本發明的實施例是關於微探針(例如,用於晶圓級測試、或接口測試積體電路、或用於形成電性連接至PCB或其他電子組件),更特別是針腳狀微探針,亦即,微探針具有垂直或縱向高度遠大於其等寬度(例如,在某些實施例中大5倍,在其他實施例中大10倍,而在額外其他實施例中大20倍),或鈕扣狀探針,其中,當處於一未偏置狀態時,彈簧元件具有平面組態。在某些實施例中,至少部分透過電化學製造方法,更特別是透過多層多材料電化學製造方法來生產該些微探針,且其中,在某些實施例中,使用多個探針,而把持於陣列形式,包括一或多個板體,具有通孔接合該些探針及/或其他陣列保持結構的特徵。Embodiments of the present invention relate to microprobes (eg, for wafer level testing, or for interfacing to test integrated circuits, or for forming electrical connections to PCBs or other electronic components), and more particularly, pin-shaped microprobes , that is, the microprobe has a vertical or longitudinal height that is much greater than its equal width (e.g., 5 times larger in some embodiments, 10 times larger in other embodiments, and 20 times larger in additional other embodiments) , or button probe, wherein the spring element has a planar configuration when in an unbiased state. In certain embodiments, the microprobes are produced at least in part by electrochemical fabrication methods, more particularly by multi-layer multi-material electrochemical fabrication methods, and wherein, in certain embodiments, multiple probes are used, and It is held in the form of an array and includes one or more plates with through holes for connecting the probes and/or other array holding structures.
探針:Probe:
商業上已使用或提出許多電性接觸探針及針腳組態,某些可稱為先前技術,而其他則無法稱為先前技術。該些針腳、探針、及形成方法的例子例如記載於該些專利公開案第US 2005-0104609號、第US 2006-0006888號、第US 2005-0184748號、第US 2006-0108678號、第US 2006-0238209號、及專利第US 7,640,651號、第US 7,265,565號、第US 7,412,767號、第US 7,273,812號、第US 10,215,775號、第US 11,262,383號。Many electrical contact probes and pin configurations have been used or proposed commercially, some of which may be considered prior art and others which may not. Examples of the pins, probes, and forming methods are described in, for example, the patent publications No. US 2005-0104609, US 2006-0006888, US 2005-0184748, US 2006-0108678, and US 2006-0238209, and patents US 7,640,651, US 7,265,565, US 7,412,767, US 7,273,812, US 10,215,775, and US 11,262,383.
電化學製造:Electrochemical manufacturing:
過去及現在,位於加州凡奈斯的Microfabrica®股份有限公司(前身為MEMGen公司)於商業上,在稱為EFAB及MICA FREEFORM®的過程下,追求用於由多個貼合層來形成三維結構的電化學製造技術。In the past and present,Microfabrica® Inc. (formerly MEMGen Inc.) of Van Nuys, Calif., commercially pursues processes known as EFAB and MICAFREEFORM® for forming three-dimensional structures from multiple bonded layers. electrochemical manufacturing technology.
許多電化學製造技術描述於Adam Cohen的美國專利第6,027,630號,公告於2000年2月22日。Many electrochemical fabrication techniques are described in Adam Cohen's U.S. Patent No. 6,027,630, issued February 22, 2000.
使用電化學製造技術來形成微結構的另一方法教示於Henry Guckel的美國專利第5,190,637號,標題為「透過多層深度X光微影而以犧牲金屬層來形成微結構」。Another method of forming microstructures using electrochemical fabrication techniques is taught in Henry Guckel's US Patent No. 5,190,637, entitled "Microstructure formation by sacrificial metal layers by multi-layer depth X-ray lithography".
電化學製造以合理成本及合理時間來提供形成微型物體、部分、結構、裝置、及相似者的原型及量產的能力。事實上,電化學製造作為啟用者,形成迄今為止不可能生產的許多結構。電化學製造在許多工業領域敞開新設計及產品的譜系。雖然電化學製造提供此新能力,而可理解的是,電化學製造技術可結合在許多領域中已知的設計及結構,以生產新結構,電化學製造的特定運用提供在先前技術狀態中尚非已知或明顯的設計、結構、能力、及/或特徵。Electrochemical manufacturing provides the ability to prototype and mass-produce microscopic objects, parts, structures, devices, and the like at reasonable cost and time. In fact, electrochemical fabrication serves as an enabler for the formation of many structures that were hitherto impossible to produce. Electrochemical manufacturing opens up a spectrum of new designs and products in many industrial sectors. While electrochemical fabrication provides this new capability, it is understood that electrochemical fabrication techniques can be combined with designs and structures known in many fields to produce new structures. Design, structure, capabilities, and/or characteristics not known or apparent.
在許多領域中存在微型裝置的需求,以具有增進的特徵、減少的製造時間、減少的製造成本、簡化的製造過程、更大變通性於裝置設計、增進的材料選擇、增進的材料性質、更多成本效率及更少風險於生產該些裝置、及/或在幾何組態與選定的製造過程之間更多獨立性。There is a need in many fields for microdevices to have improved characteristics, reduced manufacturing time, reduced manufacturing costs, simplified manufacturing processes, greater flexibility in device design, enhanced material selection, improved material properties, more More cost efficiencies and less risk in producing these devices, and/or more independence between geometry and selected manufacturing processes.
本發明的某些實施例的目的是提供增進的探針陣列,包括探針,包括順應性元件,形成自多個順應性模組,包括未偏置時平面但非線性(亦即,非筆直)彈簧組態(亦即,該些彈簧組態並非沒有彎曲或角度的筆直桿體,但在提供彎曲或曲線的至少一層的平面中具有某些二維組態),其中,該些彈簧的該些平面垂直於該些探針的一縱向軸,並沿著該些探針的縱向軸提供順應性,其中,該些順應性模組以一串聯方式來堆疊。當偏置時,具有非線性彈簧組態的該些探針可提供線性彈簧回彈力或非線性回彈力。It is an object of certain embodiments of the present invention to provide enhanced probe arrays, including probes that include compliant elements formed from a plurality of compliant modules that include planar but non-linear (i.e., non-linear) when unbiased ) spring configurations (that is, spring configurations that are not straight rods without bends or angles, but have some two-dimensional configuration in a plane that provides at least one layer of bends or curves), where the springs have The planes are perpendicular to and provide compliance along a longitudinal axis of the probes, wherein the compliant modules are stacked in a series. When biased, these probes with non-linear spring configurations can provide linear spring rebound or non-linear spring rebound.
在本發明的一額外觀點中,一種方法,用於形成一探針,包括:(a)提供一第一探針模組,包括至少一第一間隔件及至少一第一順應性元件在實質上垂直於平面組態的一方向上提供順應性,是透過包括一當未偏置時呈二維實質上平面彈簧,其中,第一順應性元件的一第一部分在功能上結合至少一第一間隔件,而第一順應性元件的一第二部分在功能上結合一第一尖端臂,可相對於間隔件而彈性移動,其中,當第一順應性元件未偏置時,第一尖端臂直接或間接把持一第一尖端,縱向延伸超過至少一第一間隔件的第一端;及(b)提供一第二探針模組,包括至少一第一間隔件及至少一第二順應性元件在實質上垂直於平面組態的一方向上提供順應性,是透過包括一彈簧,其中,第二順應性元件的一第一部分在功能上結合至少一第二間隔件,而第二順應性元件的一第二部分在功能上結合一第二尖端臂,可相對於間隔件而彈性移動,其中,當第二順應性元件未偏置時,第二尖端臂直接或間接把持一第二尖端,縱向延伸超過至少一第二間隔件的第二端;及(c)將第一及第二模組橫向且縱向對齊於其等各自的尖端,彼此在實質上相反縱向方向上指向遠處,使得第一探針模組的至少一第一間隔件及第二探針模組的至少一第二間隔件直接或間接彼此結合,以將至少一第一順應性元件分隔自至少一第二順應性元件。In an additional aspect of the invention, a method for forming a probe includes: (a) providing a first probe module including at least a first spacer and at least a first compliant element in substance Compliance is provided in a direction perpendicular to the planar configuration by including a two-dimensional substantially planar spring when unbiased, wherein a first portion of the first compliant element functionally incorporates at least a first spacer member, and a second portion of the first compliant member functionally coupled to a first tip arm is resiliently movable relative to the spacer member, wherein when the first compliant member is not biased, the first tip arm directly or indirectly holding a first tip extending longitudinally beyond the first end of at least a first spacer; and (b) providing a second probe module including at least a first spacer and at least a second compliant element Compliance is provided in a direction substantially perpendicular to the planar configuration by including a spring, wherein a first portion of the second compliant element functionally engages the at least one second spacer and the second compliant element a second portion functionally coupled to a second tip arm resiliently movable relative to the spacer, wherein the second tip arm directly or indirectly holds a second tip longitudinally when the second compliant element is not biased extending beyond the second end of the at least one second spacer; and (c) aligning the first and second modules laterally and longitudinally with their respective tips pointing away from each other in substantially opposite longitudinal directions such that the At least a first spacer of a probe module and at least a second spacer of a second probe module are directly or indirectly coupled to each other to separate at least a first compliant element from at least a second compliant element .
本領域技術人員在閱讀本文的教示後可明白存在本發明的上述觀點的許多變化。Many variations of the above aspects of the present invention will become apparent to those skilled in the art upon reading the teachings herein.
特別是,替代實施例包括,例如:(1)第一及第二探針模組之至少一者亦包括其各自的至少一間隔件所結合的一基底,其中,基底位於至少一第一間隔件與至少一第二間隔件之間;(2)單獨觀點或結合於第一變化的觀點之中,結合該些探針模組包括一元件,選自下列所組成的群組:(A)施加一貼合材料於第一及第二模組之至少一者,然後使用貼合材料來將該些模組彼此結合;(B)在一逐層形成過程以建構各自的探針模組的期間,施加一貼合材料於該些探針模組之至少一者,然後結合該些探針模組;(C)使用超音波焊接來連結第一及第二探針模組;(D)使用雷射焊接來連結第一及第二探針模組;(E)使用一硬焊過程來連結第一及第二探針模組;(F)使用一軟焊過程來連結該些探針模組;(G)使用第一模組的特徵與第二模組的特徵之間的摩擦來將第一及第二探針模組至少暫時彼此結合;(H)將第一及第二模組至少暫時彼此結合,是使用至少一運動,選自下列所組成的群組:(i)橫向運動、(ii)縱向運動、(iii)旋轉運動、及(iv)該些運動之結合,其中,第一及第二模組發生互鎖;(I)將第一及第二模組至少暫時彼此結合,是使用至少一運動,選自下列所組成的群組:(i)橫向運動、(ii)縱向運動、(iii)旋轉運動、及(iv)該些運動之結合,其中,第一及第二探針模組發生互鎖,是透過接合一或多個凹陷特徵;(J)將第一及第二探針模組至少暫時彼此結合,是使用至少一運動,選自下列所組成的群組:(i)橫向運動、(ii)縱向運動、(iii)旋轉運動、及(iv)該些運動之結合,其中,第一及第二探針模組發生互鎖,是透過接合一或多個干擾特徵;及(K)將第一及第二探針模組至少暫時彼此結合,是使用至少一運動,選自下列所組成的群組:(i)橫向運動、(ii)縱向運動、(iii)旋轉運動、及(iv)該些運動之結合,其中,第一及第二探針模組發生互鎖,是透過將該些探針模組之一者的一彈性順應性元件接合於另一探針模組的一特徵,其中,接合選自下列所組成的群組:(i)彼此干擾的特徵、(ii)彼此凹陷的特徵、及(iii)彼此摩擦接合的特徵;(3)單獨或結合於一或多個上述該些變化的觀點之中,一探針模組的至少一特徵接觸另一探針模組的至少一特徵提供該些模組的一固定相遇位置;(4)第三變化之中,一探針模組的至少一特徵包括多個特徵,而另一探針模組的至少一特徵提供多個特徵,提供硬止動件;(5)第四變化之中,各探針模組的該些特徵包括各探針模組的至少三個特徵;(6)第五變化之中,各探針模組的至少三個特徵包括各探針模組的至少四個特徵;(7)第四變化之中,提供多個硬止動件的該些特徵提供對齊止動件,是沿著:(A)至少一橫向方向、(B)位於一縱向方向、(C)至少一方向,而位於至少二個分離點不一致於至少一方向、(D)至少一方向,而位於至少三個分離點不共線,且其中沒有成對之點一致於至少一方向、(E)至少二個垂直橫向方向、(F)二個垂直方向、(G)至少一方向及一旋轉、(H)至少二個垂直方向及至少一旋轉、(I)至少三個垂直方向及至少一旋轉、(J)至少一方向及至少二個垂直旋轉、及(K)至少一方向性及三個垂直旋轉、(8)一探針,具有任何該些觀點或一上述變化的該些結構特徵、(9)一陣列,具有第八變化的一探針、及(10)第九變化之中,陣列包括多個分隔且定向之探針。In particular, alternative embodiments include, for example: (1) at least one of the first and second probe modules also includes a substrate to which their respective at least one spacer is combined, wherein the substrate is located at at least a first spacer between the member and at least one second spacer; (2) From a separate point of view or in combination with the first variation of the point of view, the probe modules include a component selected from the group consisting of: (A) Applying a bonding material to at least one of the first and second modules, and then using the bonding material to bond the modules to each other; (B) constructing the respective probe modules in a layer-by-layer forming process During this period, a bonding material is applied to at least one of the probe modules, and then the probe modules are combined; (C) Ultrasonic welding is used to connect the first and second probe modules; (D) Use laser welding to connect the first and second probe modules; (E) Use a brazing process to connect the first and second probe modules; (F) Use a soft soldering process to connect the probes module; (G) using friction between features of the first module and features of the second module to at least temporarily couple the first and second probe modules to each other; (H) connecting the first and second modules Groups are at least temporarily combined with each other by using at least one movement selected from the group consisting of: (i) transverse movement, (ii) longitudinal movement, (iii) rotational movement, and (iv) combinations of these movements, where , the first and second modules are interlocked; (I) the first and second modules are at least temporarily coupled to each other using at least one movement selected from the group consisting of: (i) lateral movement, ( ii) longitudinal motion, (iii) rotational motion, and (iv) a combination of these motions in which the first and second probe modules interlock by engaging one or more recessed features; (J) The first and second probe modules are at least temporarily coupled to each other using at least one movement selected from the group consisting of: (i) lateral movement, (ii) longitudinal movement, (iii) rotational movement, and (iv) ) a combination of movements in which the first and second probe modules interlock by engaging one or more interfering features; and (K) at least temporarily engaging the first and second probe modules with each other , using at least one movement selected from the group consisting of: (i) transverse movement, (ii) longitudinal movement, (iii) rotational movement, and (iv) a combination of these movements, wherein the first and second Two probe modules are interlocked by bonding a resiliently compliant element of one of the probe modules to a feature of the other probe module, where the bond is selected from the group consisting of: : (i) features that interfere with each other, (ii) features that are recessed with each other, and (iii) features that are frictionally engaged with each other; (3) alone or in combination with one or more of these changing perspectives, a probe At least one feature of the module contacts at least one feature of another probe module to provide a fixed meeting position of the modules; (4) In the third variation, at least one feature of a probe module includes multiple features , and at least one feature of another probe module provides a plurality of features, providing a hard stop; (5) In a fourth variation, the features of each probe module include at least three features of each probe module features; (6) in the fifth variation, at least three features of each probe module include at least four features of each probe module; (7) in the fourth variation, a plurality of hard stops are provided These features provide alignment stops along: (A) at least one transverse direction, (B) in a longitudinal direction, (C) at least one direction, and at least two separation points are inconsistent with at least one direction, (D) At least one direction, and at least three separation points are not collinear, and no paired points are consistent with at least one direction, (E) At least two perpendicular and transverse directions, (F) Two perpendicular directions, ( G) at least one direction and one rotation, (H) at least two vertical directions and at least one rotation, (I) at least three vertical directions and at least one rotation, (J) at least one direction and at least two vertical rotations, and ( K) at least one directionality and three vertical rotations, (8) a probe having any of the viewpoints or a variation of the structural features described above, (9) an array having a probe of the eighth variation, and (10) In a ninth variation, the array includes a plurality of spaced and oriented probes.
本領域技術人員在閱讀本文的教示後可理解本發明的其他觀點。本發明的其他觀點可包括本發明的上述該些觀點的結合。本發明的其他觀點可提供上述提及的觀點的許多結合,並提供上文未具體記載,但由本文所記載的其他具體教示所教示、由本說明書整體所記載的教示、或由透過引用而納入本文的教示所教示的其他組態、結構、功能性關係、及過程。Those skilled in the art will understand other aspects of the invention after reading the teachings herein. Other aspects of the invention may include combinations of the above aspects of the invention. Other aspects of the present invention may provide many combinations of the above-mentioned aspects, and may provide teachings not specifically described above but taught by other specific teachings recorded herein, by the teachings recorded in this specification as a whole, or incorporated by reference. Other configurations, structures, functional relationships, and processes are taught by the teachings herein.
一般電化學製造General electrochemical manufacturing
圖1A至圖1I繪示一範例多層多材料電化學製造過程的許多狀態的側視圖。圖1A至圖1G繪示在一多層製造過程中形成單一層的許多階段,其中,一第二金屬沉積於一第一金屬及第一金屬的開口,使得第一及第二金屬形成該層的部分。圖1A顯示具有一表面88的一基板82的一側視圖,可圖案化光阻84位於其上,如圖1B所示。圖1C顯示透過將光阻固化、曝光、並顯影而來的一光阻圖案。將光阻84圖案化導致開口或開孔92(a)至92(c)自光阻的一表面86經由光阻的厚度而延伸至基板82的表面88。在圖1D中,一金屬94(例如,鎳)呈現為已電鍍於該些開口92(a)至92(c)中。在圖1E中,光阻已自基板移除(亦即,以化學方式或剝離),以將基板82未覆蓋有第一金屬94的區域曝光。在圖1F中,一第二金屬96(例如,銀)呈現為已覆蓋電鍍於基板82(可導電)的整個曝光部分及第一金屬94(亦可導電)。圖1G顯示完成結構的第一層,是透過將第一及第二金屬平面化而低至一高度而來,以將第一金屬曝光,並設定第一層的一厚度。圖1H顯示多次重複圖1B至圖1G所顯示的該些過程步驟以形成多層結構的結果,其中,各層由二個材料所組成。針對大部分應用,移除該些材料之一者,如圖1I所示,產生一所需3D結構98(例如,組件或裝置)或多個該些結構。1A-1I illustrate side views of various states of an exemplary multi-layer multi-material electrochemical fabrication process. Figures 1A-1G illustrate the stages of forming a single layer in a multi-layer manufacturing process in which a second metal is deposited over a first metal and openings in the first metal such that the first and second metals form the layer part. Figure 1A shows a side view of a substrate 82 having a surface 88 on which patternable photoresist 84 is located, as shown in Figure 1B. Figure 1C shows a photoresist pattern formed by curing, exposing, and developing the photoresist. Patterning the photoresist 84 results in openings or apertures 92(a)-92(c) extending from a surface 86 of the photoresist through the thickness of the photoresist to a surface 88 of the substrate 82. In FIG. 1D, a metal 94 (eg, nickel) is shown electroplated in the openings 92(a)-92(c). In FIG. 1E , the photoresist has been removed from the substrate (ie, chemically or stripped) to expose areas of substrate 82 not covered with first metal 94 . In FIG. 1F, a second metal 96 (eg, silver) is shown covering the entire exposed portion of the electroplated substrate 82 (which is electrically conductive) and the first metal 94 (which is also electrically conductive). Figure 1G shows the first layer of the completed structure by planarizing the first and second metals down to a height to expose the first metal and set a thickness of the first layer. Figure 1H shows the result of repeating the process steps shown in Figures 1B to 1G multiple times to form a multi-layered structure, where each layer is composed of two materials. For most applications, removal of one of the materials, as shown in FIG. 1I, produces a desired 3D structure 98 (eg, component or device) or a plurality of such structures.
本發明的許多觀點的許多實施例是關於自材料形成三維結構,其等某些或全部可為電沉積或無電沉積(如圖1A至圖1I的例子所示,並如透過引用而納入本文的許多專利申請案所討論)。某些該些結構可形成自單一構建水平,形成自一或多個沉積材料,而其他形成自多個構建水平,各包括至少二個材料(例如,二或更多層,更佳是五或更多層,最佳是十或更多層)。在某些實施例中,層的厚度可小至1微米或大至5微米。在其他實施例中,可使用更薄層,而在其他實施例中,可使用更厚層。在某些實施例中,微尺度結構具有橫向特徵定位成0.1至10微米等級的精度,及最小特徵尺寸為數微米至數十微米數量級。在其他實施例中,可形成具有更不精準特徵放置及/或更大最小特徵的結構。在額外其他實施例中,可能需要更高精度及更小最小特徵尺寸。在本申請案中,中尺度及毫米尺度具有相同意義,而涉及的裝置可具有一或多個尺寸,可延伸至0.5至50毫米的範圍或以上,及特徵定位成在微米至100微米的範圍中的精度且為數十微米至數百微米數量級的最小特徵尺寸。Many embodiments of the many aspects of the invention relate to forming three-dimensional structures from materials, some or all of which may be electrodeposited or electroless (as shown in the examples of FIGS. 1A-1I and incorporated herein by reference). discussed in many patent applications). Some of these structures may be formed from a single build level, from one or more deposited materials, while others are formed from multiple build levels, each including at least two materials (e.g., two or more layers, and more preferably five or more). multiple layers, preferably ten or more). In certain embodiments, the thickness of the layer may be as small as 1 micron or as high as 5 microns. In other embodiments, thinner layers may be used, and in other embodiments, thicker layers may be used. In certain embodiments, microscale structures have lateral feature positioning accuracy on the order of 0.1 to 10 microns, and minimum feature sizes on the order of several microns to tens of microns. In other embodiments, structures with less precise feature placement and/or larger minimum features may be formed. In still other embodiments, higher accuracy and smaller minimum feature sizes may be required. In this application, mesoscale and millimeter scale have the same meaning, and the devices involved may have one or more dimensions extending into the range of 0.5 to 50 mm or more, with features positioned in the range of microns to 100 microns. accuracy and minimum feature sizes on the order of tens to hundreds of microns.
本文所揭露的許多實施例、替代例、及技術可使用單一圖案化技術於全部層或使用不同圖案化技術於不同層而形成多層結構。例如,本發明的許多實施例可執行選擇性圖案化操作,是使用一致性接觸遮罩及遮罩操作(亦即,操作所使用的遮罩接觸於但非貼合於一基板)、接近式遮罩及遮罩操作(亦即,操作所使用的遮罩至少部分選擇性遮蔽一基板,是透過其等接近於基板,即使沒有形成接觸)、非一致性遮罩及遮罩操作(亦即,遮罩及操作是基於接觸表面並非明顯一致的遮罩)、及/或貼合遮罩及遮罩操作(遮罩及操作所使用的遮罩貼合於其上發生選擇性沉積或蝕刻的一基板,而不只是接觸之)。一致性接觸遮罩、接近式遮罩、及非一致性接觸遮罩共有的性質是其等被執行並帶去或接近於一待處理表面(亦即,待處理表面的該些曝光部分)。該些遮罩一般可移除,而不破壞遮罩或其等接觸或位置接近的接受處理之表面。貼合遮罩一般形成於待處理表面(亦即,待遮罩表面的部分),並連結於該表面,使得其等若不完全摧毀或破壞至超出再使用的任何程度則無法分離自該表面。貼合遮罩可以許多方式來形成,包括:(1)透過應用一光阻,將光阻選擇性曝光,然後將光阻顯影,(2)選擇性轉印預圖案化遮罩材料,及/或(3)自電腦控制材料沉積直接形成遮罩。在某些實施例中,貼合遮罩材料可使用作為該層的一犧牲材料或可使用只作為一遮罩材料,在將一層形成完成前替代成另一材料(例如,介電質或導電材料),其中,替代材料可視為各自的層的犧牲材料。在將材料沉積至其中包括的空洞或開口前或後,遮罩材料可或可不平面化。Many of the embodiments, alternatives, and techniques disclosed herein can form multi-layer structures using a single patterning technique on all layers or using different patterning techniques on different layers. For example, many embodiments of the present invention may perform selective patterning operations using consistent contact masks and mask operations (i.e., operations using masks that are in contact with but not adhered to a substrate), proximity Masking and masking operations (i.e., operations in which a mask is used to selectively mask at least part of a substrate through its proximity to the substrate, even if no contact is made), non-uniform masking and masking operations (i.e., , masks and operations are based on masks with contact surfaces that are not obviously consistent), and/or bonded masks and mask operations (mask used in masking and operations are bonded to the mask on which selective deposition or etching occurs a substrate, not just touching it). A common property of consistent contact masking, proximity masking, and non-conforming contact masking is that they are performed with or close to a surface to be treated (ie, the exposed portions of the surface to be treated). These masks are generally removable without damaging the mask or the surface being treated that it contacts or is in close proximity to. Adherent masks are generally formed on the surface to be treated (that is, the portion of the surface to be masked) and are attached to the surface in such a way that they cannot be separated from the surface without completely destroying or damaging it to any extent beyond reuse. . Bonded masks can be formed in many ways, including: (1) by applying a photoresist, selectively exposing the photoresist, and then developing the photoresist, (2) selectively transferring pre-patterned masking materials, and/ or (3) direct mask formation from computer-controlled material deposition. In some embodiments, the conformal mask material may be used as a sacrificial material for the layer or may be used solely as a mask material and replaced with another material (e.g., dielectric or conductive) before the layer is formed. material), where the replacement material can be considered as the sacrificial material of the respective layer. The masking material may or may not be planarized before or after depositing the material into the cavities or openings contained therein.
圖案化操作可用於選擇性沉積材料及/或可用於選擇性蝕刻材料。選擇性蝕刻區域可透過覆蓋沉積或相似者來填充或選擇性填充不同所需材料。在某些實施例中,逐層建構可包括同時形成多層的部分。在某些實施例中,沉積形成於某些層級可導致沉積於其他層級的區域(亦即,設置於上下方邊界水平中而定義一不同層的幾何組態的區域)。使用選擇性蝕刻及/或交錯材料沉積於多層描述於Smalley的美國專利申請案第10/434,519號,申請日為2003年5月7日,如今為美國專利第7,252,861號,標題為「透過交錯層或透過選擇性蝕刻並填充空洞來電化學製造結構的方法及設備」。此引用申請案透過引用而納入本文。Patterning operations can be used to selectively deposit material and/or can be used to selectively etch material. The selectively etched areas may be filled or selectively filled with different desired materials by blanket deposition or the like. In some embodiments, layer-by-layer construction may include forming portions of multiple layers simultaneously. In some embodiments, deposition at certain levels may result in regions deposited at other levels (ie, regions disposed in upper and lower boundary levels that define a different layer geometry). The use of selective etching and/or staggered material deposition in multiple layers is described in Smalley's U.S. Patent Application No. 10/434,519, filed on May 7, 2003, now U.S. Patent No. 7,252,861, entitled "Through Interleaved Layers" Or methods and equipment for electrochemically fabricating structures by selectively etching and filling holes." This cited application is incorporated herein by reference.
其上可形成結構的暫時基板可為犧牲型(亦即,在將沉積材料分離的期間摧毀或破壞至其等無法再使用的程度)或非犧牲型(亦即,不摧毀或過度破壞,亦即,不破壞至其等可能無法再使用的程度,例如,具有一犧牲或釋放層,位於基板與形成的一結構的該些最初層之間)。非犧牲基板可視為可再使用,需要極少或不需要重工(例如,透過將一或多個選定的表面再平面化,或施加一釋放層,及相似者),雖然其等因許多理由而可或可不再使用。The temporary substrate on which structures may be formed may be sacrificial (i.e., destroyed or damaged during separation of the deposited material to the extent that it cannot be reused) or non-sacrificial (i.e., not destroyed or excessively damaged, and That is, not damaged to the point that they may no longer be usable, for example, having a sacrificial or release layer between the substrate and the initial layers of a formed structure). Non-sacrificial substrates can be considered reusable, requiring little or no rework (e.g., by replanarizing one or more selected surfaces, or applying a release layer, and the like), although they can be used for many reasons. may no longer be used.
本領域技術人員可理解的是,許多用語及觀念的定義可用於理解本發明的該些實施例(無論是針對該些裝置本身、形成該些裝置的某些方法、或使用該些裝置的某些方法)。本文討論某些該些用語及觀念,而其他用語則闡述於本申請案主張優先權及/或透過引用而納入本文的許多專利申請案(例如,美國專利申請案第16/584,818號)。It will be understood by those skilled in the art that many definitions of terms and concepts may be used to understand the embodiments of the invention (whether directed to the devices themselves, certain methods of forming the devices, or certain methods of using the devices). some methods). This article discusses some of these terms and concepts, while other terms are described in a number of patent applications to which this application claims priority and/or are incorporated herein by reference (eg, U.S. Patent Application No. 16/584,818).
本文所使用的「縱向」是指一探針的一長尺寸、探針的一端對端尺寸、或一尖端對尖端尺寸。縱向可指一一般筆直線,自探針的一端延伸至探針的另一端,或其可指一曲線或階梯路徑,具有一斜率甚或沿著探針的一高度變化方向。當涉及探針陣列或探針而其等將加載於一陣列組態時,縱向尺寸可指陣列的該些探針指向或延伸的一特別方向,但其亦可單純指陣列的整體高度,起始於一平面,包含第一端、尖端、或多個探針的基底,並延伸成垂直於其,直到一平面包含第二端、尖端、或該些探針的上方。使用的脈絡通常使得意義明確,特別是對於本領域技術人員而言。須表示,適用於本文的術語狹義解釋成提供的描述的該些細節或使用術語的脈絡所保證者。若不保證狹義解釋,則表示適用最廣合理解釋範圍。然而,若不保證狹義解釋,則表示適用最廣合理解釋範圍。As used herein, "longitudinal" refers to a long dimension of a probe, an end-to-end dimension of a probe, or a tip-to-tip dimension. The longitudinal direction may refer to a generally straight line extending from one end of the probe to the other end of the probe, or it may refer to a curved or stepped path, having a slope or even a direction along the height of the probe. When referring to probe arrays or probes that are to be loaded in an array configuration, the longitudinal dimension may refer to a particular direction in which the probes of the array point or extend, but it may also simply refer to the overall height of the array, e.g. Beginning in a plane containing the first end, tip, or base of the plurality of probes, and extending perpendicular thereto until a plane containing the second end, tip, or above the probes. The context used usually makes the meaning clear, especially to those skilled in the art. It is understood that the terms applicable herein are to be construed in the narrowest sense warranted by the details of the description provided or the context in which the term is used. If a narrow interpretation is not warranted, the broadest reasonable interpretation applies. However, if a narrow interpretation is not warranted, the broadest reasonable interpretation applies.
本文所使用的「橫向」相關於用語「縱向」。以層的堆疊觀之,橫向是指在各層中的一方向,或在各層中的二個垂直方向(亦即,位於一層的一平面中的一或多個方向,實質上垂直於一層疊方向)。當涉及探針陣列時,橫向一般具有一相似意義,亦即,一橫向尺寸一般是位於一平面的一尺寸,平行於陣列上方或下方的一平面(亦即,實質上垂直於縱向尺寸)。當涉及探針本身時,該些橫向尺寸可垂直於探針的一整個縱向軸、探針一局部縱向軸(亦即,局部橫向尺寸),或單純相似於針對陣列或層所提及的該些尺寸。使用的脈絡通常使得意義明確,特別是對於本領域技術人員而言。須表示,適用於本文的術語狹義解釋成提供的描述的該些細節或使用術語的脈絡所保證者。若不保證狹義解釋,則表示適用最廣合理解釋範圍。The term "horizontal" as used in this article is related to the term "vertical". From the perspective of stacking layers, transverse direction refers to one direction in each layer, or two perpendicular directions in each layer (that is, one or more directions in a plane of a layer that are substantially perpendicular to the direction of stacking) ). When referring to probe arrays, transversal generally has a similar meaning, that is, a transverse dimension is generally a dimension that lies in a plane, parallel to a plane above or below the array (i.e., substantially perpendicular to the longitudinal dimension). When referring to the probe itself, these lateral dimensions may be perpendicular to an entire longitudinal axis of the probe, to a local longitudinal axis of the probe (ie, a local lateral dimension), or simply similar to those mentioned for an array or layer. some sizes. The context used usually makes the meaning clear, especially to those skilled in the art. It is understood that the terms applicable herein are to be construed in the narrowest sense warranted by the details of the description provided or the context in which the term is used. If a narrow interpretation is not warranted, the broadest reasonable interpretation applies.
本文所使用的「實質上平行」意指某物平行或接近於平行,亦即,平行15°之內,較佳是平行10°之內,更佳是平行5°之內,最佳是平行1°之內。若使用用語而未澄清,則應該解釋成平行15°之內。當使用而具有具體澄清時,用語應該根據具體澄清來理解。As used herein, "substantially parallel" means that something is parallel or nearly parallel, that is, within 15° of parallel, preferably within 10° of parallel, more preferably within 5° of parallel, and most preferably within 5° of parallel. Within 1°. If the term is used without clarification, it should be interpreted to mean within 15° of parallel. When used with a specific clarification, the terms should be understood in light of the specific clarification.
本文所使用的「實質上垂直」或「實質上正交」意指某物垂直或接近於垂直,亦即,垂直15°之內,較佳是垂直10°之內,更佳是垂直5°之內,最佳是垂直1°之內。若使用用語而未澄清,則應該解釋成垂直15°之內。當使用而具有具體澄清時,用語應該根據具體澄清來理解。As used herein, "substantially vertical" or "substantially orthogonal" means that something is vertical or nearly vertical, that is, within 15° of vertical, preferably within 10° of vertical, and more preferably within 5° of vertical. Within, preferably within 1° vertically. If the term is used without clarification, it should be interpreted to mean within 15° of vertical. When used with a specific clarification, the terms should be understood in light of the specific clarification.
本文所使用的「實質上平面」,當涉及一表面時,是指一表面預定為平面,本領域技術人員可理解雖然可能存在某些瑕疵(亦即,當涉及毫米及微米尺度裝置作為本文所記載的該些主要裝置實施例時,瑕疵可能自平面度偏差達1至5微米,但本質上通常是次微米)。若使用用語而未澄清,則應該解釋成具有瑕疵自平面度偏差不超過5微米。當使用而具有具體澄清時,用語應該根據具體澄清來理解。當涉及一結構時,用語不是指無限薄的一結構,但是指形成有實質上為平面的上下表面的一結構,例如,一結構的各層的上下表面或成組相續形成之層,是使用多材料多層電化學製造方法來形成,特別是當各層經歷一平面化操作時,例如,研磨、飛切、化學機械平面化、旋壓鋪展、及相似者。在某些例子中,一實質上平面結構亦可隱含結構或結構的元件的高度或厚度很小,相較於結構在該二個垂直尺寸上的一尺寸(亦即,垂直涵蓋區與厚度的比值大於25,較佳是大於50,更佳是大於100,最佳是大於200)。若針對一結構來使用用語而未澄清,則應該解釋成上下兩表面符合實質上平面表面準則。在某些脈絡下,亦可適用一比值要求,亦即,一比值至少25。當針對一結構來使用而具有具體澄清時,用語應該根據具體澄清來理解。As used herein, "substantially planar", when referring to a surface, means that the surface is predetermined to be planar, although those skilled in the art will understand that certain imperfections may exist (i.e., when referring to millimeter and micron scale devices as referred to herein). For the major device embodiments described, defects may vary from flatness by as much as 1 to 5 microns, but are typically sub-micron in nature). If the term is used without clarification, it should be construed as having defects that deviate not more than 5 microns from flatness. When used with a specific clarification, the terms should be understood in light of the specific clarification. When referring to a structure, the term does not refer to a structure that is infinitely thin, but to a structure formed with upper and lower surfaces that are substantially planar. For example, the upper and lower surfaces of layers of a structure or groups of successive layers are used. Multi-material multilayers are formed by electrochemical fabrication methods, particularly when each layer undergoes a planarization operation, such as grinding, fly cutting, chemical mechanical planarization, spin spreading, and the like. In some instances, a substantially planar structure may also imply a structure or elements of a structure that have a very small height or thickness compared to one of the two vertical dimensions of the structure (i.e., the vertical footprint and thickness The ratio is greater than 25, preferably greater than 50, more preferably greater than 100, optimally greater than 200). If the term is used in relation to a structure without clarification, it should be interpreted to mean that the upper and lower surfaces meet the substantially planar surface criterion. In some contexts, a ratio requirement may also apply, that is, a ratio of at least 25. When used with respect to a structure with a specific clarification, the term should be understood in light of the specific clarification.
本文所使用的「相對剛性」是指二個結構元件之間的一剛性比較,當該二個結構元件遭受工作負載或應力時,其中,該些相對剛性結構元件應該經歷更少偏折或扭曲,相較於另一結構元件,至少少2倍,更佳是少5倍,最佳是少10倍。若針對一結構元件來使用用語而未澄清,則應該解釋成符合2倍的要求。當針對一結構元件來使用而具有具體澄清時,用語應該根據具體澄清來理解。As used herein, "relatively stiff" refers to a comparison of stiffness between two structural elements such that the relatively rigid structural element should experience less deflection or distortion when the two structural elements are subjected to operating loads or stresses. , at least 2 times less, preferably 5 times less, and most preferably 10 times less than another structural element. If the term is used in reference to a structural element without clarification, it should be interpreted to comply with the 2x requirement. When used with respect to a structural element with a specific clarification, the term should be understood in light of the specific clarification.
本文所使用的「非線性組態」是指一組態並非一筆直桿狀組態,特別是當適用於一物理結構或元件時。一非線性組態可為一組態本質上為二維或三維,具有特徵包括一或多個彎曲或曲線。例如,一平面非線性結構可為一平坦螺旋結構。當涉及彈簧時,本文所使用的一非線性組態不是指一力-偏折關係,除非具體且明確指出此一關係。As used herein, "nonlinear configuration" refers to a configuration that is not a straight rod-like configuration, especially when applied to a physical structure or component. A nonlinear configuration may be a configuration that is two or three dimensional in nature, with features including one or more bends or curves. For example, a planar nonlinear structure can be a flat spiral structure. When referring to springs, a nonlinear configuration as used herein does not refer to a force-deflection relationship unless such a relationship is specifically and clearly indicated.
探針具有平面彈簧模組:The probe has a flat spring module:
本發明的平面彈簧或平面順應性元件可以許多不同方式來形成,並採用許多不同組態。一般而言,該些順應性元件包括平面彈簧,具有部分以一懸臂或橋體方式而自一間隔件延伸至一尖端或尖端臂(例如,二個或以上的彈簧,起始自不同橫向間隔件位置,並結合於一共同尖端臂——本文一般稱為一或多個懸臂)於一間隙或開放區域,在正常操作期間,彈簧可在其中偏折。該些順應性部分一般具有二維非線性組態,在一橫向平面中,及一厚度延伸成垂直於平面(例如,在縱向方向上),其中,二維組態可為一梁結構的形式,具有一彎曲或含角度之組態,具有一長度遠大於其寬度,例如,在某些變化中,至少5、10、20、甚或50倍或以上,其中,厚度一般小於梁的長度,例如,在某些變化中,至少5、10、20、甚或50倍或以上,或彈簧元件的一橫向尺寸,例如,在某些變化中,2、5、10、甚或20倍或以上。在某些實施例中,該些組態的平面可平行於當該些探針或模組形成自多個貼合層時的層平面(例如,X-Y平面)。一彈簧的厚度(例如,在一Z方向上)可為單一層或可為多層厚度。在某些實施例中,順應性元件包括多個分隔之平面彈簧元件。The planar springs or planar compliant elements of the present invention can be formed in many different ways and in many different configurations. Generally, these compliant elements include planar springs with portions extending in a cantilever or bridge fashion from a spacer to a tip or tip arm (e.g., two or more springs starting at different lateral intervals) position and are coupled to a common tip arm (generally referred to herein as one or more cantilevers) in a gap or open area within which the spring can deflect during normal operation. The compliant portions generally have a two-dimensional nonlinear configuration, in a transverse plane, and a thickness extending perpendicular to the plane (e.g., in the longitudinal direction), where the two-dimensional configuration may be in the form of a beam structure. , having a curved or angular configuration, having a length much greater than its width, e.g., in some variations, at least 5, 10, 20, or even 50 times or more, where the thickness is generally less than the length of the beam, e.g. , in some variations, at least 5, 10, 20, even 50 times or more, or a transverse dimension of the spring element, for example, in some variations, 2, 5, 10, even 20 times or more. In certain embodiments, the planes of the configurations may be parallel to the layer plane (eg, the X-Y plane) when the probes or modules are formed from multiple lamination layers. The thickness of a spring (eg, in a Z direction) may be a single layer or may be multiple layer thicknesses. In certain embodiments, the compliant element includes a plurality of spaced apart planar spring elements.
在某些實施例中,該些順應性元件可包括平面彈簧元件,不只彼此結合於一間隔件或尖端結構,亦結合於該些端元件中間的位置。在某些該些實施例中,該些平面彈簧元件可起始自一端(例如,一間隔件或尖端臂),作為一或多個加厚彈簧,具有一相對高彈簧常數,接著透過移除最初彈簧結構上下方之間的某些中間彈簧材料而具備一減少之彈簧常數,使得起始為少數但厚平面順應性元件(例如,1個、2個、或3個元件)轉變成更多數更薄平面元件,其中,某些最初平面元件在到達另一端前分成2個、3個、4個、5個、或以上的更平面但更薄元件(例如,間隔件的一尖端臂),因此,例如,彈簧常數、力要求、超程、應力、應變、載流能力、整體尺寸、及其他操作參數可調整成符合一給定應用的要求。In some embodiments, the compliant elements may include planar spring elements bonded not only to each other in a spacer or tip structure, but also to intermediate locations on the end elements. In some of these embodiments, the planar spring elements may be initiated from one end (e.g., a spacer or tip arm) as one or more thickened springs with a relatively high spring constant and then removed by removing the initial Some intermediate spring material between the top and bottom of the spring structure has a reduced spring constant, allowing what starts as a small number of thick planar compliant elements (e.g., 1, 2, or 3 elements) to become a larger number Thinner planar elements in which some initially planar elements divide into 2, 3, 4, 5, or more planar but thinner elements (for example, a pointed arm of a spacer) before reaching the other end, Thus, for example, spring constants, force requirements, overtravel, stresses, strains, current carrying capabilities, overall dimensions, and other operating parameters can be adjusted to meet the requirements of a given application.
圖2至圖5E2之許多者包括元件符號,其中,相似元件符號用於表示不同實施例的相似結構或特徵。Many of FIGS. 2-5E2 include reference numerals, where similar reference numerals are used to represent similar structures or features of different embodiments.
範例彈簧模組顯示於圖2至圖3。圖2顯示一範例彈簧模組200的一等距視圖,具有二個未偏折彈簧元件221-1及221-2、一基底201分隔自該些彈簧元件、及一連接支撐件(例如,一間隔件或橋體)211架橋於該些彈簧元件與基底之間的一縱向模組間隙MG。在圖2的例子中,該二個彈簧元件之各者採用一平面徑向延伸之螺旋的形式,自徑向位移之橋體211延伸至一置中或軸向定位之尖端元件231,是透過尖端結構的一向下延伸部分。該些彈簧由一間隙SG來縱向分離。在此例中,橋體211將各彈簧元件的一端連接在一起,而一尖端元件231將該些彈簧元件的該些其他端連接在一起,是透過尖端結構的一延伸部分。尖端元件231形成有一所需寬度TW及所需尖端高度TH延伸於上彈簧上方,而各彈簧元件形成有一所需材料、梁厚度或彈簧高度SH、梁寬度或彈簧寬度SW、彈簧線圈之間的間隔CS、及線圈梁長度,以便彈簧偏折一所需量,而不超過形成其的結構及關聯之材料的一彈性偏折極限,而在其偏折範圍中提供一所需固定或可變化彈簧力。特別是,尖端的長度可使得一模組尖端可發生所需壓縮朝向基底,而基底、橋體、及彈簧元件不彼此干擾。在某些實施例中,例如,各模組的尖端的一最大行程距離可小至5 um(um = 微米)或以下或大至500 um(例如,25 um、50 um、100 um、或200 um)或以上。例如,某些實施例中,各模組的最大行程距離可為25 um至200 um,而在其他範例實施例中,各模組的最大行程距離可為50 um至150 um。在某些實施例中,尖端的最大行程距離可由一硬止動件來設定,是例如透過彈簧或尖端的偏折部分開始接觸於基底,是透過基底的一止動結構,或可透過接觸尖端的一表面(例如,一相鄰模組的表面)開始接觸於橋體的上部分。在其他實施例中,最大行程距離可為漸進式,是透過順應性彈簧或尖端部分開始接觸於一軟止動件或順應性降低結構。達成最大偏折(行程)的力可小至0.1公克力至大至20或以上的公克力。在某些實施例中,設定成0.5公克之力可為適當。在其他情形下,1公克、2公克、4公克、8公克、或以上可為適當。在某些實施例中,一模組高度(縱向尺寸)MH可設定成50 um或以下,而在其他情形下,一模組高度可設定成500 um或以上。在某些實施例中,整體模組徑向直徑或寬度MW可為100 um或以下或400 um或以上(例如,150 um、200 um、或250 um)。一模組的該一或多個彈簧梁元件可具有彈簧高度SH自1 um或以下至100 um或以上(例如,10、20、30、或40 um),及梁寬度或彈簧寬度SW自1 um或以下至100 um或以上(例如,10、20、30、或40 um)。尖端可具有均勻或變化之幾何形狀(例如,具有圓柱形、矩形、圓錐形、多爪、或其他組態、或組態的結合)。尖端結合於彈簧梁之處一般將比起其等所連接的該一或多個梁的該些寬度SW擁有更大橫剖面寬度TW。Example spring modules are shown in Figures 2-3. Figure 2 shows an isometric view of an example spring module 200 with two undeflected spring elements 221-1 and 221-2, a base 201 separating the spring elements, and a connecting support (e.g., a Spacers or bridges) 211 bridge a longitudinal modular gap MG between the spring elements and the base. In the example of Figure 2, the two spring elements each take the form of a planar radially extending spiral extending from a radially displaced bridge 211 to a centrally or axially positioned tip element 231, via A downward extension of the tip structure. The springs are separated longitudinally by a gap SG. In this example, a bridge 211 connects one end of each spring element together, and a tip element 231 connects the other ends of the spring elements together, through an extension of the tip structure. The tip element 231 is formed with a desired width TW and a desired tip height TH extending above the upper spring, and each spring element is formed with a desired material, beam thickness or spring height SH, beam width or spring width SW, and a gap between the spring coils. Space CS, and coil beam length, so that the spring deflects a desired amount without exceeding an elastic deflection limit of the structure and associated materials forming it, and yet provides a desired fixed or variable range of deflection spring force. In particular, the length of the tip is such that the desired compression of a module tip can occur toward the base without the base, bridges, and spring elements interfering with each other. In some embodiments, for example, a maximum travel distance of the tip of each module may be as small as 5 um (um = micron) or less or as large as 500 um (e.g., 25 um, 50 um, 100 um, or 200 um). um) or above. For example, in some embodiments, the maximum travel distance of each module may be 25 um to 200 um, while in other example embodiments, the maximum travel distance of each module may be 50 um to 150 um. In some embodiments, the maximum travel distance of the tip may be set by a hard stop, such as by a spring or a deflected portion of the tip initially contacting the base, by a stop structure of the base, or by contacting the tip A surface of the pontic (for example, the surface of an adjacent module) comes into contact with the upper part of the pontic. In other embodiments, the maximum travel distance may be progressive through a compliant spring or tip portion initiating contact with a soft stop or compliance reducing structure. The force required to achieve maximum deflection (stroke) can be as small as 0.1 gram-force to as large as 20 gram-force or more. In some embodiments, a force setting of 0.5 grams may be appropriate. In other cases, 1 gram, 2 grams, 4 grams, 8 grams, or more may be appropriate. In some embodiments, a module height (longitudinal dimension) MH can be set to 50 um or less, while in other cases, a module height can be set to 500 um or more. In certain embodiments, the overall module radial diameter or width MW may be 100 um or less or 400 um or more (eg, 150 um, 200 um, or 250 um). The one or more spring beam elements of a module may have a spring height SH from 1 um or less to 100 um or more (e.g., 10, 20, 30, or 40 um), and a beam width or spring width SW from 1 um or less to 100 um or more (e.g., 10, 20, 30, or 40 um). The tip may have a uniform or varying geometry (eg, having a cylindrical, rectangular, conical, multi-claw, or other configuration, or combination of configurations). The point where the tip joins the spring beam will generally have a greater cross-sectional width TW than the width SW of the beam or beams to which it is connected.
圖3顯示一第二範例彈簧模組300的一等距視圖,相似於圖2的模組,但該二個彈簧元件更厚,因此比起圖2的該些元件提供一更大彈簧常數。自另一觀點觀之,圖3的例子針對一給定偏折,將需要更大力,而因此將到達結合之材料及結構幾何的一屈服強度(例如,到達一彈性偏折極限),而比起圖2的例子具有更少偏折。Figure 3 shows an isometric view of a second example spring module 300, similar to the module of Figure 2, but with the two spring elements being thicker and therefore providing a greater spring constant than the elements of Figure 2. Viewed from another perspective, the example of Figure 3 would require a greater force for a given deflection, and thus would reach a yield strength of the combined material and structural geometry (e.g., reach an elastic deflection limit) than The example in Figure 2 has less deflection.
在其他實施例中,比起圖2或圖3所顯示者,彈簧模組可採用不同形式。例如:(1)一模組可具有單一彈簧元件或二個以上的彈簧元件;(2)各該些彈簧元件可具有寬度、厚度、長度、或旋轉度的一或多個變化;(3)彈簧元件可變化該些元件的該些長度;(4)彈簧元件可具有歐拉螺旋之外的組態,例如,矩形螺旋、具有圓角的矩形螺旋、S形結構、或C形結構;(5)個別彈簧元件可連接至單一個以上的橋體交界,例如,連接至橋體連接點,繞著模組位於180度、120度、或90度;(6)橋體交界可位於不同橋體;(7)比起彈簧/橋體介面,基底元件可具有更小徑向範圍,使得當模組堆疊時而當充分壓縮模組尖端時,更高模組的基底可延伸至下相鄰模組的上範圍下方;(8)模組基底可替代成額外彈簧,以便當偏折時自兩方向壓縮模組彈簧,(9)探針尖端可不相對於模組的整體橫向組態來橫向置中(亦即,當形成於一逐層基礎時,不重合甚或不共線於主要壓縮軸或主要建構軸)。In other embodiments, the spring module may take a different form than that shown in FIG. 2 or FIG. 3 . For example: (1) A module can have a single spring element or more than two spring elements; (2) Each of the spring elements can have one or more changes in width, thickness, length, or degree of rotation; (3) The spring elements may vary the lengths of the elements; (4) the spring elements may have configurations other than Euler spirals, for example, rectangular spirals, rectangular spirals with rounded corners, S-shaped structures, or C-shaped structures; ( 5) Individual spring elements can be connected to more than one pontic junction, for example, to the pontic junction at 180 degrees, 120 degrees, or 90 degrees around the module; (6) The pontic junctions can be located on different bridges body; (7) The base element can have a smaller radial extent than the spring/bridge interface, so that when the modules are stacked and the module tips are fully compressed, the base of the taller module can extend to the lower adjacent below the upper range of the module; (8) the module base can be replaced with an additional spring to compress the module spring in both directions when deflected, (9) the probe tip can not be lateral relative to the overall lateral configuration of the module Centered (i.e., not coincident or even non-collinear with the major compressional or major tectonic axes when formed on a layer-by-layer basis).
圖4A至圖4D4提供一探針3400或此一探針的部分的許多視圖,其中,探針形成自二個背對背(或基底對基底)模組,其中,該二個模組共有一共同基底,具有一環形組態,並包括許多不同特徵:(1)一環形基底或框架3401,透過其等最外橫向範圍來把持一上螺旋彈簧陣列3421-UC及一下螺旋彈簧陣列3421-LC,以提供基本間隔件功能性於上下彈簧陣列之間,其中,基底或框架3401具有一圓形外部,具有一內部開口,具有相反弓形側邊3401-A及更窄相反平坦側邊3401-F,其中,上下表面結合該些平坦側邊提供接合區域,以結合於上下支撐件或間隔件3411-1、3411-2、3412-1、及3412-2,進而支撐該些螺旋彈簧元件的該些端,而該些弓形區域提供間隙,該些彈簧的最外懸臂部分可居於其間(在變形前),其中,基底的厚度作為一間隔件分隔件,該些螺旋彈簧的部分可在其中偏折,在將探針尖端壓縮朝向彼此的期間;(2)上下彈簧陣列之各者的向內路徑起始自相反之成對間隔件,為二個縱向分離之共平面之成對捲繞螺旋懸臂3421-1U及3421-2U在基底上方及3421-1L及3421-2L在基底下方,其中,各元件的各懸臂分成二個縱向分隔之懸臂,中途經過其等向內路途,使得四個上懸臂元件UC1至UC4結合一上尖端臂3431-UA的各側邊,而四個下懸臂元件LC1至LC4結合一下尖端臂3431-LA的兩側邊,進而分別支撐接觸或連結尖端3431-U及3431-L;(3)結合上接觸尖端的該些螺旋彈簧元件的該些旋轉定向具有相反旋轉定向,相對於結合下接觸尖端的該些螺旋彈簧元件;及(4)該些間隔件3411-1、3411-2、3412-1、及3412-2只提供中間間隔件功能性於上螺旋陣列的多個梁之間及於下螺旋陣列的該些螺旋梁之間,但不提供間隔件功能性於該二個彈簧群組之間,因為此功能由基底3401直接提供。4A-4D4 provide numerous views of a probe 3400, or portions of such a probe, formed from two back-to-back (or base-to-base) modules, where the two modules share a common substrate. , has an annular configuration, and includes many different features: (1) an annular base or frame 3401, through which the outermost lateral extents hold an upper coil spring array 3421-UC and a lower coil spring array 3421-LC, to Basic spacer functionality is provided between the upper and lower spring arrays, where the base or frame 3401 has a rounded exterior with an interior opening with opposite arcuate sides 3401-A and narrower opposite flat sides 3401-F, where , the upper and lower surfaces combine with the flat sides to provide joint areas to be combined with the upper and lower supports or spacers 3411-1, 3411-2, 3412-1, and 3412-2, thereby supporting the ends of the coil spring elements , and the arcuate regions provide gaps between which the outermost cantilever portions of the springs can reside (before deformation), where the thickness of the base acts as a spacer divider into which portions of the coil springs can deflect, During compression of the probe tips toward each other; (2) the inward paths of each of the upper and lower spring arrays originate from opposing paired spacers as two longitudinally separated coplanar paired coiled helical cantilevers 3421 -1U and 3421-2U are above the base and 3421-1L and 3421-2L are below the base. Each cantilever of each element is divided into two longitudinally separated cantilevers, passing through their equal inward paths in the middle, so that the four upper cantilever elements UC1 to UC4 are coupled to each side of an upper tip arm 3431-UA, while four lower cantilever elements LC1 to LC4 are coupled to both sides of a lower tip arm 3431-LA to support contact or connection tips 3431-U and 3431- respectively. L; (3) the rotational orientations of the coil spring elements coupled to the upper contact tip have opposite rotational orientations relative to the coil spring elements coupled to the lower contact tip; and (4) the spacers 3411-1, 3411-2, 3412-1, and 3412-2 only provide intermediate spacer functionality between the beams of the upper spiral array and between the spiral beams of the lower spiral array, but do not provide spacer functionality between the beams of the upper spiral array and the spiral beams of the lower spiral array. between the two spring groups because this function is directly provided by the base 3401.
圖4A、圖4B1、及圖4B2分別提供探針3400的側視圖、上等距視圖、及下等距視圖,其中,可觀察探針的不同特徵。圖4B1提供探針的上彈簧區段的最上成對螺旋彈簧的一視圖,而圖4B2提供探針的下彈簧區段的最下成對螺旋彈簧的一視圖。圖4A、圖4B1、及圖4B2之各者提供上下尖端3431-U及3431-L,連同中央基底3401的一視圖。圖4A、圖4B1、及圖4B2亦提供上間隔件3411-1及3411-2,及下間隔件3412-1及3412-2的視圖,及該些縱向分離之上懸臂元件3421-1U及3421-2U及下懸臂元件3421-1L及3421-2L的該些外側部分的視圖。亦可觀察該些成對共平面懸臂元件的該些交錯路徑自其等各自的間隔件向內傳遞至遇到其等各自的中央尖端。Figures 4A, 4B1, and 4B2 provide respectively a side view, an upper isometric view, and a lower isometric view of probe 3400 in which different features of the probe can be observed. Figure 4B1 provides a view of the uppermost pair of coil springs of the upper spring section of the probe, while Figure 4B2 provides a view of the lowermost pair of coil springs of the lower spring section of the probe. Each of Figures 4A, 4B1, and 4B2 provides a view of the upper and lower tips 3431-U and 3431-L, along with the central base 3401. Figures 4A, 4B1, and 4B2 also provide views of the upper spacers 3411-1 and 3411-2, and the lower spacers 3412-1 and 3412-2, and the longitudinally separated upper cantilever elements 3421-1U and 3421 -View of the outer portions of 2U and lower cantilever elements 3421-1L and 3421-2L. The staggered paths of the pairs of coplanar cantilever elements can also be observed passing inwardly from their respective spacers to encounter their respective central tips.
圖4C1及圖4C2分別提供探針3400自上下視角的等距視分解圖,故不只可觀察該些下懸臂元件的下方及該些上懸臂元件的上方,亦可觀察該些下懸臂元件的上方及該些上懸臂元件的下方,而環形基底3401的內部包括平坦且弓形側壁3401-F及3401-A。在圖4C1及圖4C2中,探針的上彈簧區段或上順應性元件3421-UC分離自中央框架或基底元件3401,進而分離自探針的下彈簧區段或下順應性元件3421-LC。在圖4C1中,可觀察上尖端3431-U,連同上下彈簧區段的上方及中央框架元件的上方。在圖4C2中,可觀察下尖端3431-L,連同上下彈簧區段3421-UC及3421-LC的該些下方及中央框架元件3401的下方。如連接該些分解之元件的該些虛線所示,中央框架元件3401支撐上下彈簧區段的該些最外橫向範圍,更特別是,支撐該些懸臂元件的該些間隔件3411-1、3411-2、3412-1、及3412-2。4C1 and 4C2 respectively provide an isometric exploded view of the probe 3400 from a top and bottom perspective. Therefore, not only the bottom of the lower cantilever elements and the top of the upper cantilever elements can be observed, but also the top of the lower cantilever elements can be observed. and below the upper cantilever elements, while the interior of the annular base 3401 includes flat and arcuate side walls 3401-F and 3401-A. In Figures 4C1 and 4C2, the upper spring section or upper compliant element 3421-UC of the probe is separated from the central frame or base element 3401, which is in turn separated from the lower spring section or lower compliant element 3421-LC of the probe. . In Figure 4C1, the upper tip 3431-U can be observed, together with above the upper and lower spring sections and above the central frame element. In Figure 4C2, the lower tip 3431-L can be observed, along with the underside of the upper and lower spring sections 3421-UC and 3421-LC and the underside of the central frame element 3401. As shown by the dashed lines connecting the exploded elements, the central frame element 3401 supports the outermost lateral extents of the upper and lower spring sections and, more particularly, the spacers 3411-1, 3411 of the cantilever elements. -2, 3412-1, and 3412-2.
圖4D1至圖4D4提供探針3400的四個不同剖視圖,其中,切開探針的一側邊的逐漸更大部分,以顯露探針的內部結構,使得懸臂變化可更容易觀察及理解。當該些螺旋元件向內旋轉朝向橫向置中之尖端元件時,該些懸臂元件經歷自基底3401上方的二個縱向分離之懸臂元件3421-2U及3421-1U及基底3401下方的二個縱向分離之懸臂元件3421-1L及3421-2L轉變成基底上方的四個縱向分離之懸臂元件UC1至UC4及基底下方的四個縱向分離之元件LC1至LC4,其中,該些梁到達其等可分別縱向移動之尖端臂元件3431-UA及3431-LA(最佳顯示於圖4D3),進而分別結合或成為尖端3431-U及3431-L。4D1-4D4 provide four different cross-sectional views of the probe 3400, in which progressively larger portions of one side of the probe are cut away to reveal the internal structure of the probe so that cantilever changes can be more easily observed and understood. As the helical elements rotate inward toward the laterally centered tip element, the cantilever elements undergo two longitudinal separations from above the base 3401, cantilever elements 3421-2U and 3421-1U, and from two longitudinal separations below the base 3401. The cantilever elements 3421-1L and 3421-2L are transformed into four longitudinally separated cantilever elements UC1 to UC4 above the base and four longitudinally separated elements LC1 to LC4 below the base, wherein the beams reach them and can be longitudinally separated respectively. Moving tip arm elements 3431-UA and 3431-LA (best shown in Figure 4D3), in turn combine or become tips 3431-U and 3431-L respectively.
圖4E1提供探針3400的一側視圖,相似於圖4A,但其中,17個樣本層級L1至L17標示成各層,沿著探針的縱向軸具有標示的厚度(亦即,顯示的Z軸),探針可由其來製造,是例如透過一多層製造過程,例如,一多層多材料電化學製造過程,是使用單一或多個結構材料(連同一犧牲材料),並使用一建構軸或層疊軸對應於探針的縱向軸。在該些形成實施例中,雖然探針可一次形成一個,但一般較佳是批次形成該些探針,其中,數百甚或數千個探針透過相續逐層建構來同時形成。Figure 4E1 provides a side view of probe 3400, similar to Figure 4A, but with 17 sample levels L1 through L17 labeled as layers, with labeled thicknesses along the longitudinal axis of the probe (ie, the Z-axis shown) , the probe may be fabricated, for example, through a multi-layer fabrication process, for example, a multi-layer multi-material electrochemical fabrication process using single or multiple structural materials (along with a sacrificial material) and using a build axis or The stacking axis corresponds to the longitudinal axis of the probe. In these formation embodiments, although the probes may be formed one at a time, it is generally preferred to form the probes in batches, where hundreds or even thousands of probes are formed simultaneously through successive layer-by-layer construction.
圖4E2-A至圖4E9-B繪示層L1至L17的該八個獨特組態的橫剖面組態,顯示於俯視圖(該些-A圖)及等距視圖(該些-B圖)兩者。Figures 4E2-A to 4E9-B illustrate cross-sectional configurations of the eight unique configurations of layers L1 to L17, shown in both a top view (these -A) and an isometric view (these -B) By.
圖4E2-A及圖4E2-B繪示層L1及L17的視圖,其中,可觀察一尖端,為用於L1的下尖端3431-L及用於層L17的上尖端3431-U。Figures 4E2-A and 4E2-B show views of layers L1 and L17, in which one tip is observed, a lower tip 3431-L for L1 and an upper tip 3431-U for layer L17.
圖4E3-A及圖4E3-B繪示L2、L4、L6、及L8的視圖,提供平面彈簧螺旋3421-1L、3421-2L的部分及其等最內區域,形成懸臂區段LC1至LC4(未標示)、下中央尖端臂3431-LA的部分、及該些下間隔件3412-1及3412-2的部分,其中,可觀察雙重交錯螺旋組態。4E3-A and 4E3-B illustrate views of L2, L4, L6, and L8, providing portions of planar spring coils 3421-1L, 3421-2L and their innermost regions forming cantilever sections LC1 to LC4 ( (not labeled), portions of the lower central tip arm 3431-LA, and portions of the lower spacers 3412-1 and 3412-2, wherein a double staggered spiral configuration can be observed.
圖4E4-A及圖4E4-B繪示L3及L7的視圖,其中,可觀察未完成螺旋元件3421-1L、3421-2L及間隔件3412-1及3412-2(相似於圖4E3-A及圖4E3-B的該些特徵,但缺少該些部分LC1至LC4)。該些圖式所反映的該些螺旋部分結合於圖4E3-A及圖4E3-B的該些覆蓋及潛藏部分,形成加厚螺旋區端於該些彈簧的該些最外橫向部分,其中,下順應性元件3421-LC只包括二個加厚懸臂元件,而非該四個更薄懸臂元件LC1至LC4結合尖端臂於該些彈簧的最內橫向部分。Figures 4E4-A and 4E4-B illustrate views of L3 and L7, in which unfinished spiral elements 3421-1L, 3421-2L and spacers 3412-1 and 3412-2 can be observed (similar to Figures 4E3-A and 4E4-B). These features of Figure 4E3-B, but lacking these portions LC1 to LC4). The spiral portions reflected in the figures are combined with the covering and hidden portions of Figures 4E3-A and 4E3-B to form a thickened spiral region ending at the outermost lateral portions of the springs, wherein, Lower compliant element 3421-LC includes only two thickened cantilever elements instead of the four thinner cantilever elements LC1 to LC4 incorporating tip arms at the innermost lateral portions of the springs.
圖4E5-A及圖4E5-B繪示L5的視圖,包括下尖端臂3431-LA的一部分及間隔件3412-1及3412-2的部分,提供一連接於該些懸臂彈簧部分3421-1L及3421-2L之間。4E5-A and 4E5-B illustrate views of L5, including a portion of lower tip arm 3431-LA and portions of spacers 3412-1 and 3412-2, providing a connection to the cantilever spring portions 3421-1L and Between 3421-2L.
圖4E6-A及圖4E6-B繪示L9的視圖,包括環狀基底3401,透過作為間隔件的基底的二個部分來分離並連接上下順應性元件3421-UC及3421-LC,其中,基底的某些橫向部分對齊於並將該些彈簧接合於其等間隔件區域3411-1、3411-2、3412-1及3412-2。探針3400的該些向內旋轉螺旋的實際起點取決於L8的該些特徵如何介接於L9者及同樣L9的該些特徵如何介接於L10者。特別是,該些介面不垂直於捲繞螺旋的局部長度(例如,以提供一最小寬度介面),但形成於一角度,以沿著其等長度支撐介接於基底的螺旋梁的一外側部分,數量不同於該些內側部分。在某些變化中,可以一方式來提供介面,使得介面提供成垂直於梁的局部長度,使得由基底(或其他間隔件區域)所提供的支撐在支撐與未支撐梁區域之間提供橫向垂直或實質上垂直轉變。特別是,提供垂直轉變於其他梁,以將區域間隔,可在由L4及L5、L5及L6、L12及L13、及L13及L14所形成的該些介面,及其他梁分離區域,例如,L2至L3、L3至L4、L6至L7、L7至L8、L10至L11、L11至L12、L14至L15、及L15至L16中觀察,其中,該些梁轉變沿著一橫向線延伸,實質上垂直於梁的鄰近或局部長度。這種垂直介接及非垂直介接及其等一致或變化用途可用於調整探針性能或操作性質。特別是,由於非垂直介接於基底及由於在懸臂的其他梁之間提供的介接,該些懸臂的該些外側部分提供作為單一厚梁,而懸臂結構的內側部分起始為二個中間厚度之梁,其中,該些懸臂位於探針臂的該些終點為四個更薄梁。在某些變化中,該些最初懸臂結構(由於其等橫向離開基底)可起始為單一厚梁或多個梁而遍及其等寬度。沿著梁長度的其他轉變亦可設定成提供乾淨或垂直轉變,或可設定成提供可變化或非垂直轉變。圖4E7-A及圖4E7-B繪示L10、L12、L14、及L16的視圖,提供(1)上平面彈簧螺旋3421-1U及3421-2U的部分,及其等最內範圍,形成懸臂部分UC1至UC4(未標示),(2)上中央尖端臂3431-UA的部分,及該些上間隔件3411-1及3411-2的部分,其中,可觀察雙重交錯螺旋組態。該些為上順應性元件相應件,相應於顯示於圖4E3-A及圖4E3-B的該些下順應性元件特徵。比較該些圖式顯示上下順應性元件的該些螺旋的旋轉定向具有反轉旋轉定向。此定向反轉可視為有益於某些例子,而不需要甚或有害於其他例子。當壓縮該些彈簧元件時,該些尖端可傾向於旋轉於一方向,相反於該些螺旋元件的向內旋轉,可能導致一擦洗或刮擦效果,可能加速穿破氧化物塗層或導致破壞接觸的表面。可能或可能不需要在下上探針尖端之間反轉擦洗定向,而因此在最初探針設計期間可納入考慮。同理,可反轉該些分離之上彈簧元件的相對定向,如同反轉該些分離之下彈簧元件的定向。4E6-A and 4E6-B illustrate views of L9, including annular base 3401, with upper and lower compliant elements 3421-UC and 3421-LC separated and connected by two portions of the base acting as spacers, where the base Certain lateral portions of are aligned with and engage the springs in their equal spacer regions 3411-1, 3411-2, 3412-1 and 3412-2. The actual starting point of the inwardly rotating helices of probe 3400 depends on how the features of L8 interface with L9 and likewise how the features of L9 interface with L10. In particular, the interfaces are not perpendicular to the local length of the coiled helix (e.g., to provide a minimum width interface), but are formed at an angle to support an outer portion of the helical beam that interfaces with the substrate along its equal length. , the quantity is different from that of the inner parts. In some variations, the interface may be provided in such a way that the interface is provided perpendicular to the local length of the beam such that the support provided by the base (or other spacer areas) provides lateral verticality between supported and unsupported beam areas. Or essentially a vertical shift. In particular, vertical transitions are provided in other beams to separate regions at the interfaces formed by L4 and L5, L5 and L6, L12 and L13, and L13 and L14, and in other beams that separate regions, e.g., L2 Observed in L3, L3 to L4, L6 to L7, L7 to L8, L10 to L11, L11 to L12, L14 to L15, and L15 to L16, in which the beam transitions extend along a transverse line and are substantially vertical adjacent or local length of the beam. Such vertical and non-vertical interfaces and their consistent or varying uses may be used to adjust probe performance or operating properties. In particular, the outer portions of the cantilevers are provided as a single thick beam, while the inner portions of the cantilever structure start as two intermediate Thickness beams, where the cantilevers are four thinner beams at the end points of the probe arms. In some variations, the initially cantilevered structures (since they are equal laterally away from the base) may start as a single thick beam or multiple beams equal across their width. Other transitions along the length of the beam may also be configured to provide clean or vertical transitions, or may be configured to provide variable or non-vertical transitions. Figures 4E7-A and 4E7-B illustrate views of L10, L12, L14, and L16, providing (1) the portions of the upper planar spring coils 3421-1U and 3421-2U, and their innermost ranges, forming the cantilever portion UC1 to UC4 (not labeled), (2) portions of the upper central tip arm 3431-UA, and portions of the upper spacers 3411-1 and 3411-2, in which a double staggered spiral configuration can be observed. These are upper compliant element counterparts that correspond to the lower compliant element features shown in Figures 4E3-A and 4E3-B. Comparing the figures shows that the rotational orientations of the helices of the upper and lower compliant elements have reverse rotational orientations. This reversal of orientation can be seen as beneficial for some examples, while being unnecessary or even harmful for others. When the spring elements are compressed, the tips may tend to rotate in one direction, as opposed to the inward rotation of the helical elements, which may result in a scrubbing or scraping effect that may accelerate penetration of the oxide coating or cause damage. contact surface. Reversing the scrub orientation between the inferior and superior probe tips may or may not be necessary and therefore can be taken into account during initial probe design. Likewise, the relative orientation of the spring elements above the separations can be reversed, just as the orientation of the spring elements below the separations can be reversed.
圖4E8-A及圖4E8-B繪示層L11及L15的視圖,其中,可觀察未完成螺旋元件3421-1U及3421-2U及間隔件3411-1及3411-2的連接區域橋接圖4E7-A及圖4E7-B的該些螺旋的部分,以形成加厚螺旋區段於該些彈簧的該些最外橫向部分,其中,上順應性元件3421-UC只包括二個加厚元件,而非該四個更薄元件將尖端臂3431-UA結合於該些螺旋的該些最內橫向區域。圖4E8-A及圖4E8-B提供上順應性元件相應件,相應於圖4E4-A及圖4E4-B所顯示的該些下順應性元件。Figures 4E8-A and 4E8-B show views of layers L11 and L15, in which the connection area bridging of unfinished helical elements 3421-1U and 3421-2U and spacers 3411-1 and 3411-2 can be observed Figure 4E7- A and the portions of the helices of Figure 4E7-B to form thickened helical sections at the outermost lateral portions of the springs, where the upper compliant element 3421-UC only includes two thickened elements, and The four thinner elements bind tip arms 3431-UA to the innermost lateral regions of the helices. Figures 4E8-A and 4E8-B provide upper compliant element counterparts corresponding to the lower compliant elements shown in Figures 4E4-A and 4E4-B.
圖4E9-A及圖4E9-B繪示層L13的視圖,包括上尖端臂3431-UA的一部分及間隔件3411-1及3411-2的部分,提供一連接於該些懸臂3421-1U及3421-2U之間。圖4E9-A及圖4E9-B提供上順應性元件的部分的影像,為相應件,相應於在圖4E5-A及圖4E5-B中發現的下順應性元件相應件。4E9-A and 4E9-B illustrate views of layer L13, including a portion of upper tip arm 3431-UA and portions of spacers 3411-1 and 3411-2, providing a connection to the cantilevers 3421-1U and 3421 -2U. Figures 4E9-A and 4E9-B provide images of portions of the upper compliant element, corresponding to the lower compliant element counterparts found in Figures 4E5-A and 4E5-B.
本領域技術人員在閱讀本文的教示後可明白可進行圖4A至圖4E9-B的探針許多額外變化,並包括,例如:(1)變化材料;(2)變化組態,包括各彈簧元件納入的旋轉或部分旋轉的數目、用於各縱向水平的交錯彈簧的數目、使用的縱向分隔之彈簧的數目(例如,偶數、奇數、及相似者)、沿著該些螺旋的長度發生縱向梁轉變的數目及位置、相續螺旋採用的旋轉方向(例如,CW-CCW-CW-CCW-CW、CW-CCW-CCW-CCW-CW,及相似者)、尖端的該些形狀、該些懸臂梁的寬度及厚度;(3)使用間隔件,將上下彈簧模組之一者或兩者分隔自環形框架,(4)使用間隔件,更接近於該些探針的中央部分,而非該些探針的外緣;(5)使用不同型態的框架或基底結構及/或該些框架及基底結構的開口;(6)使用彈簧結構,並非由不同間隔件所支撐的成對共平面交錯螺旋,但為單一螺旋於一給定縱向水平或超過二個交錯螺旋於一給定縱向水平,及(7)變化採用自本文所記載的其他實施例及觀點及其等變化的特徵。Those skilled in the art will understand after reading the teachings herein that many additional variations can be made to the probes of Figures 4A to 4E9-B, including, for example: (1) variations in materials; (2) variations in configurations, including individual spring elements The number of rotations or partial rotations incorporated, the number of staggered springs for each longitudinal level, the number of longitudinally spaced springs used (e.g., even, odd, and the like), the occurrence of longitudinal beams along the length of the spirals The number and location of transitions, the directions of rotation adopted by successive spirals (e.g., CW-CCW-CW-CCW-CW, CW-CCW-CCW-CCW-CW, and similar), the shapes of the tips, the cantilevers the width and thickness of the beam; (3) use spacers to separate one or both of the upper and lower spring modules from the annular frame, (4) use spacers closer to the central portion of the probes than to the the outer edges of some probes; (5) use different types of frames or base structures and/or openings of these frames and base structures; (6) use spring structures instead of pairs of coplanar ones supported by different spacers Staggered helices, but a single helix at a given longitudinal level or more than two staggered helices at a given longitudinal level, and (7) variations adopted from other embodiments and perspectives described herein and features of such variations.
圖5A及圖5B提供根據本發明的另一實施例的二個相反定向之探針模組3500-U及3500-L的一等距視圖,是在組裝前(圖5A)及作為一組裝之探針3500(圖5B)其中,探針形成為二個分離之探針模組,具有相同或不同定向,接著將該些探針模組組裝成基底對基底,其中,一探針模組3500-L,亦標示成下探針模組3500-L,具有一面向下尖端3531-L,及另一探針模組3500-U,亦標示成上探針模組3500-U,具有一面向上尖端3531-U,其中,各探針模組形成有其本身各自的尖端3531-U或3531-L、尖端臂、平面彈簧元件3521-U或3521-L、間隔件3511-U或3511-L、及基底3501-U或3501-L,且其中,各探針模組可為相同或具有不同特徵。Figures 5A and 5B provide an isometric view of two oppositely oriented probe modules 3500-U and 3500-L, prior to assembly (Figure 5A) and as an assembly, according to another embodiment of the present invention. Probe 3500 (FIG. 5B) wherein the probe is formed into two separate probe modules with the same or different orientations, and then the probe modules are assembled into a substrate-to-substrate, wherein a probe module 3500 -L, also designated as lower probe module 3500-L, with a tip facing downwards 3531-L, and another probe module 3500-U, also designated as upper probe module 3500-U, with a tip facing upwards Tip 3531-U, wherein each probe module is formed with its own respective tip 3531-U or 3531-L, tip arm, planar spring element 3521-U or 3521-L, spacer 3511-U or 3511-L , and substrate 3501-U or 3501-L, and wherein each probe module can be the same or have different characteristics.
探針3500的上探針模組3500-U具有一上順應性元件3521-U,為一彈簧元件或組裝,連接至一上探針臂3531-UA,結束於一上探針尖端3531-U,而探針3500的下探針模組3500-L具有一下順應性元件3521-L,為一彈簧元件或組裝,連接至下探針臂3531-LA,結束於一下探針尖端3531-L。Upper probe module 3500-U of probe 3500 has an upper compliant element 3521-U, which is a spring element or assembly, connected to an upper probe arm 3531-UA, ending in an upper probe tip 3531-U , and the lower probe module 3500-L of the probe 3500 has a lower compliant element 3521-L, which is a spring element or assembly connected to the lower probe arm 3531-LA and ending at the lower probe tip 3531-L.
更特別是,第一順應性元件3521-U在實質上垂直於一平面組態的一方向上提供順應性,其中,第一順應性元件的一第一部分在功能上結合至少一間隔件,而第一順應性元件的一第二部分在功能上結合一第一探針臂或上探針臂3531-UA,結束於第一探針尖端或上探針尖端3531-U,可相對於至少一間隔件而彈性移動,其中,當第一順應性元件3521-U未偏置時,第一探針臂3531-UA直接或間接把持第一探針尖端,縱向延伸超過至少一間隔件的第一端。More specifically, the first compliant element 3521-U provides compliance in a direction substantially perpendicular to a planar configuration, wherein a first portion of the first compliant element functionally incorporates at least one spacer and a third A second portion of a compliant element functionally coupled to a first or upper probe arm 3531-UA, terminating in a first or upper probe tip 3531-U, may be spaced relative to at least one member and elastic movement, wherein, when the first compliant element 3521-U is unbiased, the first probe arm 3531-UA directly or indirectly holds the first probe tip and extends longitudinally beyond the first end of the at least one spacer .
再者,第二順應性元件3521-L在實質上垂直於平面組態的一方向上提供順應性,其中,第二順應性元件的一第一部分在功能上結合至少一間隔件,而第二順應性元件的一第二部分在功能上結合一第二探針臂或下探針臂3531-LA,結束於第二探針尖端或下探針尖端3531-L,可相對於至少一間隔件而彈性移動,其中,當第二順應性元件3521-L未偏置時,第二探針臂3531-LA直接或間接把持第二尖端,縱向延伸超過至少一間隔件的第二端。Furthermore, the second compliant element 3521-L provides compliance in a direction substantially perpendicular to the planar configuration, wherein a first portion of the second compliant element functionally incorporates at least one spacer and the second compliant element 3521-L provides compliance in a direction substantially perpendicular to the planar configuration. A second portion of the sexual element functionally coupled to a second probe arm or lower probe arm 3531-LA, terminating in a second probe tip or lower probe tip 3531-L, may be positioned relative to at least one spacer Resilient movement wherein, when the second compliant element 3521 -L is unbiased, the second probe arm 3531 -LA directly or indirectly holds the second tip extending longitudinally beyond the second end of the at least one spacer.
根據一實施例,第一順應性元件3521-U及第二順應性元件3521-L包括各自的當未偏置時呈二維實質上平面彈簧,故第一及第二順應性元件在實質上垂直於一平面組態的一方向上提供順應性。According to one embodiment, the first compliant element 3521-U and the second compliant element 3521-L include respective two-dimensional substantially planar springs when unbiased, such that the first and second compliant elements are substantially planar. Provides compliance in a direction perpendicular to a plane configuration.
特別是,第一及第二順應性元件3521-U、3521-L的該些第一部分透過至少一間隔件而彼此縱向分隔,而當第一及第二尖端的至少一者偏置向另一者時,第一及第二順應性元件3521-U、3651-L的該些第二部分縱向移動是以一方式,選自下列所組成的群組:(A)移動更接近在一起、及(B)更遠離。In particular, the first portions of the first and second compliant elements 3521-U, 3521-L are longitudinally separated from each other by at least one spacer, and when at least one of the first and second tips is biased toward the other That is, the second portions of first and second compliant elements 3521-U, 3651-L move longitudinally in a manner selected from the group consisting of: (A) moving closer together, and (B) further away.
圖5A繪示該些探針模組具有一縱向分離,其中,該些探針模組在3545所標示的方向上經歷相對移動,故上探針模組3500-U的一下方被帶去接觸於下探針模組3501-L的一上方。或者,上探針模組3500-U被帶去接觸於一或多個中間材料(例如,連結材料或促進貼合材料),進而接觸於下探針模組3500-L,使得一旦被帶去在一起,如圖5B所示,該二個探針模組可橫向、縱向、及或許旋轉貼合或把持在一起,以形成一探針。在某些實施例中,該些模組可把持在一起,是例如透過軟焊、硬焊、雷射焊接、超音波焊接、點焊、使用一導電環氧樹脂、或某些其他貼合劑。在某些實施例中,擴散連結或其他凝聚連結可提供適當永久或暫時貼合。Figure 5A shows that the probe modules have a longitudinal separation, wherein the probe modules undergo relative movement in the direction indicated by 3545, so that a lower side of the upper probe module 3500-U is brought into contact Above the lower probe module 3501-L. Alternatively, the upper probe module 3500-U is brought into contact with one or more intermediate materials (e.g., connecting materials or adhesion-promoting materials), and then in contact with the lower probe module 3500-L, so that once brought Together, as shown in FIG. 5B , the two probe modules can be attached or held together laterally, longitudinally, and perhaps rotated to form a probe. In some embodiments, the modules may be held together, for example, by soldering, brazing, laser welding, ultrasonic welding, spot welding, using a conductive epoxy, or some other adhesive. In certain embodiments, diffusion bonds or other cohesive bonds may provide an appropriate permanent or temporary fit.
特別是,上下探針模組3500-U及3500-L在該些方向3545上橫向且縱向對齊,其中,各自的尖端,彼此在實質上相反縱向方向上指向遠處,使得上探針模組3500-U的至少一第一間隔件3511-U及下探針模組3500-L的至少一第二間隔件3411-L直接或間接彼此結合,以將至少一第一順應性元件3521-U分隔自至少一第二順應性元件3521-L。In particular, the upper and lower probe modules 3500-U and 3500-L are laterally and longitudinally aligned in the directions 3545, with their respective tips pointing away from each other in substantially opposite longitudinal directions such that the upper probe module At least one first spacer 3511-U of 3500-U and at least one second spacer 3411-L of lower probe module 3500-L are directly or indirectly combined with each other to connect at least one first compliant element 3521-U Separated from at least one second compliant element 3521-L.
可進行圖5A及圖5B的實施例的許多其他變化,並可包括,例如:(1)變化探針特徵的該些物理尺寸,例如,彈簧厚度、彈簧寬度、螺旋長度、間隔件高度、尖端臂長度、探針直徑、或整體高度;(2)變化尖端組態、變化彈簧形狀、變化支撐該些彈簧的間隔件的數目、變化支撐一尖端臂於任何給定縱向水平的螺旋元件的數目、變化形成一模組、變化基底組態的部分的彈簧水平的數目、變化該些間隔件組態、自實質上圓形組態變化至其他組態,例如,矩形、圓角矩形、六邊形、橢圓形或其他多邊形、或曲線組態;(3)變化一或多個材料,用於形成探針或探針的不同部分;(4)上下探針模組具有不同組態,形成自不同材料;(5)實現本文所記載的其他實施例或該些實施例的變化所討論的特徵或功能性;(6)使用其他手段或方法,用於接合或整合上下探針模組,例如包括機械互鎖、螺紋結構、彈簧所提供的摩擦、可釋放或不可釋放閂鎖,是透過彈簧或迫使探針模組之一者或兩者的一或多個特徵在接合於另一探針模組的期間相對移動而形成;及(7)使用超過二個分離形成之探針模組或結構。Many other variations of the embodiment of Figures 5A and 5B are possible and may include, for example: (1) varying the physical dimensions of the probe features, e.g., spring thickness, spring width, helix length, spacer height, tip arm length, probe diameter, or overall height; (2) vary tip configuration, vary spring shapes, vary the number of spacers supporting the springs, vary the number of helical elements supporting a tip arm at any given longitudinal level , changing the number of spring levels forming part of a module, changing the base configuration, changing the spacer configuration, changing from a substantially circular configuration to other configurations, e.g., rectangular, rounded rectangular, hexagonal shape, ellipse or other polygonal, or curve configuration; (3) change one or more materials to form the probe or different parts of the probe; (4) the upper and lower probe modules have different configurations to form a self-contained Different materials; (5) Implement features or functionality discussed in other embodiments or variations of such embodiments described herein; (6) Use other means or methods for joining or integrating the upper and lower probe modules, such as Including mechanical interlocks, threaded structures, friction provided by springs, releasable or non-releasable latches, by springs or forcing one or more features of one or both probe modules to engage the other probe The modules are formed by relative movement during the period; and (7) using more than two separately formed probe modules or structures.
圖6A及圖6B提供根據本發明的另一實施例的二個相反定向之探針模組3600-U及3600-L的一等距視圖,是在組裝前(圖6A)及作為一組裝之探針3600(圖6B),其中,探針形成為二個分離之探針模組,具有相同或不同定向,接著組裝該些探針模組,其中,一探針模組,亦標示成下探針模組3600-L,具有一面向下尖端3631-L,及另一探針模組,亦標示成上探針模組3500-U,具有一面向上尖端3631-U,其中,各探針模組形成有其本身各自的尖端3631-L或3631-U、尖端臂、平面彈簧元件3621-L及3621-U、及間隔件3611-L及3611-U,且其中,該些模組只有一者形成有一基底3601-L結合於其間隔件3611-L。Figures 6A and 6B provide an isometric view of two oppositely oriented probe modules 3600-U and 3600-L, prior to assembly (Figure 6A) and as an assembly, according to another embodiment of the present invention. Probe 3600 (Fig. 6B), in which the probe is formed into two separate probe modules, with the same or different orientations, and then the probe modules are assembled, where a probe module is also marked as follows Probe module 3600-L, having a downward-facing tip 3631-L, and another probe module, also designated upper probe module 3500-U, having an upward-facing tip 3631-U, wherein each probe The modules are formed with their own respective tips 3631-L or 3631-U, tip arms, planar spring elements 3621-L and 3621-U, and spacers 3611-L and 3611-U, and wherein the modules have only One is formed with a base 3601-L coupled to its spacer 3611-L.
在一組裝過程期間,該二個探針模組首先橫向對齊,如圖6A所示,接著該些探針模組在箭頭3645所顯示的該些方向上彼此相對移動,故上探針模組3600-U的該些間隔件3611-U接觸下探針模組3600-L的基底3601-L並結合之,如圖6B所示。During an assembly process, the two probe modules are first aligned laterally, as shown in Figure 6A, and then the probe modules move relative to each other in the directions shown by arrows 3645, so that the upper probe module The spacers 3611-U of 3600-U contact and combine with the base 3601-L of the lower probe module 3600-L, as shown in Figure 6B.
如同圖5A及圖5B的實施例,一探針模組的該些間隔件,特別是上探針模組3600-U的間隔件3611-U與另一探針模組的基底特別是下探針模組3600-L的基底3601-L之間的接觸直接或間接作為一中間連結或貼合促進材料,在形成接觸前可位於該些元件的該些表面之一者或兩者。As in the embodiment of FIG. 5A and FIG. 5B , the spacers of one probe module, especially the spacers 3611-U of the upper probe module 3600-U, are connected to the base of another probe module, especially the lower probe module. The contact between the bases 3601-L of the needle module 3600-L directly or indirectly serves as an intermediate connection or bonding promotion material that may be located on one or both of the surfaces of the components before contact is formed.
該二個探針模組3600-U、3600-l可橫向、縱向、及旋轉貼合或把持在一起,以形成探針。在某些實施例中,該些探針模組3600-U、3600-L可把持在一起,是例如透過軟焊、硬焊、雷射焊接、超音波焊接、點焊、使用一導電環氧樹脂、或某些其他貼合劑。The two probe modules 3600-U and 3600-l can be attached or held together horizontally, vertically, and rotated to form a probe. In some embodiments, the probe modules 3600-U, 3600-L may be held together, for example, by soldering, brazing, laser welding, ultrasonic welding, spot welding, using a conductive epoxy resin, or some other adhesive.
可進行圖6A及圖6B的許多其他替代例,並包括,例如:(1)針對圖5A及圖5B的實施例所提及的該些替代例,及使用本文所記載的其他實施例及其等替代例的特徵;(2)兩探針模組可形成為沒有基底,使得組裝該二個探針模組以形成探針提供間隔件對間隔件匹配;(3)該些間隔件的延伸部分(亦即,該些平面彈簧3621-U、3621-L上下方的部分)可移除自該些探針模組之一者,使得匹配發生,是透過將一探針模組的該些延伸間隔件結合於另一探針模組的平面彈簧的一截切間隔件區域;(4)基底可採用替代組態,例如,環狀結構或具有互補介接特徵的結構,及(5)接觸區域及/或該些間隔件本身的該些基底可包括提供對齊或連結的特徵,無論是貼合劑、機械互鎖、摩擦、擴散連結、或凝聚連結。Many other alternatives to Figures 6A and 6B are possible and include, for example: (1) those alternatives mentioned with respect to the embodiments of Figures 5A and 5B, and using other embodiments described herein and their Characteristics of alternative examples; (2) The two probe modules can be formed without a base, so that assembling the two probe modules to form probes provides spacer-to-spacer matching; (3) Extension of the spacers Portions (ie, the portions above and below the planar springs 3621-U, 3621-L) can be removed from one of the probe modules such that matching occurs by removing the portions of a probe module. The extended spacer is bonded to a truncated spacer region of the planar spring of another probe module; (4) the base may adopt alternative configurations, such as a ring structure or a structure with complementary interfacing features, and (5) The bases of the contact areas and/or the spacers themselves may include features that provide alignment or bonding, whether adhesive, mechanical interlocking, friction, diffusion bonding, or cohesive bonding.
圖7A1至圖7C提供根據本發明的另一實施例的探針模組或一探針組裝於該些探針模組的視圖,其中,探針模組3700-U、3700-L皆不提供一基底,但提供間隔件3711-U,具有可匹配於相反間隔件3711-L的組態。7A1 to 7C provide views of a probe module or a probe assembled in these probe modules according to another embodiment of the present invention, in which probe modules 3700-U and 3700-L are not provided. A substrate, but providing spacers 3711-U, has a configuration that can be matched to opposing spacers 3711-L.
圖7A1及圖7A2提供二個互補探針模組的等距視圖,具有間隔件3711,具有互補縱向、旋轉、及徑向止動特徵,當以反轉縱向定向來結合該些探針模組時,可彼此接合。Figures 7A1 and 7A2 provide isometric views of two complementary probe modules with spacers 3711 having complementary longitudinal, rotational, and radial stop features when coupled with reversed longitudinal orientation. , can be joined to each other.
圖7A1及圖7A2的各探針模組包括其本身各自的尖端3731、尖端臂、平面彈簧元件3721、及間隔件3711,其中,上標記「U」及下標記「L」已刪除,因為尚未指定該些探針模組使用作為上或下探針模組。圖7A1及圖7A2的該些間隔件3711包括面向縱向或垂直特徵3761-V1及3761-V2、及面向橫向特徵3761-H1及3761-H2,實質上面向於正或負切線方向、及面向徑向特徵3761-R1及3761-R2,實質上面向於正或負徑向方向。在圖7A1的探針模組中,一面向橫向特徵3761-H2為一面向外切線匹配表面,並旋轉位於作為一面向內切線匹配表面的另一面向橫向特徵3761-H1後方,使得面向徑向表面3761-R1在該些面向橫向特徵3761-H1及3761-H2,亦即,面向內外切線匹配表面之間的中間,徑向面向外。在圖7A2的探針模組中,一面向橫向特徵為一面向外切線匹配表面3761-H2,旋轉位於作為面向內切線匹配表面3761-H1的另一面向橫向特徵前方,使得對應中間面向徑向表面3761-R2,徑向面向內。由於該些互補關係,當一探針模組使用作為一上模組而另一者使用作為一下探針模組時,37A1及37A2的該些探針模組可彼此匹配於該些表面。圖7A1至圖7A2所顯示的例子中,提供該些探針模組的清楚的垂直、徑向、及切線對齊。在此實施例的變化中,其他互補匹配表面可用於沿著任何相關坐標系的一組一軸、二軸、或較佳是三軸提供確定性或硬停止匹配。Each probe module of Figures 7A1 and 7A2 includes its own tip 3731, tip arm, planar spring element 3721, and spacer 3711, in which the upper mark "U" and the lower mark "L" have been deleted because they have not yet been Specify which probe modules are used as upper or lower probe modules. The spacers 3711 of Figures 7A1 and 7A2 include longitudinal or vertical facing features 3761-V1 and 3761-V2, and transverse facing features 3761-H1 and 3761-H2, substantially facing the positive or negative tangential direction, and radially facing Orientation features 3761-R1 and 3761-R2 are oriented substantially in the positive or negative radial direction. In the probe module of Figure 7A1, one side facing the transverse feature 3761-H2 is an outward-facing tangent matching surface, and is rotated to be located behind the other facing transverse feature 3761-H1 as an inward-facing tangent matching surface so that it faces the radial direction. Surface 3761-R1 faces radially outward midway between the transversely facing features 3761-H1 and 3761-H2, that is, the inward and outward facing tangent matching surfaces. In the probe module of Figure 7A2, one side facing the transverse feature is the outward tangent matching surface 3761-H2, and the other side facing the transverse feature is rotated as the inward tangent matching surface 3761-H1, so that the corresponding middle side faces the radial direction. Surface 3761-R2, facing radially inward. Due to these complementary relationships, when one probe module is used as an upper module and the other is used as a lower probe module, the probe modules of 37A1 and 37A2 can match each other on the surfaces. The examples shown in Figures 7A1-7A2 provide clear vertical, radial, and tangential alignment of the probe modules. In variations of this embodiment, other complementary matching surfaces may be used to provide deterministic or hard-stop matching along a set of one, two, or preferably three axes of any relevant coordinate system.
圖7B提供圖7A1及圖7A2的該些探針模組的一等距視圖,定向並對齊,以供縱向匹配,其中,圖7A1的探針模組作為一上探針模組3700-U,而圖7A2的探針模組已自一指向上旋轉至指向下定向,並作為一下探針模組3700-L,其中,該些探針模組3700-L及3700-U將在箭頭3745所指示的方向上彼此相對移動,以提供匹配,其中,某些橫向移動亦可用於確保該些匹配或對齊表面面對面接觸。Figure 7B provides an isometric view of the probe modules of Figures 7A1 and 7A2, oriented and aligned for longitudinal matching, with the probe module of Figure 7A1 serving as an upper probe module 3700-U, The probe module in Figure 7A2 has been rotated from pointing upward to pointing downward and serves as the lower probe module 3700-L. Among them, the probe modules 3700-L and 3700-U will be in the direction indicated by arrow 3745. Movement relative to each other in the indicated directions to provide a match, where some lateral movement may also be used to ensure that the mating or aligned surfaces are in face-to-face contact.
圖7C提供圖7B的該些探針模組的一等距視圖,是在箭頭3745所指示的移動、匹配、及結合發生後,以形成一完成探針3700。結合該些探針模組可以許多方式來發生,如上述實施例所提及者。Figure 7C provides an isometric view of the probe modules of Figure 7B after the movement, matching, and coupling indicated by arrow 3745 have occurred to form a completed probe 3700. Combining the probe modules can occur in many ways, as mentioned in the above embodiments.
本領域技術人員在閱讀本文的教示後可明白探針及/或組裝過程的許多額外變化包括其他實施例及其等變化所提及的方法及特徵。Those skilled in the art will appreciate many additional variations of the probe and/or assembly process after reading the teachings herein, including methods and features mentioned in other embodiments and variations thereof.
圖8A至圖8C提供根據本發明的另一實施例的二個探針模組,特別是一上探針模組3800-U及一下探針模組3800-L的等距視圖,是當形成一探針3800時組裝的許多狀態。8A to 8C provide isometric views of two probe modules, particularly an upper probe module 3800-U and a lower probe module 3800-L, according to another embodiment of the present invention, when forming A probe 3800 can be assembled in many states.
探針3800的上探針模組3800-U具有一上順應性元件3821-U,為一彈簧元件或組裝,連接至一上探針臂,結束於一上探針尖端3831-U,而探針3800的下探針模組3800-L具有一下順應性元件3821-L,為一彈簧元件或組裝,連接至下探針臂,結束於一下探針尖端3831-L。The upper probe module 3800-U of the probe 3800 has an upper compliant element 3821-U, which is a spring element or assembly, connected to an upper probe arm, ending in an upper probe tip 3831-U, and the probe The lower probe module 3800-L of the needle 3800 has a lower compliant element 3821-L, which is a spring element or assembly, connected to the lower probe arm and ending in the lower probe tip 3831-L.
圖8A繪示在移動箭頭3845-1及3845-2所分別顯示的第一及第二所需匹配移動後,上下探針模組3800-U及3800-L橫向對齊,其中,第一所需匹配移動包括一第一橫向分離3845-1,以將上探針模組3800-U的一基底3801-U分離自透過一更窄頸特徵而附著於下探針模組3800-L的一基底3801-L的一封蓋結構3863,接下來縱向對齊3845-2,以產生圖8B所繪示的組裝狀態,其中,上探針模組3800-U位於下探針模組3800-L上方,具有各自的尖端3831-U、3831-L的該些探針模組3800-U、3800L彼此平移,箭頭3845-3顯示一額外橫向移動,相反於移動3845-1,以提供如圖8C所示的橫向對齊及匹配,其中,上探針模組3800-U的基底3801-U具有一接合槽3862,具有許多對齊特徵,包括3861-R1、3861-R2、及3861-V2,而下探針模組3800-L的基底3801-L具有一對齊特徵3861-V1,並支撐透過更窄頸區域而分離自基底3801-L的封蓋結構3863,以形成一底切區域於封蓋結構3863與下探針模組3800-L的基底3801-L之間,可有效接合並保持上探針模組3800-U的基底3801-U,具有一槽體結構,是透過其邊界對齊特徵,以提供縱向保持。8A illustrates the horizontal alignment of the upper and lower probe modules 3800-U and 3800-L after the first and second required matching movements shown by movement arrows 3845-1 and 3845-2 respectively, wherein the first required The mating movement includes a first lateral separation 3845-1 to separate a base 3801-U of the upper probe module 3800-U from a base attached to the lower probe module 3800-L through a narrower neck feature The cover structure 3863 of 3801-L is then longitudinally aligned 3845-2 to produce the assembly state shown in Figure 8B, in which the upper probe module 3800-U is located above the lower probe module 3800-L. The probe modules 3800-U, 3800L with their respective tips 3831-U, 3831-L are translated relative to each other, arrow 3845-3 showing an additional lateral movement, opposite to the movement 3845-1, to provide as shown in Figure 8C Lateral alignment and matching, wherein the base 3801-U of the upper probe module 3800-U has a joint groove 3862 with many alignment features, including 3861-R1, 3861-R2, and 3861-V2, while the lower probe Base 3801-L of module 3800-L has an alignment feature 3861-V1 and supports capping structure 3863 separated from base 3801-L by a narrower neck region to form an undercut region between capping structure 3863 and Between the base 3801-L of the lower probe module 3800-L, the base 3801-U of the upper probe module 3800-U can be effectively connected and maintained, and has a groove structure, which is provided by its boundary alignment features. Hold vertically.
結合該些探針模組可透過上述討論的對齊及保持特徵來充分達成;然而,在某些變化中,額外接合、保持、或連結材料或方法可用於提供強化的匹配,如上述實施例所提及者。本領域技術人員在閱讀本文的教示後可明白探針及/或組裝過程的許多額外變化包括其他實施例及其等變化所提及的方法及特徵。Joining these probe modules can be accomplished adequately through the alignment and retention features discussed above; however, in some variations, additional bonding, retention, or joining materials or methods can be used to provide enhanced mating, as in the embodiments described above. Mentioner. Those skilled in the art will appreciate many additional variations of the probe and/or assembly process after reading the teachings herein, including methods and features mentioned in other embodiments and variations thereof.
圖9A至圖9C提供視圖相似於圖8A至圖8C所提供者,用於形成根據本發明的另一實施例的一探針3900,其中,該些探針模組相似於圖8A至圖8C者,但結合於下探針模組3900-L的一基底3901-L的一頸部分的一封蓋特徵3963包括一彈簧元件3964,提供一穩定橫向連接至上探針模組3900-U,以供電性及機械目的之一者或兩者,而不需要一連結操作或包括其他結構,但仍可選擇性使用。9A to 9C provide views similar to those provided in FIGS. 8A to 8C for forming a probe 3900 according to another embodiment of the present invention, wherein the probe modules are similar to those in FIGS. 8A to 8C However, a cover feature 3963 coupled to a neck portion of a base 3901-L of the lower probe module 3900-L includes a spring element 3964 to provide a stable lateral connection to the upper probe module 3900-U. One or both of electrical and mechanical purposes, without requiring a link operation or including other structures, but can still be used optionally.
探針3900的上探針模組3900-U具有一上順應性元件3921-U,為一彈簧元件或組裝,連接至一上探針臂,結束於一上探針尖端3931-U,而探針3900的下探針模組3900-L具有一下順應性元件3921-L,為一彈簧元件或組裝,連接至下探針臂,結束於一下探針尖端3931-L。The upper probe module 3900-U of the probe 3900 has an upper compliant element 3921-U, which is a spring element or assembly connected to an upper probe arm ending in an upper probe tip 3931-U, and the probe The lower probe module 3900-L of the needle 3900 has a lower compliant element 3921-L, which is a spring element or assembly, connected to the lower probe arm and ending in the lower probe tip 3931-L.
在圖9A至圖9C的例子中,彈簧元件3964具有二個彈性偏置元件,定向於相反方向,其中,一者接觸該些上模組間隔件3911-U之一者(例如,一左間隔件),而另一者接觸另一上模組間隔件3911-U(例如,一右間隔件),提供力,傾向於將下探針模組3900-L橫向置中於上探針模組3900-U的該些間隔件之間,並傾向於當彈簧元件3964及該些間隔件3911-U是由一導電金屬所組成且兩者皆不具備一介電塗層時,提供一穩定電性接觸於上下探針模組之間。由於存在於上下探針模組3900-U、3900-L之間的強化摩擦力,彈簧力亦傾向於促進下探針模組3900-U的封蓋特徵3963保持於上探針模組3900-U的該些間隔件3911-U之間。In the example of Figures 9A-9C, the spring element 3964 has two elastic biasing elements oriented in opposite directions, with one contacting one of the upper die set spacers 3911-U (e.g., a left spacer member), while the other contacts another upper module spacer 3911-U (e.g., a right spacer), providing a force tending to laterally center the lower probe module 3900-L on the upper probe module between the spacers 3900-U and tend to provide a stable electrical current when the spring element 3964 and the spacers 3911-U are composed of a conductive metal and neither has a dielectric coating. Sexual contact is between the upper and lower probe modules. Due to the enhanced friction existing between the upper and lower probe modules 3900-U, 3900-L, the spring force also tends to promote the capping feature 3963 of the lower probe module 3900-U to remain on the upper probe module 3900- between the spacers 3911-U of U.
如同其他實施例,可進行許多變化,而不只包括其他實施例及其等變化,亦包括一探針模組本身的彈簧元件的該些保持彈簧的變化,及其等互動於一相反探針模組所提及者。例如,在某些下變化中,探針模組兩者皆可包括彈簧元件。在某些例子中,一探針模組的彈簧元件可互動於相反探針模組的彈簧元件,而非該些相反探針模組的相對剛性特徵。如同另一例,在某些替代例中,一探針模組的該些彈簧可包括突出元件或凹槽,可接合相反探針模組的該些間隔件之上或之中的互補特徵,使得力維持之保持不只基於一摩擦係數結合於由彈簧所產生的正向力,亦基於由彈簧力所維持的一實際干擾甚或凹陷接合互動。As with the other embodiments, many variations are possible, including not only other embodiments and their like, but also variations in the retaining springs of the spring elements of a probe module itself, and their interaction with an opposing probe module. mentioned by the group. For example, in some variations, both probe modules may include spring elements. In some examples, the spring elements of one probe module may interact with the spring elements of an opposing probe module rather than the relatively rigid characteristics of the opposing probe modules. As another example, in some alternatives, the springs of one probe module may include protruding elements or grooves that engage complementary features on or in the spacers of an opposing probe module such that Force maintenance is maintained not only based on a friction coefficient combined with the positive force generated by the spring, but also based on an actual disturbance or even recessed engagement interaction maintained by the spring force.
在某些額外變化中,該些互動特徵可為組態在最初加載期間提供傾斜介面,並設置垂直甚或凹陷介面,以免在脫離方向上移動(例如,一彈簧鎖組態)。在某些變化中,當各自的元件接合時,特別是當在該些元件之間不存在脫離偏置時,彈簧鎖組態可提供一下剩餘接觸力甚或一消除接觸力。In some additional variations, these interactive features can provide a tilted interface for the configuration during initial loading, and a vertical or even recessed interface to prevent movement in the disengagement direction (e.g., a snap-lock configuration). In some variations, the latch configuration may provide a residual contact force or even an elimination of contact force when the respective elements are engaged, particularly when there is no disengagement bias between the elements.
在其他實施例中,可以更淺傾斜來發生接合,而脫離可具備傾斜介面,具有階梯組態,可維持解除耦合,但比起加載所需者,需要更大力。In other embodiments, engagement may occur at a shallower slope, and disengagement may have a sloped interface, with a stepped configuration that maintains decoupling but requires more force than required for loading.
在額外其他實施例中,由在該些探針模組之間該些保持彈簧感應互動所提供的該些水平偏置力可由彈簧來替代或輔助,以提供偏置於一縱向方向或於一混合縱向/橫向方向。In still other embodiments, the horizontal biasing forces provided by the inductive interaction of the retention springs between the probe modules may be replaced or assisted by springs to provide biasing in a longitudinal direction or in a Mixed portrait/landscape orientation.
圖10A至圖10C提供視圖,相似於圖8A至圖8C及圖9A至圖9C所提供者,用於形成根據本發明的另一實施例的一探針,其中,該些探針模組相似於圖8A至圖8C者,但下探針模組4000-L的封蓋特徵4063已修飾成具有一橢圓形形狀,具有上探針模組4000-U的槽體,轉換成一孔洞或開口4062,具有一形狀互補於於封蓋特徵4063,但稍大,以便封蓋特徵4063插入通過開口4062,以便當該些探針模組在箭頭4045-1所顯示的方向上彼此相對移動時,下探針模組4000-L的一基底4001-L的頸部分及上探針模組4000-U的基底4001-U的開口4062位於相同縱向水平,使得下上探針模組4000-L及4000-U繞著探針的縱向軸的箭頭4045-2所顯示的相反相對旋轉運動可導致下探針模組400-L的封蓋特徵4063的橢圓形形狀覆蓋圍繞開口4062的更窄部分的上探針模組4000-U的基底4001-U的部分,以將上下探針模組4000-L、4000-U彼此互鎖,如圖10C所示。10A to 10C provide views similar to those provided in FIGS. 8A to 8C and 9A to 9C for forming a probe according to another embodiment of the invention, wherein the probe modules are similar to those provided in FIGS. 8A to 8C and 9A to 9C. 8A to 8C , but the capping feature 4063 of the lower probe module 4000-L has been modified to have an oval shape, with the groove of the upper probe module 4000-U converted into a hole or opening 4062 , having a shape complementary to the capping feature 4063 but slightly larger so that the capping feature 4063 is inserted through the opening 4062 so that when the probe modules move relative to each other in the direction shown by arrow 4045-1, the lower The neck portion of a base 4001-L of the probe module 4000-L and the opening 4062 of the base 4001-U of the upper probe module 4000-U are located at the same longitudinal level, so that the lower and upper probe modules 4000-L and 4000 The opposite relative rotational motion shown by arrow 4045-2 about the longitudinal axis of the probe can cause the oval shape of the capping feature 4063 of the lower probe module 400-L to cover the upper portion of the narrower portion surrounding the opening 4062. The portion of the base 4001-U of the probe module 4000-U is used to interlock the upper and lower probe modules 4000-L and 4000-U with each other, as shown in Figure 10C.
探針4000的上探針模組4000-U具有一上順應性元件4021-U,為一彈簧元件或組裝,連接至一上探針臂,結束於一上探針尖端4031-U,而探針4000的下探針模組4000-L具有一下順應性元件4021-L,為一彈簧元件或組裝,連接至下探針臂,結束於一下探針尖端4031-L。The upper probe module 4000-U of the probe 4000 has an upper compliant element 4021-U, which is a spring element or assembly, connected to an upper probe arm, ending in an upper probe tip 4031-U, and the probe The lower probe module 4000-L of the needle 4000 has a lower compliant element 4021-L, which is a spring element or assembly, connected to the lower probe arm and ending in the lower probe tip 4031-L.
在最終組裝中,下上探針模組4000-L及4000-U的相對旋轉運動4045-2亦縱向對齊各自的間隔件4011-l及4011-U,如圖40C所示。In the final assembly, the relative rotational movement 4045-2 of the lower and upper probe modules 4000-L and 4000-U also longitudinally aligns the respective spacers 4011-1 and 4011-U, as shown in Figure 40C.
本領域技術人員在閱讀本文的教示後可明白存在此實施例的許多替代例。某些該些變化,如同本文的其他實施例,可具有特徵相似於在其他實施例中發現者及其他實施例的變化。在某些替代實施例中,上探針模組的基底的開口的窄部分的該些剛性側壁及/或下探針模組的基底的封蓋結構的剛性長條部分可替代成彈簧結構,接合相反模組,以提供該些探針模組的電性或機械介接之一者或兩者及/或摩擦、干擾、互鎖、甚或雙穩定機械鎖定於一給定旋轉定向。在其他變化中,彈簧可關聯於上探針模組或兩探針模組,以提供強化的匹配。There are many alternatives to this embodiment that will be apparent to those skilled in the art upon reading the teachings herein. Some of these variations, like other embodiments herein, may have features similar to those found in other embodiments and other embodiments. In some alternative embodiments, the rigid side walls of the narrow portion of the opening of the base of the upper probe module and/or the rigid elongated portion of the cover structure of the base of the lower probe module can be replaced by a spring structure, Engage opposing modules to provide either or both electrical or mechanical interface of the probe modules and/or friction, interference, interlocking, or even bistable mechanical locking in a given rotational orientation. In other variations, springs can be associated with the upper probe module or the two probe modules to provide enhanced matching.
額外意見及結論:Additional comments and conclusions:
許多實施例已呈現如上,但可進行許多額外實施例,只要不背離本發明的精神即可。某些該些額外實施例可基於將本文的教示結合於透過引用而納入本文的許多教示。某些製造實施例可使用多層電化學沉積過程,而其他則否。某些實施例可使用選擇性沉積及覆蓋沉積過程的結合,而其他可皆不使用,而額外其他可使用不同過程的結合。例如,某些實施例可不使用任何覆蓋沉積過程及/或其等可不使用一平面化過程,以形成相續層。某些實施例可使用選擇性沉積過程或覆蓋沉積過程於某些層,而非電沉積過程。某些實施例可例如使用鎳(Ni)、鎳磷(Ni-P)、鎳鈷(NiCo)、金(Au)、銅(Cu)、錫(Sn)、銀(Ag)、鋅(Zn)、焊料、銠(Rh)、錸(Re)、鈹銅(BeCu)、鎢(W)、錸鎢(ReW)、鋁銅(AlCu)、鈀(Pd)、鈀鈷(PdCo)、鉑(Pt)、鉬(Mo)、錳(Mn)、鋼、P7合金、黃銅、鉻(Cr)、鉻合金、鉻銅(CrCu)、其他鈀合金、銅銀合金,作為結構材料或犧牲材料,而其他實施例可使用不同材料。某些上述材料可例如優先用於其等彈簧性質,而其他可用於強化其等傳導性、其等耐磨性、其等阻障性質、其等熱性質(例如,在高溫或高導熱率下的屈服強度),而某些可選擇用於其等連結特徵、其等與其他材料的可分離性,及甚至選擇用於在一所需應用或用途中的其他關注特徵。其他實施例可使用不同材料或材料的不同結合,包括介電質(例如,陶瓷、塑膠、光阻、聚醯亞胺、玻璃、陶瓷、或其他聚合物)、其他金屬、半導體、及相似者作為結構材料、犧牲材料、或圖案化材料。某些實施例例如可使用銅、錫、鋅、焊料、光阻、或其他材料來作為犧牲材料。某些實施例可使用不同結構材料於不同層或單一層的不同部分。某些實施例可移除一犧牲材料,而其他實施例則否。某些實施例可形成探針結構,而其他實施例可使用本發明的該些彈簧模組於非探針目的(例如,以一所需彈簧力或順應性接合來偏置其他操作裝置)。Many embodiments have been presented above, but many additional embodiments can be made without departing from the spirit of the invention. Some of these additional embodiments may be based on incorporating the teachings herein into many of the teachings incorporated herein by reference. Certain fabrication embodiments may use multi-layer electrochemical deposition processes, while others may not. Some embodiments may use a combination of selective deposition and cover deposition processes, while others may use neither, and still others may use a combination of different processes. For example, some embodiments may not use any blanket deposition process and/or they may not use a planarization process to form successive layers. Some embodiments may use a selective deposition process or a blanket deposition process on certain layers rather than an electrodeposition process. Certain embodiments may use, for example, nickel (Ni), nickel phosphorus (Ni-P), nickel cobalt (NiCo), gold (Au), copper (Cu), tin (Sn), silver (Ag), zinc (Zn) , solder, rhodium (Rh), rhenium (Re), beryllium copper (BeCu), tungsten (W), rhenium tungsten (ReW), aluminum copper (AlCu), palladium (Pd), palladium cobalt (PdCo), platinum (Pt) ), molybdenum (Mo), manganese (Mn), steel, P7 alloy, brass, chromium (Cr), chromium alloy, chromium copper (CrCu), other palladium alloys, copper-silver alloys, as structural materials or sacrificial materials, and Other embodiments may use different materials. Some of the above materials may, for example, be used preferentially for their spring properties, while others may be used to enhance their conductivity, their wear resistance, their barrier properties, their thermal properties (e.g. at high temperatures or high thermal conductivities). yield strength), while some may be selected for their bonding characteristics, their separability from other materials, and even other characteristics of interest in a desired application or use. Other embodiments may use different materials or different combinations of materials, including dielectrics (e.g., ceramics, plastics, photoresists, polyimides, glass, ceramics, or other polymers), other metals, semiconductors, and the like. As structural materials, sacrificial materials, or patterning materials. Some embodiments may use copper, tin, zinc, solder, photoresist, or other materials as sacrificial materials, for example. Certain embodiments may use different structural materials in different layers or different parts of a single layer. Some embodiments may remove a sacrificial material, while other embodiments may not. Some embodiments may form probe structures, while other embodiments may use the spring modules of the present invention for non-probe purposes (eg, to bias other operating devices with a desired spring force or compliant engagement).
亦可理解的是,本發明的某些觀點的該些探針元件可透過與本文所記載的過程非常不同的過程來形成,並不表示本發明的結構觀點必須只透過本文所教示的該些過程,或透過本文所教示的明顯過程來形成。It is also understood that the probe elements of certain aspects of the present invention may be formed through processes very different from those described herein. This does not mean that the structural aspects of the present invention must only be formed through the processes taught herein. process, or through the obvious process taught in this article.
雖然本說明書的許多部分已具備標題,並不表示該些標題用於將在本說明書的一部分中發現的教示的應用限制應用於本說明書的其他部分。例如,相關於一實施例而得知的替代例是用於應用於全部實施例,使得不同實施例的該些特徵足以使得該些應用發揮功能,但不牴觸或移除所套用的實施例的全部益處。Although portions of this specification have been titled with headings, these headings are not intended to limit the application of the teachings found in one portion of the specification to other portions of the specification. For example, alternatives known in relation to one embodiment are intended to apply to all embodiments, such that the features of the different embodiments are sufficient to enable those applications to function, but do not interfere with or remove the applicable embodiment. all the benefits.
須表示,本文所記載的本發明的任何觀點呈現獨立揭露說明,是申請人認為完全且完整的揭露說明,申請人相信可記載成獨立請求項,只要一旦寫成該些獨立請求項即已明文記載於其等中,而不需要自本文所記載的其他實施例或觀點導入額外限制或元件來解釋或澄清。亦可理解的是,本文所記載的該些觀點的任何變化呈現個別且分離之特徵,而可形成分離之獨立請求項、個別加入於獨立請求項、或新增成附屬請求項以進一步定義一發明,應該寫成各自的該些附屬請求項來主張。It must be stated that any viewpoint of the invention described herein presents an independent disclosure statement, which the applicant believes to be a complete and complete disclosure statement. The applicant believes that it can be recorded as independent claims, as long as these independent claims are expressly recorded once they are written. There is no need to introduce additional limitations or elements for explanation or clarification from other embodiments or perspectives described herein. It is also understood that any changes to the viewpoints described herein are individual and separate, and may form separate independent claims, be added to independent claims individually, or be added as subsidiary claims to further define a claim. Inventions should be claimed in terms of their respective subsidiary claims.
有鑑於本文的教示,本領域技術人員可明白用於設計及運用本發明的該些實施例的許多額外實施例、替代例。因此,並不表示本發明限於上述特別敘述的實施例、替代例、及運用,但純粹由下文的申請專利範圍來界定。Numerous additional embodiments, alternatives, and alternatives will be apparent to those skilled in the art in view of the teachings herein for designing and using the embodiments of the invention. Therefore, it is not meant that the present invention is limited to the above-mentioned specifically described embodiments, alternatives, and applications, but is purely defined by the patent scope below.
3500、3600、3700、3800、3900、4000:探針 3500-L、3600-L、3700-L、3800-L、3900-L、4000-L:第二探針模組 3500-U、3600-U、3700-U、3800-U、3900-U、4000-U:第一探針模組 3511-L、3611-L、3711、3811-L、3911-L、4011-L:間隔件 3511-U、3611-U、3711、3811-U、3911-U、4011-U:間隔件 3521-L、3621-L、3721、3821-L、3921-L、4021-L:第二順應性元件 3521-U、3621-U、3721、3821-U、3921-U、4021-U:第一順應性元件 3531-L、3631-L、3731、3831-L、3931-L、4031-L:第二尖端 3531-U、3631-U、3731、3831-U、3931-U、4031-U:第一尖端 3501-L、3601-L、3801-L、3901-L、4001-L:第二基底 3501-U、3801-U、3901-U、4001-U:第一基底 3862、3962、4062:接合槽或開口 3863、3963、4063:封蓋結構 3964:彈簧元件 3761-H1:干擾特徵 3761-H2:干擾特徵 3761-V1、3861-V1、3961-V1、4061-V1:干擾特徵 3761-V2、3861-V2、3961-V2、4061-V2:干擾特徵 3761-R1、3861-R1、4061-R1:干擾特徵 3761-R2、3861-R2、4061-R2:干擾特徵 3863:干擾特徵3500, 3600, 3700, 3800, 3900, 4000: Probe 3500-L, 3600-L, 3700-L, 3800-L, 3900-L, 4000-L: Second probe module 3500-U, 3600-U, 3700-U, 3800-U, 3900-U, 4000-U: first probe module 3511-L, 3611-L, 3711, 3811-L, 3911-L, 4011-L: Spacer 3511-U, 3611-U, 3711, 3811-U, 3911-U, 4011-U: Spacer 3521-L, 3621-L, 3721, 3821-L, 3921-L, 4021-L: Second compliance element 3521-U, 3621-U, 3721, 3821-U, 3921-U, 4021-U: First compliance element 3531-L, 3631-L, 3731, 3831-L, 3931-L, 4031-L: Second tip 3531-U, 3631-U, 3731, 3831-U, 3931-U, 4031-U: First tip 3501-L, 3601-L, 3801-L, 3901-L, 4001-L: Second base 3501-U, 3801-U, 3901-U, 4001-U: First base 3862, 3962, 4062: Engagement slot or opening 3863, 3963, 4063: Capping structure 3964:Spring element 3761-H1: Interference characteristics 3761-H2: Interference characteristics 3761-V1, 3861-V1, 3961-V1, 4061-V1: Interference characteristics 3761-V2, 3861-V2, 3961-V2, 4061-V2: Interference characteristics 3761-R1, 3861-R1, 4061-R1: Interference characteristics 3761-R2, 3861-R2, 4061-R2: Interference characteristics 3863: Interference characteristics
圖1A至圖1F示意性顯示使用貼合遮罩電鍍來形成一結構的一第一層,其中,覆蓋沉積一第二材料,以覆蓋一第一材料的沉積位置之間的該些開口及第一材料本身兩者。1A to 1F schematically illustrate the use of bonded mask plating to form a first layer of a structure, wherein a second material is blanket deposited to cover the openings and the third layer between the deposition locations of a first material. One the material itself and both.
圖1G顯示透過將該些沉積材料平面化至一所需水平而將第一層形成完成。Figure 1G shows the completion of the first layer by planarizing the deposited materials to a desired level.
圖1H及圖1I分別顯示在形成結構的該些層後及在自犧牲材料釋放結構後的過程狀態。Figures 1H and 1I show the process state after forming the layers of the structure and after releasing the structure from the sacrificial material, respectively.
圖2顯示一範例彈簧模組或順應性模組的一等距視圖,可用於一探針或作為一探針,具有二個連接之彈簧元件、一基底、及一連接支撐件或間隔件。Figure 2 shows an isometric view of an example spring module or compliant module that may be used in or as a probe with two connected spring elements, a base, and a connected support or spacer.
圖3顯示一第二範例彈簧模組或順應性模組的一等距視圖,可用於一探針或作為一探針,相似於圖2的模組,但該二個彈簧元件更厚,而因此比起圖2的該些元件提供一更大彈簧常數。Figure 3 shows an isometric view of a second example spring module or compliant module for use with or as a probe, similar to the module of Figure 2, but with the two spring elements being thicker and These elements therefore provide a larger spring constant than those of Figure 2 .
圖4A至圖4D4提供根據本發明的另一實施例的一探針的許多視圖,其中,探針形成自二個背對背模組,而該二個模組共有一共同基底,亦作用為一間隔件,並具有一環形組態。4A to 4D4 provide multiple views of a probe according to another embodiment of the present invention, wherein the probe is formed from two back-to-back modules, and the two modules share a common base that also acts as a spacer components and has a ring configuration.
圖4E1提供圖4A至圖4D4的探針的一側視圖,顯示17個樣本層級,探針可由其等來製造,其中,並非全部層皆具有獨特組態。Figure 4E1 provides a side view of the probe of Figures 4A-4D4, showing 17 sample layers from which the probe can be fabricated, where not all layers have unique configurations.
圖4E2-A至圖4E9-B繪示層L1至L17的獨特組態的橫剖面組態,顯示於一俯視圖(該些-A圖)及一等距視圖(該些-B圖)兩者,其中,圖4E2-A及圖4E2-B繪示層L1及L17的視圖;圖4E3-A及圖4E3-B繪示層L2、L4、L6、及L8的視圖;圖4E4-A及圖4E4-B繪示層L3及L7的視圖;圖4E5-A及圖4E5-B繪示層L5的視圖;圖4E6-A及圖4E6-B繪示層L9的視圖;圖4E7-A及圖4E7-B繪示層L10、L12、L14、及L16的視圖;圖4E8-A及圖4E8-B繪示層L11及L15的視圖;而圖4E9-A及圖4E9-B繪示層L13的視圖。Figures 4E2-A through 4E9-B illustrate cross-sectional configurations of unique configurations of layers L1 through L17, shown in both a top view (these -A) and an isometric view (these -B) , wherein, Figure 4E2-A and Figure 4E2-B illustrate views of layers L1 and L17; Figure 4E3-A and Figure 4E3-B illustrate views of layers L2, L4, L6, and L8; Figure 4E4-A and Figure 4E4-B illustrates views of layers L3 and L7; Figures 4E5-A and Figure 4E5-B illustrate views of layer L5; Figures 4E6-A and Figure 4E6-B illustrate views of layer L9; Figures 4E7-A and Figures 4E7-B shows views of layers L10, L12, L14, and L16; Figures 4E8-A and 4E8-B show views of layers L11 and L15; and Figures 4E9-A and 4E9-B show views of layer L13 view.
圖5A及圖5B提供根據本發明的另一實施例的二個相反定向之探針模組的一等距視圖,是在組裝前(圖5A)及作為一組裝之探針(圖5B),其中,探針形成為二個分離之探針模組,具有相同或不同定向,接著將該些探針模組組裝成基底對基底,其中,一探針模組具有一面向下尖端,而另一探針模組具有一面向上尖端,其中,各探針模組形成有其本身各自的尖端、尖端臂、平面彈簧元件、間隔件、及基底,且其中,各模組可為相同或具有不同特徵。Figures 5A and 5B provide an isometric view of two oppositely oriented probe modules, before assembly (Figure 5A) and as an assembled probe (Figure 5B), according to another embodiment of the present invention. Wherein, the probes are formed into two separate probe modules with the same or different orientations, and then the probe modules are assembled into a base-to-base, where one probe module has a downward tip, and the other probe module has a downward tip. A probe module has an upward facing tip, wherein each probe module is formed with its own tip, tip arm, planar spring element, spacer, and base, and wherein each module can be the same or have different Characteristics.
圖6A及圖6B提供根據本發明的另一實施例的二個相反定向之探針模組一等距視圖,是在組裝前(圖6A)及作為一組裝之探針(圖6B),其中,探針形成為二個分離之探針模組,具有相同或不同定向,接著組裝該些探針模組,其中,一探針模組具有一面向下尖端,而另一探針模組具有一面向上尖端,其中,各模組形成有其本身各自的尖端、尖端臂、平面彈簧元件、及間隔件,且其中,根據此實施例,該些探針模組只有一者形成有一基底結合於其間隔件。6A and 6B provide an isometric view of two oppositely oriented probe modules, before assembly (FIG. 6A) and as an assembled probe (FIG. 6B), in accordance with another embodiment of the present invention, wherein , the probe is formed into two separate probe modules, with the same or different orientations, and then the probe modules are assembled, where one probe module has a downward-facing tip, and the other probe module has a downward-facing tip. One side points upward, wherein each module is formed with its own tip, tip arm, planar spring element, and spacer, and wherein, according to this embodiment, only one of the probe modules is formed with a base coupled to its spacer.
圖7A1至圖7C提供根據本發明的另一實施例的探針模組或一探針組裝於該些探針模組的視圖,其中,探針模組皆不包括一基底,但提供間隔件,具有可將一探針模組匹配於另一探針模組的組態。7A1 to 7C provide views of a probe module or a probe assembled in the probe modules according to another embodiment of the present invention, wherein the probe module does not include a base but provides a spacer. , with a configuration that can match one probe module to another probe module.
圖8A至圖8C提供根據本發明的另一實施例的二個探針模組的等距視圖,是當形成一探針時組裝的許多狀態,其中,圖8A繪示該些探針模組橫向對齊,其中,移動箭頭繪示需要橫向分離,接下來縱向對齊,以產生圖8B所繪示的組裝狀態,進而繪示需要相反橫向移動,以提供橫向對齊及匹配,如圖8C所示,其中,一探針模組具備一基底,具有一接合槽,而另一探針模組具備一基底,支撐一封蓋結構,透過一更窄頸區域而分離自基底,以形成一底切區域於封蓋與基底之間,可有效接合並保持具有另一探針模組的一槽體結構的基底,以提供縱向保持。8A-8C provide isometric views of two probe modules in various states of assembly when forming a probe, in accordance with another embodiment of the present invention, wherein FIG. 8A illustrates the probe modules Lateral alignment, where the moving arrow indicates the need for lateral separation, followed by longitudinal alignment to produce the assembled state shown in Figure 8B, which further indicates the need for reverse lateral movement to provide lateral alignment and matching, as shown in Figure 8C, Among them, one probe module has a base with a joint groove, and the other probe module has a base supporting a cover structure separated from the base through a narrower neck area to form an undercut area. Between the cover and the base, the base with a groove structure of another probe module can be effectively joined and retained to provide longitudinal retention.
圖9A至圖9C提供視圖相似於圖8A至圖8C所提供者,用於形成根據本發明的另一實施例的一探針,其中,該些探針模組相似於圖8A至圖8C者,但結合於下探針模組的更窄頸部分的封蓋結構的已替代成一彈簧元件,可提供一穩定橫向連接至上探針模組,以供電性及機械兩目的,而不需要一連結操作或包括其他結構,但仍可選擇性使用。9A to 9C provide views similar to those provided in FIGS. 8A to 8C for forming a probe according to another embodiment of the present invention, wherein the probe modules are similar to those of FIGS. 8A to 8C , but the capping structure coupled to the narrower neck portion of the lower probe module has been replaced by a spring element that provides a stable lateral connection to the upper probe module for both electrical and mechanical purposes without the need for a link Operations may include other structures, but may still be used optionally.
圖10A至圖10C提供視圖相似於圖8A至圖8C及圖9A至圖9C所提供者,用於形成根據本發明的另一實施例的一探針,其中,該些探針模組相似於圖8A至圖8C者,但下探針模組的封蓋結構已修飾成具有一橢圓形形狀,具有上探針模組的槽體,為一孔洞或開口,具有一形狀互補於封蓋結構的橢圓形形狀,但稍大,以便封蓋結構插入通過開口,以便更窄頸部分及開口位於相同縱向水平,使得該些探針模組繞著探針的縱向軸相反相對旋轉運動可導致下探針模組的具有一橢圓形形狀的封蓋結構覆蓋圍繞上探針模組的開口的窄部分的該些結構,以將該些探針模組互鎖。10A to 10C provide views similar to those provided in FIGS. 8A to 8C and 9A to 9C for forming a probe according to another embodiment of the present invention, wherein the probe modules are similar to 8A to 8C, but the capping structure of the lower probe module has been modified to have an oval shape, and the groove body of the upper probe module is a hole or opening, with a shape complementary to the capping structure oval shape, but slightly larger to allow the cover structure to be inserted through the opening, so that the narrower neck portion and the opening are at the same longitudinal level, so that opposite relative rotational movements of the probe modules about the longitudinal axis of the probe can result in lower The cover structure of the probe module having an oval shape covers the structures surrounding the narrow portion of the opening of the upper probe module to interlock the probe modules.
3500:探針3500:Probe
3500-L:第二探針模組3500-L: Second probe module
3500-U:第一探針模組3500-U: First probe module
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202263335885P | 2022-04-28 | 2022-04-28 | |
| US63/335,885 | 2022-04-28 |
| Publication Number | Publication Date |
|---|---|
| TW202405448Atrue TW202405448A (en) | 2024-02-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112112813ATW202405448A (en) | 2022-04-28 | 2023-04-06 | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes |
| Country | Link |
|---|---|
| TW (1) | TW202405448A (en) |
| Publication | Publication Date | Title |
|---|---|---|
| US12066462B2 (en) | Probes with planar unbiased spring elements for electronic component contact and methods for making such probes | |
| US12196782B2 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US12196781B2 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| CN119013568A (en) | Probe with planar non-biased spring element for electronic component contact, method for manufacturing such a probe and method for using such a probe | |
| US20230314474A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202405448A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| US20230314482A1 (en) | Probes with Planar Unbiased Spring Elements for Electronic Component Contact, Methods for Making Such Probes, and Methods for Using Such Probes | |
| WO2023211659A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202405455A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| EP4505191A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| EP4505188A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| WO2023196431A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| EP4505192A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202405447A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| WO2023196438A1 (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202417857A (en) | Probes with planar unbiased spring elements for electronic component contact | |
| TW202405445A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202405446A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes | |
| TW202405454A (en) | Probes with planar unbiased spring elements for electronic component contact, methods for making such probes, and methods for using such probes |