

本申請案根據專利法主張於2018年5月22日提出申請之美國臨時申請案第62/674,979號之優先權益,該申請案之內容之全文皆以引用方式併入本文中。This application claims the priority rights of US Provisional Application No. 62/674,979 filed on May 22, 2018 under the Patent Law, and the entire contents of the application are incorporated herein by reference.
本揭示內容概言之係關於液態透鏡,且更具體而言使用防凍肽(antifreeze peptide; AFP)或冰重結晶抑制蛋白(ice recrystallization inhibition protein; IRIP)之基於電潤濕之液態透鏡。This disclosure relates generally to liquid lenses, and more specifically electrowetting-based liquid lenses using antifreeze peptide (AFP) or ice recrystallization inhibition protein (IRIP).
習用之基於電潤濕之液態透鏡具有設置在腔室內之兩種不可混溶之液體,即油及導電相。改變施加至液體之電場可以改變一液體相對於電潤濕光學元件之室壁之可潤濕性,此具有改變兩種液體之間形成之彎月面形狀之效應。The conventional liquid lens based on electrowetting has two immiscible liquids, namely oil and conductive phase, arranged in the chamber. Changing the electric field applied to the liquid can change the wettability of a liquid relative to the wall of the electrowetting optical element, which has the effect of changing the shape of the meniscus formed between the two liquids.
由於液態透鏡應用於各種新領域,可能期望電潤濕光學領域中使用之液體製劑能夠在較低溫度下使用,同時亦能夠在大溫度範圍內快速回應於電壓。在較低溫度下使用已知液體製劑之缺點之一係液體製劑之高黏度。Since liquid lenses are used in various new fields, it may be expected that liquid formulations used in the field of electrowetting optics can be used at lower temperatures, while also being able to respond quickly to voltage in a wide temperature range. One of the disadvantages of using known liquid formulations at lower temperatures is the high viscosity of liquid formulations.
因此,需要液態透鏡構形中使用之液體提供改進之化學及低溫穩定性,例如低黏度及低凝固點,此可以轉化為改進之液態透鏡穩定性、效能及製造成本。Therefore, liquids used in liquid lens configurations are required to provide improved chemical and low temperature stability, such as low viscosity and low freezing point, which can be translated into improved liquid lens stability, performance, and manufacturing costs.
根據本揭示內容之一些態樣,電潤濕光學元件可包括導電液體、不導電液體及介電表面。導電液體可包含生物化合物。生物化合物降低導電液體之凝固點。介電表面可與導電及不導電液體二者接觸。導電及不導電液體可實質上不可混溶。According to some aspects of the disclosure, electrowetting optical elements may include conductive liquids, non-conductive liquids, and dielectric surfaces. The conductive liquid may contain biological compounds. Biological compounds lower the freezing point of conductive liquids. The dielectric surface can be in contact with both conductive and non-conductive liquids. Conductive and non-conductive liquids can be substantially immiscible.
視情況,在一個實施例中,生物化合物降低導電液體之黏度。As appropriate, in one embodiment, the biological compound reduces the viscosity of the conductive liquid.
在一些實施例中,生物化合物包含防凍蛋白(antifreeze peptide; AFP)或冰重結晶抑制蛋白(ice recrystallization inhibition protein; IRIP)。In some embodiments, the biological compound contains an antifreeze peptide (antifreeze peptide; AFP) or ice recrystallization inhibition protein (IRIP).
視情況,在一些實施例中,導電液體在-20℃與60℃之間之黏度比(cP)小於約9。As appropriate, in some embodiments, the viscosity ratio (cP) of the conductive liquid between -20°C and 60°C is less than about 9.
視情況,在一些實施例中,導電液體在-20℃與60℃之間之黏度比(cP)小於約8。As appropriate, in some embodiments, the viscosity ratio (cP) of the conductive liquid between -20°C and 60°C is less than about 8.
視情況,在一些實施例中,防凍蛋白或冰重結晶抑制蛋白可包含例如至少8個氨基酸。As appropriate, in some embodiments, the antifreeze protein or ice recrystallization inhibitory protein may include, for example, at least 8 amino acids.
視情況,在一些實施例中,防凍蛋白或冰重結晶抑制蛋白可包含例如至少11個氨基酸。As appropriate, in some embodiments, the antifreeze protein or ice recrystallization inhibitory protein may include, for example, at least 11 amino acids.
視情況,在一些實施例中,導電液體包含約1×10-10% mol/mol至約40% mol/mol之生物化合物。As appropriate, in some embodiments, the conductive liquid contains about 1×10-10 % mol/mol to about 40% mol/mol of biological compound.
視情況,在一些實施例中,導電液體包含約1×10-10% mol/mol至約30% mol/mol之生物化合物。As the case may be, in some embodiments, the conductive liquid contains about 1×10-10 % mol/mol to about 30% mol/mol of biological compound.
視情況,在一些實施例中,導電液體包含約1×10-10% mol/mol至約20% mol/mol之生物化合物。As appropriate, in some embodiments, the conductive liquid contains about 1×10-10 % mol/mol to about 20% mol/mol of biological compound.
視情況,在一些實施例中,導電液體包含約1×10-10% mol/mol至約10% mol/mol之生物化合物。As appropriate, in some embodiments, the conductive liquid contains about 1×10-10 % mol/mol to about 10% mol/mol of biological compound.
視情況,在一些實施例中,導電液體包含約1×10-10% mol/mol至約1% mol/mol之生物化合物。As the case may be, in some embodiments, the conductive liquid contains about 1×10-10 % mol/mol to about 1% mol/mol of the biological compound.
視情況,在一些實施例中,導電液體進一步包含一或多種鹽。As appropriate, in some embodiments, the conductive liquid further includes one or more salts.
視情況,在一些實施例中,鹽可包括鹵化物鹽,例如溴化物鹽、氟化物鹽、碘化物鹽或其組合。As appropriate, in some embodiments, the salt may include a halide salt, such as a bromide salt, a fluoride salt, an iodide salt, or a combination thereof.
視情況,在一些實施例中,導電液體進一步包含防腐劑或生物殺滅化合物。As appropriate, in some embodiments, the conductive liquid further contains a preservative or a biocidal compound.
視情況,在一些實施例中,生物殺滅化合物包括甲基氯異噻唑啉酮或KathonTM生物殺滅劑。As appropriate, in some embodiments, the biocidal compound includes methylchloroisothiazolinone or Kathon™ biocide.
在另一實施例中,導電液體可包括生物化合物,其中生物化合物降低導電液體之凝固點。In another embodiment, the conductive liquid may include a biological compound, wherein the biological compound lowers the freezing point of the conductive liquid.
在另一實施例中,降低液態透鏡中之導電液體之凝固點之方法可藉由將生物化合物添加至導電液體之步驟;及在生物化合物存在下降低導電液體之黏度及凝固點之步驟來實施。In another embodiment, the method of reducing the freezing point of the conductive liquid in the liquid lens can be implemented by the step of adding a biological compound to the conductive liquid; and the step of reducing the viscosity and the freezing point of the conductive liquid in the presence of the biological compound.
視情況,在一些實施例中,該方法進一步包含藉由添加一或多種防腐劑或生物殺滅化合物來穩定生物化合物。As appropriate, in some embodiments, the method further includes stabilizing the biological compound by adding one or more preservatives or biocidal compounds.
其他特徵及優點將在隨後之詳細描述中闡述,並且熟習此項技術者根據該描述將容易地明瞭或藉由實踐本文所述之實施例認識到該等其他特徵及優點,包括隨後之詳細描述、申請專利範圍以及附圖。Other features and advantages will be described in the detailed description that follows, and those skilled in the art will easily understand or recognize these other features and advantages based on the description, including the detailed description that follows, by practicing the embodiments described herein , The scope of patent application and drawings.
應理解,上文之一般描述及隨後之詳細描述皆闡述各個實施例,並且意欲提供用於理解所主張標的物之性質及特徵之概述或框架。附圖包括在內以提供對各個實施例之進一步理解,並且併入且構成本說明書之一部分。附圖圖解說明本文所述之各個實施例,並且與該描述一起用於解釋所主張標的物之原理及操作。It should be understood that the general description above and the subsequent detailed descriptions set forth various embodiments, and are intended to provide an overview or framework for understanding the nature and features of the claimed subject matter. The drawings are included to provide a further understanding of various embodiments, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments described herein, and together with the description serve to explain the principle and operation of the claimed subject matter.
藉由參考以下詳細描述、附圖、實例及申請專利範圍及其之前及之後之描述,可更容易地理解本揭示內容。然而,在揭示及闡述本發明組合物、製品、元件及方法之前,應理解,除非另有說明,否則本揭示內容並不限於揭示之具體組合物、製品、元件及方法,因此該等當然可發生變化。亦應理解,本文使用之術語僅用於闡述特定態樣之目的,而不欲具有限制性。The present disclosure can be more easily understood by referring to the following detailed description, drawings, examples, and patent application scopes, as well as the descriptions before and after. However, before disclosing and elaborating the compositions, articles, elements and methods of the present invention, it should be understood that unless otherwise stated, the disclosure is not limited to the specific compositions, articles, elements and methods disclosed, so these can of course be Changes. It should also be understood that the terminology used herein is for the purpose of illustrating a specific aspect and is not intended to be limiting.
本揭示內容之以下描述提供為本揭示內容在其當前已知實施例中之使能教示。為此,相關領域之技術人員將認識到並瞭解到,可對本文所述之本揭示內容之各個態樣進行許多改變,同時仍然獲得本揭示內容之有益結果。同樣顯而易見的是,可藉由選擇本揭示內容之一些特徵而不利用其他特徵來獲得本揭示內容之一些期望益處。因此,熟習此項技術者將認識到,對本揭示內容之許多修改及調整係可能的,且甚至在某些情況下係期望的,並且係本揭示內容之一部分。因此,提供以下描述作為對本揭示內容之原理之說明,而非對本揭示內容之限制。The following description of the present disclosure provides teachings to enable the present disclosure in its currently known embodiments. For this reason, those skilled in the relevant art will recognize and understand that many changes can be made to the various aspects of the disclosure described herein, while still obtaining the beneficial results of the disclosure. It is also obvious that some desired benefits of the present disclosure can be obtained by selecting some features of the present disclosure without using other features. Therefore, those skilled in the art will recognize that many modifications and adjustments to this disclosure are possible, and even desirable in certain circumstances, and are part of this disclosure. Therefore, the following description is provided as an illustration of the principles of this disclosure, rather than as a limitation of this disclosure.
揭示可用於、可結合使用、可用於製備所揭示方法及組合物之材料、化合物、組合物及組分,或者係所揭示方法及組合物之實施例。本文揭示該等及其他材料,並且應理解,當揭示該等材料之組合、子集、相互作用、組等時,可能沒有明確揭示該等化合物之每一各種單獨及集體組合及排列之具體參考,但本文明確涵蓋並闡述每一種。Disclosed are materials, compounds, compositions and components that can be used, can be used in combination, can be used to prepare the disclosed methods and compositions, or are embodiments of the disclosed methods and compositions. This article discloses these and other materials, and it should be understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed, no specific reference may be explicitly disclosed for each individual and collective combination and arrangement of these compounds , But this article clearly covers and explains each.
如本文所用術語「及/或」在用於兩個或更多個項目之列表中時,意指可單獨使用所列項目中之任何一者,或可使用所列項目中之兩者或更多者之任一組合。例如,若組合物描述為含有組分A、B及/或C,則該組合物可含有單獨A;單獨B;單獨C;A及B之組合;A及C之組合;B及C之組合;或A、B及C之組合。As used herein, the term "and/or" when used in a list of two or more items means that any one of the listed items can be used alone, or two or more of the listed items can be used Any combination of multiple. For example, if the composition is described as containing components A, B, and/or C, the composition may contain A alone; B alone; C alone; the combination of A and B; the combination of A and C; the combination of B and C ; Or a combination of A, B and C.
在本文件中,關係術語如第一及第二、頂部及底部及諸如此類僅用於區分一個實體或動作與另一個實體或動作,而不一定要求或暗示該等實體或動作之間之任何實際之該關係或順序。In this document, relational terms such as first and second, top and bottom, and the like are only used to distinguish one entity or action from another entity or action, and do not necessarily require or imply any actual between these entities or actions The relationship or order.
如本文所用術語「約」意指量、尺寸、配方、參數及其他數量及特徵不係並且不需要係精確的,而是可為近似的及/或根據需要更大或更小,反映公差、轉換因子、捨入、量測誤差及諸如此類,以及熟習此項技術者已知之其他因素。當術語「約」用於描述範圍之值或終點時,本揭示內容應理解為包含所提及之特定值或終點。無論說明書中範圍之數值或終點是否引用「約」,範圍之數值或終點皆欲包含兩個實施例:一個由「約」修飾,且一個不由「約」修飾。應進一步理解,每個範圍之終點相對於另一個終點係顯著的,並且獨立於另一個終點。The term "about" as used herein means that the quantity, size, formula, parameters, and other quantities and features are not relevant and need not be precise, but may be approximate and/or larger or smaller as needed, reflecting tolerances, Conversion factors, rounding, measurement errors, and the like, and other factors known to those skilled in the art. When the term "about" is used to describe a value or end point of a range, the disclosure should be understood to include the specific value or end point mentioned. Regardless of whether the numerical value or end point of the range in the specification refers to "about", the numerical value or end point of the range is intended to include two embodiments: one modified by "about" and one not modified by "about". It should be further understood that the end point of each range is significant relative to the other end point and is independent of the other end point.
無論說明書中範圍之數值或終點是否引用「約」,範圍之數值或終點皆欲包含兩個實施例:一個由「約」修飾,且一個不由「約」修飾。應進一步理解,每個範圍之終點相對於另一個終點係顯著的,並且獨立於另一個終點。Regardless of whether the numerical value or end point of the range in the specification refers to "about", the numerical value or end point of the range is intended to include two embodiments: one modified by "about" and one not modified by "about". It should be further understood that the end point of each range is significant relative to the other end point and is independent of the other end point.
如本文使用之術語「實質」、「實質上」及其變化形式意欲指出所描述之特徵等於或近似等於值或描述。例如,「實質上平坦」之表面意欲表示平坦或近似平坦之表面。此外,「實質上」意欲表示兩個值相等或近似相等。在一些實施例中,「實質上」可表示彼此約10%以內、例如彼此約5%以內或彼此約2%以內之值。The terms "substantial", "substantially" and variations thereof as used herein are intended to indicate that the described feature is equal to or approximately equal to the value or description. For example, a "substantially flat" surface is intended to mean a flat or nearly flat surface. In addition, "substantially" is intended to mean that two values are equal or approximately equal. In some embodiments, "substantially" may mean a value within about 10% of each other, such as within about 5% of each other or within about 2% of each other.
如本文使用之方向術語(例如上、下、右、左、前、後、頂、底)僅參考所繪製之附圖,且並不欲暗指絕對定向。Directional terms as used herein (eg, up, down, right, left, front, back, top, bottom) refer only to the drawings drawn, and are not intended to imply absolute orientation.
除非明確表示相反之情形,否則如本文所用術語「該」、「一(a或an)」意指「至少一個」,並且不應限於「僅一個」。因此,例如,除非上下文另外明確指示,否則提及「一個部件」包含具有兩個或更多個該等部件之實施例。Unless expressly stated to the contrary, the terms "the", "a" or "an" as used herein mean "at least one" and should not be limited to "only one". Thus, for example, unless the context clearly indicates otherwise, reference to "a component" includes embodiments having two or more such components.
術語「不可混溶的」及「不可混溶」係指當一種液體加在一起時不形成均質混合物之液體,或當一種液體加到另一種液體中時最小程度地混合之液體。在本說明書及以下申請專利範圍中,當兩種液體之部分混溶性低於2%、低於1%、低於0.5%或低於0.2%時,認為該兩種液體係不可混溶的,所有值皆係在給定之溫度範圍內量測,例如在20℃下。本文之液體在寬溫度範圍內(包含例如-30℃至85℃及-20℃至65℃)具有低相互混溶性。The terms "immiscible" and "immiscible" refer to liquids that do not form a homogeneous mixture when one liquid is added together, or a liquid that mixes minimally when one liquid is added to another liquid. In the scope of this specification and the following patent applications, when the partial miscibility of the two liquids is less than 2%, less than 1%, less than 0.5% or less than 0.2%, the two liquid systems are considered immiscible, All values are measured within a given temperature range, for example at 20°C. The liquid herein has low miscibility in a wide temperature range (including, for example, -30°C to 85°C and -20°C to 65°C).
如本文所用術語「導電液體」意指電導率為約1×10-3S/m至約1×102S/m、約0.1 S/m至約10 S/m或約0.1 S/m至約1 S/m之液體。如本文所用術語「不導電液體」意指電導率很小或無電導率、包括例如小於約1×10-8S/m、小於約1×10-10S/m或小於約1×10-14S/m之電導率之液體。The term "conductive liquid" as used herein means that the conductivity is about 1×10−3 S/m to about 1×102 S/m, about 0.1 S/m to about 10 S/m, or about 0.1 S/m to About 1 S/m liquid. The term "non-conductive liquid" as used herein means little or no conductivity, including, for example, less than about 1×10-8 S/m, less than about 1×10-10 S/m, or less than about 1×10− 14 S/m of conductivity liquid.
如本文所用術語「不同溫度下液體之黏度比」意指一個溫度下液體之黏度與另一溫度下液體之黏度之比率。As used herein, the term "viscosity ratio of liquids at different temperatures" means the ratio of the viscosity of a liquid at one temperature to the viscosity of a liquid at another temperature.
概言之,本揭示內容係關於液態透鏡,且更具體而言使用防凍肽(antifreeze peptide; AFP)或冰重結晶抑制蛋白之基於電潤濕之液態透鏡。在各個實施例中,提供電潤濕光學元件。電潤濕光學元件包括導電液體及不導電液體。電潤濕光學元件另外包括與導電及不導電液體二者接觸之介電表面,其中導電及不導電液體不可混溶。In summary, the present disclosure relates to liquid lenses, and more specifically electrowetting-based liquid lenses using antifreeze peptide (AFP) or ice recrystallization inhibitor protein. In various embodiments, electrowetting optical elements are provided. Electrowetting optical elements include conductive liquids and non-conductive liquids. Electrowetting optical elements additionally include dielectric surfaces that are in contact with both conductive and non-conductive liquids, where conductive and non-conductive liquids are immiscible.
如下文在第1圖中更詳細闡述,電潤濕光學元件或液態透鏡之單元通常由兩個透明絕緣板及側壁界定。非平面之下板包括圓錐形或圓柱形凹陷或凹槽,其含有不導電或絕緣液體。單元之剩餘部分填充有導電液體,該導電液體與絕緣液體不可混溶,具有不同折射率及實質上相同之密度。一或多個驅動電極位於凹槽之側壁上,而下板背面上之一部分提供電接觸。可在驅動電極及各別液體之間引入絕緣薄層,以在介電表面上提供具有長期化學穩定性之電潤濕。公共電極與導電液體接觸。經由電潤濕現象,可根據施加在電極之間之電壓V來改變兩種液體之間之界面之曲率。因此,根據所施加之電壓,穿過垂直於液體區域中之板之單元之光束將或多或少地聚焦。導電液體通常係含鹽之水性液體。不導電液體通常係油、烷烴或烷烴混合物,可能係鹵化的。As explained in more detail in Figure 1 below, the unit of an electrowetting optical element or liquid lens is generally defined by two transparent insulating plates and side walls. Non-planar sub-plates include conical or cylindrical depressions or grooves that contain non-conductive or insulating liquids. The remaining part of the cell is filled with a conductive liquid, the conductive liquid and the insulating liquid are immiscible, have different refractive indices and substantially the same density. One or more drive electrodes are located on the side walls of the recess, and a portion on the back of the lower plate provides electrical contact. A thin insulating layer can be introduced between the drive electrode and the various liquids to provide electrowetting with long-term chemical stability on the dielectric surface. The common electrode is in contact with the conductive liquid. Through the electrowetting phenomenon, the curvature of the interface between the two liquids can be changed according to the voltage V applied between the electrodes. Therefore, depending on the applied voltage, the light beam passing through the unit perpendicular to the plate in the liquid area will be more or less focused. The conductive liquid is usually an aqueous liquid containing salt. Non-conductive liquids are usually oils, alkanes or alkane mixtures and may be halogenated.
在一些實施例中,可調節公共電極處之電壓及驅動電極處之電壓之間之電壓差。可控制及調節電壓差,以將液體之間之界面(即彎月面)沿著空腔之側壁移動至期望位置。藉由沿著空腔側壁移動界面,可改變液態透鏡之焦點(例如屈光度)、傾斜、散光及/或高階像差。此外,在液態透鏡之操作期間,液態透鏡及其成分之介電及/或表面能性質會發生變化。例如,液體及/或絕緣元件之介電性質可回應於隨時間暴露於電壓差、溫度變化及其他因素而變化。作為另一實例,絕緣元件之表面能可隨著時間之推移回應於暴露於第一及第二液體而變化。在其他實例中,導電液體之成分及不導電液體之成分之間可能存在化學反應,該導電極性液體可含有高度親核之物質。相反,液態透鏡及其組成部分(例如其絕緣元件)之性質之變化會降低液態透鏡之可靠性及性能特徵。In some embodiments, the voltage difference between the voltage at the common electrode and the voltage at the drive electrode can be adjusted. The voltage difference can be controlled and adjusted to move the interface between the liquids (ie, the meniscus) to the desired position along the sidewall of the cavity. By moving the interface along the side wall of the cavity, the focus (eg, diopter), tilt, astigmatism, and/or higher-order aberrations of the liquid lens can be changed. In addition, during the operation of the liquid lens, the dielectric and/or surface energy properties of the liquid lens and its components may change. For example, the dielectric properties of liquid and/or insulating elements can change in response to exposure to voltage differences, temperature changes, and other factors over time. As another example, the surface energy of the insulating element may change in response to exposure to the first and second liquids over time. In other examples, there may be a chemical reaction between the components of the conductive liquid and the components of the non-conductive liquid, and the conductive polar liquid may contain highly nucleophilic substances. Conversely, changes in the properties of the liquid lens and its components (such as its insulating elements) will reduce the reliability and performance characteristics of the liquid lens.
液態透鏡結構Liquid lens structure
現在參考第1圖,提供示例性液態透鏡100之簡化剖視圖。液態透鏡100之結構不欲具有限制性並且可包含本領域已知之任何結構。在一些實施例中,液態透鏡100可包括透鏡體102及在透鏡體中形成之空腔104。第一液體106及第二液體108可佈置在空腔104內。在一些實施例中,第一液體106可為極性液體,亦稱為導電液體。另外或或者,第二液體108可為非極性液體及/或絕緣液體,亦稱為不導電液體。在一些實施例中,第一液體106與第二液體108之間之界面110形成透鏡。例如,第一液體106及第二液體108可實質上彼此不混溶並且具有不同之折射率,使得第一液體及第二液體之間之界面110形成透鏡。在一些實施例中,第一液體106及第二液體108可具有實質上相同之密度,此可有助於避免界面110之形狀因改變液態透鏡100之物理定向(例如,由於重力)而改變。Referring now to FIG. 1, a simplified cross-sectional view of an exemplary
在第1圖中所繪示之液態透鏡100之一些實施例中,空腔104可包括第一部分(或頂部空間)104A及第二部分(或基底部分)104B。例如,空腔104之第二部分104B可由如本文所述液態透鏡100之中間層中之孔界定。另外或或者,空腔104之第一部分104A可由液態透鏡100之第一外層中之凹槽界定及/或佈置在如本文所述中間層中之孔之外部。在一些實施例中,第一液體106之至少一部分可佈置在空腔104之第一部分104A中。另外或或者,第二液體108可佈置在空腔104之第二部分104B內。例如,第二液體108之實質上全部或一部分可佈置在空腔104之第二部分104B內。在一些實施例中,界面110 (例如與空腔之側壁接觸之界面邊緣)之周長可佈置在空腔104之第二部分104B內。In some embodiments of the
液態透鏡100之界面110 (參見第1圖)可經由電潤濕調節。例如,可在第一液體106及空腔104之表面(例如位於空腔表面附近且與第一液體絕緣之一個或若干驅動電極,如本文所述)之間施加電壓,以增加或減小空腔表面相對於第一液體之可潤濕性且改變界面110之形狀。在一些實施例中,調節界面110可改變界面之形狀,從而改變液態透鏡100之焦距或焦點。例如,焦距之此一變化可使得液態透鏡100能夠實施自動聚焦功能。另外或或者,調節界面110可相對於液態透鏡100之光軸112傾斜界面。例如,該傾斜除了提供像散變化或高階光學像差校正之外,亦能夠使液態透鏡100實施光學影像穩定(optical image stabilization; OIS)功能。調節界面110可在液態透鏡100相對於影像感測器、固定透鏡或透鏡堆疊、外殼或相機模組之其他部件沒有實體移動之情況下達成,其中液態透鏡可納入相機模組中。The
在一些實施例中,液態透鏡100之透鏡體102可包括第一視窗114及第二視窗116。在一些該等實施例中,空腔104可佈置在第一視窗114及第二視窗116之間。在一些實施例中,透鏡體102可包括協作形成透鏡體之複數個層。例如,在第1圖中所顯示之實施例中,透鏡體102可包括第一外層118、中間層120及第二外層122。在一些該等實施例中,中間層120可包括穿過其中形成之孔。第一外層118可黏合至中間層120之一側(例如物體側)。例如,第一外層118可在黏合部134A處黏合至中間層120。黏合部134A可為黏合劑黏合、雷射黏合(例如雷射焊接)、機械閉合或能夠將第一液體106及第二液體108保持在空腔104內之任何其他合適之黏合。另外或或者,第二外層122可黏合至中間層120之另一側(例如影像側)。例如,第二外層122可在黏合部134B及/或黏合部134C處黏合至中間層120,其中之每一者皆可如本文關於黏合部134A所述來配置。在一些實施例中,中間層120可佈置在第一外層118及第二外層122之間,中間層中之孔可在相對側由第一外層及第二外層覆蓋,並且空腔104之至少一部分可界定在孔內。因此,覆蓋空腔104之第一外層118之一部分可用作第一視窗114,且覆蓋空腔之第二外層122之一部分可用作第二視窗116。In some embodiments, the
在一些實施例中,空腔104可包括第一部分104A及第二部分104B。例如,在第1圖中所顯示之實施例中,空腔104之第二部分104B可由中間層120中之孔界定且空腔之第一部分104A可佈置在空腔之第二部分及第一視窗114之間。在一些實施例中,第一外層118可包括如第1圖中所顯示之凹槽,且空腔104之第一部分104A可佈置在第一外層中之凹槽內。因此,空腔之第一部分104A可佈置在中間層120中之孔之外部。In some embodiments, the
在一些實施例中,空腔104 (例如空腔之第二部分104B)可如第1圖所示逐漸變細,使得空腔之橫截面積沿著光軸112在自物體側至影像側之方向上減小。例如,空腔104之第二部分104B可包括窄端105A及寬端105B。術語「窄」及「寬」係相對術語,意指窄端比寬端窄。此一錐形空腔可有助於保持第一液體106及第二液體108之間之界面110沿著光軸112對齊。在其他實施例中,空腔係錐形的,使得空腔之橫截面積沿著光軸在自物體側至影像側之方向上增加,或係非錐形的,使得空腔之橫截面積沿著光軸保持實質上恆定。In some embodiments, the cavity 104 (eg, the
在一些實施例中,影像光可經由第一視窗114進入第1圖所示之液態透鏡100,可在第一液體106及第二液體108之間之界面110折射,並且可經由第二視窗116離開液態透鏡。在一些實施例中,第一外層118及/或第二外層122可包括足夠之透明度以使得影像光能夠通過。例如,第一外層118及/或第二外層122可包括聚合物、玻璃、陶瓷或玻璃-陶瓷材料。在一些實施例中,第一外層118及/或第二外層122之外表面可實質上係平坦的。因此,即使液態透鏡100可用作透鏡(例如,藉由折射穿過界面110之影像光),液態透鏡之外表面亦可為平坦的,而非如固定透鏡之外表面一般彎曲。在其他實施例中,第一外層及/或第二外層之外表面可為彎曲的(例如,凹面或凸面)。因此,液態透鏡可包括整體式固定透鏡。在一些實施例中,中間層120可包括金屬、聚合物、玻璃、陶瓷或玻璃-陶瓷材料。由於影像光可穿過中間層120中之孔,故中間層可為透明或可為不透明的。In some embodiments, the image light can enter the
在一些實施例中,液態透鏡100 (參見第1圖)可包括與第一液體106電連通之公共電極124。另外或或者,液態透鏡100可包括佈置在空腔104之側壁上且與第一液體106及第二液體108絕緣之一個或若干驅動電極126。可將不同電壓供應至公共電極124及驅動電極126以改變界面110之形狀,如本文所述。In some embodiments, the liquid lens 100 (see FIG. 1) may include a
在一些實施例中,液態透鏡100 (參見第1圖)可包括導電層128,該導電層128之至少一部分佈置在空腔104內。例如,導電層128可包括在將第一外層118及/或第二外層122黏合至中間層120之前施加至該中間層之導電塗層。導電層128可包括金屬材料、導電聚合物材料、另一適宜導電材料或其組合。另外或或者,導電層128可包括單個層或複數個層,其中之一些或所有可導電。在一些實施例中,導電層128可界定公共電極124及/或驅動電極126。例如,導電層128可在將第一外導電層128黏合至中間層118之前施加至中間層118之實質上整個外表面,可將導電層分割成多個導電元件(例如公共電極124及/或驅動電極126)。在一些實施例中,液態透鏡100可包括導電層128中之劃線130A以使公共電極124及驅動電極126彼此分離(例如電分離)。在一些實施例中,劃線130A可包括導電層128中之空隙。例如,劃線130A係寬度為約5微米(µm)、約10 µm、約15 µm、約20 µm、約25 µm、約30 µm、約35 µm、約40 µm、約45 µm、約50 µm或由所列示值界定之任何範圍之空隙。In some embodiments, the liquid lens 100 (see FIG. 1) may include a
亦如第1圖中所繪示,液態透鏡100可包括佈置在空腔104內、驅動電極層頂部上之絕緣元件或層132。例如,絕緣元件132可包括在將第一外層118及/或第二外層122黏合至中間層之前施加至中間層120之絕緣塗層。在一些實施例中,絕緣元件132可包括在將第二外層122黏合至中間層120之後及在將第一外層118黏合至中間層之前施加至導電層128及第二視窗116之絕緣塗層。因此,絕緣元件132可覆蓋空腔104內之導電層128及第二視窗116之至少一部分。在一些實施例中,絕緣元件132可足夠透明以使得影像光能夠穿過第二視窗116,如本文所述。As also shown in FIG. 1, the
在第1圖中所繪示之液態透鏡100之一些實施例中,絕緣元件132可覆蓋驅動電極126之至少一部分(例如驅動電極之佈置在空腔104內之部分)以使第一液體106及第二液體108與驅動電極絕緣。另外或或者,佈置在空腔104內之公共電極124之至少一部分可未經絕緣元件132覆蓋。因此,公共電極124可與第一液體106電連通,如本文所述。In some embodiments of the
在一些實施例中,絕緣元件132可包括空腔104之第二部分104B之疏水性表面層。此一疏水性表面層可有助於第二液體108保持在空腔104之第二部分104B內(例如藉由非極性第二液體及疏水性材料之間之引力)及/或使得界面110之周邊能夠沿著疏水性表面層移動(例如,藉由電潤濕)以改變界面之形狀,如本文所述。此外,第1圖所示之液態透鏡100至少部分基於絕緣元件132可呈現不大於3°之接觸角滯後(即,在液體106、108之間之界面110處)。In some embodiments, the insulating
如本文所使用,「接觸角滯後」係指當驅動電壓連續施加至驅動電極126時(例如,供應至驅動電極之驅動電壓及供應至公共電極之公共電壓之間之差)自0 V至最大驅動電壓、隨後返回0 V (即,相對於公共電極124)時,第二液體108與絕緣元件132之量測接觸角之差。沒有電壓之初始接觸角可最大為25°,並且在如本文所用之「最大驅動電壓」下,由於電潤濕效應,接觸角之增加可至少為15°。在其他實施例中,驅動電壓可提供AC 1 kHz電壓。在一些實施例中,有用電壓可在約25V至約70V之範圍內。用於施加電壓之驅動器之選擇並不欲具有限制性,且絕緣層132之厚度可經調整以適合由所選驅動器傳遞之任何驅動電壓範圍。As used herein, "contact angle hysteresis" refers to when the driving voltage is continuously applied to the driving electrode 126 (for example, the difference between the driving voltage supplied to the driving electrode and the common voltage supplied to the common electrode) from 0 V to the maximum When the driving voltage is subsequently returned to 0 V (ie, relative to the common electrode 124), the measured contact angle difference between the
為提供寬範圍之焦距、傾斜角及/或散光變化,導電液體及不導電液體之間之光學指數之顯著差異係有益的。傳統上,油組合物(不導電液體)比導電液體具有更高之光學指數。純水之光學指數約為1.33,但水通常用添加劑改質以達成更高之光學指數值,從而滿足商業液態透鏡之規格。下文提供該兩種各別液體之描述及相應之材料性質。To provide a wide range of focal lengths, tilt angles, and/or astigmatism changes, it is beneficial to have a significant difference in optical index between conductive and non-conductive liquids. Traditionally, oil compositions (non-conductive liquids) have a higher optical index than conductive liquids. The optical index of pure water is about 1.33, but water is usually modified with additives to achieve a higher optical index value, thus meeting the specifications of commercial liquid lenses. The following provides a description of these two separate liquids and the corresponding material properties.
導電液體Conductive liquid
在一些實施例中,導電液體可為水溶液。在其他實施例中,導電液體可不包括水。在一些實施例中,導電液體可包括極性溶劑。在一些實施例中,基於導電液體之總重量,導電液體可包括約0.01% w/w至約100% w/w、約0.1% w/w至約50% w/w、約0.1% w/w至約25% w/w、約0.1% w/w至約15% w/w、約1% w/w至約10% w/w或約1% w/w至約5% w/w之水。In some embodiments, the conductive liquid may be an aqueous solution. In other embodiments, the conductive liquid may not include water. In some embodiments, the conductive liquid may include a polar solvent. In some embodiments, the conductive liquid may include about 0.01% w/w to about 100% w/w, about 0.1% w/w to about 50% w/w, about 0.1% w/ based on the total weight of the conductive liquid w to about 25% w/w, about 0.1% w/w to about 15% w/w, about 1% w/w to about 10% w/w, or about 1% w/w to about 5% w/w Water.
在一些實施例中,基於導電液體之總重量,導電液體可包括約1×10-10% mol/mol至約100% mol/mol、1×10-10% mol/mol至約80% mol/mol、1×10-10% mol/mol至約60% mol/mol、1×10-10% mol/mol至約40% mol/mol、1×10-10% mol/mol至約30% mol/mol、約1×10-10% mol/mol至約20% mol/mol、1×10-10% mol/mol至約10% mol/mol、1×10-10% mol/mol至約1% mol/mol、約1×10-6% mol/mol至約80% mol/mol、約1×10-3% mol/mol至約80% mol/mol、約1×10-2% mol/mol至約80% mol/mol、約1% mol/mol至約60% mol/mol、約50% mol/mol至約100% mol/mol、約75% mol/mol至約95% mol/mol或約2% mol/mol至約25% mol/mol之生物化合物。In some embodiments, based on the total weight of the conductive liquid, the conductive liquid may include about 1×10-10 % mol/mol to about 100% mol/mol, 1×10-10 % mol/mol to about 80% mol/ mol, 1×10-10 % mol/mol to about 60% mol/mol, 1×10-10 % mol/mol to about 40% mol/mol, 1×10-10 % mol/mol to about 30% mol /mol, about 1×10-10 % mol/mol to about 20% mol/mol, 1×10-10 % mol/mol to about 10% mol/mol, 1×10-10 % mol/mol to about 1 % mol/mol, about 1×10-6 % mol/mol to about 80% mol/mol, about 1×10-3 % mol/mol to about 80% mol/mol, about 1×10-2 % mol/ mol to about 80% mol/mol, about 1% mol/mol to about 60% mol/mol, about 50% mol/mol to about 100% mol/mol, about 75% mol/mol to about 95% mol/mol Or a biological compound of about 2% mol/mol to about 25% mol/mol.
在一些實施例中,生物化合物可包含防凍蛋白(antifreeze protein; AFP)或冰重結晶抑制蛋白(ice recrystallization inhibition protein; IRIP)。在一些實施例中,防凍蛋白或冰重結晶抑制蛋白包含例如至少8個氨基酸。在一些實施例中,防凍蛋白或冰重結晶抑制蛋白包含例如至少11個氨基酸。有利地,包含在導電液體中之AFP或IRIP降低導電液體之凝固點及/或黏度,而不會改變或顯著改變導電液體之光學性質。例如,添加生物化合物之另一優點可替代或減少對其他防凍劑或凝固點降低劑(例如乙二醇)之需求。降低或消除該其他防凍劑或凝固點降低劑可使導電液體具有合適之低凝固點(例如,約-20℃或更低、-30℃或更低、或-40℃或更低),同時保持相對低之黏度(例如,低溫黏度)及/或相對小之黏度對溫度之依賴性,如本文所述。進一步降低或消除該其他防凍劑或凝固點降低劑可為導電液體提供更高之穩定性、導電性及低腐蝕性。In some embodiments, the biological compound may include antifreeze protein (AFP) or ice recrystallization inhibition protein (IRIP). In some embodiments, the antifreeze protein or ice recrystallization inhibitory protein comprises, for example, at least 8 amino acids. In some embodiments, the antifreeze protein or ice recrystallization inhibitory protein comprises, for example, at least 11 amino acids. Advantageously, the AFP or IRIP contained in the conductive liquid reduces the freezing point and/or viscosity of the conductive liquid without changing or significantly changing the optical properties of the conductive liquid. For example, another advantage of adding biological compounds can replace or reduce the need for other antifreeze or freezing point depressants (such as ethylene glycol). Lowering or eliminating this other antifreeze or freezing point depressant will allow the conductive liquid to have a suitable low freezing point (eg, about -20°C or lower, -30°C or lower, or -40°C or lower) while maintaining relative Low viscosity (eg, low temperature viscosity) and/or temperature dependence of relatively small viscosity, as described herein. Further reducing or eliminating this other antifreeze or freezing point depressant can provide higher stability, conductivity and low corrosivity for the conductive liquid.
由於結構互補性,AFP對冰有親和力,從而抑制了冰之生長。AFP在冰表面上之吸附有兩種不同之效應:熱滯後(thermal hysteresis; TH)及重結晶抑制(recrystallization inhibition; RI)。不希望受限於任何理論,人們認為由於冰鋒生長限於AFP之間之空間上不利之空間,故TH源自非依數凝固點降低(Raymond及DeVries 1977)。此擴大了冰之熔點與凝固點之間之差距,此範圍係TH之量度。不希望受限於任何理論,人們認為AFP藉由干擾冰邊界之遷移來調節RI之效應,冰邊界之遷移通常在熱力學上有利於大冰晶之產生,而以小冰晶為代價(Knight、DeVries及Oolman 1984)。AFP已經自許多耐寒植物物種中分離出來,包括小癲茄。Due to the structural complementarity, AFP has an affinity for ice, thereby inhibiting the growth of ice. The adsorption of AFP on the ice surface has two different effects: thermal hysteresis (TH) and recrystallization inhibition (RI). Without wishing to be bound by any theory, it is believed that because ice front growth is limited to the spatially unfavorable space between AFPs, TH is derived from non-parametric freezing point reduction (Raymond and DeVries 1977). This widens the gap between the melting point and freezing point of ice. This range is a measure of TH. Without wishing to be bound by any theory, it is believed that AFP adjusts the effect of RI by interfering with the migration of ice boundaries. The migration of ice boundaries is usually thermodynamically conducive to the production of large ice crystals at the expense of small ice crystals (Knight, DeVries and Oolman 1984). AFP has been isolated from many cold-tolerant plant species, including small petunia.
在幾種類型之AFP中,I型AFP可包括在來自美洲擬鰈(Pseudopleuronectes americanus)及短角床杜父魚(Myoxocephalus scorpius)之血樣中發現之富含丙胺酸之肽。到目前為止,已解析出AFP HPLC6及ss3之三維(3D)結構,並且已使用基於結構之誘變研究鑒定出其冰結合殘基。對I型AFP之累積結構-功能關係研究表明,常見之富含Ala之疏水區可能具有強效防凍活性。Among several types of AFP, type I AFP may include alanine-rich peptides found in blood samples from Pseudopleuronectes americanus and short-horn bed scorpius (Myoxocephalus scorpius). So far, the three-dimensional (3D) structures of AFP HPLC6 and ss3 have been resolved, and their ice-binding residues have been identified using structure-based mutagenesis studies. Studies on the cumulative structure-function relationship of type I AFP indicate that the common Ala-rich hydrophobic regions may have potent antifreeze activity.
IRIP可包括具有兩個潛在冰結合基序之凋亡靶向蛋白:1-9個富含白胺酸之重複序列(leucine-rich repeat; LRR)及c. 16個「IRIP」重複序列。IRIP基因似乎限於草亞科早熟禾亞科(Pooideae)及其產物,展現與植物磺化肽激素受體之序列相似性,且經預測採用具有兩個冰結合表面之構象。冷馴化後,軟樹蕨(D. antarctica) IRIP (DaIRIP)轉錄量在葉片組織中大大提高。表現DaIRIP之轉基因擬南芥(Arabidopsis thaliana)具有新RI活性,且純化之DaIRIP在添加回至未馴化軟樹蕨之葉片提取物時可重建在馴化植物中發現之活性。IRIP may include an apoptosis-targeting protein with two potential ice-binding motifs: 1-9 leucine-rich repeat (LRR) and c. 16 "IRIP" repeats. The IRIP gene appears to be limited to Pooideae and its products, exhibits sequence similarity to plant sulfonated peptide hormone receptors, and is predicted to adopt a conformation with two ice-binding surfaces. After cold acclimation, the transcription of D. antarctica IRIP (DaIRIP) was greatly increased in the leaf tissue. The transgenic Arabidopsis thaliana (Darabidopsis thaliana) expressing DaIRIP has new RI activity, and the purified DaIRIP can reconstruct the activity found in domesticated plants when added back to the leaf extract of undomesticated soft tree fern.
在一些實施例中,可將水及/或極性溶劑與一或多種不同之鹽(包含有機及/或無機鹽)混合。如本文所提及術語「離子鹽」係指在水中完全或實質上解離之鹽(如乙酸根陰離子及陽離子)。同樣,如本文所提及術語「可電離鹽」係指在化學、物理或物理化學處理後在水中完全或實質上解離之鹽。用於該等類型之鹽之陰離子之實例包含(但不限於)鹵離子(例如氟離子、溴離子或碘離子)、硫酸根、碳酸根、碳酸氫根、乙酸根、2-氟乙酸根、2,2-二氟乙酸根、2,2,2-三氟乙酸根、2,2,3,3,3-五氟丙酸根、三氟甲磺酸根、氟離子、六氟磷酸根、三氟甲烷磺酸根及其混合物。用於該等類型之鹽中之陽離子之實例包含(但不限於)鹼金屬/及鹼土金屬陽離子,例如鈉、鎂、鉀、鋰、鈣、鋅、氟化銨(例如N-(氟甲基)-2-羥基-N,N-二甲基-乙銨)及其混合物。在一些實施例中,上文所提及陰離子及陽離子之任一組合可用於導電液體中。In some embodiments, water and/or polar solvents can be mixed with one or more different salts, including organic and/or inorganic salts. As referred to herein, the term "ionic salt" refers to a salt that completely or substantially dissociates in water (such as acetate anions and cations). Similarly, the term "ionizable salt" as mentioned herein refers to a salt that completely or substantially dissociates in water after chemical, physical or physicochemical treatment. Examples of anions used for these types of salts include, but are not limited to, halide (such as fluoride, bromide, or iodide), sulfate, carbonate, bicarbonate, acetate, 2-fluoroacetate, 2,2-difluoroacetate, 2,2,2-trifluoroacetate, 2,2,3,3,3-pentafluoropropionate, trifluoromethanesulfonate, fluoride ion, hexafluorophosphate, tri Fluoromethanesulfonate and its mixtures. Examples of cations used in these types of salts include, but are not limited to, alkali metal/and alkaline earth metal cations, such as sodium, magnesium, potassium, lithium, calcium, zinc, ammonium fluoride (such as N-(fluoromethyl )-2-hydroxy-N,N-dimethyl-ethylammonium) and mixtures thereof. In some embodiments, any combination of the anions and cations mentioned above can be used in the conductive liquid.
在一些實施例中,使用至少一種有機及/或無機離子或可電離鹽來賦予水導電性質且減小混合流體之冰點。在一些實施例中,離子鹽可包含例如硫酸鈉、乙酸鉀、乙酸鈉、溴化鋅、溴化鈉、溴化鋰及其組合。在其他實施例中,離子鹽可包含氟化鹽,包含氟化有機離子鹽。在一些實施例中,有機及無機離子及可電離鹽可包含(但不限於)乙酸鉀、氯化鎂、溴化鋅、溴化鋰、氯化鋰、氯化鈣、硫酸鈉、三氟甲磺酸鈉、乙酸鈉、三氟乙酸鈉及諸如此類以及其混合物。In some embodiments, at least one organic and/or inorganic ion or ionizable salt is used to impart water with conductive properties and reduce the freezing point of the mixed fluid. In some embodiments, the ionic salt may include, for example, sodium sulfate, potassium acetate, sodium acetate, zinc bromide, sodium bromide, lithium bromide, and combinations thereof. In other embodiments, the ionic salt may include a fluoride salt, including a fluorinated organic ion salt. In some embodiments, organic and inorganic ions and ionizable salts may include, but are not limited to, potassium acetate, magnesium chloride, zinc bromide, lithium bromide, lithium chloride, calcium chloride, sodium sulfate, sodium trifluoromethanesulfonate, Sodium acetate, sodium trifluoroacetate and the like and mixtures thereof.
氟化鹽或氟化物鹽(包括氟化有機離子鹽)可有利地保持導電液體之相對較低之折射率,同時促進導電液體物理性質之改變,例如降低導電液體之冰點。與傳統氯化物鹽不同,氟化鹽亦可展示對構成電潤濕光學元件之單元(例如鋼、不銹鋼或黃銅組分)之材料之腐蝕降低。Fluoride salts or fluoride salts (including fluorinated organic ion salts) can advantageously maintain a relatively low refractive index of the conductive liquid, while promoting changes in the physical properties of the conductive liquid, such as lowering the freezing point of the conductive liquid. Unlike traditional chloride salts, fluoride salts can also exhibit reduced corrosion of materials that constitute the unit of electrowetting optical elements (such as steel, stainless steel, or brass components).
導電液體中使用之水較佳儘可能純淨,即不含或實質上不含任何其他可能改變電潤濕光學元件之光學性質之不期望溶解組分。在一些實施例中,使用在25℃下具有約0.055 µS/cm電導率或18.2 MOhm電阻率之超純水(UPW)來形成導電液體。The water used in the conductive liquid is preferably as pure as possible, that is, it contains no or substantially no other undesired dissolved components that may change the optical properties of the electrowetting optical element. In some embodiments, ultrapure water (UPW) having a conductivity of about 0.055 µS/cm or a resistance of 18.2 MOhm at 25°C is used to form the conductive liquid.
在一些實施例中,除生物化合物外,導電液體可包含抗冷凍劑或冰點降低劑。使用抗冷凍劑如鹽、醇、二醇及/或乙二醇允許導電液體在約-30℃至約+85℃、約-20℃至約+65℃或約-10℃至約+65℃之溫度範圍內保持在液體狀態。在一些實施例中,在導電及/或不導電液體中使用醇及/或乙二醇添加劑可有助於在寬範圍之溫度內提供兩種液體之間之穩態界面張力。端視導電液體及所得液態透鏡之期望應用及所需之性質,導電液體可包含小於約95重量%、小於約90重量%、小於約80重量%、小於約70重量%、小於約60重量%、小於約50重量%、小於約40重量%、小於約30重量%、小於約20重量%、小於約10重量%或小於約5重量%抗冷凍劑。在一些實施例中,導電液體可包含大於約95重量%、大於約90重量%、大於約80重量%、大於約70重量%、大於約60重量%、大於約50重量%、大於約40重量%、大於約30重量%、大於約20重量%、大於約10重量%或大於約5重量%抗冷凍劑。在一些實施例中,抗冷凍劑可為乙二醇,包含例如單丙二醇、乙二醇、1,3-丙二醇(三亞甲基乙二醇或TMG)、甘油、二丙二醇及其組合。在使用乙二醇之一些實施例中,乙二醇可具有以下重量平均分子量(Mw):200 g/mol至2000 g/mol、200 g/mol至1000 g/mol、350 g/mol至600 g/mol、350 g/mol至500 g/mol、375 g/mol至500 g/mol或其混合物。在一些實施例中,乙二醇可為二聚體、三聚體、四聚體或2至100個單體二醇或三醇單元(包含其間之所有整數)之任一組合。In some embodiments, in addition to biological compounds, the conductive liquid may contain an anti-freezing agent or freezing point depressant. The use of anti-freezing agents such as salts, alcohols, glycols, and/or glycols allows the conductive liquid to be in the range of about -30°C to about +85°C, about -20°C to about +65°C, or about -10°C to about +65°C Keep in liquid state within the temperature range. In some embodiments, the use of alcohol and/or glycol additives in conductive and/or non-conductive liquids can help provide a steady-state interfacial tension between the two liquids over a wide range of temperatures. Depending on the desired application and required properties of the conductive liquid and the resulting liquid lens, the conductive liquid may include less than about 95% by weight, less than about 90% by weight, less than about 80% by weight, less than about 70% by weight, less than about 60% by weight , Less than about 50% by weight, less than about 40% by weight, less than about 30% by weight, less than about 20% by weight, less than about 10% by weight, or less than about 5% by weight anti-freezing agent. In some embodiments, the conductive liquid may comprise greater than about 95% by weight, greater than about 90% by weight, greater than about 80% by weight, greater than about 70% by weight, greater than about 60% by weight, greater than about 50% by weight, greater than about 40% by weight %, greater than about 30% by weight, greater than about 20% by weight, greater than about 10% by weight, or greater than about 5% by weight antifreeze. In some embodiments, the anti-freezing agent may be ethylene glycol, including, for example, monopropylene glycol, ethylene glycol, 1,3-propanediol (trimethylene glycol or TMG), glycerin, dipropylene glycol, and combinations thereof. In some embodiments using ethylene glycol, ethylene glycol may have the following weight average molecular weight (Mw): 200 g/mol to 2000 g/mol, 200 g/mol to 1000 g/mol, 350 g/mol to 600 g/mol, 350 g/mol to 500 g/mol, 375 g/mol to 500 g/mol, or a mixture thereof. In some embodiments, the ethylene glycol may be a dimer, trimer, tetramer, or any combination of 2 to 100 monomeric diol or triol units (including all integers in between).
在一些實施例中,導電液體可包括至少一種黏度控制劑,即黏度調節劑。黏度調節劑可包括領域內已知之任何化合物或混合物,並且可包括例如醇、二醇、二醇醚、多元醇、聚醚多元醇及諸如此類或其混合物。在一些實施例中,黏度調節劑可包括例如乙醇、乙二醇(ethylene glycol; EG)、單丙二醇(monopropylene glycol; MPG)、1,3-丙二醇、1,2,3-丙三醇(甘油)及其混合物。在一些實施例中,黏度調節劑之分子量小於約130 g/mol。在一些實施例中,相同或不同之醇、二醇及/或乙二醇可分別用作防凍劑或黏度控制劑。In some embodiments, the conductive liquid may include at least one viscosity control agent, that is, a viscosity modifier. The viscosity modifier may include any compound or mixture known in the art, and may include, for example, alcohols, glycols, glycol ethers, polyols, polyether polyols, and the like or mixtures thereof. In some embodiments, the viscosity modifier may include, for example, ethanol, ethylene glycol (EG), monopropylene glycol (MPG), 1,3-propanediol, 1,2,3-propanetriol (glycerol ) And mixtures thereof. In some embodiments, the molecular weight of the viscosity modifier is less than about 130 g/mol. In some embodiments, the same or different alcohols, glycols, and/or glycols can be used as antifreeze or viscosity control agents, respectively.
在一些實施例中,導電液體可包括防腐劑或生物殺滅劑,以防止有機元素如細菌、真菌、藻類、微藻及諸如此類之發展,該等有機元素會使光學電潤濕元件之光學性質變得更差,尤其在透鏡由電潤濕驅動之情況下。生物殺滅劑不應改變或最小限度地改變導電液體所需之光學性質(例如透明度及折射率)。生物殺滅化合物包括業內已知之化合物,例如甲基氯異噻唑啉酮,亦稱為Kathon CG、2-甲基-4-異噻唑啉-3-酮(MIT)及1,2-苯并異噻唑啉-3-酮(BIT)。In some embodiments, the conductive liquid may include a preservative or a biocide to prevent the development of organic elements such as bacteria, fungi, algae, microalgae, and the like, which will make the optical properties of the optical electrowetting element Becomes worse, especially if the lens is driven by electrowetting. The biocide should not change or minimize the optical properties (such as transparency and refractive index) required by the conductive liquid. Biocidal compounds include compounds known in the industry, such as methylchloroisothiazolinone, also known as Kathon CG, 2-methyl-4-isothiazolin-3-one (MIT) and 1,2-benziso Thiazolin-3-one (BIT).
本文揭示之用於液態透鏡/電潤濕光學應用之導電液體(極性流體/液體)可提供寬範圍之焦距、傾斜角及/或像散變化。為了實現該等益處,導電液體應該滿足至少一或多個以下性質:1)在液態透鏡之操作溫度範圍內,與不導電液體匹配或相似之密度;2)與不導電液體相比顯著之折射率差異;3)在液態透鏡之操作溫度範圍內與不導電液體之低混溶性;4)相對於每種導電液體組分及不導電液體之化學穩定性;及5)足以匹配或達成液態透鏡所需之反應時間之黏度。The conductive liquid (polar fluid/liquid) disclosed herein for liquid lens/electrowetting optical applications can provide a wide range of focal lengths, tilt angles, and/or astigmatism variations. To achieve these benefits, conductive liquids should meet at least one or more of the following properties: 1) matching or similar density to non-conductive liquids within the operating temperature range of liquid lenses; 2) significant refraction compared to non-conductive liquids Rate difference; 3) low miscibility with non-conductive liquids within the operating temperature range of liquid lenses; 4) chemical stability with respect to each conductive liquid component and non-conductive liquid; and 5) sufficient to match or achieve liquid lenses The viscosity of the required reaction time.
關於密度參數,使導電液體之密度與不導電液體之密度實質上匹配可有助於形成在各種傾斜角下具有寬範圍焦距之通用液態透鏡/電潤濕光學元件。在一些實施例中,在包括約-30℃至約85℃或約-20℃至約65℃之寬溫度範圍內,不導電液體與導電液體之間之密度差(Δρ)可低於0.1 g/cm3、低於0.01 g/cm3或低於3.10 g/cm3。Regarding the density parameter, matching the density of the conductive liquid and the density of the non-conductive liquid substantially can help to form a universal liquid lens/electrowetting optical element with a wide range of focal lengths at various tilt angles. In some embodiments, the density difference (Δρ) between the non-conductive liquid and the conductive liquid may be less than 0.1 g in a wide temperature range including about -30°C to about 85°C or about -20°C to about 65°C /cm3 , less than 0.01 g/cm3 or less than 3.10 g/cm3 .
在一些實施例中,導電液體與不導電液體之間之折射率差(Δη)可在約0.02至約0.24或約0.05至約0.15之範圍內。用於光學應用之此光學指數範圍包括諸如可變焦距、傾斜、像散補償及調諧折射率以最佳化平衡精度與範圍之特徵。In some embodiments, the refractive index difference (Δη) between the conductive liquid and the non-conductive liquid may be in the range of about 0.02 to about 0.24 or about 0.05 to about 0.15. This optical index range for optical applications includes features such as variable focal length, tilt, astigmatism compensation, and tuning refractive index to optimize balance accuracy and range.
在一些實施例中,導電液體與不導電液體之間之Δη可大於0.24、大於0.27或大於0.29。兩種液體之間之折射率之較高差異非常適合光學應用,包括諸如以下等特徵:變焦、可變焦距或傾斜元件、可變照明元件(其中照明取決於兩種液體之間之折射率差異)及/或光學元件(其中可實施光軸傾斜),例如用於光束偏轉或影像穩定應用。In some embodiments, the Δη between the conductive liquid and the non-conductive liquid may be greater than 0.24, greater than 0.27, or greater than 0.29. The higher difference in refractive index between the two liquids is ideal for optical applications, including features such as zoom, variable focal length or tilt elements, and variable lighting elements (where lighting depends on the difference in refractive index between the two liquids) ) And/or optical elements (where the optical axis can be tilted), for example for beam deflection or image stabilization applications.
關於混溶性參數,所揭示之導電及不導電液體視為不可混溶的。在一些實施例中,導電及不導電液體之部分混溶性可低於2%、低於1%、低於0.5%或低於0.2%,其中該等值中之每一者可在包括例如-30℃至85℃或-20℃至65℃之寬溫度範圍內量測。Regarding the miscibility parameters, the disclosed conductive and non-conductive liquids are considered immiscible. In some embodiments, the partial miscibility of conductive and non-conductive liquids can be less than 2%, less than 1%, less than 0.5%, or less than 0.2%, where each of these values can include, for example- Measure in a wide temperature range from 30℃ to 85℃ or -20℃ to 65℃.
關於穩定性參數,不導電液體在約-10℃至約+65℃、約-20℃至約+65℃或約-30℃至約+85℃之溫度範圍內保持液態。最後,各別導電及不導電液體之個別組分相對於彼此亦係化學穩定的,即在元件之功能溫度範圍內,在導電及不導電液體之其他化合物存在下,其不展現化學反應性。Regarding stability parameters, the non-conductive liquid remains liquid in a temperature range of about -10°C to about +65°C, about -20°C to about +65°C, or about -30°C to about +85°C. Finally, the individual components of the respective conductive and non-conductive liquids are also chemically stable with respect to each other, that is, they do not exhibit chemical reactivity in the functional temperature range of the device in the presence of other compounds of the conductive and non-conductive liquids.
關於黏度參數,在一些應用中,低黏度對於導電液體可能係合意的,此乃因與黏度更高之流體相比,黏度更低之流體可能能夠更快地回應於經由液態透鏡/電潤濕光學元件之單元施加之變化電壓。基於水之導電層之黏度通常較低,並且對電壓變化反應迅速。在一些實施例中,導電液體在受控溫度範圍內之黏度變化經設計以類似於水在相同受控溫度範圍內之黏度變化。在一些實施例中,導電液體在-20℃至+65℃之溫度範圍內展現有限之黏度變化。例如,在-20℃下量測之導電液體之低溫黏度對在+65℃下量測之導電液體之高溫黏度之比率係約30、約25、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3、約2或其間之任何值或由該等值之任何組合限定之任何範圍,但在一些情況下可使用其他值。在一些實施例中,導電液體在-20℃至+60℃之溫度範圍內展現有限之黏度變化。例如,在-20℃下量測之導電液體之低溫黏度對在+60℃下量測之導電液體之高溫黏度之比率係約30、約25、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3、約2或其間之任何值或由該等值之任何組合限定之任何範圍,但在一些情況下可使用其他值。Regarding viscosity parameters, in some applications, low viscosity may be desirable for conductive liquids, because fluids with lower viscosity may be able to respond more quickly to liquid lens/electrowetting than fluids with higher viscosity Varying voltage applied by the unit of optical element. The viscosity of the water-based conductive layer is usually low, and it responds quickly to voltage changes. In some embodiments, the viscosity change of the conductive liquid within the controlled temperature range is designed to be similar to the viscosity change of water within the same controlled temperature range. In some embodiments, the conductive liquid exhibits limited viscosity changes in the temperature range of -20°C to +65°C. For example, the ratio of the low-temperature viscosity of the conductive liquid measured at -20°C to the high-temperature viscosity of the conductive liquid measured at +65°C is about 30, about 25, about 20, about 19, about 18, about 17, About 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, about 2, or any value in between or Any range defined by any combination of these values, but in some cases other values may be used. In some embodiments, the conductive liquid exhibits limited viscosity changes in the temperature range of -20°C to +60°C. For example, the ratio of the low-temperature viscosity of the conductive liquid measured at -20°C to the high-temperature viscosity of the conductive liquid measured at +60°C is about 30, about 25, about 20, about 19, about 18, about 17, About 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, about 2, or any value in between or Any range defined by any combination of these values, but in some cases other values may be used.
不導電液體Non-conductive liquid
在一些實施例中,本文揭示之不導電液體包括一或多種透射恢復劑。端視不導電液體之期望應用及相應性質,不導電液體可包括約1% w/w至約35% w/w透射恢復劑。在一些實施例中,不導電液體可包括約1% w/w至約60 w/w、約1% w/w至約25% w/w、約1% w/w至約20% w/w、約1% w/w至約15% w/w、約1% w/w至約10% w/w、約5% w/w至約40% w/w、約5% w/w至約25% w/w、約5% w/w至約20% w/w、約5% w/w至約15% w/w、約5% w/w至約10% w/w、約10% w/w至約25% w/w、約10% w/w至約20% w/w或約10% w/w至約15% w/w之透射恢復劑。在一些實施例中,不導電液體可包括約1% w/w至約60% w/w、約5% w/w至約40% w/w或約10% w/w至約15% w/w之透射恢復劑。在一些實施例中,可將其他非反應性化合物(例如油、高或低黏度液體、油溶性固體等)分別添加至不導電液體,以對最終電反應性質以約0.0001% w/w至約95% w/w或5% w/w至約60% w/w之量進行改質。In some embodiments, the non-conductive liquid disclosed herein includes one or more transmission restorers. Depending on the desired application and corresponding properties of the non-conductive liquid, the non-conductive liquid may include about 1% w/w to about 35% w/w transmission restorer. In some embodiments, the non-conductive liquid may include about 1% w/w to about 60 w/w, about 1% w/w to about 25% w/w, about 1% w/w to about 20% w/ w, about 1% w/w to about 15% w/w, about 1% w/w to about 10% w/w, about 5% w/w to about 40% w/w, about 5% w/w To about 25% w/w, about 5% w/w to about 20% w/w, about 5% w/w to about 15% w/w, about 5% w/w to about 10% w/w, A transmission restorer of about 10% w/w to about 25% w/w, about 10% w/w to about 20% w/w, or about 10% w/w to about 15% w/w. In some embodiments, the non-conductive liquid may include about 1% w/w to about 60% w/w, about 5% w/w to about 40% w/w, or about 10% w/w to about 15% w /w transmission restorer. In some embodiments, other non-reactive compounds (eg, oil, high or low viscosity liquids, oil-soluble solids, etc.) can be added to the non-conductive liquid, respectively, to the final electrical reaction properties of about 0.0001% w/w to about 95% w/w or 5% w/w to about 60% w/w for modification.
本文所揭示之透射恢復劑可有益地提供改進之透鏡/電潤濕光學元件,特別是彼等在寬溫度範圍內使用之元件。在較高溫度下改進之效能包括高於45℃、高於50℃、高於55℃、高於60℃、高於65℃、高於70℃、高於75℃、高於80℃之溫度。改進之透射恢復時間表明,當在給定電壓差之元件操作溫度範圍(例如-20℃至+70℃)內使用時,透鏡之透明度可保持或快速恢復。沒有透射恢復劑之習用液態透鏡經常在視窗114及/或絕緣層132A上形成穩定之乳液(水包油或油包水)及/或形成冷凝液滴。在液態透鏡100結構表面上之各別液體層及/或冷凝液滴中之至少一者中存在乳液會導致光擴散增加,此可能導致與聚焦及區分不同顏色區域(例如黑色及白色)之間之對比度相關之問題。本文所述之透射恢復劑可有助於改良液態透鏡/電潤濕光學元件之透射恢復時間。The transmission restoration agents disclosed herein can beneficially provide improved lens/electrowetting optical elements, especially those used over a wide temperature range. Improved performance at higher temperatures includes temperatures above 45°C, above 50°C, above 55°C, above 60°C, above 65°C, above 70°C, above 75°C, and above 80°C . The improved transmission recovery time indicates that the lens transparency can be maintained or recovered quickly when used within the operating temperature range of the device for a given voltage difference (for example, -20°C to +70°C). Conventional liquid lenses without transmission restoration agents often form stable emulsions (oil-in-water or water-in-oil) and/or form condensed droplets on the
在一些實施例中,導電液體包括具有式(I)及/或式(II)之透射恢復劑:In some embodiments, the conductive liquid includes a transmission restoration agent having formula (I) and/or formula (II):
其中R1係烷基、環烷基、氟烷基或烷氧基。在一些實施例中,透射恢復劑可包括烷基三(三甲基矽氧基)矽烷、氟烷基三(三甲基矽氧基)、烷基七甲基三矽氧烷、氟烷基七甲基三矽氧烷及其組合。在其他實施例中,透射恢復劑可包括正辛基三(三甲基矽氧基)矽烷、3-正辛基七甲基三矽氧烷、十三氟辛基三(三甲基矽氧基)矽烷及其組合。在其他實施例中,透射恢復劑可包括3-正辛基七甲基三矽氧烷、十三氟辛基三(三甲基矽氧基)矽烷及其組合。在其他實施例中,透射恢復劑不包括正辛基三(三甲基矽氧基)矽烷。Wherein R1 is alkyl, cycloalkyl, fluoroalkyl or alkoxy. In some embodiments, the transmission restoration agent may include alkyltris(trimethylsiloxy) silane, fluoroalkyltris(trimethylsiloxy), alkylheptamethyltrisiloxane, fluoroalkyl Heptamethyltrisiloxane and combinations thereof. In other embodiments, the transmission restoration agent may include n-octyltris(trimethylsiloxy) silane, 3-n-octylheptamethyltrisiloxane, tridecylfluorooctyltris(trimethylsiloxy) Base) silane and combinations thereof. In other embodiments, the transmission restoration agent may include 3-n-octylheptamethyltrisiloxane, tridecylfluorooctyltris(trimethylsiloxy)silane, and combinations thereof. In other embodiments, the transmission restoration agent does not include n-octyl tris(trimethylsiloxy) silane.
如本文所用,「烷基」包括具有1至約20個碳原子、且通常1至12個碳原子或在一些實施例中1至8個碳原子之直鏈及具支鏈烷基。如本文所用,「烷基」可包括如下定義之環烷基。烷基可經取代或未經取代。直鏈烷基之實例包括甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基及正辛基。具支鏈烷基之實例包括(但不限於)異丙基、第二丁基、第三丁基、新戊基及異戊基。代表性經取代烷基可經例如氨基、硫基、羥基、氰基、烷氧基及/或鹵基如F、Cl、Br及I基團取代一或多次。在一些實施例中,烷基可經例如氰基、烷氧基及氟基團取代一或多次。如本文所用術語鹵代烷基係具有一或多個鹵基之烷基。在一些實施例中,鹵代烷基係指全鹵代烷基。在一些實施例中,「烷基」可明確排除8碳正辛基。As used herein, "alkyl" includes straight and branched chain alkyl groups having 1 to about 20 carbon atoms, and usually 1 to 12 carbon atoms, or in some
環烷基係環狀烷基,例如(但不限於)環丙基、環丁基、環戊基、環己基、環庚基及環辛基。在一些實施例中,環烷基具有3至8個環成員,而在其他實施例中,環碳原子之數量在3至5、6或7之範圍內。環烷基可經取代或未經取代。環烷基進一步包括多環烷基,例如(但不限於)降莰基、金剛烷基、莰基、莰烯基、異莰烯基及蒈烯基,以及稠環,例如(但不限於)十氫萘基及諸如此類。環烷基亦包括經如上定義之直鏈或具支鏈烷基取代之環。代表性經取代之環烷基可為單取代或取代一次以上,例如(但不限於):2,2-;2,3-;2,4-;2,5-;或2,6-二取代之環己基或單、二或三取代之降莰基或環庚基,其可經例如烷基、烷氧基、氨基、硫基、羥基、氰基及/或鹵基取代。Cycloalkyl is a cyclic alkyl group such as, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. In some embodiments, the cycloalkyl group has 3 to 8 ring members, while in other embodiments, the number of ring carbon atoms is in the range of 3 to 5, 6, or 7. The cycloalkyl group may be substituted or unsubstituted. Cycloalkyl further includes polycyclic alkyl groups, such as (but not limited to) norbornyl, adamantyl, camphenyl, camphenyl, isocamrenyl, and enenyl groups, as well as fused rings, such as (but not limited to) Decahydronaphthyl and the like. Cycloalkyl also includes rings substituted with straight or branched chain alkyl as defined above. Representative substituted cycloalkyl groups can be mono-substituted or substituted more than once, for example (but not limited to): 2,2-; 2,3-; 2,4-; 2,5-; or 2,6-di Substituted cyclohexyl or mono-, di- or tri-substituted norbornyl or cycloheptyl, which may be substituted with, for example, alkyl, alkoxy, amino, thio, hydroxy, cyano and/or halo.
在一些實施例中,不導電液體可另外包括有機或無機(礦物)化合物或其混合物。該等有機或無機化合物之實例包括烴、Si基單體或寡聚物、Ge基單體或寡聚物、Si—Ge基單體或寡聚物、高指數聚苯醚化合物、低指數氟化或全氟化烴或其混合物。In some embodiments, the non-conductive liquid may additionally include organic or inorganic (mineral) compounds or mixtures thereof. Examples of such organic or inorganic compounds include hydrocarbons, Si-based monomers or oligomers, Ge-based monomers or oligomers, Si-Ge-based monomers or oligomers, high-index polyphenylene ether compounds, low-index fluorine Or perfluorinated hydrocarbons or mixtures thereof.
烴可為直鏈或具支鏈的,並且可含有一或多個飽和、不飽和或部分不飽和之環狀部分。在一些實施例中,烴包括約10至約35個碳原子或約20至約35個碳原子。在其他實施例中,烴可進一步包括一或多個雜原子,作為取代基及/或作為中斷烴鏈及/或環之原子或原子群。該等雜原子包括(但不限於)氧、硫、氮、磷、鹵素(主要係氟、氯、溴及/或碘)。端視導電相之應用及組成,包括一或多個雜原子可能對兩種液體之不可混溶性產生負面影響。在一些實施例中,不導電液體可包括約1%至約99.8% w/w、5%至約99% w/w、10%至約95% w/w、25%至約95% w/w或約50%至約95% w/w之烴或烴混合物。在一些實施例中,烴混合物可包括少量之芳族基團及/或不飽和部分,其量小於約5% w/w、小於約4% w/w、小於約3% w/w、小於約2% w/w、小於約1% w/w、小於約0.5% w/w。在其他實例中,鹵化物(例如氯)可以小於約10% w/w、小於約7% w/w、小於約5% w/w、小於約3% w/w、或小於約3% w/w之不導電液體之量存在於烴中。The hydrocarbon may be linear or branched, and may contain one or more saturated, unsaturated, or partially unsaturated cyclic moieties. In some embodiments, the hydrocarbon includes about 10 to about 35 carbon atoms or about 20 to about 35 carbon atoms. In other embodiments, the hydrocarbon may further include one or more heteroatoms as substituents and/or as atoms or groups of atoms that interrupt the hydrocarbon chain and/or ring. Such heteroatoms include (but are not limited to) oxygen, sulfur, nitrogen, phosphorus, halogen (mainly fluorine, chlorine, bromine and/or iodine). Depending on the application and composition of the conductive phase, including one or more heteroatoms may negatively affect the immiscibility of the two liquids. In some embodiments, the non-conductive liquid may include about 1% to about 99.8% w/w, 5% to about 99% w/w, 10% to about 95% w/w, 25% to about 95% w/ w or about 50% to about 95% w/w hydrocarbon or hydrocarbon mixture. In some embodiments, the hydrocarbon mixture may include small amounts of aromatic groups and/or unsaturated moieties in amounts less than about 5% w/w, less than about 4% w/w, less than about 3% w/w, less than About 2% w/w, less than about 1% w/w, less than about 0.5% w/w. In other examples, the halide (eg, chlorine) may be less than about 10% w/w, less than about 7% w/w, less than about 5% w/w, less than about 3% w/w, or less than about 3% w The amount of non-conductive liquid /w exists in hydrocarbons.
在一些實施例中,Si基之單體或寡聚物、Ge基之單體或寡聚物及/或Si-Ge基之單體或寡聚物可包括一或多種由式III、IV、V、VI表示之下列結構:In some embodiments, Si-based monomers or oligomers, Ge-based monomers or oligomers and/or Si-Ge-based monomers or oligomers may include one or more of Formula III, IV, The following structures represented by V and VI:
其中R2、R3、R4、R5、R6及R7個別地係烷基、芳基、(雜)芳基、(雜)芳基烷基、烷氧基或芳氧基;X係第14族元素,包括例如碳、矽、鍺及其組合。在一些實例中,X係碳,X係矽,X係鍺,X係碳、矽及鍺之混合物,或其組合。Where R2 , R3 , R4 , R5 , R6 and R7 are individually alkyl, aryl, (hetero) aryl, (hetero) aryl alkyl, alkoxy or aryloxy; X It is a Group 14 element, including, for example, carbon, silicon, germanium, and combinations thereof. In some examples, X-based carbon, X-based silicon, X-based germanium, a mixture of X-based carbon, silicon, and germanium, or a combination thereof.
用於Si基、Ge基及/或Si-Ge基之寡聚物之寡聚物係具有一數目之相同(均寡聚物)或不同(共寡聚物)重複單元之化合物,該數目在約2與約20之間、在約2與約10之間或在約2與約5之間。具有超過約20個重複單元之寡聚物可能在較低溫度下導致不期望之黏度增加。The oligomers used for Si-based, Ge-based and/or Si-Ge-based oligomers are compounds with a number of identical (homogeneous oligomers) or different (co-oligomers) repeating units. Between about 2 and about 20, between about 2 and about 10, or between about 2 and about 5. Oligomers with more than about 20 repeating units may cause an undesirable increase in viscosity at lower temperatures.
如本文所用「(雜)芳基」意指以下芳族或雜芳族基團:含有約5至約12個原子,形成至少一個芳族及/或雜芳族環,其中該環經一或多個鹵素、一或多個醯氧基、例如1、2、3個鹵素原子(主要係氟、氯及/或溴)取代,並視情況與一或多個飽和、部分飽和或不飽和環系統稠合。As used herein, "(hetero)aryl" means the following aromatic or heteroaromatic group: containing from about 5 to about 12 atoms, forming at least one aromatic and/or heteroaromatic ring, wherein the ring is through one or Multiple halogens, one or more alkoxy groups, for example 1, 2, 3 halogen atoms (mainly fluorine, chlorine and/or bromine), and optionally with one or more saturated, partially saturated or unsaturated rings The system is dense.
在一些實施例中,雜芳族環可經氮、磷或硫取代之芳族環取代。在一些實施例中,(雜)芳基可包括例如苯基、萘基、雙環[4.2.0]辛三烯基取代之環系統,該等環系統在環上之任何可用位置經2或3個鹵素原子取代。In some embodiments, the heteroaromatic ring may be substituted with an aromatic ring substituted with nitrogen, phosphorus, or sulfur. In some embodiments, (hetero)aryl groups may include, for example, phenyl, naphthyl, bicyclic [4.2.0] octatrienyl substituted ring systems, such ring systems are substituted by 2 or 3 at any available position on the ring Halogen atoms.
如本文所用「(雜)芳基烷基」意指本文所述之經一或多個鹵素取代之烷基及(雜)芳基取代基中之每一者之部分,該等鹵素係例如沿著芳基及/或烷基之1,3鹵素原子(主要係氟、氯及/或溴)。As used herein, "(hetero)arylalkyl" means a portion of each of the alkyl and (hetero)aryl substituents substituted with one or more halogens described herein, such halogens being 1,3 halogen atoms of aryl and/or alkyl groups (mainly fluorine, chlorine and/or bromine).
在一些實施例中,不導電液體之有機及/或無機化合物可包括六甲基二矽烷、二苯基二甲基矽烷、氯苯基三甲基矽烷、苯基三甲基矽烷、苯基三(三甲基矽氧基)矽烷、聚二甲基矽氧烷、四苯基四甲基三矽氧烷、聚(3,3,3-三氟丙基甲基矽氧烷)、3,5,7-三苯基九甲基-五矽氧烷、3,5-二苯基八甲基四矽氧烷、1,1,5,5-四苯基-1,3,3,5-四甲基-三矽氧烷、六甲基環三矽氧烷、六甲基二鍺烷、二苯基二甲基鍺烷、苯基三甲基-鍺烷。在一些實施例中,不導電液體之有機及/或無機化合物可包括六甲基二鍺烷、二苯基二甲基鍺烷、六乙基二鍺烷、石蠟或其組合。例如,石蠟油ISOPAR® P包括由Exxon Mobil生產及銷售之烴之混合物。在其他實施例中,不導電液體之有機及/或無機化合物可包括高指數聚苯基醚流體。在一些實施例中,不導電液體可包括約1%至約99.8% w/w、5%至約99% w/w、10%至約95% w/w、25%至約95% w/w或約50%至約95% w/w之有機及/或無機化合物。在其他實施例中,不導電液體可包括約1%至約99.8% w/w、5%至約99% w/w、10%至約95% w/w、25%至約95% w/w或約50%至約95% w/w之烴、有機及/或無機化合物。In some embodiments, the organic and/or inorganic compounds of the non-conductive liquid may include hexamethyldisilazane, diphenyldimethylsilane, chlorophenyltrimethylsilane, phenyltrimethylsilane, phenyltrimethacrylate (Trimethylsiloxy) silane, polydimethylsiloxane, tetraphenyltetramethyltrisiloxane, poly(3,3,3-trifluoropropylmethylsiloxane), 3, 5,7-triphenylnonamethyl-pentasiloxane, 3,5-diphenyloctamethyltetrasiloxane, 1,1,5,5-tetraphenyl-1,3,3,5 -Tetramethyl-trisiloxane, hexamethylcyclotrisiloxane, hexamethyldigermane, diphenyldimethylgermane, phenyltrimethyl-germane. In some embodiments, the organic and/or inorganic compounds of the non-conductive liquid may include hexamethyldigermane, diphenyldimethylgermane, hexaethyldigermane, paraffin, or a combination thereof. For example, paraffin oil ISOPAR® P includes a mixture of hydrocarbons produced and sold by Exxon Mobil. In other embodiments, the organic and/or inorganic compounds of the non-conductive liquid may include high index polyphenyl ether fluids. In some embodiments, the non-conductive liquid may include about 1% to about 99.8% w/w, 5% to about 99% w/w, 10% to about 95% w/w, 25% to about 95% w/ w or about 50% to about 95% w/w organic and/or inorganic compounds. In other embodiments, the non-conductive liquid may include about 1% to about 99.8% w/w, 5% to about 99% w/w, 10% to about 95% w/w, 25% to about 95% w/ w or about 50% to about 95% w/w hydrocarbon, organic and/or inorganic compounds.
在一些實施例中,不導電液體在-20℃至+65℃之溫度範圍內展現有限之黏度變化。例如,在-20℃下量測之不導電液體之低溫黏度對在+65℃下量測之不導電液體之高溫黏度之比率為約30、約25、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3、約2或其間之任何值或由該等值之任何組合限定之任何範圍,但在一些情況下可使用其他值。在一些實施例中,不導電液體在-20℃至+60℃之溫度範圍內展現有限之黏度變化。例如,在-20℃下量測之不導電液體之低溫黏度對在+60℃下量測之不導電液體之高溫黏度之比率為約30、約25、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3、約2或其間之任何值或由該等值之任何組合限定之任何範圍,但在一些情況下可使用其他值。In some embodiments, the non-conductive liquid exhibits limited viscosity changes in the temperature range of -20°C to +65°C. For example, the ratio of the low-temperature viscosity of the non-conductive liquid measured at -20°C to the high-temperature viscosity of the non-conductive liquid measured at +65°C is about 30, about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, about 2, or any in between Value or any range defined by any combination of these values, but in some cases other values may be used. In some embodiments, the non-conductive liquid exhibits limited viscosity changes in the temperature range of -20°C to +60°C. For example, the ratio of the low-temperature viscosity of the non-conductive liquid measured at -20°C to the high-temperature viscosity of the non-conductive liquid measured at +60°C is about 30, about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3, about 2, or any in between Value or any range defined by any combination of these values, but in some cases other values may be used.
本文所述之導電液體及/或不導電液體之相對平坦之黏度曲線能夠在操作溫度範圍(例如-20℃至+65℃或-20℃至+60℃)內提高液態透鏡之效能,而無需控制液態透鏡之溫度(例如,藉由加熱液體以達成期望黏度)。The relatively flat viscosity curves of conductive liquids and/or non-conductive liquids described herein can improve the performance of liquid lenses within the operating temperature range (eg, -20°C to +65°C or -20°C to +60°C) without the need for Control the temperature of the liquid lens (for example, by heating the liquid to achieve the desired viscosity).
所附申請專利範圍應視為本揭示內容之寬度及本文所述各個實施例之相應範圍之唯一表示。此外,應明瞭,在不脫離所附申請專利範圍中限定之本發明範圍之情況下,修改及變化係可能的。更具體而言,儘管本揭示內容之一些態樣在本文中鑒定為較佳或特別有利,但可設想,本揭示內容不一定限於該等態樣。The scope of the attached patent application should be regarded as the sole representation of the breadth of the disclosure and the corresponding scope of the various embodiments described herein. In addition, it should be understood that modifications and changes are possible without departing from the scope of the invention defined in the appended patent application. More specifically, although some aspects of the present disclosure are identified herein as being better or particularly advantageous, it is conceivable that the present disclosure is not necessarily limited to these aspects.
注意,以下申請專利範圍中之一或多者使用術語「其中」作為過渡片語。出於定義本揭示內容之目的,應注意,此術語在申請專利範圍中作為開放式過渡片語引入,其用於引入結構之一系列特徵之敘述,並且應以與更常用之開放式前導術語「包括」相似之方式來解釋。Note that one or more of the following patent applications use the term "in which" as a transition phrase. For the purpose of defining this disclosure, it should be noted that this term was introduced as an open transition phrase in the scope of the patent application, which is used to introduce a series of structural features of the description, and should be used in conjunction with the more commonly used open leading terms "Include" is explained in a similar way.
亦應注意,本文對「至少一個」組分、元素等之敘述不應用於推斷冠詞「一(a或an)」之替代使用應限於單個組分、元素等。It should also be noted that the description of "at least one" component, element, etc. in this article should not be used to infer that the alternative use of the article "a (an or an)" should be limited to a single component, element, etc.
應進一步注意,與預期用途之敘述相反,本文對以特定方式「構形」以體現特定性質或以特定方式起作用之本揭示內容之組分之敘述係結構敘述。更具體而言,本文提及之組分「經構形」之方式表示組分之現有物理條件,因此應視為組分之結構特徵之明確敘述。It should be further noted that, contrary to the description of the intended use, the description of the components of this disclosure that are "configured" in a specific way to reflect a specific property or function in a specific way is a structural description. More specifically, the "configuration" of the components mentioned in this article represents the existing physical conditions of the components, and therefore should be regarded as a clear description of the structural characteristics of the components.
注意,當在本文中使用時,如「較佳地」、「通常」及「典型地」等術語並不用於限制所主張發明之範圍,或暗示某些特徵對於所主張發明之結構或功能係關鍵的、必要的或者甚至重要的。相反,該等術語僅意欲鑒定出本揭示內容之實施例之特定態樣,或者強調在本揭示內容之特定實施例中可能使用或可能不使用之替代或其他特徵。Note that when used in this document, terms such as "preferred", "usually" and "typically" are not used to limit the scope of the claimed invention or to imply that certain features contribute to the structure or function of the claimed invention Critical, necessary or even important. Rather, these terms are only intended to identify specific aspects of the embodiments of the present disclosure, or to emphasize alternative or other features that may or may not be used in specific embodiments of the present disclosure.
在本揭示內容中,注意術語「實質上」及「近似地」在本文中用於表示可歸因於任何定量比較、值、量測或其他表示之固有不確定度。術語「實質上」及「近似地」在本文中亦用於表示定量表示可與所述參考值不同之程度,而不會導致所論述標的物之基本功能發生變化。In this disclosure, note that the terms "substantially" and "approximately" are used herein to indicate the inherent uncertainty that can be attributed to any quantitative comparison, value, measurement, or other representation. The terms "substantially" and "approximately" are also used herein to indicate that the quantitative representation may differ from the reference value without causing a change in the basic function of the subject matter in question.
儘管已針對有限數量之實施例闡述了本發明,但受益於本揭示內容之本領域技術人員將理解,可設計出不脫離如本文揭示之本發明範圍之其他實例。因此,本發明之範圍應僅由所附申請專利範圍來限定。Although the invention has been described for a limited number of embodiments, those skilled in the art who have the benefit of this disclosure will understand that other examples can be devised without departing from the scope of the invention as disclosed herein. Therefore, the scope of the present invention should be limited only by the scope of the attached patent application.
100‧‧‧液態透鏡102‧‧‧透鏡體104‧‧‧空腔104A‧‧‧第一部分或頂部空間104B‧‧‧第二部分或基底部分105A‧‧‧窄端105B‧‧‧寬端106‧‧‧第一液體108‧‧‧第二液體110‧‧‧界面112‧‧‧光軸114‧‧‧第一視窗116‧‧‧第二視窗118‧‧‧第一外層120‧‧‧中間層122‧‧‧第二外層124‧‧‧公共電極126‧‧‧驅動電極128‧‧‧導電層130A‧‧‧劃線132‧‧‧絕緣元件132A‧‧‧絕緣層134A‧‧‧黏合部134B‧‧‧黏合部100‧‧‧
下文係附圖中各圖之描述。各圖不一定係按比例繪製,並且為了清楚或簡明起見,各圖之某些特徵及某些視圖可按比例放大或示意性地顯示。The following is a description of the figures in the drawings. The drawings are not necessarily drawn to scale, and for clarity or conciseness, some features and views of the drawings may be enlarged or shown schematically.
第1圖係根據本揭示內容之一些實施例之示例性電潤濕光學元件之示意性剖視圖。Figure 1 is a schematic cross-sectional view of an exemplary electrowetting optical element according to some embodiments of the present disclosure.
第2圖係顯示凝固點對水中各種添加劑濃度之曲線圖。Figure 2 is a graph showing the freezing point versus the concentration of various additives in water.
當結合各圖閱讀時,將更好地理解上文之概述以及下文對某些發明技術之詳細描述。應理解,申請專利範圍並不限於圖中所示之佈置及工具。此外,圖中所示之外觀係許多裝飾性外觀中之一種,可用於達成該裝置之所述功能。When reading in conjunction with the figures, the above summary and the following detailed description of certain inventive techniques will be better understood. It should be understood that the scope of patent application is not limited to the arrangements and tools shown in the figures. In addition, the appearance shown in the figure is one of many decorative appearances that can be used to achieve the described function of the device.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記)無Domestic storage information (please note in order of storage institution, date, number)no
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記)無Overseas hosting information (please note in order of hosting country, institution, date, number)no
100‧‧‧液態透鏡100‧‧‧ liquid lens
102‧‧‧透鏡體102‧‧‧Lens
104‧‧‧空腔104‧‧‧ Cavity
104A‧‧‧第一部分或頂部空間104A‧‧‧
104B‧‧‧第二部分或基底部分104B‧‧‧Second part or base part
105A‧‧‧窄端105A‧‧‧Narrow end
105B‧‧‧寬端105B‧‧‧wide end
106‧‧‧第一液體106‧‧‧First liquid
108‧‧‧第二液體108‧‧‧Second liquid
110‧‧‧界面110‧‧‧Interface
112‧‧‧光軸112‧‧‧ Optical axis
114‧‧‧第一視窗114‧‧‧First window
116‧‧‧第二視窗116‧‧‧Second window
118‧‧‧第一外層118‧‧‧First outer layer
120‧‧‧中間層120‧‧‧ middle layer
122‧‧‧第二外層122‧‧‧The second outer layer
124‧‧‧公共電極124‧‧‧Common electrode
126‧‧‧驅動電極126‧‧‧Drive electrode
128‧‧‧導電層128‧‧‧conductive layer
130A‧‧‧劃線130A‧‧‧ crossed
132‧‧‧絕緣元件132‧‧‧Insulation components
132A‧‧‧絕緣層132A‧‧‧Insulation
134A‧‧‧黏合部134A‧‧‧bonding department
134B‧‧‧黏合部134B‧‧‧bonding department
134C‧‧‧黏合部134C‧‧‧ Adhesive Department
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862674979P | 2018-05-22 | 2018-05-22 | |
| US62/674,979 | 2018-05-22 |
| Publication Number | Publication Date |
|---|---|
| TW202004777Atrue TW202004777A (en) | 2020-01-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108117658ATW202004777A (en) | 2018-05-22 | 2019-05-22 | Liquid lens and fluids for liquid lens |
| Country | Link |
|---|---|
| TW (1) | TW202004777A (en) |
| WO (1) | WO2019226537A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117233983A (en)* | 2022-06-08 | 2023-12-15 | Oppo广东移动通信有限公司 | Lens module and wearable equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100491537C (en)* | 2005-10-20 | 2009-05-27 | 清华大学 | Method for producing 1,3-propanediol by microbial aerobic fermentation |
| EP1816490A1 (en)* | 2006-02-01 | 2007-08-08 | Varioptic | Use of bromine anions in an electrowetting device |
| JP2009525502A (en)* | 2006-02-01 | 2009-07-09 | バリオプテイツク | Optical electrowetting device |
| BR112012025846A2 (en)* | 2010-04-13 | 2015-10-06 | Genomatica Inc | unnaturally occurring microbial organism and method for producing ethylene glycol. |
| JPWO2012026596A1 (en)* | 2010-08-26 | 2013-10-28 | 株式会社ニチレイフーズ | Method for increasing thermal hysteresis activity, method for reducing thermal deactivation of thermal hysteresis activity, and composition for increasing thermal hysteresis activity |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117233983A (en)* | 2022-06-08 | 2023-12-15 | Oppo广东移动通信有限公司 | Lens module and wearable equipment |
| Publication number | Publication date |
|---|---|
| WO2019226537A1 (en) | 2019-11-28 |
| Publication | Publication Date | Title |
|---|---|---|
| EP1623263B1 (en) | Electrowetting module | |
| CN101395494B (en) | Optical electrowetting device containing a non-conductive fluid comprising a monogermane compound, and optical device containing the optical electrowetting device | |
| CN101395495B (en) | optical electrowetting device | |
| US7729057B2 (en) | Use of bromine anions in an optical electrowetting device | |
| US11204492B2 (en) | Naphtyl based high index hydrophobic liquids and transmission recovery agents for liquid lens formulations | |
| CN210720791U (en) | Negative optical power electrowetting optical device, camera module, liquid shutter and negative optical power liquid system | |
| KR20070011264A (en) | Varifocal lens | |
| CN102103220A (en) | Varifocal lens of micro-fluid control liquid based on ionic liquid | |
| CN105278097B (en) | Liquid lens with low optical power hysteresis | |
| JP2013541726A (en) | Electrowetting optics | |
| EP1991889A1 (en) | Use of bromine anions in an optical electrowetting device | |
| TW201945377A (en) | Transmission recovery agents for liquid lens formulations | |
| TW202004777A (en) | Liquid lens and fluids for liquid lens | |
| WO2020159781A1 (en) | Low melting point ionic liquids for infra-red liquid lens design |