基噻吩并[3,2-b]噻吩-共-聯噻吩)、PC71BM([6,6]-苯基-C71-丁酸甲酯)等。又,亦能夠使用在日本特開2001-291534號公報的0209~0212段中記載之有機電洞傳輸材料等。又,在電洞傳輸材料中亦能夠使用量子點。作為構成量子點之量子點材料,可舉出通常的半導體晶體〔a)IV族半導體、b)IV-IV族、III-V族或II-VI族的化合物半導體、c)由II族、III族、IV族、V族及VI族元素中的3個以上的組合構成之化合物半導體〕的奈米粒子(0.5nm以上且未達100nm的大粒子)。具體而言,可舉出PbS、PbSe、PbSeS、InN、Ge、InAs、InGaAs、CuInS、CuInSe、CuInGaSe、InSb、HgTe、HgCdTe、Ag2S、Ag2Se、Ag2Te、SnS、SnSe、SnTe、Si、InP等帶隙相對窄的半導體材料。在量子點的表面上亦可以配位有配位體。The hole transport layer 22 is formed of a hole transport material capable of performing this function. For example, as the hole transport material, PEDOT:PSS (a composite of poly(3,4-ethylenedioxythiophene) and poly(4-styrenesulfonic acid)), PTB7 (poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-lt-alt-3-fluoro-2-[(2-ethylhexyl) )carbonyl]thieno[3,4-b]thiophene-4,6-diyl}), PTB7-Th (poly([2,6'-4,8-bis(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl})), poly(3-hexylthiophene-2,5-diyl ), poly(3-n-octyloxythiophene), poly(9,9'-dioctylfluorene-co-bithiophene), poly(3,3'''-docosylquaterthiophene), poly(3,6-dioctylthieno[3,2-b]thiophene), poly(2,5-bis(3-decylthiophen-2-yl)thieno[3,2-b]thiophene), poly(3,4-didecylthiophene-co-thieno[3,2 [-b]thiophene), poly(3,6-dioctylthieno[3,2-b]thiophene-co-thieno[3,2-b]thiophene), poly(3,6-dioctylthieno[3,2-b]thiophene-co-thiophene), poly(3,6-dioctylthieno[3,2-b]thiophene-co-thiophene), poly(3,6-dioctylthieno[3,2-b]thiophene-co-bithiophene), PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester), etc. Organic hole transport materials described in paragraphs 0209 to 0212 of Japanese Patent Application Laid-Open No. 2001-291534 can also be used. Quantum dots can also be used as hole transport materials. Examples of quantum dot materials include nanoparticles (large particles larger than 0.5 nm and less than 100 nm) of conventional semiconductor crystals [a) Group IV semiconductors, b) compound semiconductors of Group IV-IV, Group III-V, or Group II-VI, c) compound semiconductors composed of combinations of three or more elements from Groups II, III, IV, Group V, and GroupVI ]. Specifically, examples include relatively narrow-bandgap semiconductor materials such as PbS, PbSe, PbSeS, InN, Ge, InAs, InGaAs, CuInS, CuInSe, CuInGaSe, InSb, HgTe, HgCdTe,Ag2S ,Ag2Se , Ag2Te, SnS, SnSe, SnTe, Si, and InP. The surface of the quantum dot may also be coordinated with a ligand.

電洞傳輸層22的厚度為5~100nm為較佳。下限為10nm以上為較佳。上限為50nm以下為較佳,30nm以下為更佳。The thickness of the hole transport layer 22 is preferably 5 to 100 nm, with a lower limit of preferably 10 nm or more and an upper limit of preferably 50 nm or less, and more preferably 30 nm or less.

(第2電極) 第2電極12由包含選自Ag、Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、Al、Cr及In中之至少1種金屬原子之金屬材料構成為較佳。藉由由這種金屬材料構成第2電極12,能夠形成外部量子效率高,並且暗電流進一步受到抑制之光檢測元件。又,在第2電極12中,亦能夠使用上述之導電性金屬氧化物、碳材料及導電性高分子等。作為碳材料,只要是具有導電性之材料即可,例如,可舉出富勒烯、碳奈米管、石墨及石墨烯等。(Second Electrode)The second electrode 12 is preferably composed of a metal material containing at least one metal atom selected from Ag, Au, Pt, Ir, Pd, Cu, Pb, Sn, Zn, Ti, W, Mo, Ta, Ge, Ni, Al, Cr, and In. Composing the second electrode 12 from such a metal material enables the formation of a photodetector element with high external quantum efficiency and further suppressed dark current. Furthermore, the aforementioned conductive metal oxides, carbon materials, and conductive polymers can also be used for the second electrode 12. The carbon material can be any conductive material, and examples thereof include fullerenes, carbon nanotubes, graphite, and graphene.

從提高基於電洞傳輸層之電子阻擋性,並且容易收集在元件中產生之電洞的原因考慮,第2電極12的功函數為4.6eV以上為較佳,4.8~5.7eV為更佳,4.9~5.3eV為進一步較佳。In order to improve the electron blocking property of the hole transport layer and to facilitate the collection of holes generated in the device, the work function of the second electrode 12 is preferably 4.6 eV or higher, more preferably 4.8 to 5.7 eV, and even more preferably 4.9 to 5.3 eV.

第2電極12的膜厚並無特別限定,0.01~100μm為較佳,0.01~10μm為更佳,0.01~1μm為進一步較佳。The thickness of the second electrode 12 is not particularly limited, but is preferably 0.01 to 100 μm, more preferably 0.01 to 10 μm, and even more preferably 0.01 to 1 μm.

(電荷提取層) 雖未圖示,光檢測元件可以在第2電極12與電洞傳輸層22之間具有電荷提取層。藉由具有電荷提取層,可以以低施加電壓獲得高外部量子效率。(Charge Extraction Layer)Although not shown, the photodetector element may include a charge extraction layer between the second electrode 12 and the hole transport layer 22. The presence of a charge extraction layer enables high external quantum efficiency to be achieved at a low applied voltage.

作為形成電荷提取層之材料,可舉出金屬氧化物及有機半導體等,金屬氧化物為較佳。作為金屬氧化物,可舉出氧化鉬、氧化鈦、氧化釩、氧化鉻、氧化鈷、氧化鎳、氧化銅、氧化鋯、氧化鉬、氧化銀、氧化鉭及氧化鎢,氧化鉬為較佳。作為有機半導體,可舉出聚噻吩化合物等。作為聚噻吩化合物的具體例,可舉出上述之原材料。電荷提取層可以為單層膜,亦可以為2層以上的積層膜。Materials for forming the charge extraction layer include metal oxides and organic semiconductors, with metal oxides being preferred. Examples of metal oxides include molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, cobalt oxide, nickel oxide, copper oxide, zirconium oxide, molybdenum oxide, silver oxide, tungsten oxide, and tungsten oxide, with molybdenum oxide being preferred. Examples of organic semiconductors include polythiophene compounds. Specific examples of polythiophene compounds include the aforementioned raw materials. The charge extraction layer may be a single layer or a laminated film of two or more layers.

電荷提取層的膜厚為1~100nm為較佳。下限為5nm以上為較佳。上限為50nm以下為較佳。The charge extraction layer preferably has a thickness of 1 to 100 nm, with a lower limit of 5 nm or greater and an upper limit of 50 nm or less.

(阻擋層) 雖未圖示,但光檢測元件亦可以在第1電極11與電子傳輸層21之間具有阻擋層。阻擋層為具有防止反向電流之功能之層。阻擋層亦稱為防短路層。關於形成阻擋層之材料,例如,可舉出氧化矽、氧化鎂、氧化鋁、碳酸鈣、碳酸銫、聚乙烯醇、聚胺酯、氧化鈦、氧化錫、氧化鋅、氧化鈮及氧化鎢等。阻擋層可以為單層膜,亦可以為2層以上的積層膜。阻擋層的膜厚為5~100nm為較佳。下限為10nm以上為較佳。上限為50nm以下為較佳,30nm以下為更佳。(Blocking Layer)Although not shown, the photodetection element may also include a blocking layer between the first electrode 11 and the electron transport layer 21. The blocking layer prevents reverse current flow and is also called an anti-short-circuiting layer. Examples of materials for forming the blocking layer include silicon oxide, magnesium oxide, aluminum oxide, calcium carbonate, cesium carbonate, polyvinyl alcohol, polyurethane, titanium oxide, tin oxide, zinc oxide, niobium oxide, and tungsten oxide. The blocking layer can be a single layer or a laminated film of two or more layers. The preferred thickness of the blocking layer is 5 to 100 nm, with a lower limit of 10 nm or greater being preferred. The upper limit is preferably below 50nm, and below 30nm is even better.

在光檢測元件中,藉由光檢測元件檢測之目標光的波長λ與從第2電極12的光電轉換層13側的表面至光電轉換層13的第1電極11側的表面為止的上述波長λ的光的光程(Optical path length)Lλ滿足下述式(1-1)的關係為較佳,滿足下述式(1-2)的關係為更佳。在波長λ與光程Lλ滿足這種關係之情況下,在光電轉換層13中,能夠使從第1電極11側入射之光(入射光)與被第2電極12的表面反射之光(反射光)的相位一致,其結果,藉由光學干涉效應強化了光,從而能夠獲得更高的外部量子效率。In a photodetection element, the wavelength λ of the target light detected by the photodetection element and the optical path length Lλ of the light of wavelengthλ from the surface of the second electrode 12 on the photoelectric conversion layer 13 side to the surface of the photoelectric conversion layer 13 on the first electrode 11 side preferably satisfy the relationship of the following equation (1-1), and more preferably, the relationship of the following equation (1-2). When the wavelength λ and the optical path length satisfy this relationship, the phases of light incident from the first electrode 11 side (incident light) and light reflected from the surface of the second electrode 12 (reflected light) can be aligned in the photoelectric conversion layer 13. As a result, the light is intensified by the optical interference effect, thereby achieving higher external quantum efficiency.

0.05+m/2Lλ0.35+m/2   ……(1-1) 0.10+m/2Lλ0.30+m/2   ……(1-2)0.05+m/2 Lλ 0.35+m/2……(1-1) 0.10+m/2 Lλ 0.30+m/2……(1-2)

上述式中,λ為藉由光檢測元件檢測之目標光的波長, Lλ為從第2電極12的光電轉換層13側的表面至光電轉換層13的第1電極11側的表面為止的波長λ的光的光程, m為0以上的整數。In the above formula, λ is the wavelength of the target light detected by the photodetector, is the optical path length of light of wavelength λ from the surface of the second electrode 12 on the photoelectric conversion layer 13 side to the surface of the photoelectric conversion layer 13 on the first electrode 11 side, and m is an integer greater than or equal to 0.

m為0~4的整數為較佳,0~3的整數為更佳,0~2的整數為進一步較佳。依據該態樣,電洞或電子等電荷的傳輸特性良好,從而能夠進一步提高光檢測元件的外部量子效率。m is preferably an integer from 0 to 4, more preferably an integer from 0 to 3, and even more preferably an integer from 0 to 2. This aspect improves the transport characteristics of charges such as holes and electrons, thereby further improving the external quantum efficiency of the photodetection element.

其中,光程係指,將光透過之物質的物理厚度乘以折射率而得到的值。若舉例光電轉換層13來進行說明,在將光電轉換層的厚度設為d1並且將光電轉換層相對於波長λ1的光之折射率設為N1時,透過光電轉換層13之波長λ1的光的光程為N1×d1。在光電轉換層13和電洞傳輸層22由2層以上的積層膜構成之情況下或在電洞傳輸層22與第2電極12之間存在中間層之情況下,各層的光程的累積值為上述光程LλThe optical path length is the value obtained by multiplying the physical thickness of the material through which light passes by its refractive index. For example, if the thickness of the photoelectric conversion layer 13 isd1 and its refractive index relative to light of wavelengthλ1 isN1 , the optical path length of light of wavelengthλ1 passing through the photoelectric conversion layer 13 isN1 ×d1 . If the photoelectric conversion layer 13 and the hole transport layer 22 are composed of two or more laminated films, or if an intermediate layer is present between the hole transport layer 22 and the second electrode 12, the cumulative optical path length of each layer is the optical path length .

<影像感測器> 本發明的影像感測器之製造方法包括上述之本發明的半導體膜之製造方法。具體而言,使用上述之本發明的半導體膜之製造方法來形成影像感測器的光電轉換層為較佳。<Image Sensor>The image sensor manufacturing method of the present invention includes the aforementioned method for manufacturing a semiconductor film of the present invention. Specifically, the aforementioned method for manufacturing a semiconductor film of the present invention is preferably used to form the photoelectric conversion layer of the image sensor.

藉由本發明而獲得之半導體膜對紅外區域的波長的光具有優異之靈敏度,因此將該半導體膜用於光電轉換層之影像感測器能夠特佳地用作紅外線感測器。又,上述影像感測器能夠較佳地用作感測波長為900~2000nm的光者,能夠更佳地用作感測波長為900~1600nm的光者。The semiconductor film obtained by the present invention has excellent sensitivity to light with wavelengths in the infrared region. Therefore, an image sensor using this semiconductor film in its photoelectric conversion layer can be particularly well-suited for use as an infrared sensor. Furthermore, the image sensor is particularly well-suited for sensing light with wavelengths between 900 and 2000 nm, and even more preferably for sensing light with wavelengths between 900 and 1600 nm.

作為影像感測器的結構,只要為具備光檢測元件,並且作為影像感測器而發揮功能之結構,則並無特別限定。作為光檢測元件,可舉出上述者。The structure of the image sensor is not particularly limited as long as it has a light detection element and functions as an image sensor. Examples of light detection elements include those listed above.

影像感測器可以包含紅外線通過濾光層。作為紅外線通過濾光層,可見光區域的波長帶的光的透過性低者為較佳,在波長為400~650nm的範圍內的光的平均透過率為10%以下為更佳,7.5%以下為進一步較佳,5%以下為特佳。The image sensor may include an infrared transmission filter. The infrared transmission filter preferably has low transmittance for light in the visible wavelength range, and preferably has an average transmittance of 10% or less for light in the wavelength range of 400 to 650 nm, more preferably 7.5% or less, and particularly preferably 5% or less.

作為紅外線通過濾光層,可舉出由包含色材之樹脂膜構成者等。作為色材,可舉出紅色色材、綠色色材、藍色色材、黃色色材、紫色色材、橙色色材等彩色色材及黑色色材。紅外線通過濾光層中所包含之色材為由2種以上的彩色色材的組合來形成黑色,或者包含黑色色材者為較佳。作為在由2種以上的彩色色材的組合形成黑色時的彩色色材的組合,例如,可舉出以下的(C1)~(C7)的態樣。 (C1)含有紅色色材及藍色色材之態樣。 (C2)含有紅色色材、藍色色材及黃色色材之態樣。 (C3)含有紅色色材、藍色色材、黃色色材及紫色色材之態樣。 (C4)含有紅色色材、藍色色材、黃色色材、紫色色材及綠色色材之態樣。 (C5)含有紅色色材、藍色色材、黃色色材及綠色色材之態樣。 (C6)含有紅色色材、藍色色材及綠色色材之態樣。 (C7)含有黃色色材及紫色色材之態樣。Examples of the infrared transmission filter layer include those formed from a resin film containing a colorant. Examples of the colorant include red, green, blue, yellow, violet, orange, and other chromatic colorants, as well as a black colorant. The colorants contained in the infrared transmission filter layer are preferably a combination of two or more chromatic colorants that form black, or a combination of two or more chromatic colorants that form black. Examples of combinations of chromatic colorants used to form black include the following (C1) to (C7).(C1) An embodiment containing a red colorant and a blue colorant.(C2) An embodiment containing a red colorant, a blue colorant, and a yellow colorant. (C3) An embodiment containing a red color material, a blue color material, a yellow color material, and a purple color material.(C4) An embodiment containing a red color material, a blue color material, a yellow color material, a purple color material, and a green color material.(C5) An embodiment containing a red color material, a blue color material, a yellow color material, and a green color material.(C6) An embodiment containing a red color material, a blue color material, and a green color material.(C7) An embodiment containing a yellow color material and a purple color material.

上述彩色色材可以為顏料,亦可以為染料。亦可以包含顏料及染料。黑色色材為有機黑色色材為較佳。例如,作為有機黑色色材,可舉出雙苯并呋喃酮化合物、偶氮次甲基化合物、苝化合物及偶氮化合物等。The color material may be a pigment or a dye. It may also contain both a pigment and a dye. The black color material is preferably an organic black color material. Examples of organic black color materials include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds.

紅外線通過濾光層可以進一步含有紅外線吸收劑。藉由在紅外線通過濾光層中含有紅外線吸收劑,能夠使透過之光的波長更向長波長側位移。作為紅外線吸收劑,可舉出吡咯并吡咯化合物、花青化合物、方酸菁化合物、酞菁化合物、萘酞菁化合物、夸特銳烯化合物、部花青化合物、克酮鎓化合物、氧雜菁化合物、亞銨化合物、二硫醇化合物、三芳基甲烷化合物、吡咯亞甲基化合物、偶氮次甲基化合物、蒽醌化合物、二苯并呋喃酮化合物、二硫烯金屬錯合物、金屬氧化物及金屬硼化物等。The infrared transmission filter layer may further contain an infrared absorber. By including an infrared absorber in the infrared transmission filter layer, the wavelength of the transmitted light can be shifted further toward the longer wavelength side. Examples of infrared absorbers include pyrrolopyrrole compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quartetylene compounds, merocyanine compounds, crotonium compounds, oxocyanine compounds, ammonium compounds, dithiol compounds, triarylmethane compounds, pyrromethene compounds, azomethine compounds, anthraquinone compounds, dibenzofuranone compounds, dithiol metal complexes, metal oxides, and metal borides.

關於紅外線通過濾光層的分光特性,能夠根據影像感測器的用途而適當選擇。例如,可舉出滿足以下的(1)~(5)中的任一個分光特性之濾光層等。 (1):膜的厚度方向上的光的透過率在波長為400~750nm的範圍內的最大值為20%以下(較佳為15%以下,更佳為10%以下)並且膜的厚度方向上的光的透過率在波長為900~1500nm的範圍內的最小值為70%以上(較佳為75%以上、更佳為80%以上)之濾光層。 (2):膜的厚度方向上的光的透過率在波長為400~830nm的範圍內的最大值為20%以下(較佳為15%以下,更佳為10%以下)並且膜的厚度方向上的光的透過率在波長為1000~1500nm的範圍內的最小值為70%以上(較佳為75%以上、更佳為80%以上)之濾光層。 (3):膜的厚度方向上的光的透過率在波長為400~950nm的範圍內的最大值為20%以下(較佳為15%以下,更佳為10%以下)並且膜的厚度方向上的光的透過率在波長為1100~1500nm的範圍內的最小值為70%以上(較佳為75%以上、更佳為80%以上)之濾光層。 (4):膜的厚度方向上的光的透過率在波長為400~1100nm的範圍內的最大值為20%以下(較佳為15%以下,更佳為10%以下)並且在波長為1400~1500nm的範圍內的最小值為70%以上(較佳為75%以上、更佳為80%以上)之濾光層。 (5):膜的厚度方向上的光的透過率在波長為400~1300nm的範圍內的最大值為20%以下(較佳為15%以下,更佳為10%以下)並且在波長為1600~2000nm的範圍內的最小值為70%以上(較佳為75%以上、更佳為80%以上)之濾光層。 又,作為紅外線通過濾鏡(IR Pass Filter),能夠使用在日本特開2013-077009號公報、日本特開2014-130173號公報、日本特開2014-130338號公報、國際公開第2015/166779號、國際公開第2016/178346號、國際公開第2016/190162號、國際公開第2018/016232號、日本特開2016-177079號公報、日本特開2014-130332號公報及國際公開第2016/027798號中記載之膜。紅外線通過濾鏡可以組合使用2個以上的濾光片,亦可以使用具有1個濾光片並且使特定的2個以上的波長區域透過之雙帶通濾光片(Dual Band Pass Filter)。The spectral characteristics of the infrared ray transmission filter can be appropriately selected according to the application of the image sensor. For example, a filter that satisfies any of the following spectral characteristics (1) to (5) can be cited. (1): A filter whose maximum transmittance of light in the thickness direction of the film within the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less) and whose minimum transmittance of light in the thickness direction of the film within the wavelength range of 900 to 1500 nm is 70% or more (preferably 75% or more, more preferably 80% or more). (2): A filter layer having a maximum transmittance of light in the thickness direction of the film of 20% or less (preferably 15% or less, more preferably 10% or less) in the wavelength range of 400 to 830 nm and a minimum transmittance of light in the thickness direction of the film of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 1000 to 1500 nm.(3): A filter layer having a maximum transmittance of light in the thickness direction of the film of 20% or less (preferably 15% or less, more preferably 10% or less) in the wavelength range of 400 to 950 nm and a minimum transmittance of light in the thickness direction of the film of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 1100 to 1500 nm. (4): A filter layer having a maximum transmittance of light in the thickness direction of the film of 20% or less (preferably 15% or less, more preferably 10% or less) in the wavelength range of 400 to 1100 nm and a minimum transmittance of light in the wavelength range of 1400 to 1500 nm of 70% or more (preferably 75% or more, more preferably 80% or more).(5): A filter layer having a maximum transmittance of light in the thickness direction of the film of 20% or less (preferably 15% or less, more preferably 10% or less) in the wavelength range of 400 to 1300 nm and a minimum transmittance of light in the wavelength range of 1600 to 2000 nm of 70% or more (preferably 75% or more, more preferably 80% or more). Furthermore, as the infrared pass filter, films described in Japanese Patent Application Publication No. 2013-077009, Japanese Patent Application Publication No. 2014-130173, Japanese Patent Application Publication No. 2014-130338, International Publication No. 2015/166779, International Publication No. 2016/178346, International Publication No. 2016/190162, International Publication No. 2018/016232, Japanese Patent Application Publication No. 2016-177079, Japanese Patent Application Publication No. 2014-130332, and International Publication No. 2016/027798 can be used. Infrared pass filters can be made by combining two or more filters, or by using a single filter that transmits two or more specific wavelength regions.

以提高減少雜訊等各種性能為目的,影像感測器可以包含紅外線截止濾光片。作為紅外線截止濾光片的具體例,例如,可舉出國際公開第2016/186050號、國際公開第2016/035695號、日本專利第6248945號公報、國際公開第2019/021767號、日本特開2017-067963號公報、日本專利第6506529號公報中所記載之濾光片等。To improve various performance features such as noise reduction, image sensors may include infrared cutoff filters. Specific examples of infrared cutoff filters include those described in International Publication Nos. 2016/186050, 2016/035695, Japanese Patent No. 6248945, 2019/021767, Japanese Patent Application Publication No. 2017-067963, and Japanese Patent No. 6506529.

影像感測器可以包含介電體多層膜。作為介電體多層膜,可舉出將高折射率的介電體薄膜(高折射率材料層)及低折射率的介電體薄膜(低折射率材料層)交替積層複數層而成者。介電體多層膜中的介電體薄膜的積層數並無特別限定,但2~100層為較佳,4~60層為更佳,6~40層為進一步較佳。作為在高折射率材料層的形成中所使用之材料,折射率為1.7~2.5的材料為較佳。作為具體例,可舉出Sb2O3、Sb2S3、Bi2O3、CeO2、CeF3、HfO2、La2O3、Nd2O3、Pr6O11、Sc2O3、SiO、Ta2O5、TiO2、TlCl、Y2O3、ZnSe、ZnS、ZrO2等。作為在低折射率材料層的形成中所使用之材料,折射率為1.2~1.6的材料為較佳。作為具體例,可舉出Al2O3、BiF3、CaF2、LaF3、PbCl2、PbF2、LiF、MgF2、MgO、NdF3、SiO2、Si2O3、NaF、ThO2、ThF4、Na3AlF6等。作為介電體多層膜之形成方法,並無特別限制,例如,可舉出離子鍍及離子束等真空蒸鍍法、濺射等物理氣相沉積法(PVD法)、化學氣相沉積法(CVD法)等。在欲截止之光的波長為λ(nm)時,高折射率材料層及低折射率材料層各層的厚度為0.1λ~0.5λ的厚度為較佳。作為介電體多層膜的具體例,例如,能夠使用在日本特開2014-130344號公報及日本特開2018-010296號公報中記載之膜。Image sensors may include a dielectric multilayer film. Examples of dielectric multilayer films include those formed by alternating multiple layers of dielectric thin films with a high refractive index (high refractive index material layer) and dielectric thin films with a low refractive index (low refractive index material layer). The number of dielectric thin film layers in the dielectric multilayer film is not particularly limited, but is preferably 2 to 100 layers, more preferably 4 to 60 layers, and even more preferably 6 to 40 layers. The material used to form the high refractive index material layer preferably has a refractive index of 1.7 to 2.5. Specific examples includeSb2O3 ,Sb2S3 ,Bi2O3 ,CeO2 ,CeF3, HfO2,La2O3,Nd2O3 ,Pr6O11, Sc2O3, SiO, Ta2O5, TiO2, TlCl, Y2O3,ZnSe,ZnS,andZrO2.Materials used to form the low-refractive- index material layer preferably have arefractive index of 1.2 to1.6 . Specific examples includeAl₂O₃ ,BiF₃ ,CaF₂ ,LaF₃ ,PbCl₂ ,PbF₂ , LiF,MgF₂ ,MgO ,NdF₃ , SiO₂,Si₂O₃ , NaF,ThO₂ ,ThF₄ , andNa₃AlF₆ . The method for forming the dielectric multilayer film is not particularly limited, and examples include vacuum evaporation methods such as ion plating andion beam deposition, physical vapor deposition (PVD) methods such as sputtering, and chemical vapor deposition (CVD). When the wavelength of light to be cut isλ( nm), the thickness of each of the high-refractive-index material layer and the low-refractive-index material layer is preferably between 0.1λ and 0.5λ. As specific examples of the dielectric multilayer film, for example, films described in Japanese Patent Application Publication No. 2014-130344 and Japanese Patent Application Publication No. 2018-010296 can be used.

介電體多層膜在紅外區域(較佳為波長超過700nm的波長區域,更佳為波長超過800nm的波長區域,進一步較佳為波長超過900nm的波長區域)存在透過波長帶為較佳。透過波長帶中的最大透過率為70%以上為較佳,80%以上為更佳,90%以上為進一步較佳。又,遮光波長帶中的最大透過率為20%以下為較佳,10%以下為更佳,5%以下為進一步較佳。又,透過波長帶中的平均透過率為60%以上為較佳,70%以上為更佳,80%以上為進一步較佳。又,關於透過波長帶的波長範圍,在將表示最大透過率之波長設為中心波長λt1之情況下,中心波長λt1±100nm為較佳,中心波長λt1±75nm為更佳,中心波長λt1±50nm為進一步較佳。The dielectric multilayer film preferably has a transmission wavelength band in the infrared region (preferably a wavelength band exceeding 700 nm, more preferably a wavelength band exceeding 800 nm, and even more preferably a wavelength band exceeding 900 nm). The maximum transmittance in the transmission wavelength band is preferably 70% or greater, more preferably 80% or greater, and even more preferably 90% or greater. Furthermore, the maximum transmittance in the light-blocking wavelength band is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less. Furthermore, the average transmittance in the transmission wavelength band is preferably 60% or greater, more preferably 70% or greater, and even more preferably 80% or greater. In addition, regarding the wavelength range of the transmission wavelength band, when the wavelength representing the maximum transmittance is set to the center wavelength λt1 , the center wavelength λt1 ± 100nm is better, the center wavelength λt1 ± 75nm is better, and the center wavelength λt1 ± 50nm is even better.

介電體多層膜可以僅具有1個透過波長帶(較佳為最大透過率為90%以上的透過波長帶),亦可以具有複數個透過波長帶。The dielectric multilayer film may have only one transmission wavelength band (preferably a transmission wavelength band with a maximum transmittance of 90% or more) or may have multiple transmission wavelength bands.

影像感測器可以包含分色濾光層。作為分色濾光層,可舉出包含著色像素之濾光層。作為著色像素的種類,可舉出紅色像素、綠色像素、藍色像素、黃色像素、青色像素及洋紅色像素等。分色濾光層可以包含2種顏色以上的著色像素,亦可以僅為1種顏色。能夠根據用途或目的而適當選擇。例如,能夠使用在國際公開第2019/039172號中記載之濾光片。The image sensor may include a color separation filter layer. Examples of the color separation filter layer include filters containing colored pixels. Examples of colored pixels include red pixels, green pixels, blue pixels, yellow pixels, cyan pixels, and magenta pixels. A color separation filter layer may include colored pixels of two or more colors, or may contain only one color. The color separation filter layer can be appropriately selected depending on the application or purpose. For example, the filter described in International Publication No. 2019/039172 can be used.

又,在分色層包含2種顏色以上的著色像素之情況下,各顏色的著色像素可以彼此相鄰,亦可以在各著色像素之間設置分隔壁。作為分隔壁的材質,並無特別限定。例如,可舉出矽氧烷樹脂及氟樹脂等有機材料或二氧化矽粒子等無機粒子。又,分隔壁可以由鎢及鋁等金屬構成。Furthermore, when the color separation layer includes two or more colored pixels, the colored pixels of each color may be adjacent to each other, or partitions may be provided between the colored pixels. The material of the partitions is not particularly limited. Examples include organic materials such as silicone resins and fluororesins, or inorganic particles such as silica particles. Furthermore, the partitions may be made of metals such as tungsten and aluminum.

再者,在影像感測器包含紅外線通過濾光層及分色層之情況下,分色層設置在與紅外線通過濾光層不同的光學路徑上為較佳。又,將紅外線通過濾光層及分色層二維配置亦較佳。再者,將紅外線通過濾光層及分色層二維配置係指,兩者的至少一部分存在於同一平面上。Furthermore, if the image sensor includes an infrared transmission filter and a color separation layer, it is preferred that the color separation layer be positioned on a different optical path from the infrared transmission filter. Furthermore, it is also preferred that the infrared transmission filter and the color separation layer be arranged two-dimensionally. Furthermore, two-dimensionally arranging the infrared transmission filter and the color separation layer means that at least a portion of them reside on the same plane.

影像感測器可以包含平坦化層、基底層、黏合層等中間層、抗反射膜及透鏡。作為抗反射膜,例如,能夠使用由在國際公開第2019/017280號中記載之組成物製作之膜。作為透鏡,例如,能夠使用在國際公開第2018/092600號中記載之結構體。 [實施例]The image sensor may include a planarization layer, a base layer, an intermediate layer such as an adhesive layer, an antireflection film, and a lens. For example, the antireflection film may be made from the composition described in International Publication No. 2019/017280. For example, the lens may be made from the structure described in International Publication No. 2018/092600.[Examples]

以下,舉出實施例對本發明進行更具體的說明。以下的實施例所示之材料、使用量、比例、處理內容、處理步驟等只要不脫離本發明的宗旨,則能夠適當進行變更。從而,本發明的範圍並不限定於以下所示之具體例。The following examples provide a more detailed description of the present invention. The materials, amounts, ratios, processing details, and processing steps shown in the following examples may be modified as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

[氧化鋅粒子分散液之製造] 將1.5mmol的乙酸鋅二水合物及15mL的二甲基亞碸(DMSO)稱取到燒瓶中,並且進行攪拌而使其溶解,從而獲得了乙酸鋅溶液。 製作了將4mmol的四甲基氯化銨(TMACl)溶解於4mL的甲醇中而得之TMACl溶液及將4mmol的氫氧化鉀(KOH)溶解於4mL的甲醇中而得之KOH溶液。一邊劇烈攪拌TMACl溶液,一邊緩慢導入KOH溶液,並且攪拌30分鐘之後,通過0.45μm的過濾器以去除不溶成分,從而獲得了氫氧化四甲基銨(TMAH)溶液。 以6mL/分鐘的滴加速度將TMAH溶液6mL投入於加入到燒瓶中之乙酸鋅溶液中。在保持1小時之後,回收了反應液。在反應液中加入過量的丙酮,並且以10000rpm進行10分鐘的離心分離之後,去除上清液,並且將沉澱物分散於甲醇中。之後,用丙酮再次沉澱,加入5mL的乙醇、80μL的胺基乙醇,並且進行超音波分散,藉此獲得了非摻雜氧化鋅粒子的濃度為30mg/mL的氧化鋅粒子分散液。[Preparation of Zinc Oxide Particle Dispersion]1.5 mmol of zinc acetate dihydrate and 15 mL of dimethylsulfoxide (DMSO) were weighed into a flask and stirred to dissolve, yielding a zinc acetate solution.A TMACl solution was prepared by dissolving 4 mmol of tetramethylammonium chloride (TMACl) in 4 mL of methanol, and a KOH solution was prepared by dissolving 4 mmol of potassium hydroxide (KOH) in 4 mL of methanol. While vigorously stirring the TMACl solution, the KOH solution was slowly introduced. After stirring for 30 minutes, the solution was filtered through a 0.45 μm filter to remove insoluble components, yielding a tetramethylammonium hydroxide (TMAH) solution.6 mL of TMAH solution was added to the zinc acetate solution in the flask at a dropwise rate of 6 mL/min. After holding for 1 hour, the reaction solution was recovered. Excess acetone was added to the reaction solution, and the mixture was centrifuged at 10,000 rpm for 10 minutes. The supernatant was removed, and the precipitate was dispersed in methanol. The solution was then reprecipitated with acetone, and 5 mL of ethanol and 80 μL of aminoethanol were added, followed by ultrasonic dispersion. This yielded a zinc oxide particle dispersion with a concentration of 30 mg/mL of undoped zinc oxide particles.

[量子點分散液之製造] (量子點分散液1) 在手套箱中,將5mmol的氯化銦添加到50mL的油胺中,並且在60℃下進行加熱攪拌而使氯化銦溶解,從而製備了銦的前驅物溶液A。 在手套箱中,將5mmol的氯化銻添加到20mL的油胺中,並且在60℃下進行加熱攪拌而使氯化銻溶解,從而製備了銻的前驅物溶液B。 在手套箱中,藉由將三乙基硼氫化鋰的四氫呋喃(THF)溶液100mL(三乙基硼氫化鋰的濃度為1.0mol/L、Aldrich公司製)及二辛醚50mL進行混合,並且蒸餾除去THF,從而製備了作為三乙基硼氫化鋰的二辛醚溶液(三乙基硼氫化鋰的濃度約為2.0mol/L)之溶液C。 在手套箱中,將16.5mL的前驅物溶液A、3mL的前驅物溶液B及油胺13.5mL加入到三口燒瓶中,從而獲得了混合溶液。然後,從手套箱中取出三口燒瓶,重複進行抽真空及氮氣吹掃之後,將其轉移到氮氣流狀態下。在此,在上述混合溶液中注入2.9mL的溶液C之後,以3℃/分鐘的速度升溫至260℃,並且在液溫到達260℃之後維持15分鐘左右,然後冷卻了反應液。將三口燒瓶再次放入手套箱中,加入油酸6mL及甲苯90mL並且進行了攪拌。將該溶液以約8000rpm進行離心分離之後,去除了沉澱物。對上清液加入60mL的乙腈,並且再次以8000rpm進行了離心分離。在沉澱物中加入甲苯9mL,而獲得了作為InSb量子點的分散液之量子點分散液1。使用所獲得之量子點分散液1來製作量子點薄膜,依據從量子點薄膜的吸收測定中觀察到吸收的拐點(turning point)之波長估算之帶隙約為0.99eV。[Preparation of Quantum Dot Dispersion](Quantum Dot Dispersion 1)In a glove box, 5 mmol of indium chloride was added to 50 mL of oleylamine and heated and stirred at 60°C to dissolve the indium chloride, thereby preparing indium precursor solution A.In a glove box, 5 mmol of antimony chloride was added to 20 mL of oleylamine and heated and stirred at 60°C to dissolve the antimony chloride, thereby preparing antimony precursor solution B.In a glove box, 100 mL of a tetrahydrofuran (THF) solution of lithium triethylborohydride (lithium triethylborohydride concentration: 1.0 mol/L, manufactured by Aldrich) and 50 mL of dioctyl ether were mixed and the THF was distilled off to prepare Solution C, a solution of lithium triethylborohydride in dioctyl ether (lithium triethylborohydride concentration: approximately 2.0 mol/L).In the glove box, 16.5 mL of precursor solution A, 3 mL of precursor solution B, and 13.5 mL of oleylamine were added to a three-necked flask to obtain a mixed solution. The flask was then removed from the glove box, repeatedly evacuated and purged with nitrogen, and then placed under a nitrogen flow. After injecting 2.9 mL of Solution C into the mixed solution, the temperature was raised to 260°C at a rate of 3°C/minute. After reaching 260°C, the temperature was maintained for approximately 15 minutes, and the reaction solution was then cooled. The three-necked flask was returned to the glove box, and 6 mL of oleic acid and 90 mL of toluene were added and stirred. The solution was centrifuged at approximately 8000 rpm, and the precipitate was removed. 60 mL of acetonitrile was added to the supernatant, and the solution was centrifuged again at 8000 rpm. 9 mL of toluene was added to the precipitate, resulting in Quantum Dot Dispersion 1, a dispersion of InSb quantum dots. The quantum dot dispersion 1 obtained was used to prepare a quantum dot film. Based on the wavelength of the absorption turning point observed in the absorption measurement of the quantum dot film, the band gap was estimated to be approximately 0.99 eV.

(量子點分散液2) 在9ml的量子點分散液1中加入9ml的乙腈,並且進行離心分離之後,去除上清液,從而回收了沉澱物。在所回收之沉澱物中加入辛烷,從而獲得了濃度為9mg/ml的量子點分散液2a。 另外,在N,N-二甲基甲醯胺(DMF)5ml中加入3-巰基丙酸(MPA)0.38ml並且使其溶解,從而製造了MPA配位體交換液1。 將4ml的MPA配位體交換液1及4ml的量子點分散液2a加入到離心管中,並且用試管震盪器(vortex mixer)攪拌2分鐘之後,將其靜置,使其分離為辛烷相(上層)及DMF相(下層),去除上層的辛烷相之後,加入8ml的己烷,並且用試管震盪器攪拌了2分鐘。再次,去除上層的己烷相,加入8ml的己烷,並且用試管震盪器攪拌了2分鐘。去除上層的己烷相,加入3.2ml的甲苯及11.2ml的己烷,並且進行了離心分離。然後,去除上清液,將沉澱物真空乾燥15分鐘之後,將其再分散於DMF中,藉此獲得了在InSb量子點上配位有作為配位體的MPA之量子點分散液2(濃度為50mg/ml)。(Quantum Dot Dispersion 2)9 ml of acetonitrile was added to 9 ml of Quantum Dot Dispersion 1 and the mixture was centrifuged. The supernatant was removed to recover the precipitate. Octane was added to the recovered precipitate to obtain Quantum Dot Dispersion 2a with a concentration of 9 mg/ml.Separately, 0.38 ml of 3-methylpropionic acid (MPA) was dissolved in 5 ml of N,N-dimethylformamide (DMF) to prepare MPA ligand exchange solution 1. 4 ml of MPA ligand exchange solution 1 and 4 ml of quantum dot dispersion 2a were added to a centrifuge tube and stirred for 2 minutes using a vortex mixer. The mixture was then allowed to separate into an octane phase (upper layer) and a DMF phase (lower layer). The upper octane phase was removed, and 8 ml of hexane was added, followed by stirring for 2 minutes using a vortex mixer. The upper hexane phase was removed again, and 8 ml of hexane was added, followed by stirring for 2 minutes using a vortex mixer. The upper hexane phase was removed, and 3.2 ml of toluene and 11.2 ml of hexane were added, followed by centrifugation. The supernatant was then removed, and the precipitate was vacuum-dried for 15 minutes before being redispersed in DMF. This yielded quantum dot dispersion 2 (concentration: 50 mg/ml) in which MPA was coordinated to InSb quantum dots as a ligand.

(量子點分散液3) 在9ml的量子點分散液1中加入9ml的乙腈,並且進行離心分離之後,去除上清液,從而回收了沉澱物。在所回收之沉澱物中加入辛烷,從而獲得了濃度為9mg/ml的量子點分散液3a。 另外,在N,N-二甲基甲醯胺(DMF)20ml中溶解碘化銦(InI3)1g及乙酸銨0.09g,從而製造了InI3配位體交換液1。 將6ml的InI3配位體交換液1及4ml的量子點分散液3a加入到離心管中,並且用試管震盪器攪拌2分鐘之後,將其靜置,使其分離為辛烷相(上層)及DMF相(下層),去除上層的辛烷相之後,加入6ml的辛烷,並且用試管震盪器攪拌了2分鐘。再次,去除上層的辛烷相,加入6ml的辛烷,並且用試管震盪器攪拌了2分鐘。去除上層的辛烷相,加入12ml的甲苯,並且進行離心分離,去除上清液,將沉澱物真空乾燥15分鐘之後,將其再分散於DMF中,藉此獲得了在InSb量子點上配位有作為配位體的InI3之量子點分散液3(濃度為50mg/ml)。(Quantum Dot Dispersion 3) 9 ml of acetonitrile was added to 9 ml of Quantum Dot Dispersion 1, and the mixture was centrifuged. The supernatant was removed to recover the precipitate. Octane was added to the recovered precipitate to obtain Quantum Dot Dispersion 3a at a concentration of 9 mg/ml. Separately, 1 g of indium iodide (InI3) and 0.09 g of ammonium acetate were dissolved in 20 ml of N,N-dimethylformamide (DMF) to prepareInI3 ligand exchange solution 1. 6 ml of InI3 ligand exchange solution 1 and 4 ml of quantum dot dispersion 3a were added to a centrifuge tube and stirred for 2 minutes using a test tube shaker. The mixture was then allowed to stand to separate into an octane phase (upper layer) and a DMF phase (lower layer). The upper octane phase was removed, and 6 ml of octane was added, followed by stirring for 2 minutes using a test tube shaker. The upper octane phase was removed again, and 6 ml of octane was added, followed by stirring for 2 minutes using a test tube shaker. The upper octane phase was removed, 12 ml of toluene was added, and centrifugation was performed. The supernatant was removed, and the precipitate was vacuum dried for 15 minutes and then redispersed in DMF to obtain quantum dot dispersion 3 (concentration: 50 mg/ml), in which InI3 was coordinated as a ligand on the InSb quantum dots.

(量子點分散液r1) 在甲醯胺中溶解硫化鈉(Na2S),而製造了濃度為15mg/ml的Na2S配位體交換液1。 將4ml的量子點分散液1及2.8ml的Na2S配位體交換液1加入到離心管中,並且用試管震盪器攪拌5分鐘之後,將其靜置,使其分離為甲苯相(上層)及甲醯胺相(下層),去除上層的甲苯相之後,加入4ml的甲苯,並且用試管震盪器攪拌了1分鐘。再次,去除上層的甲苯相之後,加入4ml的甲苯,並且用試管震盪器攪拌了1分鐘。去除上層的甲苯相之後,加入4ml的乙腈,並且進行離心分離,去除上清液,將沉澱物在1天內進行真空乾燥之後,將其再分散於DMF中,藉此獲得了在InSb量子點上配位有作為配位體的Na2S之量子點分散液r1(濃度為40mg/ml)。(Quantum Dot Dispersion r1) Sodium sulfide (Na₂S ) was dissolved in formamide to prepareNa₂S ligand exchange solution 1 at a concentration of 15 mg/ml. 4 ml of Quantum Dot Dispersion 1 and 2.8 ml ofNa₂S ligand exchange solution 1 were added to a centrifuge tube and stirred for 5 minutes using a test tube shaker. The mixture was then allowed to stand to separate into a toluene phase (upper layer) and a formamide phase (lower layer). The upper toluene phase was removed, and 4 ml of toluene was added. The mixture was stirred for 1 minute using a test tube shaker. The upper toluene phase was removed again, and 4 ml of toluene was added. The mixture was stirred for 1 minute using a test tube shaker. After removing the upper toluene phase, 4 ml of acetonitrile was added and centrifuged. The supernatant was removed, and the precipitate was vacuum-dried within 1 day before being redispersed in DMF. This yielded quantum dot dispersion r1 (concentration: 40 mg/ml), in which Na2 S was coordinated as a ligand on InSb quantum dots.

[光檢測元件之製造] 藉由濺射法在石英玻璃上製成了厚度約為100nm的ITO(Indium Tin Oxide(氧化銦錫))膜(第1電極)。[Photodetector Fabrication]A 100nm-thick ITO (Indium Tin Oxide) film (first electrode) was deposited on quartz glass using a sputtering method.

接著,將1g的乙酸鋅二水合物及284μL的乙醇胺溶解於10mL的甲氧基乙醇中而得之溶液以3000rpm旋塗於第1電極上。之後,在200℃下加熱30分鐘而製成了厚度約為40nm的氧化鋅膜(電子傳輸層)。Next, a solution of 1g of zinc acetate dihydrate and 284μL of ethanolamine dissolved in 10mL of methoxyethanol was spin-coated on the first electrode at 3000rpm. The solution was then heated at 200°C for 30 minutes, forming a zinc oxide film (electron transport layer) approximately 40nm thick.

接著,將上述之氧化鋅粒子分散液滴加到上述電子傳輸層上之後,重複2次以2500rpm進行旋塗,並且在70℃下加熱30分鐘之步驟,從而獲得了膜厚約為160nm的氧化鋅粒子膜。在形成氧化鋅粒子膜之後,使用Jelight Company,Inc.製造的UVO-CLEANER MODEL144AX-100,在30mW/cm2(波長峰值254nm)的條件下,進行了5分鐘的紫外線臭氧處理。Next, the zinc oxide particle dispersion was dropwise added to the electron transport layer. Spin coating at 2500 rpm and heating at 70°C for 30 minutes were repeated twice, resulting in a zinc oxide particle film approximately 160 nm thick. Following formation, the film was treated with UV ozone for 5 minutes using a UVO-CLEANER MODEL 144AX-100 manufactured by Jelight Company, Inc. at 30 mW/cm² (peak wavelength 254 nm).

接著,按照以下所示之方法在氧化鋅積層上以100nm的厚度製成InSb量子點集合體膜(半導體膜),從而形成了光電轉換層。Next, a 100nm-thick InSb quantum dot aggregate film (semiconductor film) was deposited on the zinc oxide layer using the following method, forming a photoelectric conversion layer.

接著,以2000rpm在光電轉換層上旋塗聚(3-己基噻吩-2,5-二基)(P3HT)的甲苯溶液(濃度為10mg/ml),從而形成了電洞傳輸層。Next, a toluene solution of poly(3-hexylthiophene-2,5-diyl) (P3HT) (concentration: 10 mg/ml) was spin-coated on the photoconversion layer at 2000 rpm to form a hole transport layer.

接著,藉由隔著金屬遮罩的真空蒸鍍法在上述電洞傳輸層上製成厚度為10nm的MoO3膜之後,製成厚度為100nm的Au膜(第2電極)而形成3個元件部,從而製造了光二極體型的光檢測元件。Next, a 10nm-thickMoO₃ film was deposited on the hole-transporting layer by vacuum evaporation through a metal mask, followed by a 100nm-thick Au film (second electrode) to form the three element sections, thereby manufacturing a photodiode-type light detection element.

(實施例1的光檢測元件中的光電轉換層之形成方法) 將量子點分散液2滴加到氧化鋅積層上,並且以2500rpm進行旋塗,從而形成了InSb量子點集合體膜(步驟1)。 接著,在該InSb量子點集合體膜上滴加在甲醇20mL中加入碘化銦0.1g並且使其溶解而製備之InI3配位體交換液2之後,將其靜置20秒鐘,並且以2500rpm旋轉乾燥了10秒鐘(步驟2)。 接著,將乙腈作為沖洗液而滴加到InSb量子點集合體膜上,並且以2500rpm旋轉乾燥了20秒鐘(步驟3)。 接著,使用加熱板在120℃下加熱了1分鐘(步驟4)。 再次重複進行步驟1~4,並且以100nm的厚度製成在InSb量子點上配位有InI3及MPA之InSb量子點集合體膜(半導體膜),從而形成了光電轉換層。(Method for Forming a Photoelectric Conversion Layer in a Photodetection Element in Example 1) Quantum dot dispersion 2 was added dropwise onto the zinc oxide layer and spin-coated at 2500 rpm to form an InSb quantum dot aggregate film (Step 1). Next,InI₃ ligand exchange solution 2, prepared by dissolving 0.1 g of indium iodide in 20 mL of methanol, was added dropwise onto the InSb quantum dot aggregate film. The solution was then allowed to stand for 20 seconds and spin-dried at 2500 rpm for 10 seconds (Step 2). Acetonitrile was then added dropwise to the InSb quantum dot aggregate film as a rinse solution and spin-dried at 2500 rpm for 20 seconds (Step 3). The film was then heated at 120°C for 1 minute on a hot plate (Step 4). Repeat steps 1 to 4 again to form an InSb quantum dot aggregate film (semiconductor film) with a thickness of 100 nm, in which InI3 and MPA are coordinated on the InSb quantum dots, thereby forming a photoelectric conversion layer.

(實施例2的光檢測元件中的光電轉換層之形成方法) 在實施例1中,使用在甲醇50mL中溶解甲基碘化胺(MAI)0.16g而製備之MAI配位體交換液來代替InI3配位體交換液2,除此以外,以與實施例1相同的方法,以100nm的厚度形成了在InSb量子點上配位有MAI及MPA之InSb量子點集合體膜(半導體膜)。(Method for forming a photoelectric conversion layer in a light detection element of Example 2) In Example 1, an MAI ligand exchange solution prepared by dissolving 0.16 g of methylammonium iodide (MAI) in 50 mL of methanol was used instead of the InI3 ligand exchange solution 2. Otherwise, an InSb quantum dot aggregate film (semiconductor film) in which MAI and MPA were coordinated on InSb quantum dots was formed with a thickness of 100 nm by the same method as in Example 1.

(實施例3的光檢測元件中的光電轉換層之形成方法) 在實施例1中,使用量子點分散液3來代替量子點分散液2,並且使用在甲醇50ml中混合MPA20μL而得之MPA配位體交換液來代替InI3配位體交換液2,除此以外,以與實施例1相同的方法,以100nm的厚度形成了在InSb量子點上配位有InI3及MPA之InSb量子點集合體膜(半導體膜)。(Method for forming a photoelectric conversion layer in a light detection element of Example 3) In Example 1, quantum dot dispersion 3 was used instead of quantum dot dispersion 2, and MPA ligand exchange liquid obtained by mixing 20 μL of MPA in 50 ml of methanol was used instead of InI3 ligand exchange liquid 2. In addition, an InSb quantum dot aggregate film (semiconductor film) in which InI3 and MPA were coordinated on InSb quantum dots was formed with a thickness of 100 nm by the same method as in Example 1.

(比較例1的光檢測元件中的光電轉換層之形成方法) 將量子點分散液r1滴加到氧化鋅積層上,並且以2500rpm進行旋塗,從而形成了InSb量子點集合體膜(步驟1)。 接著,在該InSb量子點集合體膜上滴加在甲醇中加入疊氮化鈉(NaN3)並且使其溶解而製備之5mM的NaN3配位體交換液之後,將其靜置10秒鐘,並且以2500rpm旋轉乾燥了10秒鐘(步驟2)。 接著,進行3次將甲醇作為沖洗液滴加到InSb量子點集合體膜上,並且以2500rpm旋轉乾燥了20秒鐘的操作(步驟3)。 接著,使用加熱板在120℃下加熱了1分鐘(步驟4)。 再次重複進行步驟1~4,並且以100nm的厚度製成在InSb量子點上配位有Na2S及NaN3之InSb量子點集合體膜(半導體膜),從而形成了光電轉換層。(Method for Forming a Photoelectric Conversion Layer in a Photodetection Element in Comparative Example 1) Quantum dot dispersion r1 was dropwise added to the zinc oxide layer and spin-coated at 2500 rpm to form an InSb quantum dot aggregate film (Step 1). Next, a 5 mMNaN₃ ligand exchange solution, prepared by dissolving sodium nitride (NaN₃ ) in methanol, was dropwise added to the InSb quantum dot aggregate film. The film was then allowed to stand for 10 seconds and spin-dried at 2500 rpm for 10 seconds (Step 2). Methanol was then added to the InSb quantum dot aggregate film three times as a rinse solution and spin-dried at 2500 rpm for 20 seconds (Step 3). Next, the film was heated on a hot plate at 120°C for 1 minute (Step 4). Steps 1 to 4 were repeated to form a 100nm thick InSb quantum dot aggregate film (semiconductor film) in whichNa₂S andNaN₃ were coordinated on the InSb quantum dots, forming a photoelectric conversion layer.

[光檢測元件的性能評價] 關於所製作之光檢測元件,藉由使用半導體參數分析儀(C4156、Agilent公司製)進行了半導體膜的暗電流及外部量子效率(EQE)的評價。 首先,在不照射光的狀態下,一邊從0V至-2V掃描電壓,一邊測定電流-電壓特性(I-V特性),並且進行了暗電流的評價。其中,將-2V下的電流值設為暗電流的值。接著,在照射了1400nm的單色光(照射量50μW/cm2)之狀態下,一邊從0V至-2V掃描電壓,一邊測定了I-V特性。將從施加了-2V之狀態下的電流值中減去上述暗電流值而得到的值設為光電流值,並且依據該值算出外部量子效率(EQE)。再者,在下述表中記載之外部量子效率(EQE)及暗電流的欄中記載之數值為上述3個元件部中的中央的1個元件的值。 又,關於外部量子效率(EQE)的面內均勻性,分別測定3個元件部的外部量子效率,算出將外部量子效率最高者的值與最低者的值之差除以具有中央值的性能之元件的外部量子效率而得到的值作為ΔEQE,並且依據ΔEQE對外部量子效率的面內均勻性進行了評價。ΔEQE的值愈小,表示面內均勻性愈優異。 ΔEQE(%)=(外部量子效率最高者的值-外部量子效率最低者的值)/外部量子效率的中央值×100[Photodetection Element Performance Evaluation] The dark current and external quantum efficiency (EQE) of the fabricated photodetection element were evaluated using a semiconductor parameter analyzer (C4156, manufactured by Agilent). First, the current-voltage characteristics (IV characteristics) were measured while the voltage was swept from 0V to -2V in the absence of light, and the dark current was evaluated. The current value at -2V was used as the dark current value. Next, the IV characteristics were measured while the voltage was swept from 0V to -2V under 1400nm monochromatic light (irradiation dose 50μW/cm² ). The value obtained by subtracting the above-mentioned dark current value from the current value in the state of applying -2V is set as the photocurrent value, and the external quantum efficiency (EQE) is calculated based on this value. In addition, the values recorded in the columns of external quantum efficiency (EQE) and dark current in the table below are the values of the central element among the above-mentioned three element parts. In addition, regarding the in-plane uniformity of the external quantum efficiency (EQE), the external quantum efficiency of the three element parts is measured separately, and the value obtained by dividing the difference between the value of the highest external quantum efficiency and the value of the lowest external quantum efficiency by the external quantum efficiency of the element with the performance of the central value is calculated as ΔEQE, and the in-plane uniformity of the external quantum efficiency is evaluated based on ΔEQE. The smaller the value of ΔEQE, the better the in-plane uniformity. ΔEQE (%) = (value of the highest external quantum efficiency - value of the lowest external quantum efficiency) / central value of external quantum efficiency × 100

[表1]EQE(%)暗電流(A/cm2ΔEQE實施例17.52.3×10-68.3實施例26.84.1×10-69.7實施例37.32.4×10-610.3比較例1<0.18.5×10-5143.7[Table 1] EQE (%) Dark current (A/cm2 ) ΔEQE Example 1 7.52.3 ×10-6 8.3 Example 2 6.8 4.1×10-6 9.7 Example 3 7.32.4 ×10-6 10.3 Comparative example 1 <0.1 8.5×10-5 143.7

如上述表所示,與比較例的光檢測元件相比,實施例的光檢測元件的外部量子效率(EQE)高,並且外部量子效率(EQE)的面內均勻性優異。此外,暗電流亦低。As shown in the table above, the photodetection element of the embodiment exhibits higher external quantum efficiency (EQE) and superior in-plane uniformity compared to the photodetection element of the comparative example. Furthermore, the dark current is lower.

使用上述實施例中所獲得之光檢測元件,並且藉由公知的方法與按照國際公開第2016/186050號及國際公開第2016/190162號中記載之方法所製作之光學濾光片一起製作影像感測器,藉此能夠獲得具有良好的可見性能-紅外成像性能之影像感測器。An image sensor is fabricated using the light detection element obtained in the above-described embodiment using a known method together with an optical filter fabricated according to the methods described in International Publication Nos. 2016/186050 and 2016/190162. This produces an image sensor with excellent visible and infrared imaging performance.

1:光檢測元件 11:第1電極 12:第2電極 13:光電轉換層 21:電子傳輸層 22:電洞傳輸層1: Photodetector11: First electrode12: Second electrode13: Photoelectric conversion layer21: Electron transport layer22: Hole transport layer

圖1係表示光檢測元件的一實施形態之圖。FIG1 is a diagram showing an embodiment of a light detection element.

1:光檢測元件1: Light detection element

11:第1電極11: First electrode

12:第2電極12: Second electrode

13:光電轉換層13: Photoelectric conversion layer

21:電子傳輸層21: Electron transmission layer

22:電洞傳輸層22: Hole transport layer

Claims (7)

Translated fromChinese
一種半導體膜之製造方法,前述半導體膜包括包含In元素及第15族元素之半導體量子點的集合體及與前述半導體量子點配位之配位體,前述半導體膜之製造方法包括: 將包括包含In元素及第15族元素之半導體量子點、第1配位體及溶劑之分散液塗布於基材上而形成半導體量子點的集合體的膜之步驟;及 對前述半導體量子點的集合體的膜賦予包含第2配位體及溶劑之配位體溶液,而使前述第2配位體與前述半導體量子點配位之步驟, 前述第1配位體及前述第2配位體中的任一者為具有硫醇基之配位體,另一者為包含鹵素元素之配位體。A method for producing a semiconductor film comprising an aggregate of semiconductor quantum dots containing In and a Group 15 element and a ligand coordinated with the semiconductor quantum dots, the method comprising:coating a dispersion of semiconductor quantum dots containing In and a Group 15 element, a first ligand, and a solvent onto a substrate to form a film of the aggregate of semiconductor quantum dots; andapplying a ligand solution containing a second ligand and a solvent to the film of the aggregate of semiconductor quantum dots to coordinate the second ligand with the semiconductor quantum dots.either the first ligand or the second ligand is a ligand having a thiol group, and the other is a ligand containing a halogen element.如請求項1所述之半導體膜之製造方法,其中 前述第1配位體為具有硫醇基之配位體,前述第2配位體為包含鹵素元素之配位體。The method for manufacturing a semiconductor film as described in claim 1, wherein:the first ligand is a ligand having a thiol group, and the second ligand is a ligand containing a halogen element.如請求項1或請求項2所述之半導體膜之製造方法,其中 前述包含鹵素元素之配位體為包含碘元素之配位體。The method for manufacturing a semiconductor film as described in claim 1 or claim 2, wherein the ligand containing a halogen element is a ligand containing an iodine element.如請求項1或請求項2所述之半導體膜之製造方法,其中 前述包含鹵素元素之配位體包含In元素。The method for manufacturing a semiconductor film as described in claim 1 or claim 2, wherein the ligand containing a halogen element contains an In element.如請求項1或請求項2所述之半導體膜之製造方法,其中 前述半導體量子點所包含之前述第15族元素包含Sb元素。The method for manufacturing a semiconductor film as described in claim 1 or claim 2, wherein the Group 15 element contained in the semiconductor quantum dot includes Sb.一種光檢測元件之製造方法,其包括請求項1至請求項5之任一項所述之半導體膜之製造方法。A method for manufacturing a light detection element, comprising the method for manufacturing a semiconductor film as described in any one of claims 1 to 5.一種影像感測器之製造方法,其包括請求項1至請求項5之任一項所述之半導體膜之製造方法。A method for manufacturing an image sensor, comprising the method for manufacturing a semiconductor film as described in any one of claims 1 to 5.
TW113131939A2023-08-302024-08-26 Semiconductor film manufacturing method, light detection element manufacturing method and image sensor manufacturing methodTW202529587A (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
JP20231394792023-08-30
JP2023-1394792023-08-30

Publications (1)

Publication NumberPublication Date
TW202529587Atrue TW202529587A (en)2025-07-16

Family

ID=94819306

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW113131939ATW202529587A (en)2023-08-302024-08-26 Semiconductor film manufacturing method, light detection element manufacturing method and image sensor manufacturing method

Country Status (2)

CountryLink
TW (1)TW202529587A (en)
WO (1)WO2025047468A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR102712138B1 (en)*2018-06-142024-09-27삼성전자주식회사Quantum dots and production method thereof
CN112018270B (en)*2019-05-312021-09-10Tcl科技集团股份有限公司Preparation method of quantum dot film and preparation method of quantum dot light-emitting diode
JPWO2021002106A1 (en)*2019-07-012021-01-07
EP4167301A4 (en)*2020-06-122023-11-29FUJIFILM Corporation SEMICONDUCTOR FILM, METHOD FOR PRODUCING A SEMICONDUCTOR FILM, LIGHT DETECTION ELEMENT AND IMAGE SENSOR
JP2022111068A (en)*2021-01-182022-07-29キヤノン株式会社 Photoelectric conversion element

Also Published As

Publication numberPublication date
WO2025047468A1 (en)2025-03-06

Similar Documents

PublicationPublication DateTitle
JP7495496B2 (en) Semiconductor film, method for manufacturing semiconductor film, photodetector, and image sensor
US20230040906A1 (en)Photoelectric conversion film, dispersion liquid, photodetector element, and image sensor
US20240409810A1 (en)Semiconductor film, photodetection element, image sensor, and manufacturing method for semiconductor quantum dot
US20240409811A1 (en)Semiconductor film, photodetection element, image sensor, dispersion liquid, and manufacturing method for semiconductor film
TW202529587A (en) Semiconductor film manufacturing method, light detection element manufacturing method and image sensor manufacturing method
TW202529586A (en) Semiconductor film, light detection element and image sensor
TW202436590A (en) Semiconductor film, light detection element, image sensor, dispersion liquid and method for manufacturing semiconductor film
TW202515414A (en) Semiconductor film, light detection element and image sensor
TW202519633A (en) Method for manufacturing quantum dots
WO2024219263A1 (en)Light detecting element, method for manufacturing light detecting element, and image sensor
TW202434700A (en) PbS quantum dot dispersion, semiconductor film manufacturing method, light detection element manufacturing method, image sensor manufacturing method and PbS quantum dot dispersion manufacturing method
TW202432792A (en) Dispersion liquid, photoelectric conversion film, method for manufacturing photoelectric conversion film, light detection element and image sensor
TW202527754A (en) Semiconductor quantum dots, dispersion, semiconductor film, light detection element, image sensor, and method for producing semiconductor quantum dots
TW202504076A (en) Light detection components and image sensors
TW202303998A (en)Photodetection element and image sensor
TW202503019A (en) Dispersion liquid, method for producing quantum dot film, method for producing light detection element, method for producing image sensor
WO2024219264A1 (en)Photodetection element, method for manufacturing photodetection element, and image sensor
TW202216583A (en) Photodetector and image sensor
TW202312476A (en) Light detection element and image sensor
WO2023085180A1 (en)Semiconductor film, method for manufacturing semiconductor film, light detection element, and image sensor
WO2025187529A1 (en)Dispersion liquid, method for manufacturing photoelectric conversion film, method for manufacturing photodetector, and method for manufacturing image sensor
WO2025183083A1 (en)Photodetection element and image sensor
KR20250112839A (en) Method for manufacturing a photodetector and method for manufacturing an image sensor
CN115066757A (en)Semiconductor film, photodetector, image sensor, and method for manufacturing semiconductor film

[8]ページ先頭

©2009-2025 Movatter.jp