Movatterモバイル変換


[0]ホーム

URL:


TW201800915A - Touch sensor - Google Patents

Touch sensor

Info

Publication number
TW201800915A
TW201800915ATW106117766ATW106117766ATW201800915ATW 201800915 ATW201800915 ATW 201800915ATW 106117766 ATW106117766 ATW 106117766ATW 106117766 ATW106117766 ATW 106117766ATW 201800915 ATW201800915 ATW 201800915A
Authority
TW
Taiwan
Prior art keywords
piezoelectric
transparent electrode
film
touch sensor
sensor
Prior art date
Application number
TW106117766A
Other languages
Chinese (zh)
Other versions
TWI746560B (en
Inventor
矢野孝伸
拝師基希
別府浩史
木曽憲俊
梨木智剛
Original Assignee
日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工股份有限公司filedCritical日東電工股份有限公司
Priority claimed from JP2017104593Aexternal-prioritypatent/JP6879826B2/en
Publication of TW201800915ApublicationCriticalpatent/TW201800915A/en
Application grantedgrantedCritical
Publication of TWI746560BpublicationCriticalpatent/TWI746560B/en

Links

Classifications

Landscapes

Abstract

To provide a touch sensor in which total light transmittance and haze are improved, the touch sensor is made thinner by reduction of members, and costs are lower in comparison with conventional configurations. A touch sensor 10 is provided with a piezoelectric sensor 11 and an electrostatic capacitance sensor 12. The piezoelectric sensor 11 is provided with: a piezoelectric film 16, which is a first laminate comprising a first base material film 14 and a piezoelectric coating layer 15; a first transparent electrode 17 formed on one surface of the piezoelectric film 16; and a second transparent electrode 18 formed on the other surface of the piezoelectric film 16. The electrostatic capacitance sensor 12 is provided with: a second laminate 21 in which a third transparent electrode 20 is formed on one surface of a second base material film 19; a third laminate 24 in which a fourth transparent electrode 23 is formed on one surface of a third base material film 22; and a transparent fill layer 25 that bonds the second laminate 21 and the third laminate 24.

Description

Translated fromChinese
觸碰感測器Touch sensor

本發明係關於一種具備按壓檢測功能之觸碰感測器。The invention relates to a touch sensor with a pressing detection function.

近年來,將觸碰感測器導入至智慧型手機或平板電腦等電子機器,作為直感人機介面而利用。觸碰感測器檢測手指或筆所觸碰之二維位置。藉由配合顯示器之顯示而檢測所觸碰之位置,來操作電子機器。 又,以增加輸入資訊、提高操作性為目的而開發及揭示有檢測按壓力之觸碰感測器。例如,有藉由殼體變形時之靜電電容之變化或使用感壓橡膠之電阻值之變化等而檢測按壓力之方法、及檢測壓電材料之電荷之變化之方法等。於利用壓電材料之技術中,可使用利用無機系鋯鈦酸鉛(PZT)者或有機系聚偏二氟乙烯、聚乳酸等各種材料。 作為亦可檢測此種手指觸碰之壓力(Z座標)的觸控面板之壓電膜,例如,於專利文獻1(日本專利特開2010-26938)中有所記載。於專利文獻1之觸控面板中,使用在含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之兩面積層透明電極而成之積層體。根據記載,含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層係利用流延法或擠壓法而製造,從而成為單獨之膜。而且,壓電體層之厚度為20 μm~300 μm。於含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之厚度為20 μm~100 μm之實施例中,全光線透過率為95%,霧度值((haze value)為5%~7%。 為無損位於觸控面板背面之顯示器之圖像視認性,霧度值較理想為未達5%,且需將霧度值進一步降低。又,有機系壓電膜之材料費、加工費一般較高,用於觸碰感測器用途時需進一步低成本化。 提出了使用檢測感度較高之靜電電容方式進行觸碰位置檢測,使用透明之有機系壓電膜進行按壓壓力檢測,藉此令檢測精度較高的觸碰感測器(參照專利文獻2)。然而,因為係藉由使靜電電容感測器基材與壓電膜貼合而形成,故而有構件之增加導致成本上升、及觸碰感測器之厚度增加等問題。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2010-26938 [專利文獻2]日本專利5722954In recent years, touch sensors have been introduced into electronic devices such as smartphones and tablet computers and used as direct human-machine interfaces. The touch sensor detects a two-dimensional position touched by a finger or a pen. The electronic device is operated by detecting the touched position in cooperation with the display of the display. In addition, a touch sensor that detects a pressing force has been developed and disclosed for the purpose of increasing input information and improving operability. For example, there are a method of detecting a pressing force by a change in an electrostatic capacitance when the case is deformed or a change in a resistance value using a pressure-sensitive rubber, and a method of detecting a change in a charge of a piezoelectric material. In the technology using piezoelectric materials, various materials such as those using inorganic lead zirconate titanate (PZT) or organic polyvinylidene fluoride, polylactic acid, and the like can be used. As a piezoelectric film of a touch panel that can also detect the pressure (Z coordinate) of such a finger touch, for example, it is described in Patent Document 1 (Japanese Patent Laid-Open No. 2010-26938). In the touch panel of Patent Document 1, a laminated body including transparent electrodes on two areas of a piezoelectric body layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is used. According to the description, the piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is produced by a casting method or an extrusion method, and becomes a separate film. The thickness of the piezoelectric layer is 20 μm to 300 μm. In the embodiment in which the thickness of the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer is 20 μm to 100 μm, the total light transmittance is 95%, and the (haze value) is 5% to 7%. In order not to damage the visibility of the display on the back of the touch panel, the haze value is ideally less than 5%, and the haze value needs to be further reduced. In addition, the material cost and processing of organic piezoelectric film The cost is generally high, and it is necessary to further reduce the cost when used for touch sensor applications. It is proposed to use a capacitive method with high detection sensitivity for touch position detection, and a transparent organic piezoelectric film for pressing pressure detection. This allows a touch sensor with high detection accuracy (refer to Patent Document 2). However, since it is formed by bonding the electrostatic capacitance sensor substrate to the piezoelectric film, there are costs due to the increase in components. Problems such as rising, and increasing the thickness of the touch sensor, etc. [Prior Art Literature] [Patent Literature] [Patent Literature 1] Japanese Patent Laid-Open No. 2010-26938 [Patent Literature 2] Japanese Patent 5722954

[發明所欲解決之問題] 本發明之目的在於:提供一種與先前相比達成了全光線透過率及霧度之改善、藉由削減構件而實現之薄型化、及低成本化之觸碰感測器。 [解決問題之技術手段] 本發明之觸碰感測器具備壓電感測器及靜電電容感測器。壓電感測器具備於基材膜積層有具有壓電性之塗層之壓電膜。 於上述壓電膜之一面側及另一面側配置有透明電極。透明電極有僅用於壓電感測器之透明電極、僅用於靜電電容感測器之透明電極、及用於壓電感測器與靜電電容感測器兩者之透明電極。根據觸碰感測器之種類選擇製造時要積層之透明電極。 上述具有壓電性之塗層之厚度為0.5 μm以上且20 μm以下。又,上述具有壓電性之塗層包含氟樹脂。進而,上述氟系樹脂係偏二氟乙烯、三氟乙烯、三氟氯乙烯中之2種以上之共聚物、或偏二氟乙烯之聚合物。 於上述基材膜與具有壓電性之塗層之間具備底塗層、折射率調整層、光學調整層、抗黏連層之至少1層。或者亦可於基材膜直接形成有具有壓電性之塗層。 上述塗層之厚度為0.5~10 μm,折射率調整層之厚度為80~160 nm,透明電極之厚度為20 nm以上。又,上述塗層之折射率為1.40~1.50,折射率調整層之折射率為1.50~1.70,透明電極之折射率為1.90~2.10。 於上述壓電膜與透明電極之間具備底塗層、折射率調整層、光學調整層、抗黏連層之至少1層。或者亦可於壓電膜直接形成有透明電極。 於上述壓電膜及透明電極積層有透明填充層。於在壓電膜未直接積層透明電極之情形時,亦可準備於基材膜形成有透明電極之積層體,積層體與壓電膜隔著透明填充層而積層。 上述基材膜選自聚對苯二甲酸乙二酯、環烯烴共聚物、聚環烯烴、聚萘二甲酸乙二酯、聚碳酸酯中之至少1種。 上述透明電極係以氧化銦為主成分之透明電極。 [發明之效果] 本發明之觸碰感測器係於基材膜形成有具有壓電性之塗層,可使塗層較薄。因為塗層較薄,故而不易使全光線透過率及霧度惡化。[Problems to be Solved by the Invention] The object of the present invention is to provide a touch feeling that achieves an improvement in total light transmittance and haze, a reduction in thickness by reducing members, and a reduction in cost as compared with the prior art. Tester. [Technical means to solve the problem] The touch sensor of the present invention includes a piezo-inductive sensor and an electrostatic capacitance sensor. The piezoelectric sensor includes a piezoelectric film having a piezoelectric coating layered on a base film. Transparent electrodes are disposed on one surface side and the other surface side of the piezoelectric film. The transparent electrode includes a transparent electrode used only for a piezo sensor, a transparent electrode used only for an electrostatic capacity sensor, and a transparent electrode used for both the piezoelectric inductor and the electrostatic capacity sensor. According to the type of touch sensor, select the transparent electrode to be laminated during manufacturing. The thickness of the piezoelectric coating is 0.5 μm or more and 20 μm or less. The piezoelectric coating includes a fluororesin. Furthermore, the above-mentioned fluorine-based resin is a copolymer of two or more of vinylidene fluoride, trifluoroethylene, and trifluorochloroethylene, or a polymer of vinylidene fluoride. Between the substrate film and the piezoelectric coating, at least one layer of an undercoat layer, a refractive index adjustment layer, an optical adjustment layer, and an anti-blocking layer is provided. Alternatively, a piezoelectric coating may be directly formed on the substrate film. The thickness of the coating layer is 0.5 to 10 μm, the thickness of the refractive index adjusting layer is 80 to 160 nm, and the thickness of the transparent electrode is 20 nm or more. The refractive index of the coating layer is 1.40 to 1.50, the refractive index of the refractive index adjusting layer is 1.50 to 1.70, and the refractive index of the transparent electrode is 1.90 to 2.10. Between the piezoelectric film and the transparent electrode, at least one layer of an undercoat layer, a refractive index adjustment layer, an optical adjustment layer, and an anti-blocking layer is provided. Alternatively, a transparent electrode may be directly formed on the piezoelectric film. A transparent filling layer is laminated on the piezoelectric film and the transparent electrode. In the case where the transparent film is not directly laminated with the piezoelectric film, a laminated body having a transparent electrode formed on the substrate film may be prepared, and the laminated body and the piezoelectric film are laminated with a transparent filling layer interposed therebetween. The substrate film is at least one selected from the group consisting of polyethylene terephthalate, cycloolefin copolymer, polycycloolefin, polyethylene naphthalate, and polycarbonate. The transparent electrode is a transparent electrode mainly composed of indium oxide. [Effect of the Invention] The touch sensor of the present invention is formed on the substrate film with a piezoelectric coating, which can make the coating thinner. Because the coating is thin, it is not easy to deteriorate the total light transmittance and haze.

使用圖式對本發明之觸碰感測器進行說明。關於在一個實施形態中已說明過之構成,存在如下情形:若於其他實施形態中存在相同之構成,則省略該構成之說明,並於圖式中標註相同符號。 [實施形態1] 圖1、圖2所示之本發明之觸碰感測器10係配置於顯示器之顯示面者。本發明之觸碰感測器10具備壓電感測器11、及靜電電容感測器12。壓電感測器11係以壓電方式檢測按壓力。靜電電容感測器12係以靜電電容方式檢測被按壓之位置(X座標及Y座標)。壓電感測器11與靜電電容感測器12藉由透明填充層13而接著。 [壓電感測器] 壓電感測器11具備:壓電膜16,其係由第1基材膜14及具有壓電性之塗層15構成之第1積層體;第1透明電極17,其形成於壓電膜16之一面;及第2透明電極18,其形成於壓電膜13之另一面。若按壓觸碰感測器10則具有壓電性之塗層15分極,而藉由透明電極17、18檢測此時之電位變化,藉此可檢測出按壓力。 [靜電電容感測器] 靜電電容感測器12配置於壓電感測器13之一面側。靜電電容感測器12具備:第2積層體21,其於第2基材膜19之一面形成有第3透明電極20;第3積層體24,其於第3基材膜22之一面形成有第4透明電極23;及透明填充層25,其將第2積層體21與第3積層體24接著。透明電極20、24彼此絕緣。當手指或筆接觸或靠近觸碰感測器10時,該位置上之靜電電容變化,位於該位置之透明電極20、24之電位變化,靜電電容感測器12可根據該電位變化而檢測出觸碰位置。 [基材膜] 第1及第2、第3基材膜14、19、22例如可列舉聚對苯二甲酸乙二酯、環烯聚合物、聚萘二甲酸乙二酯、聚烯烴、聚環烯烴、聚碳酸酯、聚醚碸、聚芳酯、聚醯亞胺、聚醯胺、聚苯乙烯、聚降冰片烯等高分子膜。各基材膜14、19、22較佳為透明性、耐熱性、及機械特性優異之聚對苯二甲酸乙二酯膜(PET膜),但並不限定於此。又,亦可將不同材料之膜積層而製成1張基材膜。 各基材膜14、19、22之厚度較佳為10 μm以上且150 μm以下,但並不限定於此。其中,若基材膜14、19、22之厚度未達10 μm,則有難以操作之虞。又,若基材膜14、19、22之厚度超過150 μm,則有難以將壓電膜16、第2積層體21及第3積層體24捲繞成卷之虞。 [具有壓電性之塗層] 具有壓電性之塗層15係呈薄膜狀塗佈於第1基材膜14之任一面上者。具有壓電性之塗層15只要是塗佈後之膜具有壓電性者,便不特別限定。具有壓電性之塗層15較理想為即便未施以極化(分極處理)亦表現出壓電性者,但亦可為於極化後表現出壓電性者。 作為極化,已知有如下2種方式:非接觸式,其採用電暈放電處理分極;及接觸式,其係以2張金屬板夾住膜,施加電壓而進行分極。 具有壓電性之塗層15例如係以如下方式獲得:使塗層15之材料溶解於溶媒中製成溶液,藉由棒式塗佈機或凹版塗佈機等已知之塗佈裝置於第1基材膜14之上薄薄地且均勻地進行塗佈,其後使其乾燥。 [具有壓電性之塗層之材料] 作為具有壓電性之塗層15之材料,例如可較佳地使用包含氟樹脂之材料。若具體地例示包含氟樹脂之材料,則可選自作為含有偏二氟乙烯成分之聚合物的聚偏二氟乙烯、偏二氟乙烯-三氟乙烯之共聚物、偏二氟乙烯-三氟乙烯-三氟氯乙烯之共聚物、六氟丙烯-偏二氟乙烯之共聚物、全氟乙烯醚-偏二氟乙烯之共聚物、四氟乙烯-偏二氟乙烯之共聚物、六氟環氧丙烷-偏二氟乙烯之共聚物、六氟環氧丙烷-四氟乙烯-偏二氟乙烯之共聚物、六氟丙烯-四氟乙烯-偏二氟乙烯之共聚物。而且,該等聚合物既可單獨使用亦可形成混合體而使用。更佳為偏二氟乙烯-三氟乙烯-三氟氯乙烯之共聚物、偏二氟乙烯-三氟乙烯之共聚物、偏二氟乙烯之聚合物。 於將偏二氟乙烯-三氟乙烯之共聚物用作塗層15之材料之情形時,偏二氟乙烯與三氟乙烯之莫耳比於整體計為100時,適宜為(50~85):(50~15)。又,於將偏二氟乙烯-三氟乙烯-三氟氯乙烯之共聚物用作塗層15之材料之情形時,偏二氟乙烯與三氟乙烯及三氟氯乙烯之莫耳比於整體計為100時,適宜為(63~65):(27~29):(10~6)。 [具有壓電性之塗層之厚度] 對於具有壓電性之塗層15之乾燥後之厚度並不限定,考慮到下述光學特性,適宜為0.5 μm以上且20 μm以下,更佳為0.5~10 μm,進而更佳為0.5~5 μm。若具有壓電性之塗層15之乾燥後之厚度未達0.5 μm,則所形成之膜有不完善之虞。若具有壓電性之塗層15之乾燥後之厚度超過20 μm,則有光學特性(霧度及全光線透過率)變得不合適之虞。 [壓電膜之光學特性] 顯示器之圖像必須可清晰視認,因此壓電膜16之霧度值較佳為未達5%,全光線透過率較佳為90%以上。於壓電膜16之霧度值為5%以上之情形時、或全光線透過率未達85%之情形時,有顯示器之圖像變得無法清晰視認之虞。 [透明電極] 第1及第2透明電極17、18係用以檢測按壓力之電極,第3及第4透明電極20、23係用以檢測按壓位置之電極。 第1透明電極17覆蓋壓電膜16之一面整體,第2透明電極18覆蓋壓電膜16之另一面整體。當按壓觸碰感測器10時,具有壓電性之塗層15分極。此時,藉由第1及第2透明電極17、18檢測具有壓電性之塗層15之電位變化。例如將第2透明電極18設定為基準電位(接地電位),藉由第1透明電極17檢測電位變化。 如圖1、圖2所示,於壓電感測器11之一面側配置有第3透明電極20及第4透明電極23。該等透明電極20、23係靜電電容感測器12之一部分。如圖1所示,第3透明電極20與第4透明電極23藉由於兩者之間設置第2基材膜19與透明填充層25而絕緣。進而,如圖2所示,第3及第4透明電極20、23形成為帶狀,且電極20、23彼此朝向正交之方向。例如設定第3透明電極20係用以檢測按壓位置之X座標之電極,第4透明電極23係用以檢測Y座標之電極。藉由以手指或筆按壓或靠近觸碰感測器10之表面,該位置上之第3及第4透明電極20、23之電位變化,利用該電位變化而檢測X座標及Y座標。 再者,圖1之靜電電容感測器12係於第2基材膜19之一面積層有第3透明電極20,於第3基材膜22之一面積層有第4透明電極23,但並不限定於該構成。例如,亦可如圖3(a)、(b)、(c)之靜電電容感測器27、28、29般,於基材膜19、22之一面或另一面積層透明電極20、23,並藉由透明填充層25將積層體21、24接著。又,於第3積層體24之上方配置有第2積層體21,但亦可顛倒配置。 作為各透明電極17、18、20、23,可列舉銦系複合氧化物,其中作為具有代表性者,可列舉銦錫複合氧化物(ITO:Indium Tin Oxide)、銦鋅複合氧化物,但還可列舉摻雜有4價金屬離子或2價金屬離子之氧化銦(In2O3)。銦系複合氧化物具有於可見光區域(380~780 nm)透過率高達80%以上,且每單位面積之表面電阻較低(30~1000 Ω/□(ohms per square,每平方歐姆值))之特徵。 上述銦系複合氧化物之厚度較佳為35 nm以下。其原因在於:若厚度變得過厚,則可見光區域之透過率等變差。又,銦系複合氧化物之表面電阻值較佳為300 Ω/□以下,進而較佳為150 Ω/□以下。其原因在於:若表面電阻值變高,則無法作為電極而發揮功能。 表面電阻較小之透明電極例如可藉由如下方式獲得:藉由濺鍍法或真空蒸鍍法,於基材膜上形成銦系複合氧化物之非晶質層之後,以80~200℃進行加熱處理,將非晶質層變成結晶質層。 各透明電極17、18、20、23並不限定於上述材料,可使用錫鋅氧化物、氧化鋅、摻氟氧化錫等透明導電性氧化物、聚乙二氧基噻吩等導電性高分子。 於將具有壓電性之塗層15極化之情形時,既可於形成第1及第2透明電極17、18之後進行極化,亦可於形成第1及第2透明電極17、18之前將塗層極化。於藉由濺鍍形成第1及第2透明電極17、18之情形時,極化與濺鍍中無論哪一者在前均可。 [層間] 亦可於第1基材膜14與具有壓電性之塗層15、第1、第2及第3基材膜14、19、22與第1、第3、第4透明電極17、20、23之間設置底塗層(ancher coat layer)、折射率調整層(Index matching layer)(光學調整層)等數nm~數十nm左右之薄層。底塗層用以提高層間之密接性,折射率調整層用以調整反射率。進而,亦可於各基材膜14、19、22與透明電極17、20、23之間設置抗黏連層。抗黏連層具有防止堆積之膜壓接(黏連)之效果。 [透明填充層] 透明填充層13、25係不形成空氣層而填滿層間。第1及第4透明電極17、23之表面被透明填充層13、25覆蓋。其目的在於:利用第1及第4透明電極17、23之表面所產生之反射與藉由微細之凹凸而產生之散射,防止全光線透過率與霧度之降低。 透明填充層13、25係使用包含光學透明接著材料或光學透明黏著材料之接著劑或樹脂。可使已呈片狀之光學透明接著材料或光學透明黏著材料貼合而形成透明填充層13、25,亦可塗佈液狀之光學透明接著材料或光學透明黏著材料,並照射紫外線使其硬化而形成透明填充層13、25。 [顯示器] 於顯示器之前表面配置觸碰感測器10。顯示器可使用液晶顯示器或有機EL(Electroluminescence,電致發光)顯示器等平面顯示器。用以檢測按壓位置之靜電電容感測器12配置於較壓電感測器11靠上方(觸碰側)。其原因在於:第1及第2透明電極17、18係以覆蓋壓電膜16之方式形成,若壓電感測器11配置於較靜電電容感測器12靠上方,則第3及第4透明電極20、23無法檢測出靜電電容之變化。觸碰感測器10與顯示器藉由透明填充層而接著。透明填充層可使用上述光學透明接著材料或光學透明黏著材料。 如上所述,本發明係於第1基材膜14形成有具有壓電性之塗層15,可使壓電材料之厚度較先前而言薄。因為具有壓電性之塗層15較薄,故而不易使全光線透過率及霧度惡化。因此,可實現光學特性良好之觸碰感測器10。 [實施形態2] 於圖1之觸碰感測器10中,壓電膜16之方向為任意。亦可如圖4之觸碰感測器30般,將具有壓電性之塗層15配置於第1基材膜14之上側。 圖4之觸碰感測器30係相對於圖1之觸碰感測器10變更了壓電膜16之方向,但亦可變更壓電感測器11之方向。第2透明電極18接著於透明填充層13,自上而下依第2透明電極18、壓電感測器11、第1透明電極17之順序進行排列。 [實施形態3] 亦可如圖5(a)之觸碰感測器40之壓電感測器41般,並不於壓電膜16直接形成第2透明電極18。準備於第4基材膜42積層有第2透明電極18之第4積層體43,並藉由透明填充層44將壓電膜16與第4積層體接著。第4基材膜42可由與第1基材膜14等相同之材料構成。又,透明填充層44可由與其他透明填充層13等相同之材料構成。 第4積層體43之方向並不限定。圖5(a)之觸碰感測器40之壓電感測器41係第2透明電極18接著於透明填充層44。亦可如圖5(b)之觸碰感測器45之壓電感測器46般,第4基材膜42接著於透明填充層44。 進而,本實施形態可應用於圖4之觸碰感測器30。於觸碰感測器30中,並不將第2透明電極18直接形成於第1基材膜14,而是準備第4積層體43,將第1基材膜與第4積層體43藉由透明填充層44而接著。第4積層體43之方向並不限定,無論第2透明電極18與第4基材膜42之哪一者接著於透明填充層44均可。 [實施形態4] 亦可如圖6(a)之觸碰感測器50之壓電感測器51般,並不於壓電膜16直接形成第1透明電極17。準備於第5基材膜52積層有第1透明電極17之第5積層體53,並藉由透明填充層54將壓電膜16與第5積層體53接著。第5基材膜52可由與第1基材膜14等相同之材料構成。又,透明填充層54可由與其他透明填充層13等相同之材料構成。 第5積層體53之方向並不限定。圖6(a)之觸碰感測器50之壓電感測器51係第5基材膜52接著於透明填充層54。亦可如圖6(b)之觸碰感測器55之壓電感測器56般,第1透明電極17接著於透明填充層54。 進而,本實施形態可應用於圖4之觸碰感測器30。於觸碰感測器30中,並不將第1透明電極17直接形成於具有壓電性之塗層15,而是準備第5積層體53,將具有壓電性之塗層15與第5積層體53藉由透明填充層54而接著。第5積層體53之方向並不限定,無論第1透明電極17與第5基材膜52之哪一者接著於透明填充層54均可。 [實施形態5] 圖7之觸碰感測器60之壓電感測器61係將壓電膜16、第4積層體43、第5積層體53藉由透明填充層44、54而接著之構成。壓電感測器61係將圖5之壓電感測器41與圖6之壓電感測器51組合而成之構成。 於壓電感測器61中,壓電膜16及第4積層體43、第5積層體53之方向為任意。第1基材膜14與具有壓電性之塗層15之位置、第2透明電極18與第4基材膜42之位置、及第1透明電極17與第5基材膜52之位置可調換。因此,壓電感測器61之構成有8種。 [實施形態6] 圖8之觸碰感測器70之靜電電容感測器71係於第6基材膜72之一面形成有第3透明電極20,於第6基材膜72之另一面形成有第4透明電極23。第6基材膜72可使用與第1基材膜14等相同者。於圖8中,第4透明電極23接著於透明填充層13,但亦可將第3透明電極20接著於透明填充層13。 圖8之靜電電容感測器71與圖1之靜電電容感測器12相比,基材膜之數量與透明填充層之數量有所減少。因此,可實現觸碰感測器70之薄型化。 可將於實施形態1至6中所說明之觸碰感測器10、30、40、45、50、55、60使用之靜電電容感測器12變更成靜電電容感測器71。 [實施形態7] 圖9(a)之觸碰感測器80之靜電電容感測器81係於第6基材膜72之一面側形成有第3'透明電極82及第4'透明電極83。第3'透明電極82及第4'透明電極83係由與第3透明電極20及第4透明電極23相同之材料形成。 如圖9(b)所示,第3'透明電極82與第4'透明電極83分別排列有複數個矩形狀部分85、86,矩形狀部分85、86彼此於X方向或Y方向藉由線狀部分87、88而連接。因此,第3'透明電極82與第4'透明電極83朝向相互正交之方向。矩形狀部分85、86為菱形、正方形、六角形等形狀。第3'透明電極82與第4'透明電極83為避免短路,隔著絕緣體84而交叉。 於圖9中,第3'透明電極82交叉於第4'透明電極83之上,但亦可為第4'透明電極83交叉於第3'透明電極82之上。靜電電容感測器81之方向並不限定,亦可為透明電極82、83接著於透明填充層13之構成。 可將於實施形態1至6中所說明之觸碰感測器10、30、40、45、50、55、60使用之靜電電容感測器12變更成靜電電容感測器81。 [實施形態8] 靜電電容感測器並不限定於藉由2根透明電極20、23檢測靜電電容之變化之構成。圖10之觸碰感測器90之靜電電容感測器91具備縱橫排列於第6基材膜72之一面的矩形狀之透明電極92。於矩形狀之透明電極92連接有引出配線93。矩形狀之透明電極92及引出配線93係由與第3透明電極20及第4透明電極23相同之材料形成。 可將於實施形態1至6中所說明之觸碰感測器10、30、40、45、50、55、60使用之靜電電容感測器12變更成靜電電容感測器91。 [實施形態9] 本案並不限定於將靜電電容感測器與壓電感測器完全分離之形態。例如,圖11(a)之觸碰感測器100與圖1之觸碰感測器10相比省略了第1透明電極17。配置於壓電膜16之一面側之第4透明電極23係以靜電電容方式檢測觸碰位置之座標之電極,且係用以檢測具有壓電性之塗層15分極時之電位之電極。第4透明電極23亦具備上述實施形態之第1透明電極17之功能。 於觸碰感測器100中,壓電感測器101與靜電電容感測器12可驅動。壓電感測器101動作時,使用第4透明電極23與第2透明電極18。靜電電容感測器12動作時,使用第3透明電極20與第4透明電極23。壓電感測器101與靜電電容感測器12驅動時藉由各電極18、20、23進行之電位之檢測方法與上述實施形態之方法相同。若第4透明電極23用於壓電感測器101與靜電電容感測器12,則壓電感測器101與靜電電容感測器12之驅動方法不受限定。 亦可為如圖11(b)之觸碰感測器102般,與圖11(a)相比將具有壓電性之塗層15與第1基材膜14之位置調換後之壓電感測器103。 觸碰感測器100、102與圖1之觸碰感測器10相比省略了第1透明電極17,從而觸碰感測器100、102可薄型化。 [實施形態10] 又,亦可為如圖12(a)之觸碰感測器110之壓電感測器111般,不將第2透明電極18直接形成於壓電膜16之構成。與圖5之壓電感測器41、46同樣地,壓電感測器111係準備於第4基材膜42之任一面積層有第2透明電極18之第4積層體43,並藉由透明填充層44將第4積層體43與壓電膜16接著。 與圖11之觸碰感測器100、102同樣地,觸碰感測器110係第4透明電極23用於靜電電容感測器12與壓電感測器111。若第4透明電極24用於靜電電容感測器12與壓電感測器111,則靜電電容感測器12與壓電感測器111之驅動方法不受限定。靜電電容感測器12驅動時,使用第3透明電極20與第4透明電極23。壓電感測器111驅動時,使用第2透明電極18與第4透明電極23。 亦可如圖12(b)之觸碰感測器112之壓電感測器113般,相對於壓電感測器111變更第4積層體43之方向。使第4基材膜43接著於透明填充層44。 進而,圖12(a)、(b)之壓電感測器111、113亦可變更壓電膜16之方向。於圖12中,具有壓電性之塗層15位於第1基材膜14之上,但亦可為第1基材膜14位於具有壓電性之塗層15之上。 [實施形態11] 亦可如圖13(a)之觸碰感測器120般於壓電膜16直接形成第4透明電極23。於壓電膜16之一面積層有第4透明電極23,於壓電膜16之另一面積層有第2透明電極18。自第3透明電極20至第4透明電極23為止成為121,自第4透明電極23至第2透明電極18為止成為壓電感測器122。 觸碰感測器120與圖11及圖12之觸碰感測器100、102、110、112同樣地,第4透明電極23用於靜電電容感測器121與壓電感測器122。 亦可如圖13(b)之觸碰感測器123之壓電感測器124般,與壓電感測器122相比變更壓電膜16之方向。壓電感測器124係於具有壓電性之塗層15積層有第4透明電極23,於第1基材膜14積層有第2透明電極18。 [實施形態12] 亦可為如圖14(a)之觸碰感測器130之壓電感測器131般,不將第2透明電極18直接形成於壓電膜16之構成。與圖5之壓電感測器41、46同樣地,壓電感測器131係準備於第4基材膜42之任一面積層有第2透明電極18之第4積層體43,並藉由透明填充層44將第4積層體43與壓電膜16接著。 又,亦可如圖14(b)之觸碰感測器132之壓電感測器133般,變更壓電膜16之方向。於具有壓電性之塗層15積層第4透明電極23。 進而,於圖14之壓電感測器131、133中,亦可變更第4積層體43之方向。使第4積層體43之第4基材膜42接著於透明接著層44。 [實施形態13] 於實施形態11、12中,亦可使用圖8之靜電電容感測器71。如圖15(a)之觸碰感測器140般,使用於第6基材膜72之一面積層有第3透明電極20,於另一面積層有第4透明電極23之靜電電容感測器71。壓電感測器141係於壓電膜16之另一面積層第2透明電極18,並將一面接著於透明填充層25。透明填充層25接著於第4透明電極23,自第4透明電極23至第2透明電極18為止係壓電感測器141。 於本實施形態中,同樣地,若第4透明電極23用於靜電電容感測器71與壓電感測器141,則靜電電容感測器71與壓電感測器141之驅動方法不受限定。 又,亦可如圖15(b)之觸碰感測器142之壓電感測器143般,於第1基材膜14積層第2透明電極18,並將具有壓電性之塗層15接著於透明填充層25。 進而,亦可為第2透明電極18不直接形成於壓電膜16,而如圖14之觸碰感測器130、132般,準備於第4基材膜42積層有第2透明電極18之第4積層體43,並藉由透明填充層44將壓電膜16與第4積層體43接著。接著於第4積層體43之透明填充層44之面並不限定。 [實施形態14] 亦可如圖16(a)之觸碰感測器150般,使用圖9之靜電電容感測器81。於壓電膜16之具有壓電性之塗層15積層有第2透明電極18,且第1基材膜14與第6基材膜72藉由透明填充層13而接著。壓電感測器151係自第2透明電極18至靜電電容感測器81之第4'透明電極83為止。 若第4'透明電極83用於靜電電容感測器81與壓電感測器151,則靜電電容感測器81與壓電感測器151之驅動方法不受限定。 又,亦可如圖16(b)之觸碰感測器152之壓電感測器153般,於第1基材膜14積層第2透明電極18,並將具有壓電性之塗層15接著於透明填充層13。 進而,亦可為第2透明電極18不直接形成於壓電膜16,而如圖14之觸碰感測器130、132般,準備於第4基材膜42積層有第2透明電極18之第4積層體43,並藉由透明填充層44將壓電膜16與第4積層體43接著。接著於第4積層體43之透明填充層44之面並不限定。 [實施形態15] 亦可使用如圖17(a)之觸碰感測器160般之靜電電容感測器161。靜電電容感測器161係於壓電膜16之一面側形成有圖9之靜電電容感測器81之2個方向之透明電極82、83。再者,為便於說明,將靜電電容感測器161設置於較壓電膜16靠上側,但亦可將靜電電容感測器161設置於較第4'透明電極83靠上方。 觸碰感測器160之壓電感測器162係於壓電膜16之一面形成有第4'透明電極83,於另一面形成有第2透明電極18者。 與圖16之觸碰感測器150、152同樣地,若第4'透明電極83用於靜電電容感測器81與壓電感測器151,則靜電電容感測器81與壓電感測器151之驅動方法不受限定。 又,亦可如圖17(b)之觸碰感測器164之壓電感測器165般,於第1基材膜14積層第2透明電極18,並將具有壓電性之塗層15接著於透明填充層13。 進而,亦可為第2透明電極18不直接形成於壓電膜16,而如上述實施形般,準備於第4基材膜42積層有第2透明電極18之第4積層體43,並藉由透明填充層44將壓電膜16與第4積層體43接著。接著於第4積層體43之透明填充層44之面並不限定。 [實施形態16] 亦可將位於壓電膜16之一面側與另一面側之透明電極用於靜電電容感測器與壓電感測器兩者。例如,亦可如圖18之觸碰感測器170般,於壓電膜16之一面積層有第3透明電極20,於壓電膜16之另一面積層有第4透明電極23。 第3透明電極20與第4透明電極23係以靜電電容方式檢測觸碰位置之座標之電極,且係用以檢測具有壓電性之塗層15分極時之電位之電極。若第3透明電極20與第4透明電極23用於靜電電容感測器171與壓電感測器172,則靜電電容感測器170與壓電感測器172之驅動方法不受限定。靜電電容感測器171驅動時,藉由透明電極20、23檢測靜電電容之變化。壓電感測器172驅動時,一透明電極20、23成為接地電位,藉由另一電極23、20檢測塗層15之分極所致之電位變化。 壓電感測器16之上下方向為任意。亦可為於第1基材膜14積層有第4透明電極23,於具有壓電性之塗層15積層有第3透明電極20。 並不限定於在壓電膜16直接形成透明電極20、23。例如,亦可如圖19(a)之觸碰感測器190般,準備於第3基材膜22積層有第4透明電極23之第3積層體24,並藉由透明填充層44將第3積層體24接著於壓電膜16。與上述同樣地,靜電電容感測器191與壓電感測器192交替地使用相同之透明電極20、23。 又,圖19(b)之觸碰感測器193係準備於第2基材膜19積層有第3透明電極20之第2積層體21,並將第2積層體21接著於壓電膜16。與上述同樣地,靜電電容感測器194與壓電感測器195交替地使用相同之透明電極20、23。 進而,圖19(c)之觸碰感測器196係準備上述第2積層體21及第3積層體24,並將其等接著於壓電膜16。與上述同樣地,靜電電容感測器197與壓電感測器198交替地使用相同之透明電極20、23。 於圖19中,壓電膜16之方向並不限定,亦可為第1基材膜14與具有壓電性之塗層15之位置調換,且第1基材膜14接著於透明填充層44。又,第2積層體21之方向並不限定,亦可為第3透明電極20接著於透明填充層25。進而第3積層體24之方向並不限定,亦可為第3積層體22接著於透明填充層44。 亦可將實施形態1中所說明之底塗層(ancher coat layer)、折射率調整層(Index matching layer)(光學調整層)、抗黏連層之至少1層形成於壓電膜16與第3及第4透明電極20、23之間。 [實施形態17] 於各實施形態中,亦可於觸碰感測器與顯示器之間配置透明電極。例如,如圖20之觸碰感測器200般,準備將第7透明電極201積層於第7基材膜202之一面整體而成之積層體,並藉由透明填充層203加以接著。第7透明電極201發揮屏蔽作用。 [實施形態18] 於上述實施形態中對折射率調整層進行了說明,但亦可如圖21之觸碰感測器210般於壓電膜16與第2透明電極18之間配置折射率調整層210。圖21之觸碰感測器210係除於圖1之觸碰感測器10追加有折射率調整層210以外其他與圖1之觸碰感測器10相同之構成。又,折射率調整層210亦可配置於壓電膜16與第1透明電極17之間。 作為具有壓電性之塗層15之厚度可列舉0.5~10 μm為一例,作為折射率調整層210之厚度可列舉80~160 nm為一例,作為第2透明電極18之厚度可列舉20 nm以上為一例。又,作為具有壓電性之塗層15之折射率可列舉1.40~1.50為一例,作為折射率調整層210之折射率可列舉1.50~1.70為一例,作為第2透明電極18之折射率可列舉1.90~2.10為一例。又,將第1基材膜14之厚度設定為2~100 μm,並將折射率設定為1.50~1.70。藉由設定為以上厚度與折射率,第2透明電極18與折射率調整層210之反射率差成為2.0%以下,美觀度變佳。 [實施例1~3] 於圖12中,測定出塗層15之厚度為1 μm、5 μm、10 μm之情形時的觸碰感測器10之全光線透過率與霧度,並將其結果示於表1中。塗層15係使用P(VDF-TrFE)(偏二氟乙烯與三氟乙烯之共聚物),莫耳比為72:25。基材膜14係使用PET,其厚度為23 μm。全光線透過率及霧度係使用直讀式霧度電腦(Direct reading haze computer,Suga Test Instruments公司製造之HGM-ZDP)而測定。 [比較例1] 再者,作為比較例,針對如圖22所示之觸碰感測器220般,藉由透明填充層221使壓電膜222貼附於第1基材膜14之情形,測定出全光線透過率與霧度。壓電膜222係使用PVDF(聚偏二氟乙烯)藉由擠壓製造而成之單獨之膜,厚度為80 μm。透明填充層221係使用光學透明黏著劑,其厚度為22 μm。其他構成與實施例之情形時相同。 [表1]

Figure TW201800915AD00001
自表1可知:所有實施例之全光線透過率及霧度均較比較例更佳。對於比較例,認為:壓電膜222之厚度變得過厚,由於該厚度而尤其使霧度變差。 [實施例4~9] 又,為確認圖21之折射率調整層211所引起之美觀度之變化,而如圖23般於厚度為23 μm之第1基材膜14之上製作具有壓電性之塗層15、折射率調整層211、第2透明電極18,測定出厚度及折射率。將其結果示於表2中,「第1層」係具有壓電性之塗層15,「第2層」係折射率調整層211,「第3層」係第2透明電極18。 壓電膜16係於聚對苯二甲酸乙二酯基材膜上塗佈偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物所製作而成。偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物係Arkema(股)公司製造之Piezotech RTTMTS,於MIBK(甲基異丁基酮)中藉由超音波製作出溶液。其次,將偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物之溶液藉由棒式塗佈機塗佈於聚對苯二甲酸乙二酯基材膜上。其次,將聚對苯二甲酸乙二酯基材膜及未乾燥之塗層以110℃、5分鐘之條件加以乾燥,而製作出塗層。表2所示之塗層15之厚度係乾燥後之厚度。 折射率調整層211如下表2所示,有折射率為1.54、1.62、1.7之情形。製造方法因折射率而異,故而針對每種折射率逐一進行說明。於折射率為1.54之情形時,在具有壓電性之塗層15之一面藉由三聚氰胺樹脂:醇酸樹脂:有機矽烷縮合物之重量比為2:2:1之熱硬化型樹脂(光之折射率n=1.54)而形成厚度為120 nm之折射率調整層211。 於折射率為1.62之情形時,在具有壓電性之塗層15之一面使用凹版塗佈機塗佈含有47質量份紫外線硬化性樹脂、57質量份氧化氧化鋯粒子(中值粒徑為40 nm)及PGME(Propylene Glycol Monomethyl Ether,丙二醇單甲醚)之光學調整組成物(JSR公司製造,「Opstar Z7412」,固形物成分為12質量%),並於無風狀態(未達0.1 m/s)下立即以60℃進行1分鐘加熱乾燥。其後,藉由高壓水銀燈照射累計光量為250 mJ/cm2之紫外線實施硬化處理。藉由該方法,將厚度為90、120、或150 nm且折射率為1.62之折射率調整層211形成於具有壓電性之塗層15之上。 於折射率為1.7之情形時,製備在包含三聚氰胺樹脂、醇酸樹脂及有機矽烷縮合物之熱硬化型樹脂(以重量比計,三聚氰胺樹脂:醇酸樹脂:有機矽烷縮合物=2:2:1)中混合TiO2(折射率=2.35)之微粒子而成之樹脂組成物。此時,以上述樹脂組成物之折射率成為1.70之方式調整TiO2微粒子之混合量。然後,於具有壓電性之塗層15之上塗佈上述樹脂組成物,並使其硬化,而形成厚度為150 nm之折射率調整層211(折射率為1.70)。 再者,於第1基材膜14之與塗層15相反之面形成有具有抗黏連功能之硬塗層231。 各實施例如上所述,具有壓電性之塗層15之厚度成為0.5~10 μm,折射率調整層211之厚度成為80~160 nm,第2透明電極18之厚度成為20 nm以上。又,具有壓電性之塗層15之折射率成為1.40~1.50,折射率調整層211之折射率成為1.50~1.70,第2透明電極18之折射率成為1.90~2.10。第2透明電極18與折射率調整層211之反射率差為2%以下,美觀度較佳。 再者,視需要對第2透明電極18進行蝕刻使其成為所期望之電極等。獲得上述折射率時,折射率調整層211之折射率係使用藉由蝕刻將第2透明電極18去掉後之部分。因此,藉由自各折射率求出空氣與第2透明電極18、空氣與折射率調整層211之反射率,而求出反射率差。 [比較例2~3] 作為與實施例4~9相對之比較例,實施了無折射率調整層211之情形(比較例3)及折射率調整層211之折射率小於1.5之情形(比較例4)。於無折射率調整層211之情形時,反射率差係第2透明電極18與具有壓電性之塗層15之差。反射率差大於2%,美觀度變差。 再者,折射率為1.46之情形時(比較例4)之折射率調整層211係以如下方式製作而成:將矽溶膠(COLCOAT(股)製造,COLCOATP)以固形物成分濃度成為2%之方式藉由乙醇加以稀釋,藉由二氧化矽塗佈法將其塗佈於具有壓電性之塗層15之一面之上,其後以150℃進行2分鐘乾燥,使其硬化,形成厚度為120 nm之層(SiO2膜,光之折射率為1.46),將其作為折射率調整層211。於比較例中,其他構成之製造方法與實施例相同。 [表2]
Figure TW201800915AD00002
根據以上內容,因為於具有壓電性之塗層15之上具備第2透明電極18,故而有藉由第2透明電極18而呈現黃色或茶色從而有損美觀度之情形。可知:藉由如本發明般設置折射率調整層211,並將第2透明電極18、折射率調整層211、具有壓電性之塗層15之厚度及折射率以處於上述值之範圍內之方式加以調節,可如表2所示般縮小反射率差,而無損美觀度。可知:即便將於壓電膜16積層有折射率調整層211及第2透明電極18之構成配置於顯示器之前表面,亦不易損害顯示器之美觀度。 此外,本發明能以於不脫離其主旨之範圍內基於業者之知識施加過各種改良、修正、變更而成之態樣加以實施。 [產業上之可利用性] 本發明之觸碰感測器可配置於顯示器之前表面,與顯示器作為一體而利用。The touch sensor of the present invention will be described using drawings. Regarding the structure that has been described in one embodiment, there are cases in which the same structure is omitted in other embodiments, and the description of the structure is omitted, and the same symbols are used in the drawings. [Embodiment 1] The touch sensor 10 of the present invention shown in Figs. 1 and 2 is arranged on a display surface of a display. The touch sensor 10 of the present invention includes a piezo-electric sensor 11 and a capacitance sensor 12. The piezoelectric sensor 11 detects the pressing force in a piezoelectric manner. The electrostatic capacitance sensor 12 detects the pressed position (X coordinate and Y coordinate) by an electrostatic capacitance method. The piezoelectric sensor 11 and the electrostatic capacitance sensor 12 are connected by a transparent filling layer 13. [Piezoelectric Inductor] The piezoelectric inductive sensor 11 includes a piezoelectric film 16 which is a first laminated body composed of a first base film 14 and a piezoelectric coating 15; a first transparent electrode 17 Is formed on one surface of the piezoelectric film 16; and the second transparent electrode 18 is formed on the other surface of the piezoelectric film 13. If the touch sensor 10 is pressed, the piezoelectric coating has a 15-degree polarity, and the potential change at this time is detected by the transparent electrodes 17, 18, thereby detecting the pressing force. [Capacitance Sensor] The capacitance sensor 12 is arranged on one side of the piezoelectric sensor 13. The electrostatic capacitance sensor 12 includes: a second laminated body 21 having a third transparent electrode 20 formed on one surface of the second base film 19; and a third laminated body 24 formed on one surface of the third base film 22 A fourth transparent electrode 23; and a transparent filling layer 25, which connects the second laminated body 21 and the third laminated body 24. The transparent electrodes 20 and 24 are insulated from each other. When a finger or a pen touches or approaches the sensor 10, the electrostatic capacitance at that position changes, and the potentials of the transparent electrodes 20 and 24 at that position change. The electrostatic capacitance sensor 12 can detect the change in the potential. Touch the position. [Base film] Examples of the first, second, and third base films 14, 19, and 22 include polyethylene terephthalate, a cycloolefin polymer, polyethylene naphthalate, polyolefin, and poly Cycloolefin, polycarbonate, polyether fluorene, polyarylate, polyimide, polyfluorene, polystyrene, polynorbornene and other polymer films. Each of the base film 14, 19, 22 is preferably a polyethylene terephthalate film (PET film) having excellent transparency, heat resistance, and mechanical properties, but it is not limited thereto. Alternatively, a film of different materials can be laminated to form a single base film. The thickness of each base film 14, 19, 22 is preferably 10 μm or more and 150 μm or less, but it is not limited thereto. Among them, if the thickness of the base film 14, 19, 22 is less than 10 μm, it may be difficult to handle. In addition, if the thickness of the base film 14, 19, 22 exceeds 150 μm, it may be difficult to wind the piezoelectric film 16, the second laminated body 21, and the third laminated body 24 into a roll. [Piezoelectric Coating] The piezoelectric coating 15 is applied to any one of the surfaces of the first base film 14 in a thin film form. The coating layer 15 having a piezoelectric property is not particularly limited as long as the applied film has a piezoelectric property. The coating layer 15 having piezoelectricity is preferably one that exhibits piezoelectricity even without polarization (polarization treatment), but may also be one that exhibits piezoelectricity after polarization. As the polarization, two methods are known: a non-contact type that uses a corona discharge treatment to separate the polarities; and a contact type that uses two metal plates to sandwich the film and apply a voltage to perform the polarization. The piezoelectric coating 15 is obtained, for example, by dissolving the material of the coating 15 in a solvent to make a solution, and using a known coating device such as a bar coater or a gravure coater in the first The base film 14 is applied thinly and uniformly, and then dried. [Material of Piezoelectric Coating] As a material of the piezoelectric coating 15, for example, a material containing a fluororesin can be preferably used. If a material containing a fluororesin is specifically exemplified, it may be selected from polyvinylidene fluoride, a copolymer of vinylidene fluoride-trifluoroethylene, and a copolymer of vinylidene fluoride-trifluoro as a polymer containing a vinylidene fluoride component. Ethylene-trifluorochloroethylene copolymer, hexafluoropropylene-vinylidene fluoride copolymer, perfluorovinyl ether-vinylidene fluoride copolymer, tetrafluoroethylene-vinylidene fluoride copolymer, hexafluoro ring Copolymer of oxypropane-vinylidene fluoride, copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride. These polymers may be used alone or as a mixture. More preferred are copolymers of vinylidene fluoride-trifluoroethylene-trifluorochloroethylene, copolymers of vinylidene fluoride-trifluoroethylene, and polymers of vinylidene fluoride. In the case where a copolymer of vinylidene fluoride and trifluoroethylene is used as the material of the coating layer 15, when the molar ratio of vinylidene fluoride and trifluoroethylene is 100 as a whole, it is suitably (50 to 85) : (50 to 15). When a copolymer of vinylidene fluoride-trifluoroethylene-trifluorochloroethylene is used as the material of the coating layer 15, the molar ratio of vinylidene fluoride to trifluoroethylene and trifluorochloroethylene is overall. When it is 100, it is (63 to 65): (27 to 29): (10 to 6). [Thickness of Piezoelectric Coating] The thickness of the piezoelectric coating 15 after drying is not limited. Considering the following optical characteristics, it is preferably 0.5 μm or more and 20 μm or less, and more preferably 0.5. -10 μm, more preferably 0.5-5 μm. If the thickness of the piezoelectric coating 15 after drying is less than 0.5 μm, the formed film may be imperfect. If the thickness of the piezoelectric coating 15 after drying exceeds 20 μm, the optical characteristics (haze and total light transmittance) may become inappropriate. [Optical characteristics of piezoelectric film] The image of the display must be clearly visible, so the haze value of the piezoelectric film 16 is preferably less than 5%, and the total light transmittance is preferably 90% or more. When the haze value of the piezoelectric film 16 is 5% or more, or when the total light transmittance is less than 85%, the display image may not be clearly visible. [Transparent electrode] The first and second transparent electrodes 17, 18 are electrodes for detecting a pressing force, and the third and fourth transparent electrodes 20, 23 are electrodes for detecting a pressing position. The first transparent electrode 17 covers the entire one surface of the piezoelectric film 16, and the second transparent electrode 18 covers the entire other surface of the piezoelectric film 16. When the touch sensor 10 is pressed, the piezoelectric coating has 15 polarities. At this time, the first and second transparent electrodes 17 and 18 detect a change in the potential of the piezoelectric coating 15. For example, the second transparent electrode 18 is set to a reference potential (ground potential), and the potential change is detected by the first transparent electrode 17. As shown in FIGS. 1 and 2, a third transparent electrode 20 and a fourth transparent electrode 23 are disposed on one surface side of the piezoelectric sensor 11. The transparent electrodes 20 and 23 are part of the electrostatic capacitance sensor 12. As shown in FIG. 1, the third transparent electrode 20 and the fourth transparent electrode 23 are insulated by providing a second base film 19 and a transparent filling layer 25 therebetween. Further, as shown in FIG. 2, the third and fourth transparent electrodes 20 and 23 are formed in a strip shape, and the electrodes 20 and 23 face each other in a direction orthogonal to each other. For example, it is assumed that the third transparent electrode 20 is an electrode for detecting the X coordinate of the pressing position, and the fourth transparent electrode 23 is an electrode for detecting the Y coordinate. By pressing or approaching the surface of the touch sensor 10 with a finger or a pen, the potential changes of the third and fourth transparent electrodes 20 and 23 at the position are used to detect the X coordinate and the Y coordinate. Furthermore, the electrostatic capacitance sensor 12 of FIG. 1 has a third transparent electrode 20 on one area layer of the second substrate film 19 and a fourth transparent electrode 23 on one area layer of the third substrate film 22, but it does not It is limited to this structure. For example, as shown in the electrostatic capacitance sensors 27, 28, and 29 of FIGS. 3 (a), (b), and (c), transparent electrodes 20 and 23 may be layered on one surface of the base film 19 or 22 or another area. The laminated bodies 21 and 24 are adhered by the transparent filling layer 25. Although the second laminated body 21 is arranged above the third laminated body 24, it may be arranged upside down. Examples of the transparent electrodes 17, 18, 20, and 23 include indium-based composite oxides. Representative examples include indium-tin composite oxides (ITO: Indium Tin Oxide) and indium-zinc composite oxides. Examples include indium oxide (In2O3) doped with a tetravalent metal ion or a divalent metal ion. Indium-based composite oxides have a transmittance of up to 80% in the visible light region (380 to 780 nm) and a low surface resistance per unit area (30 to 1000 Ω / □ (ohms per square)). feature. The thickness of the indium-based composite oxide is preferably 35 nm or less. The reason is that if the thickness is too thick, the transmittance and the like in the visible light region are deteriorated. The surface resistance value of the indium-based composite oxide is preferably 300 Ω / □ or less, and more preferably 150 Ω / □ or less. This is because if the surface resistance value becomes high, it cannot function as an electrode. A transparent electrode having a small surface resistance can be obtained, for example, by forming an amorphous layer of an indium-based composite oxide on a substrate film by a sputtering method or a vacuum evaporation method, and then proceeding at 80 to 200 ° C. Heat treatment changes the amorphous layer into a crystalline layer. The transparent electrodes 17, 18, 20, and 23 are not limited to the above materials, and transparent conductive oxides such as tin zinc oxide, zinc oxide, and fluorine-doped tin oxide, and conductive polymers such as polyethylene dioxythiophene can be used. When the piezoelectric coating 15 is polarized, it may be polarized after forming the first and second transparent electrodes 17, 18, or before forming the first and second transparent electrodes 17, 18. Polarize the coating. When the first and second transparent electrodes 17 and 18 are formed by sputtering, either polarization or sputtering may be performed first. [Interlayer] The first base film 14 and the piezoelectric coating 15, the first, second, and third base films 14, 19, 22 and the first, third, and fourth transparent electrodes 17 may also be used. An undercoat layer, an index matching layer (optical adjustment layer), and other thin layers of several nm to several tens of nm are provided between, 20, and 23. The undercoat layer is used to improve the adhesion between layers, and the refractive index adjustment layer is used to adjust the reflectivity. Furthermore, an anti-blocking layer may be provided between each of the base film 14, 19, 22 and the transparent electrodes 17, 20, 23. The anti-adhesion layer has the effect of preventing crimping (adhesion) of the deposited film. [Transparent Filling Layer] The transparent filling layers 13 and 25 fill the layers without forming an air layer. The surfaces of the first and fourth transparent electrodes 17 and 23 are covered with transparent filling layers 13 and 25. The purpose is to prevent the reduction of the total light transmittance and haze by using the reflection generated on the surfaces of the first and fourth transparent electrodes 17 and 23 and the scattering caused by the fine unevenness. The transparent filling layers 13 and 25 use an adhesive or resin containing an optically transparent adhesive material or an optically transparent adhesive material. The sheet-shaped optically transparent adhesive material or optically transparent adhesive material can be bonded to form transparent filling layers 13 and 25. The liquid optically transparent adhesive material or optically transparent adhesive material can also be applied and cured by irradiating ultraviolet rays. Thus, transparent filling layers 13 and 25 are formed. [Display] The touch sensor 10 is arranged on the front surface of the display. The display may be a flat display such as a liquid crystal display or an organic EL (Electroluminescence) display. The electrostatic capacitance sensor 12 for detecting the pressing position is disposed above (touching side) the pressure sensor 11. The reason is that the first and second transparent electrodes 17 and 18 are formed so as to cover the piezoelectric film 16. If the piezoelectric sensor 11 is disposed above the electrostatic capacitance sensor 12, the third and fourth electrodes are formed. The transparent electrodes 20 and 23 cannot detect a change in electrostatic capacitance. The touch sensor 10 and the display are connected by a transparent filling layer. The transparent filling layer may use the above-mentioned optically transparent adhesive material or optically transparent adhesive material. As described above, in the present invention, the first base film 14 is formed with the piezoelectric coating 15 so that the thickness of the piezoelectric material can be made thinner than before. Since the piezoelectric coating 15 is thin, it is not easy to deteriorate the total light transmittance and haze. Therefore, the touch sensor 10 having good optical characteristics can be realized. [Embodiment 2] In the touch sensor 10 of FIG. 1, the direction of the piezoelectric film 16 is arbitrary. As shown in the touch sensor 30 of FIG. 4, the piezoelectric coating 15 may be disposed on the upper side of the first base film 14. The touch sensor 30 of FIG. 4 changes the direction of the piezoelectric film 16 with respect to the touch sensor 10 of FIG. 1, but the direction of the piezoelectric sensor 11 may be changed. The second transparent electrode 18 is then arranged on the transparent filling layer 13 in the order of the second transparent electrode 18, the piezoelectric sensor 11, and the first transparent electrode 17 from top to bottom. [Embodiment 3] The second transparent electrode 18 may not be directly formed on the piezoelectric film 16 like the piezoelectric sensor 41 of the touch sensor 40 of FIG. 5 (a). A fourth laminated body 43 having a second transparent electrode 18 laminated on the fourth base film 42 is prepared, and the piezoelectric film 16 and the fourth laminated body are bonded to each other via a transparent filling layer 44. The fourth base film 42 may be made of the same material as the first base film 14 and the like. The transparent filling layer 44 may be made of the same material as the other transparent filling layers 13 and the like. The direction of the fourth laminated body 43 is not limited. The pressure sensor 41 of the touch sensor 40 in FIG. 5 (a) is the second transparent electrode 18 and then the transparent filling layer 44. The fourth substrate film 42 may be adhered to the transparent filling layer 44 like the piezoelectric sensor 46 of the touch sensor 45 in FIG. 5 (b). Furthermore, this embodiment can be applied to the touch sensor 30 of FIG. 4. In the touch sensor 30, instead of forming the second transparent electrode 18 directly on the first base film 14, a fourth laminated body 43 is prepared, and the first base film and the fourth laminated body 43 are formed by A transparent filling layer 44 follows. The direction of the fourth laminated body 43 is not limited, and any one of the second transparent electrode 18 and the fourth base film 42 may be bonded to the transparent filling layer 44. [Embodiment 4] The first transparent electrode 17 may not be directly formed on the piezoelectric film 16 like the piezoelectric sensor 51 of the touch sensor 50 of FIG. 6 (a). The fifth laminated body 53 having the first transparent electrode 17 laminated on the fifth base film 52 is prepared, and the piezoelectric film 16 and the fifth laminated body 53 are bonded to each other through the transparent filling layer 54. The fifth base film 52 may be made of the same material as the first base film 14 and the like. The transparent filling layer 54 may be made of the same material as the other transparent filling layers 13 and the like. The direction of the fifth laminated body 53 is not limited. The pressure sensor 51 of the touch sensor 50 in FIG. 6 (a) is a fifth substrate film 52 and is then attached to the transparent filling layer 54. The first transparent electrode 17 may be connected to the transparent filling layer 54 like the pressure sensor 56 of the touch sensor 55 in FIG. 6 (b). Furthermore, this embodiment can be applied to the touch sensor 30 of FIG. 4. In the touch sensor 30, the first transparent electrode 17 is not directly formed on the piezoelectric coating 15 but a fifth laminated body 53 is prepared, and the piezoelectric coating 15 and the fifth The laminated body 53 is continued by the transparent filling layer 54. The direction of the fifth laminated body 53 is not limited, and any one of the first transparent electrode 17 and the fifth base film 52 may be adhered to the transparent filling layer 54. [Embodiment 5] The piezoelectric inductor 61 of the touch sensor 60 in FIG. 7 is formed by connecting the piezoelectric film 16, the fourth laminated body 43, and the fifth laminated body 53 with transparent filling layers 44 and 54. Make up. The piezoelectric inductive sensor 61 is a combination of the piezoelectric inductive sensor 41 of FIG. 5 and the piezoelectric inductive sensor 51 of FIG. 6. In the piezoelectric sensor 61, the directions of the piezoelectric film 16, the fourth laminated body 43, and the fifth laminated body 53 are arbitrary. The positions of the first substrate film 14 and the piezoelectric coating 15, the positions of the second transparent electrode 18 and the fourth substrate film 42, and the positions of the first transparent electrode 17 and the fifth substrate film 52 are interchangeable. . Therefore, there are eight types of the configuration of the piezo-electric sensor 61. [Embodiment 6] The electrostatic capacitance sensor 71 of the touch sensor 70 of FIG. 8 is formed with a third transparent electrode 20 on one surface of the sixth base film 72 and is formed on the other surface of the sixth base film 72 There is a fourth transparent electrode 23. The sixth base film 72 can be the same as the first base film 14 and the like. In FIG. 8, the fourth transparent electrode 23 is attached to the transparent filling layer 13, but the third transparent electrode 20 may be attached to the transparent filling layer 13. Compared with the electrostatic capacitance sensor 12 of FIG. 1, the electrostatic capacitance sensor 71 of FIG. 8 reduces the number of substrate films and the number of transparent filling layers. Therefore, the thickness of the touch sensor 70 can be reduced. The electrostatic capacitance sensor 12 used in the touch sensors 10, 30, 40, 45, 50, 55, and 60 described in Embodiments 1 to 6 can be changed to the electrostatic capacitance sensor 71. [Embodiment 7] The capacitance sensor 81 of the touch sensor 80 of FIG. 9 (a) is formed with a 3 'transparent electrode 82 and a 4' transparent electrode 83 on one side of the sixth base film 72. . The 3 'transparent electrode 82 and the 4' transparent electrode 83 are formed of the same material as the 3rd transparent electrode 20 and the 4th transparent electrode 23. As shown in FIG. 9 (b), the 3 'transparent electrode 82 and the 4' transparent electrode 83 are respectively arranged with a plurality of rectangular portions 85 and 86, and the rectangular portions 85 and 86 are in the X direction or the Y direction by lines The shaped portions 87, 88 are connected. Therefore, the 3 'transparent electrode 82 and the 4' transparent electrode 83 are oriented in directions orthogonal to each other. The rectangular portions 85 and 86 have shapes such as a rhombus, a square, and a hexagon. The 3 'transparent electrode 82 and the 4' transparent electrode 83 cross each other via an insulator 84 to avoid a short circuit. In FIG. 9, the 3 ′ transparent electrode 82 crosses the 4 ′ transparent electrode 83, but the 4 ′ transparent electrode 83 may cross the 3 ′ transparent electrode 82. The direction of the electrostatic capacity sensor 81 is not limited, and the transparent electrodes 82 and 83 may be formed next to the transparent filling layer 13. The electrostatic capacitance sensor 12 used in the touch sensors 10, 30, 40, 45, 50, 55, and 60 described in Embodiments 1 to 6 can be changed to an electrostatic capacitance sensor 81. [Embodiment 8] The electrostatic capacitance sensor is not limited to a configuration in which a change in electrostatic capacitance is detected by two transparent electrodes 20 and 23. The electrostatic capacitance sensor 91 of the touch sensor 90 of FIG. 10 includes a rectangular transparent electrode 92 which is arranged on one side of the sixth base film 72 in the vertical and horizontal directions. A lead-out wiring 93 is connected to the rectangular transparent electrode 92. The rectangular transparent electrode 92 and the lead-out wiring 93 are formed of the same material as the third transparent electrode 20 and the fourth transparent electrode 23. The electrostatic capacitance sensor 12 used in the touch sensors 10, 30, 40, 45, 50, 55, and 60 described in Embodiments 1 to 6 can be changed to an electrostatic capacitance sensor 91. [Embodiment 9] This case is not limited to a form in which the capacitance sensor and the piezo sensor are completely separated. For example, the touch sensor 100 of FIG. 11 (a) has a first transparent electrode 17 omitted compared to the touch sensor 10 of FIG. 1. The fourth transparent electrode 23 disposed on one side of the piezoelectric film 16 is an electrode that detects the coordinates of the touched position by electrostatic capacitance, and is an electrode that detects the potential at the time of 15 minutes of the piezoelectric coating. The fourth transparent electrode 23 also has the function of the first transparent electrode 17 in the above embodiment. In the touch sensor 100, the piezoelectric sensor 101 and the electrostatic capacitance sensor 12 can be driven. When the piezoelectric sensor 101 operates, the fourth transparent electrode 23 and the second transparent electrode 18 are used. When the capacitance sensor 12 operates, the third transparent electrode 20 and the fourth transparent electrode 23 are used. The method of detecting the potential by the electrodes 18, 20, and 23 when the piezo-electric sensor 101 and the electrostatic capacitance sensor 12 are driven is the same as the method of the above embodiment. If the fourth transparent electrode 23 is used for the piezoelectric sensor 101 and the electrostatic capacitance sensor 12, the driving method of the piezoelectric sensor 101 and the electrostatic capacitance sensor 12 is not limited. It may also be a piezo-inductor after the position of the piezoelectric coating 15 and the first substrate film 14 are switched as compared to the touch sensor 102 of FIG. 11 (b) compared to FIG. 11 (a).测 器 103。 103. Compared with the touch sensor 10 of FIG. 1, the touch sensors 100 and 102 omit the first transparent electrode 17, so that the touch sensors 100 and 102 can be reduced in thickness. [Embodiment Mode 10] It is also possible to employ a configuration in which the second transparent electrode 18 is not directly formed on the piezoelectric film 16 like the piezoelectric sensor 111 of the touch sensor 110 of FIG. 12 (a). Similarly to the piezo-electric sensors 41 and 46 in FIG. 5, the piezo-electric sensor 111 is a fourth laminated body 43 having a second transparent electrode 18 on any of the areas of the fourth base film 42. The transparent filling layer 44 connects the fourth laminated body 43 and the piezoelectric film 16. Similar to the touch sensors 100 and 102 of FIG. 11, the touch sensor 110 is a fourth transparent electrode 23 for the capacitance sensor 12 and the piezoelectric sensor 111. If the fourth transparent electrode 24 is used for the capacitance sensor 12 and the piezo-electric sensor 111, the driving method of the capacitance sensor 12 and the piezo-electric sensor 111 is not limited. When the capacitance sensor 12 is driven, the third transparent electrode 20 and the fourth transparent electrode 23 are used. When the piezoelectric sensor 111 is driven, the second transparent electrode 18 and the fourth transparent electrode 23 are used. It is also possible to change the direction of the fourth laminated body 43 with respect to the piezoelectric sensor 111 like the piezoelectric sensor 113 of the touch sensor 112 of FIG. 12 (b). The fourth base film 43 is adhered to the transparent filling layer 44. Furthermore, the piezoelectric sensors 111 and 113 of FIGS. 12 (a) and (b) may change the direction of the piezoelectric film 16. In FIG. 12, the coating layer 15 having piezoelectricity is located on the first base film 14, but the first base film 14 may be located on the coating layer 15 having a piezoelectricity. [Embodiment 11] The fourth transparent electrode 23 may be directly formed on the piezoelectric film 16 like the touch sensor 120 of FIG. 13 (a). A fourth transparent electrode 23 is provided on one area of the piezoelectric film 16, and a second transparent electrode 18 is provided on the other area of the piezoelectric film 16. The third transparent electrode 20 to the fourth transparent electrode 23 become 121, and the fourth transparent electrode 23 to the second transparent electrode 18 become a piezoelectric sensor 122. The touch sensor 120 is the same as the touch sensors 100, 102, 110, and 112 in FIGS. 11 and 12, and the fourth transparent electrode 23 is used for the capacitance sensor 121 and the piezoelectric sensor 122. The direction of the piezoelectric film 16 may also be changed as compared with the piezoelectric sensor 122 like the piezoelectric sensor 124 of the touch sensor 123 of FIG. 13 (b). The piezoelectric sensor 124 is formed by stacking a fourth transparent electrode 23 on the piezoelectric coating 15 and a second transparent electrode 18 on the first substrate film 14. [Embodiment 12] It is also possible to have a configuration in which the second transparent electrode 18 is not directly formed on the piezoelectric film 16 like the pressure sensor 131 of the touch sensor 130 of FIG. 14 (a). Similarly to the piezo-electric sensors 41 and 46 of FIG. 5, the piezo-electric sensor 131 is prepared as a fourth laminated body 43 having a second transparent electrode 18 on any area of the fourth base film 42. The transparent filling layer 44 connects the fourth laminated body 43 and the piezoelectric film 16. In addition, the direction of the piezoelectric film 16 may be changed like the piezoelectric sensor 133 of the touch sensor 132 of FIG. 14 (b). The fourth transparent electrode 23 is laminated on the piezoelectric coating 15. Furthermore, in the piezoelectric inductors 131 and 133 of FIG. 14, the direction of the fourth laminated body 43 may be changed. The fourth base film 42 of the fourth laminated body 43 is adhered to the transparent adhesive layer 44. [Embodiment 13] In Embodiments 11 and 12, the capacitance sensor 71 of Fig. 8 may be used. As shown in the touch sensor 140 of FIG. 15 (a), an electrostatic capacitance sensor 71 having a third transparent electrode 20 on one area layer of the sixth base film 72 and a fourth transparent electrode 23 on the other area layer . The piezoelectric sensor 141 is connected to the second transparent electrode 18 of the other area layer of the piezoelectric film 16, and has one side adhered to the transparent filling layer 25. The transparent filling layer 25 is next to the fourth transparent electrode 23 and is a piezo-electric sensor 141 from the fourth transparent electrode 23 to the second transparent electrode 18. In this embodiment, similarly, if the fourth transparent electrode 23 is used for the capacitance sensor 71 and the piezo sensor 141, the driving method of the capacitance sensor 71 and the piezo sensor 141 is not affected. limited. Alternatively, as shown in the pressure sensor 143 of the touch sensor 142 of FIG. 15 (b), the second transparent electrode 18 may be laminated on the first base film 14 and the piezoelectric coating 15 may be used. Next to the transparent filling layer 25. Furthermore, the second transparent electrode 18 may not be directly formed on the piezoelectric film 16, but may be prepared by laminating the second transparent electrode 18 on the fourth base film 42 as in the touch sensors 130 and 132 of FIG. 14. The fourth laminated body 43 is formed by adhering the piezoelectric film 16 and the fourth laminated body 43 via a transparent filling layer 44. The surface of the transparent filling layer 44 next to the fourth laminated body 43 is not limited. [Embodiment 14] As shown in the touch sensor 150 of Fig. 16 (a), the electrostatic capacitance sensor 81 of Fig. 9 can also be used. A second transparent electrode 18 is laminated on the piezoelectric film 16 having a piezoelectric coating 15, and the first base film 14 and the sixth base film 72 are adhered by the transparent filling layer 13. The piezoelectric sensor 151 extends from the second transparent electrode 18 to the 4 ′ transparent electrode 83 of the capacitance sensor 81. If the 4 'transparent electrode 83 is used for the capacitance sensor 81 and the piezo-electric sensor 151, the driving method of the capacitance sensor 81 and the piezo-electric sensor 151 is not limited. In addition, the second transparent electrode 18 may be laminated on the first substrate film 14 as in the pressure sensor 153 of the touch sensor 152 of FIG. 16 (b), and the piezoelectric coating 15 may be used. Next to the transparent filling layer 13. Furthermore, the second transparent electrode 18 may not be directly formed on the piezoelectric film 16, but may be prepared by laminating the second transparent electrode 18 on the fourth base film 42 as in the touch sensors 130 and 132 of FIG. 14. The fourth laminated body 43 is formed by adhering the piezoelectric film 16 and the fourth laminated body 43 via a transparent filling layer 44. The surface of the transparent filling layer 44 next to the fourth laminated body 43 is not limited. [Embodiment 15] An electrostatic capacitance sensor 161 such as the touch sensor 160 shown in Fig. 17 (a) may be used. The electrostatic capacitance sensor 161 is formed on one side of the piezoelectric film 16 with transparent electrodes 82 and 83 in two directions of the electrostatic capacitance sensor 81 shown in FIG. 9. Moreover, for convenience of explanation, the electrostatic capacitance sensor 161 is disposed above the piezoelectric film 16, but the electrostatic capacitance sensor 161 may be disposed above the 4 ′ transparent electrode 83. The pressure sensor 162 of the touch sensor 160 is formed by a 4 ′ transparent electrode 83 formed on one surface of the piezoelectric film 16 and a second transparent electrode 18 formed on the other surface. As with the touch sensors 150 and 152 of FIG. 16, if the 4 ′ transparent electrode 83 is used for the capacitance sensor 81 and the piezo sensor 151, the capacitance sensor 81 and the piezo sensor are measured. The driving method of the device 151 is not limited. In addition, the second transparent electrode 18 may be laminated on the first substrate film 14 as in the pressure sensor 165 of the touch sensor 164 of FIG. 17 (b), and the piezoelectric coating 15 may be used. Next to the transparent filling layer 13. Furthermore, the second transparent electrode 18 may not be directly formed on the piezoelectric film 16, and a fourth laminated body 43 having the second transparent electrode 18 laminated on the fourth substrate film 42 may be prepared as in the above embodiment, and The piezoelectric film 16 and the fourth laminated body 43 are bonded to each other by a transparent filling layer 44. The surface of the transparent filling layer 44 next to the fourth laminated body 43 is not limited. [Embodiment 16] Transparent electrodes located on one surface side and the other surface side of the piezoelectric film 16 may be used for both the capacitance sensor and the piezo sensor. For example, like the touch sensor 170 of FIG. 18, a third transparent electrode 20 may be provided on one area of the piezoelectric film 16, and a fourth transparent electrode 23 may be provided on the other area of the piezoelectric film 16. The third transparent electrode 20 and the fourth transparent electrode 23 are electrodes for detecting the coordinates of the touched position by electrostatic capacitance, and are electrodes for detecting the potential at the time of 15 minutes of the polarized coating. If the third transparent electrode 20 and the fourth transparent electrode 23 are used for the capacitance sensor 171 and the piezo sensor 172, the driving method of the capacitance sensor 170 and the piezo sensor 172 is not limited. When the electrostatic capacity sensor 171 is driven, changes in the electrostatic capacity are detected by the transparent electrodes 20 and 23. When the piezoelectric inductor 172 is driven, one transparent electrode 20, 23 becomes a ground potential, and the other electrode 23, 20 detects a potential change caused by the polarization of the coating 15. The up-down direction of the piezo-electric sensor 16 is arbitrary. A fourth transparent electrode 23 may be laminated on the first base film 14, and a third transparent electrode 20 may be laminated on the coating 15 having piezoelectricity. It is not limited to forming the transparent electrodes 20 and 23 directly on the piezoelectric film 16. For example, as the touch sensor 190 of FIG. The three-layered body 24 is next to the piezoelectric film 16. As in the above, the capacitive sensors 191 and the piezo-electric sensors 192 alternately use the same transparent electrodes 20 and 23. The touch sensor 193 shown in FIG. 19 (b) is a second laminated body 21 in which a third transparent electrode 20 is laminated on a second substrate film 19, and the second laminated body 21 is adhered to a piezoelectric film 16. . As in the above, the capacitance sensor 194 and the piezo sensor 195 alternately use the same transparent electrodes 20 and 23. Further, the touch sensor 196 in FIG. 19 (c) prepares the second laminated body 21 and the third laminated body 24 described above, and then waits for the piezoelectric film 16. As in the above, the capacitive sensors 197 and the piezo-electric sensors 198 alternately use the same transparent electrodes 20 and 23. In FIG. 19, the direction of the piezoelectric film 16 is not limited, and the positions of the first base film 14 and the piezoelectric coating 15 may be changed, and the first base film 14 is next to the transparent filling layer 44. . The direction of the second laminated body 21 is not limited, and the third transparent electrode 20 may be followed by the transparent filling layer 25. Furthermore, the direction of the third laminated body 24 is not limited, and the third laminated body 22 may be followed by the transparent filling layer 44. At least one layer of the undercoat layer, the index matching layer (optical adjustment layer), and the anti-blocking layer described in Embodiment 1 may be formed on the piezoelectric film 16 and the first layer. Between the third and fourth transparent electrodes 20 and 23. [Embodiment 17] In each embodiment, a transparent electrode may be disposed between the touch sensor and the display. For example, as in the touch sensor 200 of FIG. 20, a laminated body in which a seventh transparent electrode 201 is laminated on one surface of the seventh substrate film 202 is prepared, and then a transparent filling layer 203 is used to adhere the laminated body. The seventh transparent electrode 201 functions as a shield. [Embodiment 18] Although the refractive index adjustment layer has been described in the above embodiment, the refractive index adjustment may be arranged between the piezoelectric film 16 and the second transparent electrode 18 like the touch sensor 210 of FIG. 21. Layer 210. The touch sensor 210 of FIG. 21 has the same configuration as the touch sensor 10 of FIG. 1 except that the refractive index adjustment layer 210 is added to the touch sensor 10 of FIG. 1. The refractive index adjustment layer 210 may be disposed between the piezoelectric film 16 and the first transparent electrode 17. An example of the thickness of the piezoelectric coating 15 is 0.5 to 10 μm, an example of the thickness of the refractive index adjustment layer 210 is 80 to 160 nm, and an example of the thickness of the second transparent electrode 18 is 20 nm or more. As an example. Examples of the refractive index of the piezoelectric coating 15 include 1.40 to 1.50. Examples of the refractive index of the refractive index adjustment layer 210 include 1.50 to 1.70. Examples of the refractive index of the second transparent electrode 18 include 1.90 ~ 2.10 is an example. The thickness of the first base film 14 is set to 2 to 100 μm, and the refractive index is set to 1.50 to 1.70. By setting the thickness and the refractive index as described above, the difference in reflectance between the second transparent electrode 18 and the refractive index adjustment layer 210 becomes 2.0% or less, and the appearance is improved. [Examples 1 to 3] In FIG. 12, the total light transmittance and haze of the touch sensor 10 when the thickness of the coating layer 15 was 1 μm, 5 μm, and 10 μm were measured, and The results are shown in Table 1. The coating 15 is made of P (VDF-TrFE) (copolymer of vinylidene fluoride and trifluoroethylene) with a molar ratio of 72:25. The base film 14 is made of PET and has a thickness of 23 μm. The total light transmittance and haze were measured using a direct reading haze computer (HGM-ZDP manufactured by Suga Test Instruments). [Comparative Example 1] Furthermore, as a comparative example, in the case where the piezoelectric film 222 is attached to the first base film 14 through the transparent filling layer 221 like the touch sensor 220 shown in FIG. 22, The total light transmittance and haze were measured. The piezoelectric film 222 is a separate film manufactured by extrusion using PVDF (polyvinylidene fluoride), and has a thickness of 80 μm. The transparent filling layer 221 uses an optically transparent adhesive, and has a thickness of 22 μm. The other structures are the same as those in the embodiment. [Table 1]
Figure TW201800915AD00001
As can be seen from Table 1, the total light transmittance and haze of all the examples are better than the comparative examples. In the comparative example, it is considered that the thickness of the piezoelectric film 222 becomes too thick, and in particular, the haze is deteriorated due to the thickness. [Examples 4 to 9] In order to confirm the change in the aesthetic appearance caused by the refractive index adjustment layer 211 of FIG. 21, a piezoelectric film was fabricated on the first substrate film 14 having a thickness of 23 μm as shown in FIG. 23. The coating layer 15, the refractive index adjusting layer 211, and the second transparent electrode 18 were measured for thickness and refractive index. The results are shown in Table 2. The “first layer” is a piezoelectric coating 15, the “second layer” is a refractive index adjusting layer 211, and the “third layer” is a second transparent electrode 18. The piezoelectric film 16 is made by coating a copolymer of vinylidene fluoride, trifluoroethylene, and trifluorochloroethylene on a polyethylene terephthalate substrate film. The copolymer of vinylidene fluoride, trifluoroethylene and trifluorochloroethylene is Piezotech RT manufactured by Arkema Co., Ltd.TM TS, a solution was prepared in MIBK (methyl isobutyl ketone) by ultrasound. Next, a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and trifluorochloroethylene was coated on a polyethylene terephthalate substrate film by a bar coater. Next, the polyethylene terephthalate base film and the undried coating were dried at 110 ° C. for 5 minutes to prepare a coating. The thickness of the coating layer 15 shown in Table 2 is the thickness after drying. The refractive index adjustment layer 211 is shown in Table 2 below, and the refractive index may be 1.54, 1.62, or 1.7. Since the manufacturing method varies depending on the refractive index, each refractive index will be described one by one. In the case of a refractive index of 1.54, a thermosetting resin with a weight ratio of melamine resin: alkyd resin: organic silane condensate of 2: 2: 1 (light The refractive index n = 1.54) to form a refractive index adjustment layer 211 having a thickness of 120 nm. When the refractive index is 1.62, 47 parts by mass of an ultraviolet curable resin and 57 parts by mass of zirconia particles (median diameter of 40) are coated on a surface of the piezoelectric coating layer 15 using a gravure coater. nm) and PGME (Propylene Glycol Monomethyl Ether, propylene glycol monomethyl ether) optical adjustment composition (manufactured by JSR, "Opstar Z7412", solid content of 12% by mass), and in a windless state (less than 0.1 m / s ) Immediately heat-dried at 60 ° C for 1 minute. After that, the cumulative amount of light irradiated by the high-pressure mercury lamp was 250 mJ / cm2 The ultraviolet rays are hardened. By this method, a refractive index adjustment layer 211 having a thickness of 90, 120, or 150 nm and a refractive index of 1.62 is formed on the piezoelectric-containing coating layer 15. When the refractive index is 1.7, a thermosetting resin containing a melamine resin, an alkyd resin, and an organic silane condensate is prepared (in terms of weight ratio, melamine resin: alkyd resin: organic silane condensate = 2: 2: 1) Mixed TiO2 (Refractive index = 2.35) A resin composition made of fine particles. At this time, the TiO was adjusted so that the refractive index of the resin composition was 1.70.2 Mixing amount of micro particles. Then, the above-mentioned resin composition is coated on the coating layer 15 having piezoelectricity and hardened to form a refractive index adjustment layer 211 (refractive index of 1.70) having a thickness of 150 nm. Further, a hard coat layer 231 having an anti-blocking function is formed on the surface of the first base film 14 opposite to the coating layer 15. As described in each example, the thickness of the piezoelectric coating 15 is 0.5 to 10 μm, the thickness of the refractive index adjustment layer 211 is 80 to 160 nm, and the thickness of the second transparent electrode 18 is 20 nm or more. The refractive index of the piezoelectric coating 15 is 1.40 to 1.50, the refractive index of the refractive index adjusting layer 211 is 1.50 to 1.70, and the refractive index of the second transparent electrode 18 is 1.90 to 2.10. The difference in reflectance between the second transparent electrode 18 and the refractive index adjustment layer 211 is 2% or less, and the appearance is better. In addition, if necessary, the second transparent electrode 18 is etched to make it a desired electrode or the like. When the refractive index is obtained, the refractive index of the refractive index adjusting layer 211 is a portion obtained by removing the second transparent electrode 18 by etching. Therefore, the reflectance difference between the air and the second transparent electrode 18 and the air and the refractive index adjustment layer 211 is determined from the respective refractive indices. [Comparative Examples 2 to 3] As a comparative example compared to Examples 4 to 9, the case where the refractive index adjustment layer 211 was not implemented (Comparative Example 3) and the case where the refractive index of the refractive index adjustment layer 211 was less than 1.5 (Comparative example) 4). When there is no refractive index adjustment layer 211, the reflectance difference is the difference between the second transparent electrode 18 and the piezoelectric coating 15. The reflectance difference is greater than 2%, and the aesthetics deteriorates. In the case where the refractive index is 1.46 (Comparative Example 4), the refractive index adjusting layer 211 is prepared as follows: a silica sol (manufactured by COLCOAT (Co., Ltd., COLCOATP)) is used so that the solid component concentration becomes 2% The method was diluted with ethanol, and coated on one surface of the piezoelectric coating 15 by a silicon dioxide coating method, and then dried at 150 ° C for 2 minutes to harden to form a thickness of Layer at 120 nm (SiO2 Film, the refractive index of light is 1.46), and this is used as the refractive index adjustment layer 211. In the comparative example, the manufacturing method of other structures is the same as that of an Example. [Table 2]
Figure TW201800915AD00002
According to the above, since the second transparent electrode 18 is provided on the coating layer 15 having piezoelectricity, the second transparent electrode 18 may appear yellow or brown, thereby deteriorating the appearance. It can be seen that the refractive index adjustment layer 211 is provided as in the present invention, and the thickness and refractive index of the second transparent electrode 18, the refractive index adjustment layer 211, and the piezoelectric coating 15 are within the above-mentioned range. By adjusting the mode, the difference in reflectance can be reduced as shown in Table 2, without compromising the aesthetics. It can be seen that even if the structure in which the piezoelectric film 16 is laminated with the refractive index adjustment layer 211 and the second transparent electrode 18 is disposed on the front surface of the display, it is not easy to damage the aesthetics of the display. In addition, the present invention can be implemented in a manner that various improvements, corrections, and changes have been made based on the knowledge of the industry within a range that does not depart from the gist thereof. [Industrial Applicability] The touch sensor of the present invention can be disposed on the front surface of the display and used as a unit with the display.

10、30、40、45、50、55、60、70‧‧‧觸碰感測器
80、90、100、102、110、112、120、123、130、132、140、142、 150、152、160、164、170、190、193、196、200、210 11、41、46、56、61、101、103‧‧‧壓電感測器
111、113、122、124、131、133、141、143、151、153、162、165、172、192、195、198 12、27、28、29、71、81、91‧‧‧ 靜電電容感測器
121、161、171、191、194、197 13、25、44、183‧‧‧透明填充層
14、19、22、42、52、72、182‧‧‧基材膜
15‧‧‧具有壓電性之塗層
16、21、24、43、53、62、71、81‧‧‧積層體
17、18、20、23、82、83、92、181‧‧‧透明電極
84‧‧‧絕緣體
211‧‧‧折射率調整層
231‧‧‧具有抗黏連功能之硬塗層
10, 30, 40, 45, 50, 55, 60, 70‧‧‧ touch sensors
80, 90, 100, 102, 110, 112, 120, 123, 130, 132, 140, 142, 150, 152, 160, 164, 170, 190, 193, 196, 200, 210 11, 41, 46, 56 , 61, 101, 103‧‧‧ Piezoelectric Inductor
111, 113, 122, 124, 131, 133, 141, 143, 151, 153, 162, 165, 172, 192, 195, 198 12, 27, 28, 29, 71, 81, 91‧‧‧ Tester
121, 161, 171, 191, 194, 197 13, 25, 44, 183‧‧‧‧ transparent filling layer
14, 19, 22, 42, 52, 72, 182‧‧‧ substrate film
15‧‧‧ Piezoelectric coating
16, 21, 24, 43, 53, 62, 71, 81‧‧‧ laminated bodies
17, 18, 20, 23, 82, 83, 92, 181‧‧‧ transparent electrodes
84‧‧‧ insulator
211‧‧‧ refractive index adjustment layer
231‧‧‧hard coating with anti-blocking function

圖1係模式性表示本發明之觸碰感測器之構成之圖。 圖2係將圖1之觸碰感測器分解為各個構成零件而成之立體圖。 圖3(a)~(c)係模式性表示靜電電容感測器之另一構成之圖。 圖4係模式性表示本發明之實施形態2之觸碰感測器之構成之圖。 圖5(a)、(b)係模式性表示本發明之實施形態3之觸碰感測器之構成之圖。 圖6(a)、(b)係模式性表示本發明之實施形態4之觸碰感測器之構成之圖。 圖7係模式性表示本發明之實施形態5之觸碰感測器之構成之圖。 圖8係模式性表示本發明之實施形態6之觸碰感測器之構成之圖。 圖9(a)、(b)係模式性表示本發明之實施形態7之觸碰感測器之構成之圖。 圖10(a)、(b)係模式性表示本發明之實施形態8之觸碰感測器之構成之圖。 圖11(a)、(b)係模式性表示本發明之實施形態9之觸碰感測器之構成之圖。 圖12(a)、(b)係模式性表示本發明之實施形態10之觸碰感測器之構成之圖。 圖13(a)、(b)係模式性表示本發明之實施形態11之觸碰感測器之構成之圖。 圖14(a)、(b)係模式性表示本發明之實施形態12之觸碰感測器之構成之圖。 圖15(a)、(b)係模式性表示本發明之實施形態13之觸碰感測器之構成之圖。 圖16(a)、(b)係模式性表示本發明之實施形態14之觸碰感測器之構成之圖。 圖17(a)、(b)係模式性表示本發明之實施形態15之觸碰感測器之構成之圖。 圖18係模式性表示本發明之實施形態16之觸碰感測器之構成之圖。 圖19(a)~(c)係模式性表示本發明之實施形態16之觸碰感測器之另一構成之圖。 圖20係模式性表示本發明之實施形態17之觸碰感測器之構成之圖。 圖21係模式性表示本發明之實施形態18之觸碰感測器之構成之圖。 圖22係模式性表示比較例之觸碰感測器之構成之圖。 圖23係模式性表示進行了實施例4~10之構成之圖。FIG. 1 is a diagram schematically showing the configuration of a touch sensor of the present invention. FIG. 2 is a perspective view obtained by disassembling the touch sensor of FIG. 1 into various components. 3 (a) to 3 (c) are diagrams schematically showing another configuration of the electrostatic capacitance sensor. FIG. 4 is a diagram schematically showing a configuration of a touch sensor according to a second embodiment of the present invention. 5 (a) and 5 (b) are diagrams schematically showing a configuration of a touch sensor according to a third embodiment of the present invention. 6 (a) and 6 (b) are diagrams schematically showing a configuration of a touch sensor according to a fourth embodiment of the present invention. FIG. 7 is a diagram schematically showing a configuration of a touch sensor according to a fifth embodiment of the present invention. FIG. 8 is a diagram schematically showing a configuration of a touch sensor according to a sixth embodiment of the present invention. 9 (a) and 9 (b) are diagrams schematically showing the configuration of a touch sensor according to a seventh embodiment of the present invention. 10 (a) and 10 (b) are diagrams schematically showing the configuration of a touch sensor according to Embodiment 8 of the present invention. 11 (a) and 11 (b) are diagrams schematically showing a configuration of a touch sensor according to a ninth embodiment of the present invention. 12 (a) and 12 (b) are diagrams schematically showing a configuration of a touch sensor according to a tenth embodiment of the present invention. 13 (a) and 13 (b) are diagrams schematically showing a configuration of a touch sensor according to Embodiment 11 of the present invention. 14 (a) and 14 (b) are diagrams schematically showing a configuration of a touch sensor according to a twelfth embodiment of the present invention. 15 (a) and 15 (b) are diagrams schematically showing a configuration of a touch sensor according to a thirteenth embodiment of the present invention. 16 (a) and 16 (b) are diagrams schematically showing a configuration of a touch sensor according to a fourteenth embodiment of the present invention. 17 (a) and 17 (b) are diagrams schematically showing a configuration of a touch sensor according to a fifteenth embodiment of the present invention. FIG. 18 is a diagram schematically showing a configuration of a touch sensor according to a sixteenth embodiment of the present invention. 19 (a) to (c) are diagrams schematically showing another configuration of the touch sensor according to the sixteenth embodiment of the present invention. FIG. 20 is a diagram schematically showing a configuration of a touch sensor according to a seventeenth embodiment of the present invention. FIG. 21 is a diagram schematically showing a configuration of a touch sensor according to Embodiment 18 of the present invention. FIG. 22 is a diagram schematically showing a configuration of a touch sensor of a comparative example. FIG. 23 is a diagram schematically showing the configuration of Examples 4 to 10. FIG.

10‧‧‧觸碰感測器10‧‧‧ touch sensor

11‧‧‧壓電感測器11‧‧‧Voltage Inductor

12‧‧‧靜電電容感測器12‧‧‧ electrostatic capacitance sensor

13‧‧‧透明填充層13‧‧‧ transparent filling layer

14‧‧‧第1基材膜14‧‧‧ the first substrate film

15‧‧‧具有壓電性之塗層15‧‧‧ Piezoelectric coating

16‧‧‧壓電膜(第1積層體)16‧‧‧ Piezo film (first laminated body)

17‧‧‧第1透明電極17‧‧‧The first transparent electrode

18‧‧‧第2透明電極18‧‧‧ 2nd transparent electrode

19‧‧‧第2基材膜19‧‧‧ 2nd base film

20‧‧‧第3透明電極20‧‧‧ 3rd transparent electrode

21‧‧‧第2積層體21‧‧‧Second layered body

22‧‧‧第3基材膜22‧‧‧ 3rd base film

23‧‧‧第4透明電極23‧‧‧ 4th transparent electrode

24‧‧‧第3積層體24‧‧‧The third laminated body

25‧‧‧透明填充層25‧‧‧ transparent filling layer

Claims (15)

Translated fromChinese
一種觸碰感測器,其具備: 靜電電容感測器,其以靜電電容方式檢測觸碰位置之座標;及 壓電感測器,其設置於上述靜電電容感測器之背面,使用於基材膜積層有具有壓電性之塗層之壓電膜而進行按壓檢測。A touch sensor includes: an electrostatic capacitance sensor that detects the coordinates of a touched position in an electrostatic capacitance manner; and a piezoelectric sensor that is disposed on the back of the electrostatic capacitance sensor and used in a base The material film is laminated with a piezoelectric film having a piezoelectric coating to perform pressure detection.一種觸碰感測器,其具備: 壓電感測器,其使用於基材膜之背面積層有具有壓電性之塗層之壓電膜,而進行按壓檢測;及 透明電極,其積層於上述基材膜之正面,用以藉由靜電電容方式檢測觸碰位置之座標。A touch sensor comprising: a piezoelectric sensor, which is used for detecting pressure by using a piezoelectric film having a piezoelectric coating on a back surface layer of a base film; and a transparent electrode, which is laminated on The front side of the substrate film is used to detect the coordinates of the touch position by the electrostatic capacitance method.一種觸碰感測器,其具備: 壓電感測器,其具備:壓電膜,其於基材膜積層有具有壓電性之塗層;及透明電極,其配置於該壓電膜之一面側與另一面側,用以檢測具有壓電性之塗層分極時之電位變化;以及 透明電極,其配置於上述壓電感測器之一面側,用以藉由靜電電容方式檢測觸碰位置之座標。A touch sensor includes: a piezoelectric sensor including: a piezoelectric film having a piezoelectric coating layered on a substrate film; and a transparent electrode disposed on the piezoelectric film. One side and the other side are used to detect potential changes when the piezoelectric coating is polarized; and a transparent electrode is disposed on one side of the above-mentioned piezoelectric sensor to detect touch by electrostatic capacitance method. The coordinates of the position.一種觸碰感測器,其具備: 壓電感測器,其具備:壓電膜,其於基材膜積層有具有壓電性之塗層;及透明電極,其配置於該壓電膜之一面側與另一面側;以及 靜電電容感測器,其配置於上述壓電感測器之一面側,以靜電電容方式檢測觸碰位置之座標;且 配置於上述壓電膜之一面側之透明電極係用以檢測具有壓電性之塗層分極時之電位變化之透明電極、及用以藉由靜電電容方式檢測觸碰位置之座標之透明電極。A touch sensor includes: a piezoelectric sensor including: a piezoelectric film having a piezoelectric coating layered on a substrate film; and a transparent electrode disposed on the piezoelectric film. One surface side and the other surface side; and an electrostatic capacitance sensor, which is arranged on one surface side of the above-mentioned piezoelectric sensor, and detects the coordinates of the touch position by the electrostatic capacitance method; and is disposed on one side of the piezoelectric film, which is transparent The electrode is a transparent electrode used to detect the potential change when the piezoelectric coating is polarized, and a transparent electrode used to detect the coordinates of the touched position by electrostatic capacitance.一種觸碰感測器,其具備: 壓電膜,其於基材膜積層有具有壓電性之塗層;及 透明電極,其配置於上述壓電膜之一面側與另一面側;且 配置於上述壓電膜之一面側與另一面側之透明電極係用以檢測具有壓電性之塗層分極時之電位變化之透明電極,且配置於至少上述壓電膜之一面側之透明電極係用以藉由靜電電容方式檢測觸碰位置之座標之透明電極。A touch sensor comprising: a piezoelectric film having a piezoelectric coating layered on a base film; and a transparent electrode disposed on one side and the other side of the piezoelectric film; and The transparent electrode system on one side and the other side of the piezoelectric film is a transparent electrode for detecting a potential change when the piezoelectric coating is polarized, and the transparent electrode system is disposed on at least one side of the piezoelectric film. A transparent electrode used to detect the coordinates of the touched position by electrostatic capacitance.如請求項1至5中任一項之觸碰感測器,其中上述具有壓電性之塗層之厚度超過0.5 μm且未達20 μm。The touch sensor according to any one of claims 1 to 5, wherein the thickness of the piezoelectric coating is more than 0.5 μm and less than 20 μm.如請求項1至5中任一項之觸碰感測器,其中上述具有壓電性之塗層包含氟樹脂。The touch sensor according to any one of claims 1 to 5, wherein the piezoelectric coating includes a fluororesin.如請求項7之觸碰感測器,其中上述氟系樹脂係偏二氟乙烯、四氟乙烯、三氟氯乙烯中之2種以上之共聚物、或偏二氟乙烯之聚合物。The touch sensor according to claim 7, wherein the fluororesin is a copolymer of two or more of vinylidene fluoride, tetrafluoroethylene, and trifluorochloroethylene, or a polymer of vinylidene fluoride.如請求項1至5中任一項之觸碰感測器,其中於上述基材膜與具有壓電性之塗層之間具備底塗層、折射率調整層、抗黏連層之至少1層。The touch sensor according to any one of claims 1 to 5, wherein at least one of an undercoat layer, a refractive index adjustment layer, and an anti-blocking layer is provided between the substrate film and the piezoelectric coating. Floor.如請求項1至5中任一項之觸碰感測器,其中於上述壓電膜與用以檢測觸碰位置之座標之透明電極之間、上述壓電膜與用以檢測具有壓電性之塗層分極時之電位變化之透明電極之間、或該等兩者之間,具備底塗層、折射率調整層、抗黏連層之至少1層。The touch sensor according to any one of claims 1 to 5, wherein the piezoelectric film and the transparent electrode for detecting the coordinates of the touch position, the piezoelectric film and the piezoelectric sensor for detecting At least one layer of the undercoat layer, the refractive index adjustment layer, and the anti-blocking layer is provided between the transparent electrodes having a potential change when the coating is polarized, or between the two.如請求項10之觸碰感測器,其中上述塗層之厚度為0.5~10 μm,折射率調整層之厚度為80~160 nm,透明電極之厚度為20 nm以上。For example, the touch sensor of claim 10, wherein the thickness of the coating layer is 0.5 to 10 μm, the thickness of the refractive index adjustment layer is 80 to 160 nm, and the thickness of the transparent electrode is 20 nm or more.如請求項10之觸碰感測器,其中上述塗層之折射率為1.40~1.50,折射率調整層之折射率為1.50~1.70,透明電極之折射率為1.90~2.10。For example, the touch sensor of claim 10, wherein the refractive index of the coating layer is 1.40 to 1.50, the refractive index of the refractive index adjusting layer is 1.50 to 1.70, and the refractive index of the transparent electrode is 1.90 to 2.10.如請求項1至5中任一項之觸碰感測器,其中用以檢測上述觸碰位置之座標之透明電極、用以檢測上述具有壓電性之塗層分極時之電位變化之透明電極、或該等兩者係直接形成於上述壓電膜。The touch sensor according to any one of claims 1 to 5, wherein the transparent electrode for detecting the coordinates of the above touch position, and the transparent electrode for detecting the potential change when the above-mentioned piezoelectric coating is polarized Or both are directly formed on the piezoelectric film.如請求項1至5中任一項之觸碰感測器,其中上述基材膜選自聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚烯烴、聚環烯烴、環烯烴共聚物、聚碳酸酯、聚醚碸、聚芳酯、聚醯亞胺、聚醯胺、聚苯乙烯、聚降冰片烯中之至少1種。The touch sensor according to any one of claims 1 to 5, wherein the substrate film is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, and cycloolefin At least one of a copolymer, polycarbonate, polyether fluorene, polyarylate, polyimide, polyfluorene, polystyrene, and polynorbornene.如請求項1至5中任一項之觸碰感測器,其中上述透明電極係以氧化銦為主成分之透明電極。The touch sensor according to any one of claims 1 to 5, wherein the transparent electrode is a transparent electrode mainly composed of indium oxide.
TW106117766A2016-05-302017-05-26Touch sensorTWI746560B (en)

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
JP20161070532016-05-30
JP??2016-1070532016-05-30
JP2017104593AJP6879826B2 (en)2016-05-302017-05-26 Touch sensor
JP??2017-1045932017-05-26

Publications (2)

Publication NumberPublication Date
TW201800915Atrue TW201800915A (en)2018-01-01
TWI746560B TWI746560B (en)2021-11-21

Family

ID=60478575

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW106117766ATWI746560B (en)2016-05-302017-05-26Touch sensor

Country Status (4)

CountryLink
KR (1)KR102342378B1 (en)
CN (1)CN109196452B (en)
TW (1)TWI746560B (en)
WO (1)WO2017209084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110190180A (en)*2019-06-062019-08-30苏州大学 Piezoelectric touch film and piezoelectric touch display panel including the same
TWI821360B (en)*2018-08-102023-11-11日商積水化學工業股份有限公司 Sensor systems and measuring devices using them

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
AT521772B1 (en)2018-10-292020-05-15Joanneum Res Forschungsgmbh Sensor device
KR102251277B1 (en)*2019-04-032021-05-11재단법인대구경북과학기술원Transistor module comprising capacitive touch sensor, piezoelectric sensor and dual-gate transistor
US11269435B1 (en)2020-09-102022-03-08Tpk Advanced Solutions Inc.Three-dimensional sensing panel and method of manufacturing the same and electronic apparatus
CN114860098A (en)*2021-02-042022-08-05宸美(厦门)光电有限公司Three-dimensional sensing device and manufacturing method thereof
CN113918045B (en)*2021-09-272024-10-29安徽精卓光显技术有限责任公司Touch module, touch screen, electronic equipment and manufacturing method of touch module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2010026938A (en)2008-07-232010-02-04Daikin Ind LtdTouch panel
JP2010108490A (en)*2008-10-032010-05-13Daikin Ind LtdTouch panel and transparent piezoelectric sheet
TWI386834B (en)*2009-06-042013-02-21Taiwan Electrets Electronics Co Ltd3-d non-bias electrets multi-touch device
EP3007041B1 (en)*2013-05-272022-09-07Murata Manufacturing Co., Ltd.Display panel with pressing sensor, and electronic device with pressing input function
JP5722954B2 (en)2013-06-232015-05-27日本写真印刷株式会社 Touch panel with pressure detection function
CN203858612U (en)*2013-08-292014-10-01福建省辉锐材料科技有限公司Transparent piezoelectric plate and touch panel
EP3048512A4 (en)*2013-09-202017-05-31Murata Manufacturing Co., Ltd.Touch sensor
WO2015050097A1 (en)*2013-10-042015-04-09株式会社村田製作所Touch sensor
CN105960624B (en)*2014-04-072019-02-26株式会社村田制作所 touch sensor
JP2015186910A (en)*2014-10-202015-10-29三井化学株式会社laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TWI821360B (en)*2018-08-102023-11-11日商積水化學工業股份有限公司 Sensor systems and measuring devices using them
CN110190180A (en)*2019-06-062019-08-30苏州大学 Piezoelectric touch film and piezoelectric touch display panel including the same
CN110190180B (en)*2019-06-062023-10-31苏州大学Piezoelectric touch control film and piezoelectric touch control display panel comprising same

Also Published As

Publication numberPublication date
WO2017209084A1 (en)2017-12-07
CN109196452B (en)2022-03-22
KR102342378B1 (en)2021-12-22
CN109196452A (en)2019-01-11
KR20190013700A (en)2019-02-11
TWI746560B (en)2021-11-21

Similar Documents

PublicationPublication DateTitle
TWI746560B (en)Touch sensor
JP6879826B2 (en) Touch sensor
TWI733819B (en)Piezoelectric film with transparent electrode and pressure sensor
JP7050469B2 (en) Piezoelectric film and piezo sensor
JP7050426B2 (en) Piezoelectric sensor and display using the piezoelectric sensor
CN203250288U (en) touch panel sensor
US20150109542A1 (en)Touch panel
JP2017216450A (en) Piezoelectric film
TWI545594B (en)Transparent conductive film
TWI652603B (en) Touch sensing element and display device therewith
KR102365236B1 (en) A piezoelectric sensor and a display using the piezoelectric sensor
US10168781B2 (en)Touch sensitive device and display device including the same
WO2017209080A1 (en)Piezoelectric film
US10379617B2 (en)Touch sensitive element and display device comprising the same
CN102789828A (en) Conductive film layer structure and its touch panel
CN102667682B (en)The plate of touch panel and manufacture method thereof and touch panel
KR101219996B1 (en)Touch Panel

Legal Events

DateCodeTitleDescription
MM4AAnnulment or lapse of patent due to non-payment of fees

[8]ページ先頭

©2009-2025 Movatter.jp