本發明各實施例涉及微探針(microprobes)(例如,用於積體電路的晶圓級測試(wafer level testing)或插座測試(socket testing),或用於與PCB或其他電子元件進行電氣連接),更具體地係涉及針狀微探針(pin-like microprobes)(即,垂直或縱向高度大於其寬度的微探針(例如, 在一些實施例中大5倍(greater by a factor of 5),在其他實施例中大10倍,在另一些實施例中大20倍)或鈕扣狀探針(button-like),其中各彈簧元件在無偏置狀態(unbiased state)下具有平面構型。在一些具體實施例中,微探針至少部分地通過電化學製造方法(electrochemical fabrication methods),而更具體地說是藉由多層、多材料的電化學製造方法生產的,且其中,在一些實施例中,多個探針在陣列形態中保持時被使用,包括一個或多個具有通孔的板,這些通孔結合著探針的特徵以及/或其他陣列固定結構(array retention structure)。Various embodiments of the present invention are directed to microprobes (e.g., for wafer level testing or socket testing of integrated circuits, or for making electrical connections to PCBs or other electronic components), and more specifically to pin-like microprobes (i.e., microprobes whose vertical or longitudinal height is greater than their width (e.g., greater by a factor of 5 in some embodiments, 10 times greater in other embodiments, and 20 times greater in other embodiments) or button-like probes, wherein each spring element has a planar configuration in an unbiased state. In some specific embodiments, the microprobe is at least partially fabricated by electrochemical fabrication methods. methods, and more particularly, are produced by multi-layer, multi-material electrochemical fabrication methods, and wherein, in some embodiments, a plurality of probes are used while being retained in an array configuration, including one or more plates having through holes incorporating features of the probes and/or other array retention structures.
各探針Each probe
許多電接觸探針和引腳(pin)構型已被商業使用或提出,其中一些可能符合現有技術的條件,而另一些則不符合現有技術的條件。 電化學製造Many electrical contact probes and pin configurations have been used or proposed commercially, some of which may qualify as existing technology and others of which may not.Electrochemical Fabrication
加利福尼亞州凡尼斯市(Van Nuys City)的Microfabrica Inc. 公司(前身為MEMGen Corporation 公司)已經或正在以EFAB和MICA FREEFORM®的進程名稱(process names)作為商業進行(commercially pursued),用於從多個粘附層(adhered layer)形成三維結構的電化學製造技術。Microfabrica Inc. (formerly MEMGen Corporation) of Van Nuys City, California, has or is commercially pursuing electrochemical fabrication techniques for forming three-dimensional structures from multiple adhered layers under the process names EFAB and MICA FREEFORM® .
電化學製造提供了以合理的成本和合理的時間形成微型物體、零件、結構、設備等的原型和商業數量的能力。事實上,電化學製造是形成許多迄今為止不可能生產的結構的推動者。電化學製造為許多工業領域的新設計和產品開闢了範圍(spectrum)。儘管電化學製造提供了這種新的能力,並且據瞭解,電化學製造技術可以與各個領域內已知的設計和結構相結合以產生新結構,但電化學製造的某些用途提供了設計、結構、能力以及/或特徵,就現有技術水準而言係未知或不明顯。Electrochemical fabrication provides the ability to form prototypes and commercial quantities of micro-objects, parts, structures, devices, etc., at reasonable cost and in reasonable time. In fact, electrochemical fabrication is the enabler for the formation of many structures that have heretofore been impossible to produce. Electrochemical fabrication opens up a spectrum of new designs and products in many industrial fields. Despite the new capabilities provided by electrochemical fabrication, and the understanding that electrochemical fabrication techniques can be combined with known designs and structures in various fields to produce new structures, certain uses of electrochemical fabrication provide designs, structures, capabilities, and/or features that are unknown or not obvious with respect to the state of the art.
各個領域都需要微型裝置,這些裝置具有改進的特性、縮短的製造時間、降低的製造成本、簡化的製造程序、更大的裝置設計多功能性(versatility)、改進的材料選擇、改進的材料特性、更具成本效益和更低的風險生產此類裝置,以及/或幾何構型和所選製造程序之間的更大獨立性。Various fields require micro-devices having improved properties, reduced manufacturing time, reduced manufacturing cost, simplified manufacturing procedures, greater versatility in device design, improved material selection, improved material properties, more cost-effective and lower risk production of such devices, and/or greater independence between the geometry and the selected manufacturing procedures.
本發明的一些實施例的目的是提供改進的探針,其包括由多個順應模組(compliant modules)形成的各順應元件(compliant elements),這些模組包括平面但非線性(即,非直線)彈簧構型(即,彈簧構型不是沒有彎曲或角度的直桿(straight bars),而是在提供彎曲或曲線的至少一層的平面內具有一些二維構型), 當無偏置時,各彈簧的平面垂直於各探針的縱軸,並沿著各探針的縱軸提供順應性,其中各順應模組以串行方式(serial manner)堆疊。具有非線性彈簧構型的各探針可在偏置(biasing)時提供線性彈簧回位力或非線性回位力。Some embodiments of the present invention are directed to providing improved probes comprising compliant elements formed of a plurality of compliant modules, the modules comprising planar but nonlinear (i.e., non-straight) spring configurations (i.e., the spring configurations are not straight bars without bends or angles, but rather have some two-dimensional configuration within a plane that provides at least one layer of bend or curve), wherein when unbiased, the plane of each spring is perpendicular to the longitudinal axis of each probe and provides compliance along the longitudinal axis of each probe, wherein each compliant module is stacked in a serial manner. Each probe having a nonlinear spring configuration can provide a linear spring return force or a nonlinear return force when biased.
本發明一些實施例的目的是提供改進的探針,這些探針包括由一個或多個順應模組形成的各順應元件,這些模組包括平面但非線性(即,非直線)彈簧構型,當無偏置時,其中彈簧平面的法線不垂直於各探針的縱軸,並且彈簧從未偏轉彈簧的平面偏轉提供大部分順應性沿各探針的縱軸。在某些情況下,探針彈簧可以在形成探針的各層的平面或各平面上橫向延伸(即,彈簧的平面垂直於形成探針的各層的堆疊方向),而探針軸(從尖端延伸到尖端)可不垂直於彈簧各彈簧的各平面(例如, 由於探針相對兩端之間的故意橫向偏移)。在某些變化形式中,探針軸線可以基本垂直於彈簧的一個或多個平面,其中“實質性”是指小於20°、小於10°、小於5°、小於2°或小於1°的角度不匹配(angular mismatch),除非另有特別說明,否則應解釋為其中最寬的。Some embodiments of the present invention are directed to providing improved probes that include compliant elements formed from one or more compliant modules that include a planar but nonlinear (i.e., non-straight) spring configuration in which, when unbiased, the normal to the plane of the springs is not perpendicular to the longitudinal axis of the probes, and the springs are deflected from the plane of the undeflected springs to provide a majority of the compliance along the longitudinal axis of the probes. In some cases, the probe springs may extend transversely in the plane or planes of the layers forming the probe (i.e., the plane of the springs is perpendicular to the stacking direction of the layers forming the probe), while the probe axis (extending from tip to tip) may not be perpendicular to the planes of the springs (e.g., due to an intentional lateral offset between opposite ends of the probe). In certain variations, the probe axis may be substantially perpendicular to one or more planes of the spring, where "substantial" means an angular mismatch of less than 20°, less than 10°, less than 5°, less than 2°, or less than 1°, whichever is greater, unless otherwise specifically noted.
本發明一些實施例的目的在於使用各單個順應模組作為具有單個接觸尖端的各探針。Some embodiments of the present invention are directed to using individual compliant modules as probes having a single contact tip.
本發明一些實施例的目的在於使用各單個順應模組作為具有兩個相對朝向的接觸尖端的各探針。Some embodiments of the present invention are directed to using individual compliant modules as probes having two oppositely oriented contact tips.
本發明的一些實施例的目的在於提供兩個或多個具有反向方向的順應模組,以提供具有兩個相反方向的接觸面或尖端的探針。Some embodiments of the present invention are directed to providing two or more compliant modules with opposite orientations to provide a probe having two oppositely oriented contact surfaces or tips.
本發明的一些實施例的目的在於為探頭及/或順應模組提供基本特徵,用於接合陣列結構或用於接合其它順應模組的尖端。Some embodiments of the present invention are directed to providing basic features for probes and/or compliant modules for bonding to array structures or for bonding to the tips of other compliant modules.
本發明的一些實施例的目的在於提供探針以及/或順應模組,該模組具有尖端特徵,用於接合其他順應模組的尖端或基礎結構。Some embodiments of the present invention are directed to providing probes and/or compliant modules having tip features for engaging the tips or base structures of other compliant modules.
本發明的一些實施例的目的在於提供具有各通孔的陣列結構,這些通孔被構型為可接受插入的探針或順應模組,用於藉由限制基於至少一個方向的插入範圍來保持探針或順應模組,而至少部分地基於陣列結構的至少一個特徵。Some embodiments of the present invention are directed to providing array structures having through holes configured to receive an inserted probe or compliant module for retaining the probe or compliant module by limiting the insertion range based on at least one direction, based at least in part on at least one characteristic of the array structure.
本發明的一些實施例的目的在於為探針或順應模組提供用於在陣列結構中嚙合通孔的特徵,使得探針或順應模組藉由限制來自至少一個方向的插入範圍來保持,至少部分地基於探針或順應模組的一個或多個特徵。Some embodiments of the present invention are directed to providing a probe or compliant module with features for engaging a via in an array structure such that the probe or compliant module is retained by limiting the range of insertion from at least one direction based at least in part on one or more features of the probe or compliant module.
本發明的一些實施例的目的在於提供由順應模組形成的探針,這些模組包括多個彈簧元件,其中彈簧元件支撐著探針臂,而探針臂支撐著探針之尖端,其中至少兩個探針之尖端指向相反方向,這些探針之尖端被構型為接觸不同的電子元件,例如被測設備DUT和測試電路的介面元件,例如一空間變壓器(space transformer),一 中介片(interposer)或一與其相連的PCB。Some embodiments of the present invention are directed to providing probes formed of compliant modules, which modules include multiple spring elements, wherein the spring elements support probe arms, and the probe arms support the tips of the probes, wherein the tips of at least two of the probes point in opposite directions, and the tips of the probes are configured to contact different electronic components, such as a device under test (DUT) and an interface element of a test circuit, such as a space transformer, an interposer, or a PCB connected thereto.
本發明的各種實施例的其它目的和優點將在審視本文的教導時對本技術領域人員來說是顯而易見的。 本發明的各種實施例,在此明確闡述或以其他方式從本文的教導中確定,可單獨或組合式地解決上述一個或多個目的,或者可以替代地解決從本文的教導中確定的某個其他目標,而不一定解決上述的任何特定目的。因此,並不打算藉由本發明實施例的任何單個方面解決上述所有目的、或上述大部分目的、即使在某些實施例方面亦可能是這種情況。Other objects and advantages of various embodiments of the present invention will be apparent to those skilled in the art upon reviewing the teachings herein. Various embodiments of the present invention, expressly set forth herein or otherwise determined from the teachings herein, may address one or more of the above objects, either singly or in combination, or may alternatively address certain other objects determined from the teachings herein, without necessarily addressing any of the specific objects described above. Therefore, it is not intended that all of the above objects, or most of the above objects, be addressed by any single aspect of the embodiments of the present invention, even though this may be the case in certain embodiments.
根據本發明,一用於在兩個電子電路元件之間進行接觸的探針,包括至少一順應結構(compliant structure),該順應結構包括:至少一支座,其具有縱向分離的一第一端和一第二端;至少一第一順應元件在基本上垂直於其平面構型的方向上提供順應性,其中,該第一順應元件的一第一部分在功能上連接該至少一支座結構的各第一支座,並且該第一順應元件的一第二部分在功能上連接一第一尖端臂,該第一尖端臂可相對於該至少一支座結構的各第一支座彈性移動,其中,當該第一順應元件不被偏置時,該第一尖端臂直接或間接地固持一第一探針尖端,而該第一探針尖端縱向延伸超過該至少一支座結構的各第一支座的第一端;至少一第二順應元件在基本上垂直於其平面構型的方向上提供順應性,其中,該第二順應元件的一第一部分在功能上連接該至少一支座結構的各第二支座,並且該第二順應元件的一第二部分在功能上連接一第二尖端臂,該第二尖端臂可相對於該至少一支座結構的各第二支座彈性移動, 其中,當該第二順應元件不被偏置時,所述第二尖端臂直接或間接地固持一第二探針尖端,該第二探針尖端縱向延伸至該至少一支座結構的各第二支座的第二端之外,以及一支撐著各第二支座的環形基座,且該環形基座連接到分隔該第一和第二順應元件的各第一支座的各第一中間部分,其中,該第一順應元件包括多個N個橫向分離的各第一平面懸臂元件,係從各第一支座上至少兩個橫向分離的縱向共面位置(longitudinally co-planar locations)開始,而終止於該第一尖端臂,其直接或間接連接該橫向分離的各第一平面懸臂結構,且其中,該第二順應元件包括多個N個橫向分離的第二平面懸臂元件,係從第二支座上的至少兩個橫向分離的縱向共面位置開始,而終止於直接或間接連接橫向分離的第二平面懸臂單元的第二尖端臂,第一和第二順應單元中的每一個從相對的第一和第二支座各對開始向內路徑,以作為厚的縱向連續共面各對橫向交錯的螺旋懸臂,並在第一和第二尖端臂處結束其向內進展,以作為多個縱向分離的平面彈簧懸臂元件。According to the present invention, a probe for making contact between two electronic circuit components includes at least one compliant structure, the compliant structure including: at least one support having a first end and a second end separated longitudinally; at least one first compliant element providing compliance in a direction substantially perpendicular to its planar configuration, wherein a first portion of the first compliant element is functionally connected to each first support of the at least one support structure, and a second portion of the first compliant element is functionally connected to a first tip arm, the first tip arm can be elastically moved relative to each first support of the at least one support structure, wherein when the first compliant element is not biased When the probe tip is disposed in a position, the first tip arm directly or indirectly holds a first probe tip, and the first probe tip extends longitudinally beyond the first end of each first support of the at least one support structure; at least one second compliant element provides compliance in a direction substantially perpendicular to its planar configuration, wherein a first portion of the second compliant element is functionally connected to each second support of the at least one support structure, and a second portion of the second compliant element is functionally connected to a second tip arm, and the second tip arm can be elastically moved relative to each second support of the at least one support structure, wherein when the second compliant element is not biased, the second tip arm directly or indirectly holds a second probe tip, the second probe tip extending longitudinally beyond the second end of each second support of the at least one support structure, and an annular base supporting each second support, and the annular base is connected to each first middle portion of each first support separating the first and second compliant elements, wherein the first compliant element includes a plurality of N laterally separated first planar cantilever elements, which are longitudinally coplanar positions (longitudinally co-planar positions) separated from each first support. locations) and terminates at the first tip arm, which is directly or indirectly connected to the laterally separated first planar suspension structures, and wherein the second compliant element includes a plurality of N laterally separated second planar suspension elements, starting from at least two laterally separated longitudinally coplanar locations on the second support and terminating at the second tip arm directly or indirectly connected to the laterally separated second planar suspension unit, each of the first and second compliant units starting from each pair of opposite first and second supports and traversing inwardly as thick longitudinally continuous coplanar pairs of laterally staggered spiral suspensions, and ending its inward progression at the first and second tip arms to serve as a plurality of longitudinally separated planar spring suspension elements.
本發明存在許多變體,包括,例如:(1)該第一順應元件的第一部分可位於比第二順應元件的第一部分更靠近至少一支座結構的各第一支座的第一端,並且該第二順應元件的第一部分,可比該第一順應元件的第一部分更位於靠近該至少一支座結構的各第二支座的第二端;(2)該第二順應元件的各第二平面懸臂元件可以是具有二維基本平面構型(two-dimensional substantially planar configuration)的彈簧,當不偏置時,該彈簧基本上平行於該第一順應元件的第一平面懸臂元件的平面構型; (3)該第一和第二順應元件的第一和第二平面懸臂元件中的至少一個可以具有選自以下組的構型:(i)一向內旋轉的圓形螺旋,(ii)一向內旋轉的矩形螺旋,(iii)一向內旋轉的六角形螺旋,(iv)一向內旋轉的八角形螺旋,(v)一從第一個探針尖端向第二個探針尖端觀察時觀察到的向內旋轉的逆時針螺旋, 以及(vi)從第一個探針尖端向第二個探針尖端觀察時觀察到的一向內旋轉的順時針螺旋;(4)該第一和第二順應元件的第一和第二平面懸臂元件中的至少一個可具有一旋轉範圍,該範圍選自由以下部分組成的組:(i) 至少 180°,(ii) 至少 360°,(iii) 至少 540°,以及 (iv) 至少 720°;(5)連接該第一探針尖端的該第一順應元件的第一平面懸臂元件可以是相對於連接第二探針尖端的第一順應元件的第二平面懸臂元件具有相反或反向旋轉方向的各螺旋彈簧,也可以是各螺旋彈簧;(6)該環形基座可不縱向居於第一和第二順應元件間之中央;(7)該環形基座可至少部分地位於該第二順應元件周圍; (8)該環形基座可位於該第二順應元件的兩個最向上的第二平面懸臂元件之間;(9)該環形基座可圍繞並橫向延伸到與第一支座的各第一中間部分相鄰的各第二支座的第二中間部分之外;(10)該環形基座可以橫向延伸到該第一順應元件或該第二順應元件之外;(11)N 可從至少由2、3、4、5、6、7和8組成或大於8的組中選擇; (12)可從以下組中選擇若干橫向分離的各第一平面懸臂元件和若干橫向分離的第二平面懸臂元件:(i)相同數量;(ii)橫向分離的各第一平面懸臂元件的數量大於橫向分離的第二平面懸臂元件的數量;(iii)橫向分離的第一平面懸臂元件的數量低於橫向分離的第二平面懸臂元件的數量;以及(13)該環形基座為剛性環形基座。There are many variations of the present invention, including, for example: (1) the first portion of the first compliant element may be located closer to the first end of each first support of the at least one support structure than the first portion of the second compliant element, and the first portion of the second compliant element may be located closer to the second end of each second support of the at least one support structure than the first portion of the first compliant element; (2) each second planar cantilever element of the second compliant element may be a spring having a two-dimensional substantially planar configuration, and when unbiased, the spring is substantially parallel to the planar configuration of the first planar cantilever element of the first compliant element; (3) at least one of the first and second planar cantilever elements of the first and second compliant elements may have a configuration selected from the group consisting of: (i) an inwardly rotating circular spiral, (ii) an inwardly rotating rectangular spiral, (iii) an inwardly rotating hexagonal spiral, (iv) an inwardly rotating octagonal spiral, (v) an inwardly rotating counterclockwise spiral observed from the first probe tip to the second probe tip, and (vi) an inwardly rotating clockwise spiral observed from the first probe tip to the second probe tip; (4) at least one of the first and second planar cantilever elements of the first and second compliant elements may have a rotation range selected from the group consisting of: (i) at least 180°, (ii) at least 360°, (iii) at least 540°, and (iv) at least 720°; (5) the first planar cantilever element of the first compliant element connected to the first probe tip may be coil springs having opposite or reverse rotational directions relative to the second planar cantilever element of the first compliant element connected to the second probe tip, or may be coil springs; (6) the annular base may not be longitudinally centered between the first and second compliant elements; (7) the annular base may be at least partially located around the second compliant element; (8) the annular base may be located between the two most upward second planar cantilever elements of the second compliant element; (9) the annular base may surround and extend laterally beyond the second middle portion of each second support adjacent to each first middle portion of the first support; (10) the annular base may extend laterally beyond the first compliant element or the second compliant element; (11) N may be selected from the group consisting of at least 2, 3, 4, 5, 6, 7 and 8 or greater than 8; (12) The plurality of laterally separated first plane cantilever elements and the plurality of laterally separated second plane cantilever elements can be selected from the following groups: (i) the same number; (ii) the number of laterally separated first plane cantilever elements is greater than the number of laterally separated second plane cantilever elements; (iii) the number of laterally separated first plane cantilever elements is less than the number of laterally separated second plane cantilever elements; and (13) the annular base is a rigid annular base.
本發明的其它方面將由本領域技術人員在審閱本文的教導後理解。本發明的其他方面可能涉及上述方面的組合,而本發明的這些其他方面可以提供上述方面的各種組合,以及提供其他構型、結構、功能關係和程序,這些構型、結構、功能關係和程序沒有在以上具體闡述,但由本文中提出的其他具體教導或整個說明書的教導所教導。Other aspects of the present invention will be understood by those skilled in the art after reviewing the teachings of this article. Other aspects of the present invention may involve combinations of the above aspects, and these other aspects of the present invention may provide various combinations of the above aspects, as well as provide other configurations, structures, functional relationships and procedures, which are not specifically described above, but are taught by other specific teachings set forth herein or the teachings of the entire specification.
電化學製造概述Electrochemical Manufacturing Overview
圖1A-1I顯示多層、多材料電化學製造程序範例中各種狀態的側視圖。圖1A-1G顯示一多層製造程序中一單層形成的各個階段,其中一第二金屬係被沉積在一第一金屬上以及該第一金屬的各開口中,使得該第一和第二金屬形成該層的一部分。在圖1A中,顯示了具有一表面88的一基板82的側視圖,其上置有如圖1B所示的可圖案化的光刻膠(patternable photoresist )84。在圖1C中,顯示了由光刻膠的固化(curing)、曝光(exposing)和顯影(developing)產生的光刻膠圖案。光刻膠84的圖案化導致開口或孔徑92(a)-92(c)從光刻膠的表面86延伸經由光刻膠的厚度到基板82的表面88。在圖1D中,一金屬94(例如,鎳)被顯示為已電鍍到各開口92(a)-92(c)中。在圖1E中,光刻膠已經從該基板上被除去(即,化學或以其他方式剝離)以曝露該基板82的各區域,其未被該第一金屬94覆蓋。在圖1F中,一第二金屬96(例如,銀)被顯示已經被覆蓋在該基板82的整個曝露部分(其為導電性)以及該第一金屬94(其也是導電性)上。圖1G描繪了結構的完整的第一層,該結構是由該第一和第二金屬的平面化產生的,其高度曝露了該第一金屬並且為該第一層設定了厚度。在圖1H中,多次重複圖1B-1G中所顯示的程序步驟以形成多層結構的結果顯示了其中每層由兩種材料組成。對於大多數應用,如圖1I所示,除去其中一種材料,以產生所需的3-D結構98(例如,組件或裝置)或多個這樣的結構。Figures 1A-1I show side views of various states in an example of a multi-layer, multi-material electrochemical manufacturing process. Figures 1A-1G show various stages of a single layer formation in a multi-layer manufacturing process, wherein a second metal is deposited on a first metal and in each opening of the first metal so that the first and second metals form part of the layer. In Figure 1A, a side view of a substrate 82 having a surface 88 is shown, on which a patternable photoresist 84 as shown in Figure 1B is disposed. In Figure 1C, a photoresist pattern resulting from curing, exposing and developing the photoresist is shown. Patterning of the photoresist 84 results in openings or apertures 92(a)-92(c) extending from the surface 86 of the photoresist through the thickness of the photoresist to the surface 88 of the substrate 82. In FIG. 1D, a metal 94 (e.g., nickel) is shown as having been electroplated into each of the openings 92(a)-92(c). In FIG. 1E, the photoresist has been removed (i.e., chemically or otherwise stripped) from the substrate to expose areas of the substrate 82 that are not covered by the first metal 94. In FIG. 1F, a second metal 96 (e.g., silver) is shown as having been covered over the entire exposed portion of the substrate 82 (which is conductive) as well as the first metal 94 (which is also conductive). FIG. 1G depicts the complete first layer of a structure resulting from planarization of the first and second metals, which highly exposes the first metal and sets the thickness for the first layer. In FIG. 1H , the result of repeating the process steps shown in FIG. 1B-1G multiple times to form a multi-layer structure is shown where each layer is composed of two materials. For most applications, one of the materials is removed as shown in FIG. 1I to produce the desired 3-D structure 98 (e.g., a component or device) or multiple such structures.
本發明各個方面的各種實施例皆屬從材料中形成三維(three-dimensional)結構,其中部分或全部可為電沉積(electrodeposited)或化學沉積(electroless deposited)的(如圖1A-1I的範例所示)。這些結構中的一些可由一種或多種沉積材料形成的單個構建層(single build level)形成,而另一些則由多個構建層形成,每個構建層至少包括兩種材料(例如,兩層或更多層,較佳者為五層或更多層,而更佳者為十層或更多層)。在一些實施例中,層厚可小至一微米或大至五十微米。在其他實施例中,可以使用較薄的層,而在其它實施例中,可以使用較厚的層。在一些實施例中,微尺度(microscale)結構具有以0.1-10微米級精度定位的橫向特徵,最小特徵尺寸在微米至幾十微米的量級。在其他實施例中,可以形成具有較不精確特徵配置(placement)以及/或較大的最小特徵(larger minimum features)的結構。在又另一個實施例中,更高的精度和更小的最小特徵尺寸(smaller minimum feature sizes)或是可取的。在本申請案中,中尺度(meso-scale)和毫米尺度具有相同的含義,且指的是可以具有一個或多個尺寸的裝置,這些尺寸可以擴展到0.5-50毫米範圍或更大,並且特徵定位在微米至100微米範圍內,且最小特徵尺寸在幾十微米至數百微米量級的精度。Various embodiments of various aspects of the invention pertain to forming three-dimensional structures from materials, some or all of which may be electrodeposited or electroless deposited (as shown in the examples of FIGS. 1A-1I ). Some of these structures may be formed from a single build level of one or more deposited materials, while others may be formed from multiple build levels, each build level including at least two materials (e.g., two or more layers, preferably five or more layers, and more preferably ten or more layers). In some embodiments, the layer thickness may be as small as one micron or as large as fifty microns. In other embodiments, thinner layers may be used, while in other embodiments, thicker layers may be used. In some embodiments, microscale structures have lateral features positioned with an accuracy of 0.1-10 microns, with a minimum feature size on the order of microns to tens of microns. In other embodiments, structures with less precise feature placement and/or larger minimum features may be formed. In yet another embodiment, higher accuracy and smaller minimum feature sizes may be desirable. In this application, meso-scale and millimeter scale have the same meaning and refer to devices that may have one or more dimensions that may extend to the range of 0.5-50 mm or larger, and have features positioned in the range of microns to 100 microns, with a minimum feature size on the order of tens to hundreds of microns.
本案所揭露的各種實施例、替代方案、和技術,可形成各多層結構,該等結構係在所有層上使用單一圖案化技術,或在不同層上使用不同的圖案化技術。例如,本發明的各種實施例可以使用適形接觸掩模(conformable contact masks)和掩蔽操作(masking operations)(即,使用與基材接觸但未粘附在基材上的掩模的掩蔽操作)、接近掩模和掩蔽操作(即,使用掩模的操作,即使未進行接觸,也至少部分選擇性地藉由接近基材來選擇性地遮罩基材),未適形掩模(non-conformable masks)和掩蔽操作(即,掩模和基於接觸表面不顯著適形(not significantly conformable)的掩模的操作)以及/或粘附掩模和掩蔽操作(掩模和使用粘附在基板上的掩模的操作,基材上將發生選擇性沉積或蝕刻,而不是僅與其接觸)。適形接觸式掩模(conformable contact masks)、接近式掩模(proximity masks)以及未適形接觸式掩模具有共同的特性,即它們被預先成型(preformed)並被帶到、或靠近、要處理的表面(即要處理表面的曝露部分)。這些掩模通常可以被移除,而不會損壞掩模或接受處理的表面,這些掩模與它們接觸或位於附近。粘附掩模(adhered masks)通常形成在待處理的表面(即要被掩蔽的表面部分)上,並粘合到該表面上,這樣它們就無法與該表面分離,而不會被完全破壞或損壞,超出任何重複使用點。粘附掩模可以藉由多種方式予以形成,包括:(1)藉由應用光刻膠(photoresist),選擇性曝光光刻膠,然後顯影光刻膠,(2)選擇性轉移預圖案化掩膜材料(pre-patterned masking material),以及/或(3)藉由計算機控制的材料沉積直接形成掩模。在一些具體實施例中,粘附的掩膜材料可以用作該層的犧牲物,或者可以僅用作掩蔽材料,其在完成層的形成(formation of a layer)之前被另一種材料(例如,介電(dielectric)或導電材料)取代,其中替換材料將被視為相應層的犧牲材料。遮蔽材料可以在將材料沉積到其中包含的空隙(voids)或開口之前或之後進行平面化(planarized),也可以不平坦化。Various embodiments, alternatives, and techniques disclosed herein may form multi-layer structures that use a single patterning technique on all layers or that use different patterning techniques on different layers. For example, various embodiments of the present invention may use conformable contact masks and masking operations (i.e., masking operations using a mask that is in contact with a substrate but not adhered to the substrate), proximity masks and masking operations (i.e., operations using a mask that selectively masks a substrate at least in part by being in proximity to the substrate even though contact is not made), non-conformable masks and masking operations (i.e., masks and operations based on masks that are not significantly conformable to the contact surface), and/or adherence masks and masking operations (masks and operations using masks that are adhered to the substrate on which selective deposition or etching will occur, rather than just being in contact with it). Conformable contact masks, proximity masks, and non-conformable contact masks share the common property that they are preformed and brought to, or near, the surface to be treated (i.e., the exposed portion of the surface to be treated). These masks can generally be removed without damaging the mask or the surface to be treated to which they are in contact or in the vicinity. Adhered masks are generally formed on the surface to be treated (i.e., the portion of the surface to be masked) and bonded to that surface so that they cannot be separated from that surface without being completely destroyed or damaged beyond any point of repeated use. The adhered mask can be formed in a variety of ways, including: (1) by applying a photoresist, selectively exposing the photoresist, and then developing the photoresist, (2) by selectively transferring a pre-patterned masking material, and/or (3) by directly forming the mask by computer-controlled deposition of materials. In some embodiments, the adhered masking material can be used as a sacrificial material for the layer, or can be used as a masking material that is replaced by another material (e.g., a dielectric or conductive material) prior to completing the formation of a layer, where the replacement material will be considered a sacrificial material for the corresponding layer. The masking material can be planarized or not planarized before or after the material is deposited into the voids or openings contained therein.
圖案化操作可用於選擇性沉積材料以及/或可用於材料的選擇性蝕刻。選擇性蝕刻區域可被選擇性地填充或藉由毯狀沉積(blanket deposition)等方式填充,用不同的所需材料填充。在一些實施例中,逐層堆積可涉及同時形成多個層的部分。在一些實施例中,與某些層水準(layer levels)相關的沉積可能導致沉積到與其他層水準相關的區域(即,位於定義不同層幾何構型的頂部和底部邊界層內的區域)。選擇性蝕刻以及/或交錯材料沉積可以與多層結合使用。Patterning operations may be used for selective deposition of materials and/or for selective etching of materials. Selectively etched areas may be selectively filled or filled, for example, by blanket deposition, with different desired materials. In some embodiments, layer-by-layer stacking may involve forming portions of multiple layers simultaneously. In some embodiments, deposition associated with certain layer levels may result in deposition into areas associated with other layer levels (i.e., areas within top and bottom boundary layers that define different layer geometries). Selective etching and/or staggered material deposition may be used in conjunction with multiple layers.
可形成結構的臨時基板可以是犧牲型的(即在沉積材料的分離過程中被破壞或損壞到不能重複使用的程度)或非犧牲型(即,沒有被破壞或過度損壞,即沒有損壞到不能重複使用的程度,例如,在基板和形成的結構的初始層之間有一個犧牲層或釋放層)。非犧牲基材可以被認為是可重複使用的,很少或不需要重作(rework)(例如,藉由重新平坦化一個或多個選定的表面或應用離型層(release layer)等),儘管它們可由於各種原因而重複使用,也可不重複使用。Temporary substrates on which structures may be formed may be sacrificial (i.e., destroyed or damaged during separation of the deposited material to the point where they cannot be reused) or non-sacrificial (i.e., not destroyed or excessively damaged, i.e., not damaged to the point where they cannot be reused, e.g., with a sacrificial or release layer between the substrate and the initial layer of the structure being formed). Non-sacrificial substrates may be considered reusable, requiring little or no rework (e.g., by re-planarizing one or more selected surfaces or applying a release layer, etc.), although they may or may not be reused for a variety of reasons.
可用於理解本發明各實施例的各種術語和概念的定義(無論是對於裝置本身,用於製造裝置的某些方法,或是用於使用裝置的某些方法)將被習於此技藝之人員理解。 具有平面彈簧模組的探針:Definitions of various terms and concepts useful in understanding the various embodiments of the present invention (whether for the device itself, certain methods for making the device, or certain methods for using the device) will be understood by those skilled in the art.Probe with planar spring module:
本發明的一些實施例是針對彈簧模組的,每個彈簧模組包括至少一個位於中心的尖端,該尖端係連接到至少一個平面順應的(planar compliant)彈簧元件(處於無偏置狀態時),該彈簧元件又藉由一連接橋或支座連接到一基座上,或者該基座提供至少一部分支座功能,其中一主彈簧順應性軸垂直於形成彈簧元件的彈簧臂或臂的平面。一些實施例是針對各彈簧模組,包括具有向內纏繞螺旋形式的扁平彈簧的各順應元件(無論是光滑的彎曲構型或是多邊形構型或呈角度構型),其末端是縱向延伸的接觸尖端或尖端延伸、支座或臂。一些實施例是針對作為或由單個彈簧模組形成的各探針。一些實施例係屬於或由背靠背(back-to-back)彈簧模組形成的探針,這些彈簧模組可以共用連接各支座的一公共基座元件(common base element),用作為一支座的一基座元件,或者只是具有一個或多個連接到各彈簧元件的各連接支座。一些實施例係關於由多個彈簧模組與其他元件組合而成的各探針,例如各探針尖端(可與彈簧模組尖端分開)、各尖端延伸和各護套。一些實施例針對彈簧模組的形成方法;形成探針,其包括單個彈簧模組,成型探針,其包括背靠背彈簧模組,或形成探針,其包括在形成和同時組裝元件或結構的過程中建立的多個粘附或接觸的彈簧模組,還有一些則用於形成探針元件,然後將它們組裝成作業探針結構。還有一些實施例指向探針陣列,其包括上述一種或多種探針類型以及陣列結構(例如,基板、導板等)。還有一些實施例是針對製作這種探針陣列的方法。Some embodiments of the invention are directed to spring modules, each spring module including at least one centrally located tip connected to at least one planar compliant spring element (when in an unbiased state), which in turn is connected to a base via a connecting bridge or standoff, or the base provides at least a portion of the standoff function, wherein a main spring compliance axis is perpendicular to the plane of the spring arm or arms forming the spring element. Some embodiments are directed to spring modules including compliant elements having flat springs in the form of inwardly wound spirals (whether in a smoothly curved configuration or in a polygonal or angled configuration), which terminate in a longitudinally extending contact tip or tip extension, standoff or arm. Some embodiments are directed to probes that are or are formed from a single spring module. Some embodiments are directed to probes that are or are formed from back-to-back spring modules that may share a common base element that connects to supports, serve as a base element that is a support, or simply have one or more connected supports connected to the spring elements. Some embodiments are directed to probes that are composed of multiple spring modules in combination with other elements, such as probe tips (separable from the spring module tip), tip extensions, and sheaths. Some embodiments are directed to methods of forming spring modules; forming probes that include a single spring module, forming probes that include back-to-back spring modules, or forming probes that include multiple adhered or contacting spring modules established during the process of forming and assembling the components or structures simultaneously, and some are used to form probe components and then assemble them into working probe structures. Still other embodiments are directed to probe arrays that include one or more of the above probe types and array structures (e.g., substrates, guides, etc.). Still other embodiments are directed to methods of making such probe arrays.
本發明的平面彈簧或平面順應元件可以多種不同的方式形成並採取多種不同的構型。通常,順應元件包括平面彈簧,其部分以懸臂或橋接方式從一支座延伸到一尖端或尖端臂(例如,兩個或多個彈簧從不同的橫向支座位置開始並連接到一公共尖端臂 - 此處通常稱為一懸臂或各懸臂)在間隙或開放區域上,該彈簧在正常操作期間可偏轉進入。這些順應部分通常在橫向平面內具有二維非線性構型,並且厚度垂直於該平面延伸(例如,在縱向上),其中二維構型可以是具有彎曲或呈角度構型的樑結構形式,其長度遠大於其寬度,例如,至少 5、10、20倍、或 甚至在某些變化形式中為50倍或更多,其中厚度通常小於該樑的長度,例如,在某些變化形式中至少為5倍、10倍、20倍,或甚至50倍或更多,或彈簧元件的橫向尺寸,例如,在某些變化形式中為2、5、10倍,或甚至20倍或更多。在一些實施例中,當探針或模組由多個粘附層(例如,X-Y平面)形成時,這種構型的平面可平行於層平面。該彈簧的厚度(例如,在Z方向上)可以是單層的厚度,也可以是多層的厚度。在一些實施例中,各順應元件包括多個間隔的平面彈簧元件。The planar spring or planar compliant element of the present invention can be formed in a variety of different ways and take a variety of different configurations. Generally, the compliant element includes a planar spring, a portion of which extends in a cantilever or bridge manner from a support to a tip or tip arm (e.g., two or more springs start from different lateral support locations and are connected to a common tip arm - generally referred to herein as a cantilever or each cantilever) over a gap or open area into which the spring can deflect during normal operation. These compliant portions typically have a two-dimensional nonlinear configuration in a transverse plane, and a thickness extending perpendicular to the plane (e.g., in the longitudinal direction), wherein the two-dimensional configuration can be in the form of a beam structure having a curved or angled configuration, whose length is much greater than its width, for example, at least 5, 10, 20 times, or even 50 times or more in some variations, wherein the thickness is typically less than the length of the beam, for example, at least 5, 10, 20 times, or even 50 times or more in some variations, or the transverse dimension of the spring element, for example, 2, 5, 10 times, or even 20 times or more in some variations. In some embodiments, when the probe or module is formed from multiple adhered layers (e.g., X-Y plane), the plane of such a configuration can be parallel to the plane of the layers. The thickness of the spring (e.g., in the Z direction) can be a single layer thickness or a multi-layer thickness. In some embodiments, each compliant element includes a plurality of spaced planar spring elements.
在一些具體實施例中,各順應元件可包括平面彈簧元件,這些元件不僅在支座或尖端結構上相互連接,而且在此類端部元件的中間位置連接。在一些這樣的實施例中,平面彈簧元件可以從一端(例如,支座或尖端臂)開始作為一個或多個具有相對較高彈簧常數(spring constant)的加厚彈簧(thickened springs),然後藉由去除初始彈簧結構的頂部和底部之間的一些中間彈簧材料來提供減小的彈簧常數,使得開始作為少量但厚實的平面順應元件(例如, 1、2 或 3 個元件)過渡到更多更薄的平面元件,在到達另一端之前,一些初始平面元件分為 2、3、4、5 個或更多平面但更薄的元件(例如,支座的一尖端臂),例如,彈簧常數、力要求(force requirements)、超程(overtravel)、應力、應變、載流能力(current carrying capacity)、整體尺寸和其他操作參數可以定製以滿足一給定應用(given application)的要求。In some embodiments, the compliant elements may include planar spring elements that are connected to each other not only at the support or tip structure, but also at the intermediate position of such end elements. In some such embodiments, the planar spring elements may begin as one or more thickened springs with a relatively high spring constant at one end (e.g., a support or tip arm), and then transition to a greater number of thinner planar elements by removing some intermediate spring material between the top and bottom of the initial spring structure to provide a reduced spring constant, starting as a small number of thick planar compliant elements (e.g., 1, 2, or 3 elements), before reaching the other end where some of the initial planar elements are split into 2, 3, 4, 5, or more planar but thinner elements (e.g., a tip arm of a support), for example, spring constants, force requirements, overtravel, stress, strain, current carrying capacity, overall size, and other operating parameters may be tailored to meet a given application. application).
元件編號(reference numbers)包含在許多附圖中,其中相似的編號用於表示不同實施例中的相似結構或特徵。特別是,當各實施例的圖式(FIGS.)使用元件編號中,各元件編號以3或4位數位格式(digit format)提供,其後可以是字母(letters)、破折號(dashes)以及/或附加編號(additional numbers),其中第一位數字(first digit)(從左起)表示圖式編號,而右邊的最後兩個數字以及任何尾隨字母、破折號或編號代表特定的一般結構或特徵。當兩個或多個圖式包含具有相同最左邊數字(以及後面的字母、破折號和附加編號)的引用時,它旨在指示所指定特徵的相似性。下表列出了最右邊的這兩個數字以及補充字母(supplemental letters)、破折號和編號,以及所表示的結構或特徵的一般描述。為了簡潔起見,此處和下方的相對術語如「頂部(top)」、「底部(bottom)」、「上部(upper)」、「下部(lower)」、「向下(downward)」、「向上(upward)」等類似術語旨在指參附圖中給出的附圖之描述。同樣地,參考附圖時仍使用「左」、「右」、「上」、「下」等術語和類似術語。結構/特徵元件編號表
範例彈簧模組如圖2A-2B所示。 圖2A描繪了範例彈簧模組200A的等角視圖,該模組具有兩個未偏轉的彈簧元件221-1和221-2,一個與彈簧元件間隔的基座201和一個連接支架(例如,支座或橋)211,該支架在彈簧元件221-1之間橋接縱向模組間隙MG, 221-2 和基座 201。在圖2A的範例中,兩個彈簧元件221-1、221-2中的每一個都採用平面徑向延伸的螺旋(planar radially extending spiral)形式,其從徑向位移的橋架211經由尖端結構231的向下延伸部分延伸到中心或軸向定位的尖端元件231。彈簧元件221-1、221-2由一間隙SG縱向隔開。在此範例中,該橋架211將每個彈簧元件的一端連接在一起,而該尖端結構231藉由尖端結構231的延伸部分將彈簧元件221-1、221-2的另一端連接在一起。尖端結構231形成有期望寬度(desired width)TW和期望尖端高度(desired tip height)TH延伸到上部彈簧元件221-2上方,並且每個彈簧元件221-1、221-2形成有所需的材料、樑厚度或彈簧高度SH、樑寬度或彈簧寬度SW、彈簧線圈CS之間的間距,以及允許該彈簧元件在不超過結構的彈性撓度極限(elastic deflection limit)的情況下偏轉所需量的盤繞樑長度(coiled beam length)以及形成它的相關材料,同時在其撓度範圍上(over its deflection range)提供所需的固定或可變彈簧力。特別地,尖端結構231的長度可使得模組尖端結構朝向基座的所需壓縮能夠發生,而基座、橋架和彈簧元件之間不會相互干擾。在一些實施例中,例如,每個模組尖端的最大行程距離可以小至5 um(um=微米)或更小或多至500 um(例如,25 ums、50 ums、100 ums或200 ums)或更多。例如,在一些實施例中,每個模組的最大行程距離可以是25um至200um,而在其它實施範例中,每個模組的最大行程距離可以是50um至150um。在一些實施例中,尖端結構的最大行程距離可以藉由一硬止擋件(hard stop)來設定,例如藉由彈簧元件或尖端結構的偏轉部分(deflected portion)與基座接觸,藉由基座上的止檔結構(stop structure),或者可能藉由與尖端結構接觸的表面(例如,相鄰模組的表面)與橋架的上部接觸。在其它實施例中,最大行程距離可以藉由順應彈簧元件或尖端結構與軟止擋件(soft stop)或順應性降低結構接觸而徐徐導入(stilled)。達到最大偏轉(或行程)的力可以是小至0.1克力到大至20克或更大的力。在一些實施例中,0.5克的力目標可能是合適的。在其他情況下,1 克、2 克、4 克、8 克或更多可能是合適的。在一些實施例中,可以針對50 ums或更低的模組高度MH(縱向尺寸),而在其他實施例中,可以針對500 ums或更高的模組高度。在一些具體實施例中,模組的總徑向直徑或寬度MW可為100ums或更小或400ums或更大(例如,150ums、200ums或250ums)。模組的彈簧元件或樑元件的彈簧高度(或樑高度)SH 從 1 um 或更小到 100 um 或更高(例如,10、20、30 或 40 um),而彈簧寬度(或樑寬度)SW 從 1 um 或更小到 100 um 或更大(例如,10、20、30 或 40 um)。尖端結構可以具有均勻或變化的幾何形狀(例如,具有圓柱形、矩形、圓錐形、多叉形(multi-prong)或其他構型,或構型組合)。與彈簧樑連接的尖端結構通常具有比它們所連接的彈簧(樑)或彈簧(各樑)的寬度 SW 更大的橫截面寬度 TW。An example spring module is shown in Figures 2A-2B. Figure 2A depicts an isometric view of an example spring module 200A having two undeflected spring elements 221-1 and 221-2, a base 201 spaced from the spring elements, and a connecting support (e.g., support or bridge) 211 bridging the longitudinal module gap MG between the spring elements 221-1, 221-2 and the base 201. In the example of Figure 2A, each of the two spring elements 221-1, 221-2 is in the form of a planar radially extending spiral extending from the radially displaced bridge 211 through a downwardly extending portion of the tip structure 231 to a central or axially positioned tip element 231. The spring elements 221-1 and 221-2 are separated longitudinally by a gap SG. In this example, the bridge 211 connects one end of each spring element together, and the tip structure 231 connects the other ends of the spring elements 221-1 and 221-2 together via an extension of the tip structure 231. The tip structure 231 is formed with a desired width TW and a desired tip height TH extending above the upper spring element 221-2, and each spring element 221-1, 221-2 is formed with the desired material, beam thickness or spring height SH, beam width or spring width SW, spacing between spring coils CS, and coiled beam length and the associated materials forming it that allow the spring element to deflect the desired amount without exceeding the elastic deflection limit of the structure, while providing the desired fixed or variable spring force over its deflection range. In particular, the length of the tip structure 231 can be such that the desired compression of the module tip structure toward the base can occur without interference between the base, bridge, and spring elements. In some embodiments, for example, the maximum travel distance of each module tip can be as small as 5 um (um = micrometer) or less or as much as 500 um (e.g., 25 ums, 50 ums, 100 ums, or 200 ums) or more. For example, in some embodiments, the maximum travel distance of each module can be 25um to 200um, while in other embodiments, the maximum travel distance of each module can be 50um to 150um. In some embodiments, the maximum travel distance of the tip structure can be set by a hard stop, such as by a deflected portion of a spring element or tip structure contacting the base, by a stop structure on the base, or perhaps by a surface in contact with the tip structure (e.g., a surface of an adjacent module) contacting the upper portion of the bridge. In other embodiments, the maximum travel distance can be stilled by a compliant spring element or tip structure contacting a soft stop or compliance reduction structure. The force to achieve maximum deflection (or travel) can be as little as 0.1 grams of force to as much as 20 grams or more. In some embodiments, a force target of 0.5 grams may be appropriate. In other cases, 1 gram, 2 grams, 4 grams, 8 grams or more may be suitable. In some embodiments, a module height MH (longitudinal dimension) of 50 ums or less may be targeted, while in other embodiments, a module height of 500 ums or more may be targeted. In some specific embodiments, the overall radial diameter or width MW of the module may be 100 ums or less or 400 ums or more (e.g., 150 ums, 200 ums, or 250 ums). The spring elements or beam elements of the module have a spring height (or beam height) SH ranging from 1 um or less to 100 um or more (e.g., 10, 20, 30, or 40 um), and a spring width (or beam width) SW ranging from 1 um or less to 100 um or more (e.g., 10, 20, 30, or 40 um). The tip structures can have uniform or varying geometric shapes (e.g., having cylindrical, rectangular, conical, multi-prong, or other configurations, or combinations of configurations). The tip structures connected to the spring beams typically have a cross-sectional width TW that is greater than the width SW of the spring (beam) or spring (beams) to which they are connected.
圖2B描繪了與圖2A的模組相似的第二個彈簧模組200B的第二個範例的等角視圖,不同之處在於兩個彈簧元件更厚,因此提供了比圖2A元件更大的彈簧常數(spring constant)。從另一個角度來看,圖2B的範例將需要更大的力來達到給定的撓度(given deflection),因此,將達到組合材料和結構幾何形狀的屈服強度(yield strength)(例如,達到彈性撓度極限),撓度小於圖2A的範例。FIG2B depicts an isometric view of a second example of a second spring module 200B similar to the module of FIG2A, except that the two spring elements are thicker, thereby providing a greater spring constant than the elements of FIG2A. Viewed from another perspective, the example of FIG2B will require a greater force to achieve a given deflection, and therefore will reach the yield strength of the combined materials and structural geometry (e.g., reach the elastic deflection limit) with less deflection than the example of FIG2A.
在其它實施例中,各彈簧模組可以採用與圖2A或圖2B中所示的模組不同的形式。例如:(1)一個模組可以有一個彈簧元件,也可以有兩個以上的彈簧元件;(2)每個彈簧元件的寬度、厚度、長度或旋轉範圍可具有一種或多種變化;(3)彈簧元件的長度可變化;(4)彈簧元件可以具有歐拉螺旋(Euler spirals)以外的構型,例如矩形螺旋、圓角矩形螺旋、S形結構或C形結構;(5)各個彈簧元件可以連接到多個橋接處(bridge junction),例如,橋接連接點位於模組周圍180度、120度或90度處; (6)各橋接處可位於不同的橋段上;(7)基座元件的徑向範圍可比各彈簧/橋接處小,因此在模組堆疊時,在模組尖端受到充分壓縮時,較高模組的基座可以延伸到下部相鄰模組的上部範圍以下;(8) 模組基座可用額外的彈簧代替,而允許模組彈簧在偏轉時從兩個方向壓縮,(9) 各探針尖端可不相對於模組的整體橫向構型橫向居中(即,在逐層形成時,與壓縮的主軸或主構建軸不重合(not coincident)或甚至同線(co-linear))。In other embodiments, each spring module may be in a different form than the module shown in FIG. 2A or FIG. 2B. For example: (1) a module may have one spring element or more than two spring elements; (2) the width, thickness, length, or rotation range of each spring element may have one or more variations; (3) the length of the spring element may vary; (4) the spring element may have a configuration other than Euler spirals, such as a rectangular spiral, a rounded rectangular spiral, an S-shaped structure, or a C-shaped structure; (5) each spring element may be connected to multiple bridge junctions, for example, the bridge junctions are located at 180 degrees, 120 degrees, or 90 degrees around the module; (6) Each bridge joint may be located on a different bridge segment; (7) the radial extent of the base element may be smaller than that of each spring/bridge joint so that when the modules are stacked, the base of the taller module may extend below the upper extent of the lower adjacent module when the module tips are fully compressed; (8) the module bases may be replaced with additional springs, allowing the module springs to compress in two directions when deflected, and (9) each probe tip may not be laterally centered relative to the overall lateral configuration of the module (i.e., not coincident or even co-linear with the principal axis of compression or principal building axis during layer-by-layer formation).
圖2C描繪了一探針200C的部分剖視圖,包括:(a)與圖2A和2B相似的多個彈簧模組200A和200B,(b)一第一或上部多模組尖端432-U,(c)一第一或上部尖端支撐或延長臂432-UA,其可或不可連接或粘合到與其直接相互作用的模組尖端, (c)一 第一或上部尖端過壓止擋塊 (over-compression stop)435-U,(d)一 第二或下部尖端 432-L,(e)一 第二尖端或下部支撐或延伸臂 432-LA,可或不可連接或粘合到與其直接相互作用的模組尖端,以及 (f) 一護套 451(在剖視圖中顯示,該視圖將彈簧模組保持在相對於彼此實質線性的構型中以及限制尖端的縱向延伸),其中該護套具有各開口 442-U 和 442-L,分別用於通過尖端支撐臂 432-UA 和 432-LA。尖端 432-L 具有矩形構型,可用於接觸一錫凸塊(solder bump)或其他突出接觸表面(protruding contact surface)。在圖2C的探針設計中,如果發生足夠的壓縮,則每個模組在以下兩種情況之一時達到壓縮極限(compression limit):(1)當彈簧模組的下部彈簧元件的中心部分與模組基座的上表面接觸時,或(2)當緊鄰的上部模組基座的下表面與下部模組橋的上表面接觸時。當一上部尖端支撐臂432-UA和一下部尖端支撐臂432-LA都達到壓縮極限時,該探針200C作為一個整體可以達到壓縮極限,這可發生在任何彈簧模組達到壓縮極限之前或只有一部分模組達到其自身的壓縮極限之後。各探針的直徑可以與所需的陣列間距相適應。例如,各有效探針直徑可以小至 100 微米或更小,或大至 600 微米或更大。例如,在一些實施例中,各探針的有效直徑可為250-350微米,用於具有400微米間距的陣列,或者它們可具有150-250微米的有效直徑,用於300微米的陣列。探針高度可以設定為提供有效的縱向行程,以便在接合半導體晶圓或其他電子元件時可以滿足各單個模組、探針或陣列作為一個整體的超程要求(overtravel requirements)。例如,超程可能在 25 微米或更小,到 400 微米或更大的範圍內,而探針高度可在 150 微米或更小,到 2000 微米或更大的範圍內。FIG. 2C depicts a partial cross-sectional view of a probe 200C including: (a) a plurality of spring modules 200A and 200B similar to FIGS. 2A and 2B , (b) a first or upper multi-module tip 432-U, (c) a first or upper tip support or extension arm 432-UA, which may or may not be connected or bonded to the module tip with which it directly interacts, (c) a first or upper tip over-compression stop 435-U, (d) a second or lower tip 432-L, (e) a second tip or lower support or extension arm 432-LA, which may or may not be connected or bonded to the module tip with which it directly interacts, and (f) a sheath 451 (shown in a cross-sectional view which holds the spring modules in a substantially linear configuration relative to each other and limits the longitudinal extension of the tip), wherein the sheath has openings 442-U and 442-L for passing tip support arms 432-UA and 432-LA, respectively. The tip 432-L has a rectangular configuration which can be used to contact a solder bump or other protruding contact surface. In the probe design of FIG2C, if sufficient compression occurs, each module reaches a compression limit in one of two situations: (1) when the center portion of the lower spring element of the spring module contacts the upper surface of the module base, or (2) when the lower surface of the adjacent upper module base contacts the upper surface of the lower module bridge. The probe 200C as a whole can reach a compression limit when both an upper tip support arm 432-UA and a lower tip support arm 432-LA reach their compression limits, which can occur before any spring module reaches its compression limit or after only a portion of the modules reach their own compression limits. The diameter of each probe can be adapted to the desired array pitch. For example, each effective probe diameter can be as small as 100 microns or less, or as large as 600 microns or more. For example, in some embodiments, each probe can have an effective diameter of 250-350 microns for an array having a 400 micron pitch, or they can have an effective diameter of 150-250 microns for a 300 micron array. The probe height can be set to provide an effective longitudinal travel so that the overtravel requirements of each individual module, probe, or array as a whole can be met when bonding semiconductor wafers or other electronic components. For example, the overtravel may range from 25 microns or less to 400 microns or more, and the probe height may range from 150 microns or less to 2000 microns or more.
圖2C的探針實施例的多種變化是可能的,包括例如:(1)模組尖端連接到相鄰的模組基座上,或者模組尖端只要與相鄰的模組基座接觸;(2)在形成給定的探針時,可使用四個以上或少於四個的彈簧模組;(3)給定探針中的部分或全部彈簧模組可具有相似的彈簧常數以及/或構型,或具有不同的彈簧常數以及/或配置;(4) 尖端臂上可有與接觸尖端間隔的壓縮止擋塊;(5)探針的每一端可有一個接觸尖端,或者在一端可有一個接觸尖端,在另一端可有一個可粘合的尖端或連接結構; (6)各探針可有一個或多個固定端蓋(fixed end caps),防止模組從護套的一端或兩端滑出,或者可沒有固定端蓋;(7) 探針可具有允許彈簧模組載入的護套端,從而允許模組內的彈簧偏置而不保持探針尖端的壓縮壓力,或者可允許彈簧模組在與護套內工作範圍位置(working range locations)不同的構建位置(build locations)形成;(8) 彈簧模組或尖端臂可具有滑動接觸點(sliding contacts)或其他接觸點,允許電流從彈簧元件分流離開(shunted away)且反而是流過護套;(9)彈簧模組可與一些介電元件形成; (10) 彈簧模組以及/或護套可包括介電元件或由介電元件隔開,以便彈簧模組/尖端臂與護套發生電氣隔離(electrical isolation),例如,提供雙電隔離的導電電流路徑(dual electrically isolated conductive current paths)或確保陣列的一個探針的中心導電路徑不會無意中短接到另一個相鄰探針上的導電路徑;(11)護套可分為兩個或兩個以上的部分,以允許將彈簧模組和其他部件形成或組裝到護套中以形成探針; (12)多個彈簧模組可以相互連接的方式形成,以提供一整體順應(monolithic compliant)結構(帶或不帶有尖端臂和尖端),該結構可以完全在一護套內形成,部分在一護套內形成,在形成後將完成載入,或與護套分離以便稍後組裝到護套中;(13)可形成具有卡扣式特徵的分體式護套(split sheaths),形成後易於組裝; 以及(14)可在彈簧模組或護套的選定位置打孔或開口,以改善犧牲材料蝕刻到內部部分的通道,這在使用多材料、多層電化學製造程序形成探針或模組時可能有用,該程序涉及必須去除的犧牲材料。Many variations of the probe embodiment of FIG. 2C are possible, including, for example: (1) the module tip may be connected to an adjacent module base, or the module tip may simply be in contact with an adjacent module base; (2) more than four or fewer than four spring modules may be used in forming a given probe; (3) some or all of the spring modules in a given probe may have similar spring constants and/or configurations, or may have different spring constants and/or configurations; (4) the tip arm may have a compression stop spaced from the contact tip; (5) the probe may have a contact tip at each end, or may have a contact tip at one end and a bondable tip or connecting structure at the other end; (6) each probe may have one or more fixed end caps; caps) to prevent the module from sliding out of one or both ends of the sheath, or there may be no fixed end caps; (7) the probe may have a sheath end that allows the spring module to be loaded, thereby allowing the spring bias within the module to not maintain a compressive pressure at the probe tip, or may allow the spring module to be formed in a build location that is different from the working range locations within the sheath; (8) the spring module or tip arm may have sliding contacts or other contacts that allow current to be shunted away from the spring element and instead flow through the sheath; (9) the spring module may be formed with some dielectric element; (10) the spring module and/or the sheath may include a dielectric element or be separated by a dielectric element so that the spring module/tip arm is electrically isolated from the sheath. isolation), for example, to provide dual electrically isolated conductive current paths or to ensure that the center conductive path of one probe of an array is not inadvertently shorted to the conductive path of another adjacent probe; (11) the sheath can be divided into two or more parts to allow the spring module and other components to be formed or assembled into the sheath to form the probe; (12) multiple spring modules can be formed in an interconnected manner to provide a monolithic compliant structure (with or without tip arms and tips) that can be formed entirely within a sheath, partially formed within a sheath and loaded after formation, or separated from the sheath for later assembly into the sheath; (13) split sheaths can be formed with snap-fit features for ease of assembly after formation; And (14) holes or openings may be punched at selected locations in the spring module or sheath to improve access for etching of sacrificial material into the interior portion, which may be useful when forming the probe or module using a multi-material, multi-layer electrochemical manufacturing process that involves sacrificial material that must be removed.
圖3A1 – 3D提供了根據本發明的另一個實施例一探針3400、或該探針部分的各種視圖,,其中該探針3400具有一環形基座或框架3401,其固定著相對的支座結構,包括上部和下部支座3411-1、3411-2、3412-1、3412-2,其藉由它們最外側的橫向範圍,分別支撐著一上部順應元件或螺旋彈簧陣列3421-UC和一下部順應元件或螺旋彈簧陣列3421-LC。3A1 - 3D provide various views of a probe 3400, or a portion thereof, according to another embodiment of the present invention, wherein the probe 3400 has an annular base or frame 3401 to which opposed support structures are fixed, including upper and lower supports 3411-1, 3411-2, 3412-1, 3412-2, which support an upper compliant element or coil spring array 3421-UC and a lower compliant element or coil spring array 3421-LC, respectively, by their outermost lateral extents.
該環形基座3401具有一圓形外部,有一實質上為圓形的內部,該內部支撐著該下部支座3412-1和3412-2,具有縮進區域(indented regions),並藉由第一中間部分3413-3和3413-2連接到該上支座3411-1和3411-2,將上部和下部順應元件3421-UC、3421-LC分開。The annular base 3401 has a circular exterior, a substantially circular interior that supports the lower supports 3412-1 and 3412-2, has indented regions, and is connected to the upper supports 3411-1 and 3411-2 via first intermediate portions 3413-3 and 3413-2, separating the upper and lower compliant elements 3421-UC, 3421-LC.
更具體地說,該上部和下部順應元件 3421-UC 和 3421-LC 包括各自的彈簧元件,這些元件形成為前一層和後一層的一部分,如下所說明。More specifically, the upper and lower compliant elements 3421-UC and 3421-LC include respective spring elements that are formed as part of the preceding and succeeding layers, as described below.
此外,上部和下部順應元件 3421-UC 和 3421-LC 中的每一個都從相對的支座對 3411-1 和 3411-2、3412-1 和 3412-2 作為厚的縱向連續共平面對(thick longitudinally continuous co-planar pairs)橫向交錯螺旋懸臂開始其向內路徑,並在中心尖 端臂 3431-UA 和 3431-LA 處結束其向內發展,作為多個縱向分離的平面彈簧懸臂或彈簧元件 3421-1U 至 3421-4U 和 3421-1L 至 3421-4L, 較佳的是四對各縱向分離的平面彈簧懸臂。更具體地說,每個縱向分離的平面彈簧懸臂的厚度約為整個懸臂結構的 1/7。In addition, each of the upper and lower compliant elements 3421-UC and 3421-LC begins its inward path from opposing standoff pairs 3411-1 and 3411-2, 3412-1 and 3412-2 as thick longitudinally continuous co-planar pairs of transversely staggered spiral suspension arms and ends its inward development at central tip arms 3431-UA and 3431-LA as multiple longitudinally separated planar spring suspension arms or spring elements 3421-1U to 3421-4U and 3421-1L to 3421-4L, preferably four pairs of longitudinally separated planar spring suspension arms. More specifically, the thickness of each longitudinally separated planar spring suspension arm is approximately 1/7 of the entire suspension structure.
再者,中心尖端臂 3431-UA 和 3431-LA 依次連接或成為各自的上部和下部探針尖端 3431-U 和 3431-L,它們,分別延伸到上部順應元件 3421-UC 的最向上的彈簧元件 3421-4U 上方和下部順應元件 3421-LC 的最向下的弦元件 3421-1L(string element) 下方。Furthermore, the center tip arms 3431-UA and 3431-LA in turn connect to or become respective upper and lower probe tips 3431-U and 3431-L, which extend respectively above the upward-most spring element 3421-4U of the upper compliant element 3421-UC and below the downward-most string element 3421-1L of the lower compliant element 3421-LC.
根據一實施例,該環形基座3401位於探針3400的縱向中點(mid-point)下方,且甚至位於該下部順應元件3421-LC的最向上的彈簧元件3421-4L下方。According to one embodiment, the annular base 3401 is located below the longitudinal mid-point of the probe 3400 and even below the upward-most spring element 3421-4L of the lower compliant element 3421-LC.
而且,連接上部探針尖端 3431-U 的上部順應元件 3421-UC 的彈簧元件 3421-1U 至 3421-4U 是螺旋彈簧,其旋轉方向相反於連接下部探針尖端 3421-L 的下部順應元件 3421-LC 的彈簧元件 3421-1L 至 3421-4L,且也是螺旋彈簧。Furthermore, spring elements 3421-1U to 3421-4U of the upper compliant element 3421-UC connected to the upper probe tip 3431-U are coil springs, and their rotation direction is opposite to that of spring elements 3421-1L to 3421-4L of the lower compliant element 3421-LC connected to the lower probe tip 3421-L, which are also coil springs.
圖3A1 – 3C5提供了一探針3400或該探針3400的一些部分的各種等角視圖,根據本發明的另一個實施例,其中探針3400的基座3401相對於探針3400的上部和下部探針尖端3431-U和3431-L非縱向居中(not longitudinally centered),並且實際上, 該基座 3401 縱向位於最向上的彈簧元件 3421-1L 和下部順應元件 3421-LC 的下部彈簧元件 3421-2L 之間。另外,該基座3401縱向位於其兩個最向上的螺旋元件3421-1L和3421-2L之間,即至少部分圍繞下部順應元件3421-LC。3A1 - 3C5 provide various isometric views of a probe 3400 or portions of the probe 3400, according to another embodiment of the present invention, wherein the base 3401 of the probe 3400 is not longitudinally centered relative to the upper and lower probe tips 3431-U and 3431-L of the probe 3400, and in fact, the base 3401 is longitudinally located between the uppermost spring element 3421-1L and the lower spring element 3421-2L of the lower compliant element 3421-LC. In addition, the base 3401 is longitudinally located between its two uppermost spiral elements 3421-1L and 3421-2L, i.e., at least partially surrounds the lower compliant element 3421-LC.
如前所述,上部順應元件 3421-UC 的彈簧元件 3421-1U 至 3421-4U 與下部順應元件 3421-LC 的彈簧元件 3421-1L 至 3421-4L 具有相反的旋轉方向。As previously described, the spring elements 3421-1U to 3421-4U of the upper compliant element 3421-UC have opposite rotational directions to the spring elements 3421-1L to 3421-4L of the lower compliant element 3421-LC.
更具體地說,該探針3400的彈簧元件3421-1U至3421-4U和3421-1L至3421-4L是具有光滑彎曲(例如圓形)向內旋轉交錯螺旋結構的螺旋元件;而探針3400的基座3401橫向延伸至上下支座3411-1、3411-2、3412-1、3412-2之外,而這些支座支撐上下順應元件3421-UC和3421-LC之上下彈簧元件3421-1U至3421-4U和3421-1L至3421-4L,以及第一中間部分3413-3和3413-2, 其為上部順應元件 3421-UC 的各下部分。More specifically, the spring elements 3421-1U to 3421-4U and 3421-1L to 3421-4L of the probe 3400 are spiral elements having a smoothly curved (e.g., circular) inwardly rotating staggered spiral structure; and the base 3401 of the probe 3400 extends laterally beyond the upper and lower supports 3411-1, 3411-2, 3412-1, 3412-2, and these supports support the upper and lower spring elements 3421-1U to 3421-4U and 3421-1L to 3421-4L of the upper and lower compliant elements 3421-UC and 3421-LC, as well as the first middle portions 3413-3 and 3413-2, which are the lower portions of the upper compliant element 3421-UC.
上部順應元件3421-UC的彈簧元件3421-1U至3421-4U的數量可以相等、大於或小於下部順應元件3421-LC的彈簧元件3421-1L至3421-4L的數量,而較佳者為相等。The number of spring elements 3421-1U to 3421-4U of the upper compliant element 3421-UC may be equal, greater or less than the number of spring elements 3421-1L to 3421-4L of the lower compliant element 3421-LC, and preferably, they are equal.
圖3A1和圖3A2分別提供了一探針3400的各視圖,該探針3400包括由共面(co-planar)螺旋彈簧元件3421-1U至3421-4U和3421-1L分別形成的上部和下部順應元件3421-UC和3421-LC,而更具體地是縱向分離的懸臂元件。圖3A1和圖3A2中的每一個都提供了上部和下部探針尖端3431-U和3431-L以及位於探針3400中心線下方的基座3401的一視圖,更具體地,它縱向位於下部順應元件3421-LC的兩個平面彈簧元件3421-1L和3421-2L之間。圖3A1和圖3A2還提供了上支座3411-1和3411-2、下支座3412-1和3412-2以及第一中間部分3413-3和3413-2的各視圖,以及縱向分離的上懸臂元件3421-1U至3421-4U和下懸臂元件3421-1L至3421-4L的外部分視圖。相鄰的各對之共面懸臂彈簧元件的交錯路徑也可以藉由彈簧元件3421-4U(圖3A1)和3421-4L(圖3A2)從它們各自的上部和下部支座3411-1、3411-2和3412-1向內散播,藉由它們各自的尖端臂3431-UA和3431-LA在它們各自的中心探針尖端3431-U和3431-L處相遇,這在圖3B1、3B2、3C4 和 3E2-A 至 3E6-B中可以更全面地看到。3A1 and 3A2 provide views of a probe 3400 including upper and lower compliant elements 3421-UC and 3421-LC formed by co-planar helical spring elements 3421-1U to 3421-4U and 3421-1L, respectively, and more specifically longitudinally separated cantilever elements. Each of FIG. 3A1 and 3A2 provides a view of upper and lower probe tips 3431-U and 3431-L and a base 3401 located below the centerline of the probe 3400, more specifically, it is located longitudinally between two planar spring elements 3421-1L and 3421-2L of the lower compliant element 3421-LC. Figures 3A1 and 3A2 also provide views of the upper supports 3411-1 and 3411-2, the lower supports 3412-1 and 3412-2, and the first intermediate portions 3413-3 and 3413-2, as well as exterior views of the longitudinally separated upper cantilever elements 3421-1U to 3421-4U and lower cantilever elements 3421-1L to 3421-4L. The staggered paths of adjacent pairs of co-planar cantilever spring elements can also be seen by spring elements 3421-4U (FIG. 3A1) and 3421-4L (FIG. 3A2) radiating inward from their respective upper and lower supports 3411-1, 3411-2 and 3412-1, meeting at their respective central probe tips 3431-U and 3431-L through their respective tip arms 3431-UA and 3431-LA, as can be more fully seen in FIGS. 3B1, 3B2, 3C4 and 3E2-A to 3E6-B.
圖3B1和圖3B2分別提供了該探針3400從上部和下部視角的分解等角視圖,這樣不僅可以看到下部順應元件3421-LC的最向下懸臂彈簧元件3421-4L的底部和上部順應元件3421-UC的最向上的懸臂彈簧元件3421-4U的頂部,而且還可以看到下部順應元件 3421-LC 的最向上的懸臂彈簧元件3421-1L的頂部,以及上部順應元件 3421-UC 的最向下懸臂彈簧元件 3421-1U 的底部。圖3B1和圖3B2還提供了第一中間部分3413-3和3413-2以及環形基座3401的內部和下部尖端臂3431-LA的一部分等的各視圖,它們縱向延伸穿過基座3401的中心,以連接由環形基座3401包圍的下部順應元件3421-LC的彈簧元件3421-1L和3421-2L的最內各部分, 以及將橫向相對的支座連接到基座 3401 的下部支座 3412-1 和 3412-2 的各部分,以及將彈簧元件 3421-1L 和 3421-2L 的最外層相互連接的部分。Figures 3B1 and 3B2 provide exploded isometric views of the probe 3400 from upper and lower perspectives, respectively, so that not only the bottom of the downward-most cantilevered spring element 3421-4L of the lower compliant element 3421-LC and the top of the upward-most cantilevered spring element 3421-4U of the upper compliant element 3421-UC can be seen, but also the top of the upward-most cantilevered spring element 3421-1L of the lower compliant element 3421-LC and the bottom of the downward-most cantilevered spring element 3421-1U of the upper compliant element 3421-UC can be seen. Figures 3B1 and 3B2 also provide views of the first intermediate portions 3413-3 and 3413-2 and the inner portion of the annular base 3401 and a portion of the lower tip arm 3431-LA, which extend longitudinally through the center of the base 3401 to connect the innermost portions of the spring elements 3421-1L and 3421-2L of the lower compliant element 3421-LC surrounded by the annular base 3401, as well as portions that connect the laterally opposing supports to the lower supports 3412-1 and 3412-2 of the base 3401, and portions that connect the outermost layers of the spring elements 3421-1L and 3421-2L to each other.
在圖3B1和3B2中,該探針3400的上部順應元件3421-UC與下部完全順應元件3421-LC的最向上的彈簧元件3421-1L(即在三個分開的區段中示出)被第一中間部分3413-1和3413-2予以分開,即上部支座3411-1和3411-2的下部分。反過來說,下部順應元件3421-LC的最向上的彈簧元件3421-1L與下部順應元件3421-LC的三個平面彈簧元件3421-2L至3421-4L分開,其位於包含基座3401的縱向截面(即圖3E4-A和3E4-B所示的L7)以及縱向第二中間部分3414-1和3414-12之下方, 是下部支座 3412-1 和 3412-2 的上部分,係與上部支座 3411-1 和 3411-2 的第一中間部分 3413-1 和 3413-2 以及的一部分相鄰。In Figures 3B1 and 3B2, the upper compliant element 3421-UC of the probe 3400 is separated from the upward-most spring element 3421-1L of the lower fully compliant element 3421-LC (i.e., shown in three separate sections) by the first intermediate portions 3413-1 and 3413-2, i.e., the lower portions of the upper supports 3411-1 and 3411-2. In other words, the upwardmost spring element 3421-1L of the lower compliant element 3421-LC is separated from the three planar spring elements 3421-2L to 3421-4L of the lower compliant element 3421-LC, and is located below the longitudinal section including the base 3401 (i.e., L7 shown in Figures 3E4-A and 3E4-B) and the longitudinal second middle portions 3414-1 and 3414-12. It is the upper portion of the lower supports 3412-1 and 3412-2, and is adjacent to the first middle portions 3413-1 and 3413-2 and a portion of the upper supports 3411-1 and 3411-2.
該上部探針尖端3431-U可以在圖3B1中看到,以及分別看到上部和下部順應元件3421-UC和3421-LC的最向上的彈簧元件3421-4U和3421-1L的頂面,以及它們的支 座3411-1、3411-2和3412-1、3412-2,以及彈簧元件3421-2L的頂面,其緊挨著下部順應元件3421-UC的頂部向上的彈簧元件3421-1L的下方,以及上部和下部支座3411-1、3411-2的第一和第二中間部分3413-1、3413-2和3414-1、3414-2的下方。在圖3B1中也可以看到該中央框架元件或基座3401的頂部。The upper probe tip 3431-U can be seen in FIG. 3B1 , as well as the top surfaces of the upward-most spring elements 3421-4U and 3421-1L of the upper and lower compliant elements 3421-UC and 3421-LC, respectively, and their supports 3411-1, 3411-2 and 3412-1, 3412-2, and the top surface of the spring element 3421-2L, which is immediately below the top-up spring element 3421-1L of the lower compliant element 3421-UC, and below the first and second intermediate portions 3413-1, 3413-2 and 3414-1, 3414-2 of the upper and lower supports 3411-1, 3411-2. The top of the central frame element or base 3401 can also be seen in Figure 3B1.
在圖3B2中可以分別看到該下部探針尖端3431-L以及該上部和下部順應元件3421-UC和3421-LC的最向下的彈簧元件3421-1U和3421-4L的底面,以及下部順應結構3421-LC的最上向上的彈簧元件3421-1L的底面和中央框架元件或基座3401的底部。從連接圖3B1和3B2的分解元件的虛線可以看出,中心框架元件或基座3401連接並支撐左側上部和下部支座3411-2和3412-2以及右側上部和下部支座3411-1和3412-1,它們又支撐著最外側橫向範圍之上部和下部順應元件3421-UC和3421-LC的平面彈簧元件3421-1U至3421-4U和3421-1L至3421-4L。In Figure 3B2, the lower probe tip 3431-L and the bottom surfaces of the downward-most spring elements 3421-1U and 3421-4L of the upper and lower compliant elements 3421-UC and 3421-LC, as well as the bottom surface of the uppermost upward spring element 3421-1L of the lower compliant structure 3421-LC and the bottom of the central frame element or base 3401 can be seen respectively. As can be seen from the dotted lines connecting the exploded elements of Figures 3B1 and 3B2, the central frame element or base 3401 connects and supports the upper and lower supports 3411-2 and 3412-2 on the left and the upper and lower supports 3411-1 and 3412-1 on the right, which in turn support the planar spring elements 3421-1U to 3421-4U and 3421-1L to 3421-4L of the upper and lower compliant elements 3421-UC and 3421-LC of the outermost lateral extent.
圖3C1-3C5提供了該探針3400的五個不同的剖視圖,探針一側的逐漸較大的部分被切掉,以便露出探針3400的內部結構,並且使得彈簧元件3421-1U至3421-4U和3421-1L至3421-4L的不同部分和下部順應元件3421-UC和3421-LC是平面懸臂彈簧元件可以更容易地看到和理解。當上部和下部順應元件 3421-UC 和 3421-LC 的螺旋彈簧元件 3421-1U 至 3421-4U 和 3421-1L 至 3421-4L 向內而朝橫向中心尖端元件旋轉時,上部和下部順應元件 3421-UC 和 3421-LC 在彈簧元件(或樑)分別縱向到達其縱向可移動的探針尖端臂元件 3431-UA 和 3431-LA之前,從單個厚共面雙螺旋平面懸臂元件(single thick co-planar dual spiral planar cantilever elements)過渡到四個縱向分離的較薄共面雙螺旋懸臂元件,又分別連接或成為上部和下部探針尖端 3431-U 和 3431-L。Figures 3C1-3C5 provide five different cross-sectional views of the probe 3400, with progressively larger portions of one side of the probe cut away to expose the internal structure of the probe 3400 and to allow different portions of the spring elements 3421-1U to 3421-4U and 3421-1L to 3421-4L and the lower compliant elements 3421-UC and 3421-LC, which are planar cantilever spring elements, to be more easily seen and understood. As the spiral spring elements 3421-1U to 3421-4U and 3421-1L to 3421-4L of the upper and lower compliant elements 3421-UC and 3421-LC rotate inwardly toward the laterally center tip element, the upper and lower compliant elements 3421-UC and 3421-LC transition from a single thick co-planar dual spiral planar cantilever element to four longitudinally separated thinner co-planar dual spiral planar cantilever elements before the spring elements (or beams) longitudinally reach their longitudinally movable probe tip arm elements 3431-UA and 3431-LA, respectively, which in turn connect or become the upper and lower probe tips, respectively 3431-U and 3431-L.
圖3D提供了該探針3400的側視圖,顯示了17個樣品層,從這些樣品層可以製造探針3400,其中並非所有層都具有獨特的構型。17 個獨立層的縱向厚度和位置使用元件編號 L1 至 L17 進行標識。在其它實施例中,可以使用更多的層數來形成探針3400。在一些實施例中,多層製造程序可以是多材料電化學製造程序,使用單個或多個結構材料(連同犧牲材料)並使用與探針3400的縱軸相對應的構建軸或層堆疊軸。雖然探針可以一次形成一個,但通常最好是批量(in batch)形成探針,或藉由連續的層對層堆積同時形成數百甚至數千個探針。FIG3D provides a side view of the probe 3400, showing 17 sample layers from which the probe 3400 can be fabricated, not all of which have a unique configuration. The longitudinal thickness and position of the 17 individual layers are identified using element numbers L1 to L17. In other embodiments, a greater number of layers can be used to form the probe 3400. In some embodiments, the multi-layer fabrication process can be a multi-material electrochemical fabrication process using a single or multiple structural materials (along with sacrificial materials) and using a building axis or layer stacking axis corresponding to the longitudinal axis of the probe 3400. Although probes can be formed one at a time, it is usually better to form them in batches, or by forming hundreds or even thousands of probes simultaneously in a continuous layer-by-layer stacking process.
圖3E1-A至3E7-B描述頂視圖(-A圖)和等角視圖(-B圖)中顯示的橫截面構型,用於各層L1-L17的獨特構型,並適當地採用其相關元件編號和相關層名稱標識特徵。圖3E1-A和3E1-B描述各層L1和L17的視圖,它們提供了上部和下部探針尖端3431-U和3431-L以及上部下部尖端臂部分3431-UA和3431-LA。圖3E2-A和3E2-B描述各層L2、L4、L6和L8的視圖,從中形成了下部順應元件3421-LC的四個較薄的懸臂彈簧元件3421-1L至3421-4L、下部尖端臂3421-LA的一部分以及下部支座3412-1和3412-2的各部分。圖3E3-A和3E3-B描述各層L3和L5的視圖,它們提供了支座部分3412-1和3412-2以及構成最外層厚懸臂彈簧元件一部分的彈簧各部分(即,那些延伸到L9的支座元件之外但不是彈簧的整個長度的彈簧元件部分,因此將存在較薄的懸臂部分)。圖3E4-A和3E4-B描述層L7的視圖,從該層形成基座3401、下部支座3412-1和3412-2的第二中間部分3414-1和3414-2,以及下部尖端臂3431-LA的部分。圖3E5-A和3E5-B描述層L9的視圖,其提供了位於上部和下部順應元件3421-UC和3421-LC之間的上部支座3411-1和3411-2的第一中間部分3413-1和3413-2。圖3E6-A和3E6-B描述各層L10、L12、L14和L16的視圖,從中形成較細的懸臂彈簧元件3421-1U至3421-4U、以及上部支座3411-1和3411-2、以及上部尖端臂3431-UA。圖3E7-A和3E7-B描述各層L11、L13和L15的視圖,它們提供了上部支座3411-1和3411-2的進一步部分,以及構成最外層厚的上懸臂彈簧元件一部分的 彈簧部分(即,那些延伸到L9的第一個中間支座部分3413-1和3413-2之外的彈簧元件部分,但不是彈簧的整個長度,因此將存在較薄的懸臂部分)。圖3E1-A至圖3E7-A的–A圖,除了提供該探針3400的相應橫截面結構的頂視圖外,還提供虛線對準(dashed alignment)元件3409,其為連續各圖的結構材料提供概念性、橫向堆疊對準或配準(registration)參考。Figures 3E1-A through 3E7-B depict cross-sectional configurations shown in top view (-A) and isometric view (-B) for the unique configurations of each layer L1-L17, with the features appropriately identified by their associated element numbers and associated layer names. Figures 3E1-A and 3E1-B depict views of each layer L1 and L17, which provide upper and lower probe tips 3431-U and 3431-L and upper and lower tip arm portions 3431-UA and 3431-LA. Figures 3E2-A and 3E2-B depict views of layers L2, L4, L6, and L8, from which the four thinner cantilever spring elements 3421-1L through 3421-4L of the lower compliant element 3421-LC, a portion of the lower tip arm 3421-LA, and portions of the lower standoffs 3412-1 and 3412-2 are formed. Figures 3E3-A and 3E3-B depict views of layers L3 and L5, which provide standoff portions 3412-1 and 3412-2 and portions of the spring that form part of the outermost thick cantilever spring elements (i.e., those portions of the spring element that extend beyond the standoff element of L9 but not the entire length of the spring, so there will be thinner cantilever portions). Figures 3E4-A and 3E4-B depict views of layer L7 from which the base 3401, the second intermediate portions 3414-1 and 3414-2 of the lower supports 3412-1 and 3412-2, and portions of the lower tip arm 3431-LA are formed. Figures 3E5-A and 3E5-B depict views of layer L9, which provides the first intermediate portions 3413-1 and 3413-2 of the upper supports 3411-1 and 3411-2 located between the upper and lower compliant elements 3421-UC and 3421-LC. Figures 3E6-A and 3E6-B depict views of layers L10, L12, L14 and L16 from which the thinner cantilever spring elements 3421-1U to 3421-4U, as well as upper supports 3411-1 and 3411-2, and upper tip arms 3431-UA are formed. Figures 3E7-A and 3E7-B depict views of layers L11, L13 and L15, which provide further portions of the upper supports 3411-1 and 3411-2, as well as spring portions that form part of the outermost thick upper cantilever spring elements (i.e., those portions of the spring element that extend beyond the first intermediate support portions 3413-1 and 3413-2 of L9, but not the entire length of the spring, so there will be thinner cantilever portions). In addition to providing a top view of the corresponding cross-sectional structure of the probe 3400, Figures 3E1-A to 3E7-A also provide a dashed alignment element 3409, which provides a conceptual, lateral stacking alignment or registration reference for the structural materials of consecutive figures.
圖3A1-3E7-B實施例的多種變化是可能的,包括,例如:(1)對探針的不同部分使用相同或不同的材料,包括在某些變化中,包含一種或多種介電材料以及/或不同材料相互連動,而不是僅僅依靠層間或層內粘附(interlayer adhesion)來保持結構完整性;(2)構型的變化,包括每個平面彈簧元件所包含的旋轉次數或部分旋轉次數、在每個縱向層次(longitudinal level)上使用的共面交錯彈簧(co-planar interleaved springs)的數量、使用的縱向間隔彈簧的數量(例如,偶數、奇數等)、存在、不存在、數量、 以及/或沿螺旋長度發生的縱向光束轉變的位置,連續螺旋的旋轉方向(例如,CW-CW、CCW-CW、CW-CCW 或 CCW-CCW),尖端的形狀,以及/或懸臂梁的寬度和厚度;(3)使用非螺旋形或不包括螺旋特徵的平面彈簧構型;(4)使用支座,使上部以及/或下部彈簧模組相對於框架或基座在橫向或縱向上提供不同的定位;(5)使用更靠近探針的側面中央部分而不是探針外周的支座;(6)在該框架和基座結構中使用不同類型的框架或基座結構以及/或開口以及/或框架或基座結構的縱向定位; (7)使用多部分基座,該基座被分成兩個或多個縱向分離的元件,這些元件在多個縱向層次上連接各支座;(8)使用兩個以上支座;(9) 使用環繞探針周長一半以上的單一支座,(10) 使用包含孔或網格狀構型的支座來增強對探針內部部分的進入(例如,用於製造相關目的,例如蝕刻移除犧牲材料或清潔目的); (11) 使用的基座不僅包括縱向分離的元件,還包括橫向分離的元件,例如,可以給定的旋轉方向插入一個或多個陣列框架元件的開口中,達到一定的縱向層面,然後繞縱軸旋轉以將探針和框架元件鎖定在一起或允許進一步插入(例如, 使用階梯式螺紋嚙合構型);以及(12) 使用一個以上之上部以及/或一個以上之下部順應元件。進一步的評論和結論:Many variations of the embodiments of FIGS. 3A1-3E7-B are possible, including, for example: (1) using the same or different materials for different portions of the probe, including, in certain variations, incorporating one or more dielectric materials and/or different materials interlocking with each other rather than relying solely on interlayer or intralayer adhesion to maintain structural integrity; (2) variations in configuration, including the number of rotations or partial rotations contained in each planar spring element, the number of co-planar interleaved springs used at each longitudinal level, the number of longitudinally spaced springs used (e.g., even, odd, etc.), the presence, absence, number, and/or location of longitudinal beam transitions occurring along the length of the helix, the direction of rotation of the continuous helix (e.g., CW-CW, CCW-CW, CW-CCW, etc.); or CCW-CCW), the shape of the tip, and/or the width and thickness of the cantilever beam; (3) using a planar spring configuration that is not helical or does not include helical features; (4) using supports that provide different lateral or longitudinal positioning of the upper and/or lower spring modules relative to the frame or base; (5) using supports that are closer to the central portion of the side of the probe than to the periphery of the probe; (6) using different types of frame or base structures and/or openings and/or longitudinal positioning of the frame or base structures in the frame and base structures; (7) using a multi-part base that is divided into two or more longitudinally separated elements that connect the supports at multiple longitudinal levels; (8) using more than two supports; (9) using a single support that surrounds more than half of the circumference of the probe, (10) Use of supports containing holes or grid-like configurations to enhance access to internal portions of the probe (e.g., for manufacturing-related purposes such as etching to remove sacrificial material or for cleaning purposes); (11) Use of bases that include not only longitudinally separated elements but also transversely separated elements, for example, which can be inserted into an opening of one or more array frame elements at a given rotational orientation, reach a certain longitudinal level, and then rotated about the longitudinal axis to lock the probe and frame elements together or allow further insertion (e.g., using a stepped thread engagement configuration); and (12) Use of more than one upper and/or more than one lower compliant element.Further comments and conclusions:
上面已經提出了許多實施例,但是在不偏離本發明精神的情況下,可以進行許多附加實施例。這些附加實施例中的一些可以基於本文中的教導與先前技術的各種教導的組合。一些製造實施例可使用多層電化學沉積程序,而其他實施例或可不使用。一些實施例可使用選擇性沉積和毯子沉積程序(blanket deposition process )的組合,而另一些實施例可不使用兩者,而另一些實施例可使用不同程序的組合。例如,一些實施例可不使用任何毯子沉積程序以及/或它們可不使用平坦化程序(planarization process)來形成連續層。一些實施例可以在一些非電沉積程序的層上使用選擇性沉積程序或毯子沉積程序。一些實施例,例如,可以使用鎳(Ni)、鎳磷(Ni-P)、鎳鈷(NiCo)、金(Au)、銅(Cu)、錫(Sn)、銀(Ag)、鋅(Zn)、焊料、銠(Rh)、錸(Re)、鈹銅(BeCu)、鎢 (W)、錸鎢(ReW)、鋁銅(AlCu)、鈀(Pd)、鈀鈷(PdCo)、鉑(Pt)、鉬(Mo)、錳(Mn)、鋼、P7合金、黃銅、鉻(Cr)、鉻(chrome)、 鉻銅(CrCu)、其它鈀合金、銅銀合金,作為結構材料或犧牲材料,而其他實施例可以使用不同的材料。例如,上述一些材料可以優先用於其彈簧性能,而另一些材料可以用於其增強的導電性、耐磨性、阻隔性(barrier)、熱性能(例如,高溫下的屈服強度或高導熱性),而有些材料可以因其粘合特性、與其他材料的可分離性而被選中, 甚至選擇用於所需應用或用途中的其他利益特性(characteristics of interest)。其它實施例可使用不同的材料或不同的材料組合,包括電介質(例如,陶瓷、塑膠、光刻膠(photoresist)、聚醯亞胺(polyimide)、玻璃、陶瓷或其它聚合物),其他金屬、半導體等作為結構材料、犧牲材料或圖案材料(patterning materials)。例如,一些實施例可以使用銅、錫、鋅、焊料、光刻膠或其它材料作為犧牲材料。一些實施例可以在不同的各層或各單層的不同部分上使用不同的結構材料。一些實施例可除去犧牲材料,而其他實施例則可不。一些實施例可以形成探針結構,而其他實施例可以將本發明的彈簧模組用於非探測目的(non-probing purposes)(例如,以所需彈簧力或順應嚙合用來偏置其他操作裝置)。Many embodiments have been presented above, but many additional embodiments may be performed without departing from the spirit of the invention. Some of these additional embodiments may be based on a combination of the teachings herein with various teachings of the prior art. Some manufacturing embodiments may use multi-layer electrochemical deposition processes, while other embodiments may not. Some embodiments may use a combination of selective deposition and blanket deposition processes, while other embodiments may not use both, and other embodiments may use a combination of different processes. For example, some embodiments may not use any blanket deposition processes and/or they may not use a planarization process to form continuous layers. Some embodiments may use a selective deposition process or a blanket deposition process on some layers of non-electrochemical deposition processes. Some embodiments, for example, may use nickel (Ni), nickel phosphorus (Ni-P), nickel cobalt (NiCo), gold (Au), copper (Cu), tin (Sn), silver (Ag), zinc (Zn), solder, rhodium (Rh), ruthenium (Re), benzene copper (BeCu), tungsten (W), ruthenium tungsten (ReW), aluminum copper (AlCu), palladium (Pd), palladium cobalt (PdCo), platinum (Pt), molybdenum (Mo), manganese (Mn), steel, P7 alloy, brass, chromium (Cr), chromium (chrome), chromium copper (CrCu), other palladium alloys, copper-silver alloys, as structural materials or sacrificial materials, while other embodiments may use different materials. For example, some of the above materials may be preferred for their spring properties, while others may be preferred for their enhanced conductivity, wear resistance, barrier properties, thermal properties (e.g., yield strength at high temperatures or high thermal conductivity), and some materials may be selected for their bonding properties, separability from other materials, or even other characteristics of interest in the desired application or use. Other embodiments may use different materials or different combinations of materials, including dielectrics (e.g., ceramics, plastics, photoresists, polyimides, glasses, ceramics or other polymers), other metals, semiconductors, etc. as structural materials, sacrificial materials or patterning materials. For example, some embodiments may use copper, tin, zinc, solder, photoresists or other materials as sacrificial materials. Some embodiments may use different structural materials on different layers or different parts of each single layer. Some embodiments may remove sacrificial material, while others may not. Some embodiments may form a probe structure, while others may use the spring module of the present invention for non-probing purposes (e.g., to bias other operating devices with a desired spring force or compliance).
習於本領域技術人員可以理解,額外的操作可用於實現上述實施例或用於上述實施例的變體。例如,這些額外的操作可以提供:(1)表面清潔,(2)表面活化,(3)熱處理(例如,改善層間附著力(interlayer adhesion),改善所選材料的性能或探針的特徵,例如屈服強度,彈簧常數等),(4)提供保形塗層(conformal coatings),(5) 提供表面平滑、粗糙化或其他表面處理, (6) 提供表面紋理(surface texture), (7) 提供初級材料(primary materials)與輔助材料(secondary materials)的摻雜(doping),以提供改進的材料性能,以及/或提供 (8) 過程監控、測試以及/或測量,以確保根據規格或其他要求(可能由客戶、使用者、品 質標準測試,或由過程操作員自己定義的過程標準)作為確保提供給客戶或最終使用者的製造零件或產品功能齊全並滿足所有要求的一部分。It will be appreciated by those skilled in the art that additional operations may be used to implement the above-described embodiments or variations thereof. For example, these additional operations may provide: (1) surface cleaning, (2) surface activation, (3) thermal treatment (e.g., to improve interlayer adhesion, improve the properties of the selected material or the characteristics of the probe, such as yield strength, spring constant, etc.), (4) providing conformal coatings, (5) providing surface smoothing, roughening or other surface treatment, (6) providing surface texture, (7) providing doping of primary materials with secondary materials to provide improved material properties, and/or providing (8) process monitoring, testing and/or measurement to ensure that the material is produced in accordance with specifications or other requirements (which may be determined by customers, users, product manufacturers, etc.). Quality standards, or process standards defined by the process operator themselves) as part of ensuring that the manufactured parts or products provided to the customer or end user are fully functional and meet all requirements.
還可以理解,本發明的某些方面的探針元件可以藉由與本文所述的過程截然不同的過程形成,並且不打算本發明的結構方面需要僅由本文所教導的那些過程或由本文所教導的那些顯而易見的過程形成。It will also be appreciated that probe elements of certain aspects of the present invention may be formed by processes other than those described herein, and it is not intended that structural aspects of the present invention need be formed only by those processes taught herein or by processes that are obvious from the teachings herein.
儘管本說明書的各個部分都提供了標頭,但並不打算使用標頭來限制在說明書某一部分中找到的教導作為說明其他部份的應用。例如,與一個實施例相關的替代物旨在適用於所有實施例,只要不同實施例的特徵使這種應用具有功能性,並且不以其他方式與所採用的實施例的所有優點相矛盾或消除。Although headings are provided for various sections of this specification, it is not intended that the headings be used to limit the application of teachings found in one section of the specification as describing other sections. For example, a substitute related to one embodiment is intended to apply to all embodiments, as long as the features of the different embodiments make such application functional and do not otherwise contradict or eliminate all advantages of the adopted embodiment.
本文所載的本發明的任何方面均代表獨立的發明描述,申請人認為這些描述是申請人認為可以作為獨立權利要求提出的全部和完整的發明描述,而無需從此處所提出的其他實施例或方面中引入額外的限制或元件,以進行解釋或澄清,除非在此類獨立權利要求中明確敘述。另可以理解的是,本文所述方面的任何變化都代表單個和各別的特徵,這些特徵(如果它們被寫成)可以形成單獨的獨立權利要求,可以單獨添加到獨立權利要求中,或作為從屬權利要求添加,以進一步定義這些各自從屬權利要求所要求的發明。Any aspect of the invention set forth herein represents an independent invention description, which the applicant considers to be the full and complete invention description that the applicant considers to be capable of being presented as an independent claim, without introducing additional limitations or elements from other embodiments or aspects presented herein for explanation or clarification unless expressly stated in such independent claim. It is also understood that any variation of the aspects described herein represents individual and separate features, which (if they were written) could form separate independent claims, could be added separately to independent claims, or could be added as dependent claims to further define the invention claimed in these respective dependent claims.
鑒於本文的教導,對於習於本領域技術人員來說,許多進一步的實施例、設計的替代、和本發明的各實施例的使用將是顯而易見的。因此,無意局限本發明於上述描述的特定說明性實施例、替代物和用途,而是僅受下文提出的權利要求的限制。In view of the teachings herein, many further embodiments, design alternatives, and uses of the various embodiments of the present invention will be apparent to those skilled in the art. Therefore, the present invention is not intended to be limited to the specific illustrative embodiments, alternatives, and uses described above, but is only limited by the claims set forth below.
82:基板 84:光刻膠 86:光刻膠表面 88:表面 92(a):開口 92(b):開口 92(c):開口 94:第一金屬 96:第二金屬 200A:彈簧模組 200B:彈簧模組 200C:探針 201:基座 211:橋架 221-1:彈簧元件 221-2:彈簧元件 231:尖端結構 3400:探針 3401:基座 3409:虛線對準元件 3411-1:上部支座 3411-2:上部支座 3412-1:下部支座 3412-2:下部支座 3413-1:第一中間部分 3413-2:第一中間部分 3414-1:第二中間部分 3414-2:第二中間部分 3421-1L:彈簧元件 3421-2L:彈簧元件 3421-3L:彈簧元件 3421-4L:彈簧元件 3421-UC:上部順應元件 3421-LC:下部順應元件 3421-1U:彈簧元件 3421-2U:彈簧元件 3421-3U:彈簧元件 3421-4U:彈簧元件 3431-U:上部探針尖端 3431-UA:探針尖端臂元件 3431-L:下部探針尖端 3431-LA:下部尖端臂 L1 - L17:層 CS:彈簧線圈間距 MG:模組間隙 MH:模組高度 MW:模組總徑向直徑 SG:間隙 SH:彈簧高度 SW:彈簧寬度 TH:尖端高度 TW:尖端寬度82: substrate84: photoresist86: photoresist surface88: surface92 (a): opening92 (b): opening92 (c): opening94: first metal96: second metal200A: spring module200B: spring module200C: probe201: base211: bridge221-1: spring element221-2: spring element231: tip structure3400: probe3401: base3409: dashed line alignment element3411-1: upper support3411-2: upper support3412-1: lower support3412-2: lower support3413-1: First middle section3413-2: First middle section3414-1: Second middle section3414-2: Second middle section3421-1L: Spring element3421-2L: Spring element3421-3L: Spring element3421-4L: Spring element3421-UC: Upper compliant element3421-LC: Lower compliant element3421-1U: Spring element3421-2U: Spring element3421-3U: Spring element3421-4U: Spring element3431-U: Upper probe tip3431-UA: Probe tip arm element3431-L: Lower probe tip3431-LA: Lower tip armL1 - L17: LayerCS: Spring coil spacingMG: Module gapMH: Module heightMW: Module total radial diameterSG: GapSH: Spring heightSW: Spring widthTH: Tip heightTW: Tip width
圖1A-1F示意性地描繪了使用粘附掩模鍍層(adhered mask plating)形成一結構的一第一層,其中一第二材料的毯狀沉積(blanket deposition)覆蓋了一第一材料的各沉積位置(deposition locations)和該第一材料本身之間的各開口。1A-1F schematically illustrate the use of adhered mask plating to form a first layer of a structure in which a blanket deposition of a second material covers openings between deposition locations of a first material and the first material itself.
圖1G描繪了藉由將沉積材料平坦化(planarizing the deposited materials)到所需水平(desired level)而導致的該第一層的造形完成。FIG. 1G depicts the completion of the patterning of the first layer by planarizing the deposited materials to a desired level.
圖1H和圖1I分別描繪了該結構的多層形成後和該結構從犧牲材料(sacrificial material)釋放後的過程狀態。FIG. 1H and FIG. 1I depict the process states after the multi-layer formation of the structure and after the structure is released from the sacrificial material, respectively.
圖2A描繪了具有兩個連接的彈簧元件、一個基座和一個連接支架或支座的一範例彈簧模組或順應模組的等角視圖(isometric view),該支架或支座可用於一探針或作為一探針。FIG. 2A depicts an isometric view of an example spring module or compliant module having two connected spring elements, a base, and a connected bracket or support that may be used with or as a probe.
圖2B描繪了可用於一探針或作為一探針的第二範例彈簧模組或順應模組的等角視圖,類似於圖2A的模組,不同之處在於兩個彈簧元件更厚,因此提供比圖2A元件一更大的彈簧常數(spring constant)。FIG. 2B depicts an isometric view of a second example spring module or compliant module that may be used in or as a probe, similar to the module of FIG. 2A , except that two spring elements are thicker, thereby providing a greater spring constant than element one of FIG. 2A .
圖2C描繪了包括多個彈簧模組的一探針的部分剖視圖。FIG2C depicts a partial cross-sectional view of a probe including multiple spring modules.
圖3A1 – 3C5提供了根據本發明的另一個實施例的一探針或一探針的一部分的各種等角視圖。Figures 3A1 - 3C5 provide various isometric views of a probe or a portion of a probe according to another embodiment of the present invention.
圖3D提供了圖3A1 – 3C5的探針的一側視圖,顯示了17個樣品層級,從中可以製造探針,其中並非所有層都具有獨特的構型。FIG. 3D provides a side view of the probe of FIGS. 3A1 – 3C5 , showing 17 sample layers from which the probe can be fabricated, not all of which have a unique configuration.
圖3E1-A至3E7-B描述了L1-L17層獨特構型的頂視圖(-A圖)和等角視圖(-B圖)中顯示的橫截面構型。Figures 3E1-A to 3E7-B describe the cross-sectional configuration shown in the top view (Figure -A) and isometric view (Figure -B) of the unique configuration of the L1-L17 layers.
3400:探針3400:Probe
3401:基座3401: Base
3411-1:上部支座3411-1: Upper support
3411-2:上部支座3411-2: Upper support
3412-1:下部支座3412-1: Lower support
3412-2:下部支座3412-2: Lower support
3413-1:第一中間部分3413-1: First middle section
3413-2:第一中間部分3413-2: First middle section
3421-1L:彈簧元件3421-1L: Spring element
3421-3L:彈簧元件3421-3L: Spring element
3421-4L:彈簧元件3421-4L: Spring element
3421-UC:上部順應元件3421-UC: Upper compliant element
3421-LC:下部順應元件3421-LC: Lower compliant element
3421-1U:彈簧元件3421-1U: Spring element
3421-2U:彈簧元件3421-2U: Spring element
3421-3U:彈簧元件3421-3U: Spring element
3421-4U:彈簧元件3421-4U: Spring element
3431-U:上部探針尖端3431-U: Upper probe tip
3431-L:下部探針尖端3431-L: Lower probe tip
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/967,548US20240103042A1 (en) | 2019-12-31 | 2022-10-17 | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes |
| US17/967,548 | 2022-10-17 | ||
| US17/968,638 | 2022-10-18 | ||
| US17/968,552 | 2022-10-18 | ||
| US17/968,552US12196781B2 (en) | 2019-12-31 | 2022-10-18 | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes |
| US17/968,601US12196782B2 (en) | 2019-12-31 | 2022-10-18 | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes |
| US17/968,638US20240094258A1 (en) | 2019-12-31 | 2022-10-18 | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes |
| US17/968,601 | 2022-10-18 |
| Publication Number | Publication Date |
|---|---|
| TW202417858Atrue TW202417858A (en) | 2024-05-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112126719ATW202433062A (en) | 2022-10-17 | 2023-07-18 | Probes with planar unbiased spring elements for electronic component contact |
| TW112126718ATW202417855A (en) | 2022-10-17 | 2023-07-18 | Probes with planar unbiased spring elements for electronic component contact |
| TW112138928ATW202417857A (en) | 2022-10-17 | 2023-10-12 | Probes with planar unbiased spring elements for electronic component contact |
| TW112138929ATW202417858A (en) | 2022-10-17 | 2023-10-12 | Probes with planar unbiased spring elements for electronic component contact |
| TW112138927ATW202433063A (en) | 2022-10-17 | 2023-10-12 | Probes with planar unbiased spring elements for electronic component contact |
| TW112139405ATW202433064A (en) | 2022-10-17 | 2023-10-16 | Probes with planar unbiased spring elements for electronic component contact |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112126719ATW202433062A (en) | 2022-10-17 | 2023-07-18 | Probes with planar unbiased spring elements for electronic component contact |
| TW112126718ATW202417855A (en) | 2022-10-17 | 2023-07-18 | Probes with planar unbiased spring elements for electronic component contact |
| TW112138928ATW202417857A (en) | 2022-10-17 | 2023-10-12 | Probes with planar unbiased spring elements for electronic component contact |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112138927ATW202433063A (en) | 2022-10-17 | 2023-10-12 | Probes with planar unbiased spring elements for electronic component contact |
| TW112139405ATW202433064A (en) | 2022-10-17 | 2023-10-16 | Probes with planar unbiased spring elements for electronic component contact |
| Country | Link |
|---|---|
| TW (6) | TW202433062A (en) |
| WO (6) | WO2024085933A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060006888A1 (en)* | 2003-02-04 | 2006-01-12 | Microfabrica Inc. | Electrochemically fabricated microprobes |
| US20080157793A1 (en)* | 2003-02-04 | 2008-07-03 | Microfabrica Inc. | Vertical Microprobes for Contacting Electronic Components and Method for Making Such Probes |
| KR20070017935A (en)* | 2003-12-12 | 2007-02-13 | 스미토모덴키고교가부시키가이샤 | Fine terminal, its manufacturing method, and contact sheet |
| TWI235837B (en)* | 2004-03-10 | 2005-07-11 | Mjc Probe Inc | Probe device and probe card using the same |
| KR101921291B1 (en)* | 2018-05-11 | 2019-02-13 | (주) 마이크로프랜드 | Semiconductor Device Test Socket |
| KR102678287B1 (en)* | 2021-11-08 | 2024-06-26 | 주식회사 에이엠에스티 | Test socket |
| CN119013568A (en)* | 2022-04-07 | 2024-11-22 | 微制造股份有限公司 | Probe with planar non-biased spring element for electronic component contact, method for manufacturing such a probe and method for using such a probe |
| Publication number | Publication date |
|---|---|
| TW202417857A (en) | 2024-05-01 |
| TW202433064A (en) | 2024-08-16 |
| WO2024086546A9 (en) | 2025-02-20 |
| WO2024086507A1 (en) | 2024-04-25 |
| WO2024086546A1 (en) | 2024-04-25 |
| WO2024086505A1 (en) | 2024-04-25 |
| WO2024085933A1 (en) | 2024-04-25 |
| WO2024086506A1 (en) | 2024-04-25 |
| TW202417855A (en) | 2024-05-01 |
| TW202433062A (en) | 2024-08-16 |
| TW202433063A (en) | 2024-08-16 |
| WO2024085934A1 (en) | 2024-04-25 |
| Publication | Publication Date | Title |
|---|---|---|
| US12196781B2 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US12196782B2 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US20240094258A1 (en) | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes | |
| US20240103042A1 (en) | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes | |
| EP4505189A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US20230349947A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US20230358785A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US20230314482A1 (en) | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes | |
| US20230243872A1 (en) | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes | |
| US20230243870A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202417858A (en) | Probes with planar unbiased spring elements for electronic component contact | |
| US20230243871A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| EP4505188A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| WO2023196436A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| JP2025511760A (en) | Probe with planar non-biased spring element for contacting electronic components, method for making same, and method for using same - Patents.com | |
| KR20240169674A (en) | Probe having a flat non-deflecting spring element for contacting electronic components, method of making such probe, and method of using such probe | |
| JP2025511736A (en) | Probe with planar non-biased spring element for contacting electronic components, method for making same, and method for using same - Patents.com | |
| TW202405454A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| JP2025514040A (en) | Probe with planar non-biased spring element for contacting electronic components, method for making same, and method for using same - Patents.com | |
| TW202405446A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes |