201243088 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大體而言係關於一種用於沉積材料之 設備及方法。更特定言之’本發明之實施㈣針對原子 層沉積腔室,該等原子層沉藉脒宕1古 尽/儿槓腔至具有用於在接觸基板 表面之前激發氣體物種之熱線。 【先前技術】 在半導體處理、平板顯示器處理或其他電子裝置處理 之領域中,氣相沉積製程在將材料沉積於基板之過程中 扮演著重要角色。當電子裝置之幾何結構繼續縮小且裝 置之密度繼續增加時,特徵結構之尺寸及深寬比變得更 嚴苛,例如,特徵結構之尺寸為0.07 μιη及深寬比為1〇 或10以上。因此,形成此等裝置的材料之保形沉積變得 曰益重要》 在原子層沉積(atomic layer deposition; ALD)製程期 間’將反應性氣體順序地引入至含有基板之處理腔室 中。通常’將第一反應物引入至處理腔室中,且將第— 反應物吸附至基板表面上》隨後將第二反應物引入至處 理腔室中’且使第二反應物與第一反應物反應,以形成 經沉積材料。可在每一反應性氣體輸送期間執行淨化步 驟’以確保反應僅在基板表面上發生。淨化步驟可為使 用載氣之連續淨化或在反應性氣體輸送期間的脈衝淨 化0 201243088 在此項技術中存在對於蕻士 s v兑 了 '错由原子層沉積快速且有效率 地處理基板之設備及方法的持續需要。 【發明内容】 本發明之實施例係針對氣髀八 ♦吐产 虱頫刀配板,該等氣體分配板 包含輸入面、輸出面及線。铪 W入面包含第一前驅物氣體 輸入端及第二前驅物氣體齡λ # _ _ 孔遛輸入端,該第一前驅物氣體輸 入經配置以接收第一前驅物名、、占 丄七咕 引驅物軋流,.該第二前驅物氣體 輸入端經配置以接收第二前驅物氣流。輸出面具有複數 個狹長的氣體埠,該複數個狹長的氣體蟑經配置以將氣 流導向鄰近輸出面之基板。狹長的氣料包括至少一個 第-前驅物氣料及至少-個第二前驅物氣體埠。至少 -個第-前驅物氣料與S —前驅物氣體形成流動連 通,且至少-個第二前驅物氣體埠與第二前驅物氣體形 成流動連通。線定位於第—前驅物氣料與第二前驅物 氣體埠中之至少-者内’且線連接至電源,以加熱該線。 在詳細實施例中,線包含鎢。在詳細實施例中,可加熱 線,以激發在整個線上流動的氣體中之物種。 在一些實施例中,氣體分配板進一步包含張緊裝置, 該張緊裝置連接至線,以提供張力。在詳細實施例中, 張緊裝置包含彈簧。在特定實施例中,張力足以防止線 之顯著下垂及線之斷裂。根據一些實施例,張緊裝置附 接至氣體分配板之輸入面。 根據一些實施例’線處於外罩内,該外罩附接至輸出 201243088 面且定位錢得離F„ —㈣物氣料 體淳中之—或^者之氣㈣過該外p心物氣 在一些實施例中,哼通机& 序由1端第-4數個狹長的氣料基本上按次 序由:^ 驅物氣料、第二前驅物氣體蟑及後端 第一前驅物氣體琿组成。十 成在咩細實施例中,線為單一線, 該单一線沿著兩個繁一 oi. m A " 則驅物氣體埠延伸且圍繞第二 驅物氣體埠。在特定管竑加+ 将疋貫施例中,存在兩個線:第一線及 第二線’該第-線沿著前端第一前驅物氣體槔延伸'•,該 第二線沿著後端第—前驅物氣體埠延伸。在-或更多實 祕例中’線/α著至少一個第二前驅物氣體埠延伸。 在:些實施例中,該複數個狹長的氣體淳基本上按次 序由交替的第-前驅物氣體淳及第二前驅物氣體淳之至 )兩個重複早7L组成,f玄ΛΧ AA ^ 取及等乂替的弟一前驅物氣體埠及 第二前驅物氣體琿後面接著後端第-前驅物氣體埠。在 詳細實施例中,線沿著第—前驅物氣體璋中之每一者延 伸。在特定實施例中,線沿著第二前驅物氣體埠中之每 一者延伸。 本發明之額外實施例係針對具有所述氣體分配板之處 理腔室。 本發明之另外的實施例係針對處理基板之方法。在氣 體分配板下方橫向移動具有表面之基板,該氣體分配板 包含複數個狹長的氣體埠,該複數個狹長的氣體埠包括 至少一個第一前驅物氣體埠及至少一個第二前驅物氣體 埠’該至少一個第一則驅物氣體埠經配置以輸送第一前 201243088 驅物氣體’該至少一個第二前驅物氣體埠經配置以輸送 第二前驅物氣體。將第一前驅物輸送至基板表面。將第 二前驅物氣體輸送至基板表面。將功率施加於線,以激 發第一前驅物氣體及第二前驅物氣體中之一或更多者中 的氣體物種,該線定位於至少一個第一前驅物氣體崞及 至少一個第二前驅物氣體琿中之一或更多者内,該等受 激發物種與基板之表面反應。詳細實施例進一步包含以 下步驟:將張力施加於線’該張力足以防止該線之顯著 下垂及該線之斷裂。 本發明之一些實施例係針對處理基板之方法。在鄰近 氣體分配板處橫向移動基板,該氣體分配板具有複數個 狹長的氣體埠。該複數個狹長的氣體埠基本上按次序由 則端第一前驅物氣體埠、第二前驅物氣體埠及後端第一 則驅物氣體埠組成。使基板之表面按次序順序地與來自 前端第一前驅物氣體埠之第一前驅物氣流、來自第二前 驅物氣體埠之第二前驅物氣流及來自後端第一前驅物氣 體埠之第一前驅物氣流接觸。在接觸墓板之表面之前, 藉由將功率施加於線,來激發第一前驅物氣體及第二前 ,物乳體中之一或更多者中的氣體物種,該線定位於前 端第m驅物氣體埠與後端第一前驅物氣體埠兩者内或 月J驅物氣體埠内。在詳細實施例中,方法進一步 、下步驟.調整線之張力,以防止該線之實質下垂 及斷裂。 201243088 【實施方式】 本發明之實施例係針對原子層沉積設備及方法,該等 原子層沉積設備及方法提供用力與基板表面反應的受激 發氣體物種。如此說明書及隨附申請專利範圍中所使用 的,術浯爻激發氣體物種」意謂不處於電子基態之任 何氣體物種。舉例而言,分子氧可經激奋形成氧自由基。 氧自由基為受激發物種。此外’術語「受激發物種」、「自 由基物種」及類似物意欲意謂不處於基態之物種。如在 此說明書及隨附申請專利範圍中所使用的,術語「基板 表面」意謂基板之裸露表面或該裸露基板表面上之層(例 如,氧化層)。 本發明之實施例係關於對空間原子層沉積實施熱線技 術。在傳統應用中,使用全局高溫或者電漿(例如,DC、 RF、微波)技術。根據一或更多實施例,熱線技術之實 施在ALD製程期間產生局部化局溫。.在空間ald製程 中使用此熱線技術,可降低該製程所需要的溫度、功率 及其他氣體之量中的一或更多者。此舉降低處理基板之 成本’且此舉對於製造處理腔室及實現更高產量及膜品 質更可靠。 通常’本發明之實施例將相容材料的單一線或多個線 置放於基板上方某一距離處。將某一張力施加於該單一 線或更多線。流經線之電流產生局部化高溫,該局部化 高溫激發反應物。當自由基化物種接觸到前驅物時,該 201243088 等自由基化物種在基板上沉積高品質膜。熱線可為單一 裝置’諸如’自前部插入的管狀裳置或自底部安裝的凸 緣安裝裝置。熱線含有所有必要組件,以固持且張緊一 或更多線、向該一或更多線、組件或材料提供電流以補 償該線及容器之伸長、隨後將此單一裝置置放於基板上 方的反應物之路徑4。線可與氣體喷淋頭一《整體地形 成,以簡化功率要求。線可在反應物路徑中α u形、s 形或者圓形形成,該線具有用於整個噴淋頭之一個正電 流引線及一個負電流引線。 第1圖為根據本發明之一或更多實施例的原子層沉積 系統100或反應器之示意性橫截面圖。系統1〇〇包括負 載鎖定腔室10及處理腔室20。處理腔室20通常為可密 封外罩’該可密封外罩在真空或至少低壓之下操作。處 理腔室20藉由隔離閥15與負載鎖定腔室1〇隔離。隔離 閥15在閉閥位置時密封處理腔室2〇以與負載鎖定腔室 隔離’且隔離閥15在開閥位置時允許將基板60自該 負載鎖定腔室10經由該閥移送至該處理腔室20,反之 亦然。 系統100包括氣體分配板30,該氣體分配板30能夠 在整個基板60上分配一或更多氣體《氣體分配板30可 為熟習此項技術者已知的任何適合的分配板,且不應將 所述特定氣體分配板視為限制本發明之範疇。氣體分配 板30之輸出面面向基板60之第一表面61。 與本發明之實施例一起使用的基板可為任何基板。在 201243088 拳-田貫施例中,基板為剛性的、分立的、大體平坦的基 如此說明書及隨附申請專利範圍中所使用的,術語 刀立的」在指基板時意謂該基板具有固定大小。特定 貫《•例之基板為半導體晶圓,諸如,爪爪或爪⑺ 直徑之矽晶圓。 氣體分配30 &含複數個氣體蜂及複數個真空谭,該 複數個氣體4經配置以將—或更多氣流傳輸至基板 6〇,該複數個真空埠設置於每一氣體埠之間且經配置以 將該等氣流傳輸出處理腔室2〇。在第1圖之詳細實施例 中,氣體分配板30包含第一前驅物注入器12〇、第二前 驅物注入器130及淨化氣體注入器14〇。注入器】2〇、 130丨40可藉由系統電腦(未圖示)(諸如,主機)或 I曰由腔至特定控制器(諸如,可程式化邏輯控制器)來 控制。前驅物注入器丨2〇經配置以將化合物A之反應性 月J驅物即第一别驅物之連續(或脈衝)流經由複數個氣 體埠125注入至處理腔室20中。前驅物注入器13〇經配 置以將化合物B之反應性前驅物即第二前驅物之連續 (或脈衝)流經由複數個氣體槔1 35注入至處理腔室20 中。淨化氣體注入器140經配置以將非反應性或淨化氣 體之連續(或脈衝)流經由複數個氣體埠丨45注入至處 理腔室20中。淨化氣體經配置以自處理腔室2〇移除反 應性物質及反應性副產物》淨化氣體通常為惰性氣體, 諸如’氮氣、氬氣及氦氣。氣體埠145設置在氣體埠125 與氣體埠135之間,以便分隔化合物A之前驅物與化合 201243088 物B之前驅物,藉此避免前驅物之間的交叉污染。如在 此說明書及隨附申請專利範圍中所使用的,術語「反應 性氣體」、「反應性前驅物」、「第一前驅物」、「第二前驅 物」及類似物是指能夠與基板表面反應之氣體及氣體物 種0 在另一態樣中’遠端電聚源(未圖示)可在將前驅物 注入至腔室20中之前連接至前驅物注入器120及前驅物 注入器130。反應性物種之電漿可藉由將電場施加於遠 端電漿源内之化合物來產生。可使用能夠活化預期化合 物之任何電源。舉例而言,可用使用基於DC、射頻(RF) 及微波(MW)的放電技術之電源》若使用rf電源,則可 將该RF電源電谷耗接或者感應耗接。活化作用亦可藉 由基於熱的技術、氣體解離技術、高強度光源(例如, UV能量)或曝露至X射線源來產生。示例性遠端電毁 源可購自諸如 MKS Instruments,Inc.及 Advanced Energy201243088 VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention generally relate to an apparatus and method for depositing materials. More specifically, the implementation of the present invention (4) is directed to an atomic layer deposition chamber that borrows from the ruthenium to the rib cavity to have a hot line for exciting the gas species prior to contacting the surface of the substrate. [Prior Art] In the field of semiconductor processing, flat panel display processing, or other electronic device processing, a vapor deposition process plays an important role in depositing materials on a substrate. As the geometry of the electronic device continues to shrink and the density of the device continues to increase, the size and aspect ratio of the features become more stringent, for example, the feature size is 0.07 μηη and the aspect ratio is 1 〇 or more. Thus, conformal deposition of materials forming such devices becomes more important. The reactive gases are sequentially introduced into the processing chamber containing the substrate during the atomic layer deposition (ALD) process. Typically 'introducing the first reactant into the processing chamber and adsorbing the first reactant onto the surface of the substrate>> then introducing the second reactant into the processing chamber' and causing the second reactant to react with the first reactant Reaction to form a deposited material. The purification step can be performed during each reactive gas delivery to ensure that the reaction occurs only on the surface of the substrate. The purification step can be continuous purification using a carrier gas or pulse purification during reactive gas delivery. 0 201243088 In the art, there is a device for the gentleman to quickly and efficiently process substrates by atomic layer deposition. The continuing need for the method. SUMMARY OF THE INVENTION Embodiments of the present invention are directed to a gas distribution plate that includes an input surface, an output surface, and a wire. The input surface includes a first precursor gas input end and a second precursor gas age λ # _ _ hole input terminal, the first precursor gas input configured to receive the first precursor name, and occupy the seventh precursor The primer is rolled, and the second precursor gas input is configured to receive the second precursor gas stream. The output face has a plurality of elongate gas turns configured to direct the flow of gas to the substrate adjacent the output face. The elongated gas material includes at least one first-precursor gas material and at least one second precursor gas gas. At least one of the first precursor gases forms a flow communication with the S-precursor gas, and at least one of the second precursor gases is in flow communication with the second precursor gas. The wire is positioned within at least - of the first precursor gas and the second precursor gas and the wire is connected to a power source to heat the wire. In a detailed embodiment, the wire comprises tungsten. In a detailed embodiment, the wire can be heated to excite species in the gas flowing throughout the wire. In some embodiments, the gas distribution plate further includes a tensioning device coupled to the wire to provide tension. In a detailed embodiment, the tensioning device comprises a spring. In a particular embodiment, the tension is sufficient to prevent significant sagging of the wire and breakage of the wire. According to some embodiments, the tensioning device is attached to the input face of the gas distribution plate. According to some embodiments, the wire is in the outer cover, the outer cover is attached to the output 201243088 face and the positioning money is away from the F„-(4) gas material body — or the gas of the gas (four) passes the outer p heart gas at some In an embodiment, the boring machine & sequence consists of a length of -4th length of gas material at one end consisting essentially of: ^ venting gas material, second precursor gas enthalpy, and rear end first precursor gas 珲In the fine embodiment, the line is a single line, and the single line extends along two conventional oi. m A " then the gas is extended and surrounds the second precursor gas. + There will be two lines in the example: the first line and the second line 'the first line extends along the front end of the first precursor gas '', and the second line along the back end of the first precursor The gas enthalpy extends. In the - or more real cases, the 'line/α is extended with at least one second precursor gas 。. In some embodiments, the plurality of narrow gas 淳 are alternately ordered in an orderly manner. - Precursor gas 淳 and second precursor gas 淳)) Two repetitions of 7L composition, f Xuanzang AA ^ The precursor gas helium and the second precursor gas helium are followed by the trailing first precursor gas. In a detailed embodiment, the lines extend along each of the first precursor gases. In a particular embodiment, The wires extend along each of the second precursor gases. An additional embodiment of the present invention is directed to a processing chamber having the gas distribution plate. Further embodiments of the present invention are directed to methods of processing substrates. Moving a substrate having a surface laterally below the gas distribution plate, the gas distribution plate comprising a plurality of elongated gas gases, the plurality of elongated gas gases comprising at least one first precursor gas gas and at least one second precursor gas gas The at least one first precursor gas is configured to deliver a first front 201243088 dopant gas 'the at least one second precursor gas chirp configured to deliver a second precursor gas. The first precursor is delivered to the substrate surface. Delivering a second precursor gas to the surface of the substrate. Applying power to the line to excite one or more of the first precursor gas and the second precursor gas a gas species positioned in one or more of the at least one first precursor gas enthalpy and the at least one second precursor gas enthalpy, the excited species reacting with a surface of the substrate. The detailed embodiment further comprises The following steps: applying tension to the wire 'this tension is sufficient to prevent significant sagging of the wire and breakage of the wire. Some embodiments of the invention are directed to a method of processing a substrate. The substrate is moved laterally adjacent to the gas distribution plate, the gas distribution The plate has a plurality of elongated gas crucibles. The plurality of elongated gas crucibles are substantially composed of a first end precursor gas crucible, a second precursor gas crucible, and a rear end first impeding gas crucible. The surface sequentially sequentially with the first precursor gas stream from the front first precursor gas gas, the second precursor gas stream from the second precursor gas gas, and the first precursor from the back end first precursor gas gas Airflow contact. A gas species in one or more of the first precursor gas and the second precursor milk is excited by applying power to the wire prior to contacting the surface of the tomb, the wire being positioned at the front end m The precursor gas is in the vicinity of the first precursor gas or the first precursor gas. In a detailed embodiment, the method further and the next step of adjusting the tension of the wire to prevent substantial sag and breakage of the wire. 201243088 [Embodiment] Embodiments of the present invention are directed to an atomic layer deposition apparatus and method that provide an excited gas species that reacts with a surface of a substrate. As used in the specification and accompanying claims, the stimuli-exciting gas species means any gas species that are not in the electronic ground state. For example, molecular oxygen can excite to form oxygen radicals. Oxygen free radicals are excited species. Further, the terms "excited species", "free radical species" and the like are intended to mean species that are not in the ground state. As used in this specification and the accompanying claims, the term "substrate surface" means the exposed surface of the substrate or a layer on the surface of the bare substrate (e.g., an oxide layer). Embodiments of the present invention relate to the implementation of hot wire techniques for spatial atomic layer deposition. In conventional applications, global high temperature or plasma (eg, DC, RF, microwave) techniques are used. In accordance with one or more embodiments, the implementation of hot wire technology produces localized local temperatures during the ALD process. Using this hotline technique in a space ald process reduces one or more of the temperature, power, and other gases required for the process. This reduces the cost of processing the substrate' and this is more reliable for manufacturing process chambers and achieving higher throughput and film quality. Typically, embodiments of the present invention place a single line or lines of compatible material at a distance above the substrate. Apply a certain tension to the single or more lines. The current flowing through the line produces a localized high temperature that excites the reactants. When the radicalized species is exposed to the precursor, the free radicalized species such as 201243088 deposits a high quality film on the substrate. The hot wire can be a single device 'such as a tubular skirt inserted from the front or a flange mounted device mounted from the bottom. The hot wire contains all the necessary components to hold and tension one or more wires, supply current to the one or more wires, components or materials to compensate for the elongation of the wire and the container, and then place the single device over the substrate Path 4 of the reactants. The line can be integrated with the gas sprinkler as a whole to simplify power requirements. The line may be formed in an alpha u shape, an s shape or a circle in the reactant path, the line having a positive current lead for the entire shower head and a negative current lead. 1 is a schematic cross-sectional view of an atomic layer deposition system 100 or reactor in accordance with one or more embodiments of the present invention. System 1A includes a load lock chamber 10 and a processing chamber 20. Processing chamber 20 is typically a sealable enclosure. The sealable enclosure operates under vacuum or at least a low pressure. The processing chamber 20 is isolated from the load lock chamber 1 by an isolation valve 15. The isolation valve 15 seals the processing chamber 2 在 to be isolated from the load lock chamber when in the closed position and allows the substrate 60 to be transferred from the load lock chamber 10 to the processing chamber via the valve when the isolation valve 15 is in the open position Room 20 and vice versa. System 100 includes a gas distribution plate 30 that is capable of dispensing one or more gases throughout substrate 60. "Gas distribution plate 30 can be any suitable distribution plate known to those skilled in the art and should not be The particular gas distribution plate is considered to limit the scope of the invention. The output face of the gas distribution plate 30 faces the first surface 61 of the substrate 60. The substrate used with embodiments of the present invention can be any substrate. In the 201243088 boxing-field example, the substrate is a rigid, discrete, generally flat base. As used in the specification and the scope of the accompanying claims, the term "knife" means that the substrate has a fixed size. . The specific substrate is a semiconductor wafer, such as a crucible or a claw (7) diameter wafer. The gas distribution 30 & includes a plurality of gas bees and a plurality of vacuum tans, the plurality of gases 4 being configured to deliver - or more gas streams to the substrate 6 , the plurality of vacuum crucibles being disposed between each gas crucible and It is configured to transport the gas streams out of the processing chamber 2〇. In the detailed embodiment of Fig. 1, the gas distribution plate 30 includes a first precursor injector 12, a second precursor injector 130, and a purge gas injector 14A. The injectors 2, 130, 40 can be controlled by a system computer (not shown) (such as a host) or by a cavity to a specific controller (such as a programmable logic controller). The precursor injector 〇2〇 is configured to inject a continuous (or pulsed) flow of the reactivity of Compound A, the first precursor, into the processing chamber 20 via a plurality of gas enthalpies 125. The precursor injector 13 is configured to inject a continuous (or pulsed) stream of the reactive precursor of Compound B, i.e., the second precursor, into the processing chamber 20 via a plurality of gas helium 135. The purge gas injector 140 is configured to inject a continuous (or pulsed) flow of non-reactive or purge gas into the process chamber 20 via a plurality of gas ports 45. The purge gas is configured to remove reactive species and reactive by-products from the processing chamber 2". The purge gas is typically an inert gas such as 'nitrogen, argon, and helium. A gas crucible 145 is disposed between the gas crucible 125 and the gas crucible 135 to separate the precursor of the compound A from the precursor of the compound B, thereby avoiding cross-contamination between the precursors. As used in this specification and the accompanying claims, the terms "reactive gas", "reactive precursor", "first precursor", "second precursor" and the like mean capable of being capable of interacting with a substrate. Surface Reaction Gas and Gas Species 0 In another aspect, a remote electropolymer source (not shown) can be coupled to precursor injector 120 and precursor injector 130 prior to injecting precursor into chamber 20. . The plasma of the reactive species can be produced by applying an electric field to the compound in the remote plasma source. Any power source capable of activating the intended compound can be used. For example, a power supply using DC, radio frequency (RF), and microwave (MW) based discharge technology can be used. If an rf power supply is used, the RF power supply can be consumed or sensed. Activation can also be produced by heat based techniques, gas dissociation techniques, high intensity light sources (e.g., UV energy), or exposure to X-ray sources. Exemplary remote electrical damage sources are commercially available from, for example, MKS Instruments, Inc. and Advanced Energy.
Industries, Inc.之供應商。用以產生電漿之功率之頻率可 為任何已知且適合的頻率。舉例而言,電漿頻率可為2 MHz、13.56 MHz、40 MHz 或 6〇 ,但其他頻率可能 亦為有益的。 系統100進一步包括泵送系統150,該泵送系統15〇 連接至處理腔室20。泵送系統150通常經配置以將氣流 經由—或更多真空蟑155排出處理腔室2〇β真空埠155 設置於每一氣體埠之間,以便在氣流與基板表面反應之 後將該等氣流排出處理腔室2〇,且進一步限制前驅物之 201243088 間的交又污染。 系統100包括複數個分隔物160,該複數個分隔物16〇 設置於處理腔室20上每一埠之間。每一分隔物之下部部 分延伸接近於基板60之第一表面61。舉例而言,距第 一表面61約〇·5 mm或〇 5 mm以上。以此方式分隔 物160 ^下部部分與基板表面分隔一距離,該距離足以 允許該等氣流在氣流與該基板表面反應之後於下部部分 周圍流向真空埠155。箭頭198指示氣流之方向。由於 分隔物160作為對於氣流之實體阻障層操作,故該等分 隔物160亦限制前驅物之間的交又污染。所圖示佈置僅 為說明性的且不應視為限制本發明之範嘴。熟習此項技 術者將理解’所圖示氣體分配系統僅為-個可能的分配 系統’且可採用其他類型之喷淋頭。 在#作中’將基板6〇輸送(例如,藉由機器人)至負 载鎖定腔:10且置放於搬運梭65上。在隔離閥Η打開 —著軌70移動搬運梭65。—旦基板60進入處理 =20中,則隔離閥15閉合,從而密封該處理腔室2〇。 隨後使搬運梭 後65和動穿過處理腔室20,以進行處理。 在一個實施例中,使搬 、 — 運板65以線性路徑移動穿過 至° :者基板6。移動穿過處理腔室2〇,基板6 =重複地曝露至自氣體…出的化合物A之前 驅物及自氧體埠135射 氣體埠⑵與氣計 驅物’以及自 ” + 135兩者之間的氣體埠145射出的 201243088 淨化氣體。淨化氣it之注入經設計以在將基板表面6i 曝露至下一前驅物 <前自“的前驅物移除未反應物 質。在每次曝露至各種氣流(例如,前驅物或淨化氣體) 之後’藉由泵送系 '统15〇將氣流經由真空埠155排出。 由於真空埠可設置在每—氣料之兩側,故將氣流經由 兩側之真空埠1 55排出。因此’氣流自各別氣體蜂垂直 向下流向基板60之1表面61、在整個基板表面上及 分隔物160之下部部分周圍流%,且最終向JL流向真空 埠155。以此方式,每一氣體可在整個基板表面6ι上均 勻刀配箭頭198指示氣流之方向。基板6〇亦可在曝露 至各種氣流時旋轉。基板之旋轉可用於防止於所形成層 中形成條帶。基板之旋轉可為連續的或时離的步驟進 行。 基板表面61曝露至每一氣體之程度可藉由(例如)自 氣體埠出來的每一氣體之流動速率及基板6〇之移動速 率來決定。在-個實施财,每—氣體之流動速率經配 置以不自基板表面61移除所吸附的前驅物。每一分隔物 之間的寬度、設置於處理腔室2〇上的氣體埠之數目及基 板往復穿過之次數亦可決定基板表面61曝露至各種氣 體之程度。因此,經沉積膜之量及品質可藉由改變以上 涉及的因素來最佳化。 在另一實施例中,系統100可包括前驅物注入器12〇 及前驅物注入器130,而無淨化氣體注入器14〇。因此, 隨著基板60移動穿過處理腔室2〇,基板表面“將交替 12 201243088 地曝露至化合物A之前驅物及化合物b之前驅物,而不 曝露於化合物A之前驅物與化合物b之前驅物兩者之間 的淨化氣體。 第1圖中所示之實施例在基板上方具有氣體分配板 3〇。儘管已關於此直立方向描述且圖示實施例,但將理 解,反向之方向亦有可能。在彼情形下,當將向上導引 向著基板之氣流時,基板60之第一表面61將面向下。 在一或更多實施例中,至少一個輻射熱源90定位成加熱 基板之第二侧。 取決於沉積至基板表面61上的層之數目,氣體分配板 30可為任何適合長度。氣體分配板之一些實施例意欲用 於高產量操作’在該高產量操作中,基板沿一個方向自 氣體分配板之第一末端移動至氣體分配板之第二末端。 在此單一穿過期間,完整的膜基於氣體分配板中氣體注 入器之數目而形成於基板表面上。在一些實施例中,氣 體分配板具有比形成完整的膜所需要的注入器更多的注 入器。可控制個別注入器,以使得一些注入器為無活性 的或僅排出淨化氣體。舉例而言’若氣體分配板具有用 於刖驅物A及前驅物B中之每一者的一百個注入器,但 僅需要50個注入器,則可將5〇個注入器去能。此等去 能的注入器可在整個氣體分配板上聚集或分散。 此外’儘管圖式圖示第一前驅物氣體A及第二前驅物 氣體B ’但應理解’本發明之實施例不限於僅具有兩種 不同前驅物之氣體分配板。例如’可存在分散於整個氣 13 201243088 體分配板上的第二俞酿板 刖驅物C及第四前驅物D。此舉將使 技術者能夠產生具有經混合或經堆疊層之膜。 在-些實施例中,搬運梭65為用於載運基板的之基 座66。通常,基座66為載具,該載具幫助在整個基板 上形成均句溫度。基座66可沿兩個方向(相對於第i 圖之佈置,自左至右及自亡、 右至左)在負載鎖定腔室1〇 與處理腔室20之間務動。装汁 曰_^_ 间栘動基座66具有用於載運基板60 頁表面67基座66可為經力0熱基座,以便可加熱基 板60以進行處理。作為實例,基座66可藉由設置於該 基座66下方的輻射熱源9〇、加熱板、電阻線圈或其他 加熱裝置來加熱。 在另-實施例中’如第2圖中所示,基座66之頂表面 67包括凹部68,該凹部68經配置以容納基板6〇。基座 66通常比基板之厚度更厚,以使得在該基板下方存在基 座材料。在詳細實施例中,凹部68經配置以使得當基板 60設置於凹部68内部時,基板6〇之第一表面61與基 座66之頂表面67相齊。換言之,一些實施例之凹部68 經配置以使得當基板60設置於該凹部68中時,基板6〇 之第一表面61未在基座66之頂表面67上方伸出。 第3圖至第9圖圖示根據本發明之各種實施例之氣體 分配板30。氣體分配板30包含輸入面301及輸出面 303。輸入面301 (圖示於第3圖中)具有用於接收第一 前驅物氣體A之流的第一前驅物氣體輸入端3〇5及用於 接收第二前驅物氣體B之流的第二前驅物氣體輸入端 201243088 3 07 »輸入面301亦具有一或更多淨化氣體之輸入端309 及用於連接至一或更多真空埠之埠311。儘管第3圖中 所示之配置具有可見的兩個第一前驅物氣體輸入端 305、一個第二前驅物氣體輸入端3〇7及兩個淨化氣體輸 入端309,但熟習此項技術者將理解,可或多或少個別 地或以組合形式存在此等組件中之每一組件。 第3圖至第9圖中所示特定實施例可與對向沉積系統 一起使用,在該對向沉積系統中,基板鄰近氣體分配板 往復移動,以沉積多個層。然而,應理解此僅為一個實 施例,且本發明不限於對向沉積技術。熟習此項技術者 將理解,可採用具有多組前驅物注入器之單一大氣體沉 積板。 第4圖至第7圖中所示之輸出面3〇3具有複數個狹長 的氣體淳313。氣體埠313經配置以將氣流導向基板, 該基板可經定位鄰近輸出面303。狹長的氣體埠313包 括至少一個第一前驅物氣體埠及至少一個第二前驅物氣 體埠。每一第一前驅物氣體埠與第一前驅物氣體輸入端 305 /爪動連通,以允許第一前驅物流經氣體分配板30。 每一第二前驅物氣體埠與第二前驅物氣體輸入端307流 動連通,以允許第二前驅物流經氣體分配板3〇。 如第4圖中所示,氣體埠可包括通道317内的複數個 開口 315。通道317為氣體分配板之輸出面内的凹槽。 氣體流出㈤〇 315且藉由通道317之壁導向基板表面。 雖然開口 315圖示為圓形的,但應理解,開口 315可為 15 201243088 任何適合形狀’該任何適合形狀包括(但不限於)方形、 矩形及三角形。開口 315之數目及尺寸亦可經改變以或 多或少地安裝開口於每一通道317内。在第4圖中所示 之詳細實施例中’淨化氣體、第一前驅物氣體埠 及第二前驅物氣體埠(B)包含定位於通道内的複數個開 口。與真空槔相關聯之開口 3 1 8在氣體分配板3 0之輸出 面303上’而非在通道3丨7中,但開口 318亦可定位於 通道内。 第4圖中所示之特定實施例具有狹長的氣體埠之組 合’狹長的氣體埠之該組合在基板沿著箭頭35〇垂直地 移動至狹長的氣體埠時將向基板表面提供特定序列之氣 流。儘管基板描述為正在移動,但熟習此項技術者將理 解,基板可保持靜止且氣體分配板3〇可移動。基板與氣 體分配板30之間的相對移動稱為基板移動。垂直地移動 至狹長的氣體埠之基板將按次序經受淨化氣體流、第一 刖驅物氣體A流、淨化氣體流、第二前驅物氣體B流、 淨化氣體流、第一前驅物氣體A,流及淨化氣體流之氣 "IL。該專氣流中之每一氣流之間為真空埠,該等真空埠 將該等氣流導出處理腔室。此舉產生根據第丨圖中所示 之箭頭198的流動模式。 在特定實施例中,氣體分配板基本上按次序由前端第 一則驅物氣體埠A、第二前驅物氣體埠B及後端第一前 驅物氣體埠A’組成。如此上下文中及隨附申請專利範圍 中所使用的’術語「基本上由組成」意謂氣體分配板 201243088 不包括用於反應性氣體之任何額外氣體埠。用於非反應 性氣體(例如’淨化氣體)及真空之埠可散佈於各處, 同時仍處於各項之基本組成内。舉例而言,氣體分配板 3〇可具有八個真空*阜ν及四個淨化#卜⑽基本上由前 端第一前驅物氣體埠A、第二前驅物氣體埠5及後端前 驅物氣體埠A,組成。此種類之實施例可稱為aba配置。 ΑΒΑ配置之使用確保自任一方向移動的基板將在遇 到第二前驅物氣體B琿之前遇到第一前驅物氣體八皡。 每次穿過整個氣體分配板30將產生組合物B之單一 膜。此處,兩個第一前驅物氣體A埠圍繞第二前驅物氣 體B埠,以便自圖式之頂部至底部(相對於氣體分配板) 移動的基板將按次序遇上前端第一反應性氣體A、第二 反應性氣體B及後端第一反應性氣體A,,從而產生形成 於基板上的完整層。沿著相同路徑返回的基板將遇上相 反-人序之反應性氣體,從而在每一全循環中產生兩個 層。在整個此氣體分配板上往復移動的基板將曝露至以 下脈衝序列: AB AAB AAB (AAB)n …AABA, 從而形成組合物B之均勻膜。曝露至序列之末端處的第 一前驅物氣體A並不重要,因為不存在第二前驅物氣體 B之後續動作。熟習此項技術者將理解,雖然膜組合物 稱為B,但該膜組合物實際上為反應性氣體a及反應性 氣體B之表面反應產物之產品’且為方便起見僅使用b 來描述膜》 17 201243088 第5圖圖示氣體分配板30之另一詳細實施例,與第* 圖之氣體分配板30相反,在第5圖之該氣體分配板3〇 中,用於前端第一前驅物氣體埠八及後端第—前驅物氣 體埠A’之通道完全開放,在第4圖之該氣體分配板μ 中’存在通道3 1 7内的複數個開口 3丨5。此外,此實施 例以ΑΒΑ配置圖示但可較為容易地包括跨越任何所要 數目之多組ΑΒ氣體注入器。舉例而言,氣體分配板可 具有100組ΑΒ氣體注入器,該等1 〇〇組αβ氣體注入 器各自個別地被控制且各自個別地含有熱線、張緊裝置 及電源。 第ό圖中所示之氣體分配板30包括線601,以激發氣 體物種’該線601可稱為熱線。線601定位於第一前驅 物氣體淳與第二前驅物氣體埠中的任一者或兩者中。線 連接至電力引線323(圖示於第3圖中),該電力引線323 經配置以使電流流經線601,以加熱該線601 »將線6〇 j 加熱至高溫,以激發鄰近線601經過的氣體中之物種。 線之目的在於在氣體中產生自由基物種,而非在基板中 產生溫度增加。可將線置放於不存在至基板之表面之直 接曝露而仍能夠引起氣體中自由基物種之形成的位置 處。舉例而言’若將線601置放於第二前驅物氣體淳中, 則該線將使第二前驅物氣體中的部分分子受激發。在激 發狀態下’分子具有較高能量且很可能在給定處理溫度 下與基板表面反應。 線之置放可能對自由基物種接觸基板之程度有影響。 18 201243088 與較近置放相比,將線置放於距基板過遠處可允許更大 數目之自由基物種在接觸基板表面之前變為鈍化的。自 由基物種可藉由與其他自由基、氣流中的分子及氣體分 配板接觸而變為鈍化的。然而,將線置放於距基板更遠 處可幫助防止該線加熱基板表面,而仍在氣體中產生自 由基物種。可將線60 1置放於距基板之表面足夠近處, 以確保受激發物種存在足夠久,以接觸該表面而不引起 基板之局部溫度之顯著變化。如此說明書及隨附申請專 利範圍中所使用的,術語「局部溫度之顯著變化」意謂 基板鄰近線之部分不具有大於約1 〇 的溫度增加。第j 2 圖圖示本發明之實施例之側視圖,在該側視圖中,線6〇1 定位於通道3 17内。此實施例不具有氣體擴散組件(例 如’喷淋頭或複數個孔广在一些實施例中,在沒有什麼 阻礙的情況下,經加熱線6〇1可能引起基板鄰近通道之 部分之溫度的變化’該通道含有該線6〇1β第13圖圖示 本發明之另一實施例,在該另一實施例中,線6〇1定位 於通道317内,該通道317具有氣體擴散組件,該氣體 擴散組件具有複數個開口 315。定位於氣體擴散組件後 方的經加熱線601可能能夠激發氣體物種而不顯著地改 變基板之局部溫度。在詳細實施例中,線經加熱以激發 氣體物種,同時引起小於約10。〇之表面溫度變化。在各 種實施例中,基板表面之溫度的局部變化小於約7 t、5 C或3 C。在特定實施例中,局部溫度變化小於約2、 1°C 或 0.5。(: 〇 19 201243088 線可由任何適合的材料製成,該任何適合的材料能夠 在相對較短的時段内升高至高溫。適合的材料為與反應 性氣體相容的材料。如此說明書及隨附申請專利範圍中 所使用的,用於此方面的術語「相容的」意謂線在標準 溫度及壓力下不會自發地與反應性氣體反應。線之溫度 可能對氣體物種自由基化之程度有影響。舉例而言,氧 可能需要高達約2峨之溫度’而聚合物物種可:僅需 要約300。(:至約⑼代之範圍内的溫度。在_些實施例 中,線能夠被加熱至至少約100(rc、u〇()t:、12卯1、 1300。。、1400。。、1500。。、1600。。、17〇〇。。、ΐ8〇〇。。、 i9〇(TC或测。C之溫度。在各種實施”,線㈣被加 熱至約30(TC至約200(rC之範圍内或約7〇〇χ:至約i4〇〇 °C之範圍内或約800。〇至約i300t:之範圍内的溫度。可 在整個處理中的任一點處調變或開啟及關閉供應至線的 功率。僅對於處理之部分而言,此舉允許線被加熱,從 而產生受激發氣體物種。 線之粗細及長度亦可取決於所使用的材料而變化。用 於線的適合材料之實例包括(但不限於)鎢、组、銀、 釕、鎮、絡、石墨及上述之合金。舉例而言,在氧為正 在自由基化的物種的情況下,可能不希望使用钽或鶴, 因為此專材料對氧敏感且可能引起線之斷裂。在詳細實 施例中,線包含鎢。 取決於用於線中的材料,線可具有壬何適合的每單位 長度之密度。在一些實施例中,線具有大體上均勻的每 20 201243088 單位長度之密度。如此說明書及隨附申請專利範圍中所 使用的’術語「大體上均勻的」意謂線之每單位長度之 密度變化在線之整個長度内不多於20%、1 5%、1 〇〇/。、 5 °/〇、3 °/〇或1 %。然而’可能有利的是在線之整個長度上 改變線的每單位長度之密度。舉例而言,在加熱之後, 線可能傾向於在長度之中間處比在長度之末端處下垂更 嚴重。此處,在線的中間處具有較低每單位長度之密度 之線可提供更一致的製程。然而’在一些實施例中,使 線長度之中間具有較高每單位長度之密度可能更有益 處。 線之形狀亦可取決於諸如(但不限於)所要的離子化 程度及製成線的材料之因素而變化。在一些實施例中, 線為大體上筆直的或大體上線性的。如此說明書及隨附 申請專利範圍中所使用的,術語「大體上筆直的」及「大 體上線性的」意謂線之線性在整個長度内存在小於 1 0 %、5 %、3 %或1 %之偏差。 在一些實施例中,線具有非線性的形狀❶舉例而言, 線可被折疊、成手風琴形狀、成環形或螺旋形。在使用 非線性的線之情況下,在線之末端上提供的張力可能引 起線形狀隨著線加熱而略微改變。改變線之形狀亦可提 供較大表面區域’離子化可發生在該較大表面區域上。 第14圖圖示根據本發明之一或更多實施例的螺旋形線。 返回參閱第3圖’電源可為能夠控制流經線的電流之 任何適合電源。第3圖中所示之電力連接線321具有電 21 201243088 力引線323及張緊裝置325。電力連接線321提供用於 線之機械的且電氣的支撐件,且電力連接線32丨允許將 線置放於氣流之路徑中。將電力連接線3 2丨經由安裝塊 327連接至氣體分配板3〇,該安裝塊327可包括絕緣體, 以將電力引線323及線與氣體分配板電氣隔離。第3圖 之實施例中的線延伸穿過第一前驅物氣體通道且可為個 別線或單一線,該個別線或單一線包覆在第二前驅物氣 體通道周圍。 第6圖圖示本發明之詳細實施例,在該詳細實施例 中’氣體分配板呈ΑΒΑ配置,且線601為單一線,該單 一線沿著兩個第一前驅物氣體埠(Α及Α’)延伸且包覆 在第二前驅物氣體崞B周圍。可在氣體分配板3〇之末 端處提供絕緣材料603,以使得線601不接觸氣體分配 板30。此外,線601未曝露於氣體通道中之部分可為絕 缘的。為便於呈現’已將線601圖示於開放通道317中, 該開放通道3 1 7意謂不具有複數個開口之通道(如第4 圖中所示)。然而’亦可將線6 01置放於複數個開口後方 的通道317内。 在第ό圖中所示的該類型的實施例中,輸入面3〇1處 的電力引線323 (參見第3圖)必須具有相反極性,以 允許電流流動。因此’ 一個電力引線323將為正且另一 個電力引線323為負。此配置可相對容易地設置,其中 單一電源連接至電力引線323中之兩者。單一電源(未 圖示)可包括控制流經線之電流的機構,諸如,電位計。 22 201243088 在第7圖中所示之替代性詳細實施例中,氣體分配板 由AB A配置組成且存在兩個線。兩個線令之每一線沿著 前端第一前驅物埠A及後端第一前驅物氣體埠A,中之一 者延伸。因此,該等線中之每一線需要具有用於在整個 線上供應電流之單獨的電源。此外,每一線將需要第二 電力引線324,以與電源連接,來使電路完整。在一些 實施例中,線沿著第二前驅物氣體埠延伸至第二前驅物 氣體中的受激發物種。 一些實施例之線可為分立的熱線單元之部分。可將熱 線單元經由輸入面中的氣體入口中之一者插入至氣體分 配板30巾。在此等實施例中,將線、相關聯的夾線籍、 電力引線及張緊裝置組合為單一單元。該單元可具有管 狀的或矩形橫截面,且該單元經設定尺寸以安裝氣體分 配板内的氣體通道。熱線單元包括交替的氣體入口(如 第3圖中所示)及排出氣流之開口。此舉允許氣體流經 熱線單元,從而接觸線且自氣體分配板之輸出面排出。 在一些實施例中,氣體分配板30包含複數個狹長的氣 體埠,該複數個狹長的氣體埠基本上按次序由交替的第 月1J驅物氣體A埠及第二前驅物氣體b埠之至少兩個重 複單元組成,該等交替的第一前驅物氣體A埠及第二前 驅物氣體B埠後面接著後端第一前驅物氣體A,埠。換言 之,第一前驅物氣體A埠及第二前驅物氣體B埠之組合 重複至少兩次,第一前驅物氣體A埠及第二前驅物氣體 B埠之該組合可稱為AB單元,之後具有後端第一前驅 23 201243088 物氣體A,埠。第8圖及第9圖圖示此等類型之實施例。 第8圖及第9圖中所示之氣體分配板3〇僅圖示與第一前 驅物氣體Α及第二前驅物氣體Β相關聯之通道317。僅 出於說明性的目的,已省略淨化氣體埠及真空埠。此外, 將通道317中之每一者圖示為不具有第4圖中所見的複 數個開口之開放通道。熟習此項技術者將理解,淨化埠、 真空埠及複數個開口可存在於氣體分配板3〇中。 第8圖具有兩個重複AB單元及後端第一前驅物氣體 蟑A’ ’從而產生ababa配置。因此,每—全循環(基 板穿過氣流之一個往復移動)將產生B之四個層之沉 積。第9圖類似於第8圖之配置,其中添加第三ab單 元。此舉使得氣體分配板具有ABABABA配置。因此, 每一全循J裒將產± B《六個^之沉積。將%端第一前驅 物氣體埠A,包括於此等配置中之每一配置中確保不管 移動開始於氣體分配板30之何側,相對於氣體分配板移 動之基板皆將在遇到第二前驅物氣體埠之前遇到第一前 驅物氣體埠。儘管所示實施例包括兩個或三個重複 單/〇,但熟習此項技術者將理解,在給定氣體分配板3〇 中可存在任何數目之重複AB單元。重複AB單元之數 目可取決於氣體分配板之尺寸而變化。在一些實施例 中’存在範圍為約2個至約128個之AB單元。在各種 實施例中,存在至少約2個、3個、4個、5個、1〇個、 15個、20個、25個、3〇個、35個、4〇個、45個或5〇 個AB單元。此外,熟習此項技術者將理解,此配置僅 24 201243088 為說明性的且氣體分配板可包含任何數目之氣體注入 器。舉例而言,氣體分配板可具有100個重複ab單元^ 之後有或無後端第一氣體埠A,。 在-些實施例中,如第8圖及第9圖中所示,線州 沿著第一前驅物氣體埠中之每一者延伸。線可為單— 線,該單一線捲繞穿過各個第一前驅物氣體埠❶在第$ 圖中,因為存在奇數個第一前驅物氣體埠,所以第-電 力引線324定位於後端第一前驅物氣體A,埠之末端處。 在第9圖中’因為存在偶數個第—前驅物氣體蟑,所以 電力引線323之兩個端子定位於氣體分配板3〇之相同 側。儘管線圖示於第一前驅物氣體埠中,但將理解,線 可沿著第二前驅物氣體埠中之每一者延伸,代替或除第 一前驅物氣體埠中之線之外。此外,類似於第7圖,個 別線可用於前驅物氣體埠中之每一者。當使用個別線 時,必須存在用於每一線之單獨的正電力引線及負電力 引線。 第10圖圖示本發明之另一實施例,在該另一實施例 中’線601安裝於外罩1〇〇〇内。外罩ι〇〇〇可經設定尺 寸以安裝在氣體分配板30之通道3 17内,以便可容易地 添加線601或自氣體分配板30移除線6〇1。外罩1000 可附接至氣體分配板30之輸出面且定位成使得離開前 驅物氣體皡之氣體穿過該外罩1000。外罩亦可包括電氣 引線1 0 1 0 ’該等電氣引線1 〇 1 〇與線60 1電氣連通,以 允許電流流經線601。電氣引線1〇1〇可與定位於氣體分 25 201243088 配板上的電觸點相互作用。舉例而言,電觸點之對(正 觸點及負觸點)可包括於氣體分配板之通道中。此等電 觸點對中之每一者可個別地施加功率或作為一或更多單 元施加功率。當將外罩1000插入至氣體分配板之通道 317中時,外罩上的電氣引線1〇1〇形成與氣體分配板上 的電觸點之電氣連接’以便電流可流經線丨。將線6〇 j 併入至外罩1000中允許自處理腔室容易地移除線6〇1, 以進行更換或清潔。 將線601維持在選定的張力下或張力範圍内。加熱線 將使該線膨脹且下垂《為補償此下垂,可包括在第j i 圖之等角橫截面圖中圖示的張緊裝置325β張緊裝置325 連接至線601,以在該線601上提供張力。夾線箝111〇 固持與電力引線323連接的線601之第一末端(未圖示 接觸)。襯套1130連接張緊裝置325與氣體埠,且襯套 1130可提供氣密密封,以便流動至氣體埠中的前驅物氣 體不能夠流動至張緊裝置主體中。彈簧112〇定位於襯套 113〇與夾線箝1110之間,以在線6〇1上提供張力。儘 e圖不且描述彈簧112〇,但應理解可採用其他張緊機 構。 張緊裝置325能夠提供足夠張力來防止線之顯著下 垂此外,張緊裝置3 2 5經配置以在線上提供比引起線 之斷裂所需要的張力更小之張力。如此說明書及隨附申 請專利範圍中所使用的,術語「顯著下垂」意謂存在小 於4 〇.1或小於約0.05或小於約〇 〇1或小於約〇 〇〇5或 26 201243088 小於約0.0025之下垂與長度的比率。在各種實施例中, 下垂在40G mm長度内小於約4 mm,或在伽聽長度 内小於約3 或在400 _長度内小於約2 _,或 在40〇mm長度内小於約! mm,或在3〇〇_長度内小 於約4 mm,或在300 mm長度内小於約3mm,或在3〇〇 mm長度内小於約2 mm,或在3〇〇 mm長度内小於約j mm»彈簧可用作張緊機構,因為材料及彈簧常數可經調 整以匹配特定線參數(例如,材料、長度、粗細)之要 求。 本發明之額外實施例係針對處理基板之方法。鄰近本 文所述之氣體分配30橫向移動基板。可在氣體分配板 下方或者上方移動基板。將第一前驅物氣體自第一前驅 物氣體埠輸送至基板表面。將第二前驅物氣體自第二前 驅物氣體埠輸送至基板表面。將線定位於第一前驅物氣 體埠及第二前驅物氣體蜂中之—或更多者内。將功率施 加於線,以使線之溫度升高。將線升高至足夠高的溫度, 以引起經過線的氣體物種之激發。受激發物種與基板表 面反應。 本發明之另一實施例係針對處理基板之方法。鄰近氣 體分配板橫向移動基板。氣體分配板具有複數個狹長的 氣體埠,該複數個狹長的氣體埠基本上按次序由前端第 一前驅物氣體埠'第二前驅物氣體埠及後端第—前驅物 氣體埠組成。使基板之表面按次序順序地與來自前端第 -前驅物氣體璋之第一前驅物氣流、來自第二前驅物氣 27 201243088 體槔之第二前驅物氣流及來自後端第一前驅物氣體埠之 第一前驅物氣流接觸。在氣體接觸基板之表面之前,藉 由將氣體曝露至氣流之路徑内的高溫線,來激發來自第 一前驅物氣體及第二前驅物氣體中的任一者或兩者之氣 體物種。 本發明之實施例可併入具有單一氣體分配板的系統 中。舉例而5,一或更多實施例用於迴轉料架類型處理 系統中’在該迴轉料架類型處理系統中,在鄰近一或更 多氣體分配板的圓形或橢圓形路徑中運輸一或更多基 板。此舉可對高產量操作尤其有益。可併入所述氣體分 配板的適合設備可為任何形狀且不限於線性或圓形處理 路徑。熟習此項技術者將理解此情況,在該情況下,可 採用此專氣體分配板。 儘管本文已參閱特定實施例描述本發明,但應理解此 等實施例僅說明本發明之原理及應用此項技術者 將顯而易1,可對本發明之方法及設備進行|種修改及 改變而不脫離本發明之精神及範冑。因必匕,意欲使本發 明包括在隨附申請專利範圍及隨附申請專利範圍之等效 物的範疇内之修改及改變。 【圖式簡單說明】 因此,可獲得及詳細理解本發明之上述特徵結構之方 式’即上文簡要概述之本發明之更特定描述可參照實施 例進行,某些實施例圖示於附加圖式中。然而,應注意, 28 201243088 3玄等附圖僅圖不本發明之典型實施例,且因此不欲視為 本發明之鳴之限制’因為本發明可允許其他同等有效 之實施例。 第1圖圖不根據本發明之一或更多實施例的原子層沉 積腔室之示意性橫截面側視圖; 第2圖圖不根據本發明之一或更多實施例的基座之透 視圖; 第3圖圖不根據本發明之一或更多實施例的氣體分配 板之透視圖; 第4圖圖不根據本發明之一或更多實施例的氣體分配 板之前視圖; 第5圖圖不根據本發明之一或更多實施例的氣體分配 板之前視圖; 第ό圖圖不根據本發明之一或更多實施例的氣體分配 板之前視圖; 第7圖圖不根據本發明之一或更多實施例的氣體分配 板之前視圆; 第8圖圖示根據本發明之一或更多實施例的氣體分配 板之前視圖; 第9圖圖示根據本發明之一或更多實施例的氣體分配 板之前視圖; 第1 〇圖圓示根據本發明之一或更多實施例’與氣體分 配板一起使用的線外罩之透視圖; 第11圖圖示根據本發明之一或更多實施例的張緊裝 29 201243088 置之等角第12 婕戠 面圖; 配板之C:根據本發明之-成更多實施一氣魏分 第13圖圖 配板之橫戴面 示根據本發明之一或更多實施例的氣體分 圓:以及 第14圖圖示根據本發明之一或更多實施例的氣體分 配板之通道的前視圖。 【主要元件符號說明】 10 鎖定腔室 15 隔離閥 20 處理腔室 30 氣體分配板 60 基板 61 表面 65 搬運梭 66 基座 67 頂表面 68 凹部 70 執 90 輻射熱源 100 沉積系統 120 前驅物注入器 125 氣體埠 130 注入器 135 氣體埠 140 注入器 145 氣體谭 150 泵送系統 155 真空埠 160 分隔物 198 箭頭 301 輸入面 303 輸出面 305 氣體輸入端 307 氣體輸入端 309 輸入端 311 埠 313 氣體埠 30 201243088 315 開口 3 17 通道 3 18 開口 321 連接線 323 電力引線 324 電力引線 325 張緊裝置 327 安裝塊 350 箭頭 601 線 603 絕緣材料 1000 外罩 1010 電氣引線 1110 炎線箱· 1120 彈簧 1130 襯套 A 前端第一前驅物 氣A’ 後端第一前驅物氣 體埠 體埠 B 第二前驅物氣體埠 P 淨化氣體 V 真空埠 31Supplier of Industries, Inc. The frequency at which the power of the plasma is generated can be any known and suitable frequency. For example, the plasma frequency can be 2 MHz, 13.56 MHz, 40 MHz, or 6 〇, but other frequencies may also be beneficial. System 100 further includes a pumping system 150 that is coupled to processing chamber 20. The pumping system 150 is typically configured to discharge a gas stream through a process chamber 2 〇β vacuum 埠 155 between each gas enthalpy via - or more vacuum 蟑 155 to vent the gas stream after it has reacted with the surface of the substrate The chamber 2〇 is processed and the contamination between the 201243088 precursors is further limited. System 100 includes a plurality of dividers 160 disposed between each of the processing chambers 20. The lower portion of each of the partitions extends proximate to the first surface 61 of the substrate 60. For example, it is about 〇·5 mm or more than 5 mm from the first surface 61. In this manner, the spacer 160 is spaced apart from the substrate surface by a distance sufficient to allow the gas streams to flow around the lower portion to the vacuum crucible 155 after the gas stream reacts with the substrate surface. Arrow 198 indicates the direction of the airflow. Since the separator 160 operates as a physical barrier to airflow, the spacers 160 also limit the contamination between the precursors. The illustrated arrangements are merely illustrative and are not to be considered as limiting the scope of the invention. Those skilled in the art will appreciate that the illustrated gas distribution system is only one possible dispensing system and that other types of showerheads can be employed. The substrate 6 is transported (e.g., by a robot) to the load lock chamber: 10 and placed on the transport shuttle 65. The isolation valve Η is opened - the rail 70 moves the transport shuttle 65. Once the substrate 60 has entered process = 20, the isolation valve 15 is closed, thereby sealing the process chamber 2A. The handling shuttle 65 is then moved through the processing chamber 20 for processing. In one embodiment, the transport, transport plate 65 is moved through a linear path to the substrate 6. Moving through the processing chamber 2〇, the substrate 6 is repeatedly exposed to the precursors of the compound A from the gas and the gas 埠 135 135 gas and the gas meter drive 'and the self + 135 The gas 埠145 is injected into the 201243088 purge gas. The purge gas is injected to expose the substrate surface 6i to the next precursor. <Pre-release of the unreacted material from the precursor. After each exposure to various gas streams (e.g., precursor or purge gas), the gas stream is discharged through the vacuum crucible 155 by the pumping system. The vacuum crucible can be disposed on each side of the gas material, so the gas flow is discharged through the vacuum crucibles 155 on both sides. Therefore, the air flow flows from the respective gas bees vertically downward to the surface 61 of the substrate 60, on the entire substrate surface, and The flow around the lower portion of the divider 160 is %, and finally flows toward the JL to the vacuum crucible 155. In this manner, each gas can be evenly aligned with the arrow 198 on the entire substrate surface 6 to indicate the direction of the gas flow. The substrate 6 can also be exposed. Rotation to various gas flows. Rotation of the substrate can be used to prevent strip formation in the formed layer. The rotation of the substrate can be a continuous or timed step. The extent to which the substrate surface 61 is exposed to each gas can be The flow rate of each gas from the gas enthalpy and the rate of movement of the substrate 6 。. In each implementation, the flow rate of each gas is configured to be removed from the substrate surface 61 The precursor, the width between each separator, the number of gas imperfections disposed on the processing chamber 2, and the number of times the substrate reciprocates can also determine the extent to which the substrate surface 61 is exposed to various gases. The amount and quality of the film can be optimized by varying the factors involved above. In another embodiment, system 100 can include precursor injector 12 and precursor injector 130 without a purge gas injector 14 Therefore, as the substrate 60 moves through the processing chamber 2, the substrate surface "will alternate 12 201243088 to the precursor of the compound A and the precursor of the compound b without being exposed to the precursor of the compound A and the compound b. Purified gas between the two of the former. The embodiment shown in Figure 1 has a gas distribution plate 3〇 above the substrate. Although the embodiment has been described and illustrated with respect to this upright orientation, it will be appreciated that the direction of the reverse direction is also possible. In this case, the first surface 61 of the substrate 60 will face downward when the airflow directed upward toward the substrate is directed. In one or more embodiments, at least one radiant heat source 90 is positioned to heat the second side of the substrate. The gas distribution plate 30 can be of any suitable length depending on the number of layers deposited onto the substrate surface 61. Some embodiments of the gas distribution plate are intended for high throughput operation. In this high throughput operation, the substrate is moved from one end of the gas distribution plate to the second end of the gas distribution plate in one direction. During this single pass, the complete film is formed on the surface of the substrate based on the number of gas injectors in the gas distribution plate. In some embodiments, the gas distribution plate has more injectors than are required to form a complete film. Individual injectors can be controlled such that some injectors are inactive or only purge gas. For example, if the gas distribution plate has one hundred injectors for each of the cartridge A and the precursor B, but only 50 injectors are required, then 5 injectors can be deenergized. These deactivated injectors can be gathered or dispersed throughout the gas distribution plate. Further, although the drawings illustrate the first precursor gas A and the second precursor gas B', it should be understood that the embodiment of the invention is not limited to a gas distribution plate having only two different precursors. For example, there may be a second Yucha C and a fourth precursor D dispersed throughout the gas distribution plate of the 201204388 body. This will enable the skilled person to produce membranes with mixed or stacked layers. In some embodiments, the transport shuttle 65 is a base 66 for carrying a substrate. Typically, base 66 is a carrier that assists in forming a uniform temperature across the substrate. The pedestal 66 is movable between the load lock chamber 1 〇 and the process chamber 20 in two directions (relative to the arrangement of the ith diagram, left to right and from the dead, right to left). The squeezing 曰_^_ intertwining base 66 has a surface for carrying the substrate 60. The pedestal 66 can be a forced 0 thermal pedestal so that the substrate 60 can be heated for processing. As an example, the pedestal 66 can be heated by a radiant heat source 9〇, a heating plate, a resistive coil or other heating means disposed beneath the susceptor 66. In another embodiment, as shown in Figure 2, the top surface 67 of the pedestal 66 includes a recess 68 that is configured to receive the substrate 6''. The pedestal 66 is typically thicker than the thickness of the substrate such that there is a pedestal material beneath the substrate. In a detailed embodiment, the recess 68 is configured such that when the substrate 60 is disposed within the recess 68, the first surface 61 of the substrate 6 is aligned with the top surface 67 of the base 66. In other words, the recess 68 of some embodiments is configured such that when the substrate 60 is disposed in the recess 68, the first surface 61 of the substrate 6〇 does not protrude above the top surface 67 of the base 66. Figures 3 through 9 illustrate a gas distribution plate 30 in accordance with various embodiments of the present invention. The gas distribution plate 30 includes an input surface 301 and an output surface 303. The input face 301 (shown in Figure 3) has a first precursor gas input 3〇5 for receiving a flow of the first precursor gas A and a second for receiving a flow of the second precursor gas B Precursor gas input 201243088 3 07 » Input face 301 also has one or more input ends 309 for purge gas and a port 311 for connection to one or more vacuum ports. Although the configuration shown in FIG. 3 has two first precursor gas input ends 305, one second precursor gas input end 3〇7, and two purge gas input ends 309 visible, those skilled in the art will It is understood that each of these components may be present more or less individually or in combination. The particular embodiment illustrated in Figures 3 through 9 can be used with an opposed deposition system in which a substrate reciprocates adjacent to a gas distribution plate to deposit a plurality of layers. However, it should be understood that this is only one embodiment, and the invention is not limited to the opposite deposition technique. Those skilled in the art will appreciate that a single large gas deposition plate having multiple sets of precursor injectors can be employed. The output face 3〇3 shown in Figs. 4 to 7 has a plurality of elongated gas crucibles 313. Gas crucible 313 is configured to direct airflow to the substrate, which may be positioned adjacent to output face 303. The elongated gas crucible 313 includes at least one first precursor gas crucible and at least one second precursor gas crucible. Each of the first precursor gases is in kinetic communication with the first precursor gas input 305 / jaw to allow the first precursor stream to pass through the gas distribution plate 30. Each of the second precursor gases is in flow communication with the second precursor gas input 307 to allow the second precursor stream to pass through the gas distribution plate 3 . As shown in FIG. 4, the gas crucible can include a plurality of openings 315 in the passage 317. Channel 317 is a groove in the output face of the gas distribution plate. The gas flows out of (5) 315 315 and is guided to the surface of the substrate by the wall of the passage 317. Although the opening 315 is illustrated as being circular, it should be understood that the opening 315 can be any suitable shape of the shape of the following: 20120088 Any suitable shape includes, but is not limited to, squares, rectangles, and triangles. The number and size of the openings 315 can also be varied to more or less mount the openings in each of the channels 317. In the detailed embodiment illustrated in Figure 4, the "purified gas, first precursor gas 埠 and second precursor gas 埠(B) comprise a plurality of openings positioned within the channel. The opening 3 1 8 associated with the vacuum port is on the output face 303 of the gas distribution plate 30 rather than in the channel 3丨7, but the opening 318 can also be positioned within the channel. The particular embodiment illustrated in Figure 4 has a combination of elongated gas enthalpy. The combination of the elongated gas enthalpy will provide a specific sequence of gas flow to the substrate surface as the substrate moves vertically along the arrow 35 至 to the elongated gas enthalpy. . Although the substrate is described as being moving, those skilled in the art will appreciate that the substrate can remain stationary and the gas distribution plate 3 can be moved. The relative movement between the substrate and the gas distribution plate 30 is referred to as substrate movement. The substrate moving vertically to the elongated gas crucible will be subjected to the purge gas stream, the first flood gas A stream, the purge gas stream, the second precursor gas B stream, the purge gas stream, the first precursor gas A, in order, Flow and purge gas flow "IL. Between each of the gas streams is a vacuum enthalpy that directs the gas stream to the processing chamber. This produces a flow pattern according to arrow 198 shown in the figure. In a particular embodiment, the gas distribution plate consists essentially of the front end first precursor gas 埠A, the second precursor gas 埠B, and the rear end first precursor gas 埠A'. The term "consisting essentially of" as used in this context and in the scope of the accompanying claims means that the gas distribution plate 201243088 does not include any additional gas helium for the reactive gas. The ruthenium for non-reactive gases (e.g., 'purification gas) and vacuum can be dispersed throughout while still being within the basic composition of each. For example, the gas distribution plate 3 can have eight vacuums*阜ν and four purifications (10) basically consisting of the front end first precursor gas 埠A, the second precursor gas 埠5, and the rear end precursor gas 埠A, composition. An embodiment of this kind may be referred to as an aba configuration. The use of a helium configuration ensures that the substrate moving from either direction will encounter the first precursor gas gossip before encountering the second precursor gas B珲. A single film of Composition B will be produced each time through the entire gas distribution plate 30. Here, the two first precursor gases A埠 surround the second precursor gas B埠 so that the substrate moving from the top to the bottom of the figure (relative to the gas distribution plate) will encounter the front first reactive gas in sequence. A, a second reactive gas B, and a back end first reactive gas A, thereby producing a complete layer formed on the substrate. The substrate returned along the same path will encounter a reverse-human sequence of reactive gases, resulting in two layers in each full cycle. The substrate reciprocating across the gas distribution plate will be exposed to the following pulse sequence: AB AAB AAB (AAB) n ... AABA, thereby forming a uniform film of composition B. The first precursor gas A exposed to the end of the sequence is not critical because there is no subsequent action of the second precursor gas B. Those skilled in the art will appreciate that although the film composition is referred to as B, the film composition is actually a product of the surface reaction product of reactive gas a and reactive gas B' and is described using only b for convenience. Membrane 17 201243088 Figure 5 illustrates another detailed embodiment of the gas distribution plate 30, as opposed to the gas distribution plate 30 of Figure *, in the gas distribution plate 3 of Figure 5, for the front front first precursor The passage of the gas 埠8 and the rear-stage precursor gas 埠A' is completely open, and there are a plurality of openings 3丨5 in the channel 317 in the gas distribution plate μ of Fig. 4. Moreover, this embodiment is illustrated in a ΑΒΑ configuration but can more easily include multiple sets of helium gas injectors across any desired number. For example, the gas distribution plate can have 100 sets of helium gas injectors, each of which is individually controlled and individually containing a heat line, a tensioning device, and a power source. The gas distribution plate 30 shown in the figure includes a line 601 to excite gas species 'this line 601 can be referred to as a hot line. Line 601 is positioned in either or both of the first precursor gas enthalpy and the second precursor gas enthalpy. The wire is connected to a power lead 323 (shown in Figure 3) that is configured to cause current to flow through line 601 to heat the line 601 » to heat the line 6〇j to a high temperature to excite the adjacent line 601 Species in the passing gas. The purpose of the line is to generate free radical species in the gas rather than creating an increase in temperature in the substrate. The wire can be placed at a location where there is no direct exposure to the surface of the substrate that still causes the formation of free radical species in the gas. For example, if line 601 is placed in a second precursor gas helium, the line will excite some of the molecules in the second precursor gas. In the excited state, the molecules have higher energy and are likely to react with the substrate surface at a given processing temperature. Placement of the wire may have an effect on the extent to which the free radical species contact the substrate. 18 201243088 Placement of the wire too far from the substrate allows for a greater number of free radical species to become passivated before contacting the substrate surface, as compared to nearer placement. Free radical species can become passivated by contact with other free radicals, molecules in the gas stream, and gas distribution plates. However, placing the wire further away from the substrate can help prevent the wire from heating the surface of the substrate while still producing free radical species in the gas. Line 60 1 can be placed sufficiently close to the surface of the substrate to ensure that the excited species is present long enough to contact the surface without causing significant changes in the local temperature of the substrate. As used in this specification and the scope of the accompanying application, the term "significant change in local temperature" means that the portion of the adjacent line of the substrate does not have a temperature increase greater than about 1 。. Figure j 2 illustrates a side view of an embodiment of the invention in which line 6〇1 is positioned within channel 3 17. This embodiment does not have a gas diffusion assembly (e.g., 'a showerhead or a plurality of apertures. In some embodiments, the temperature of the portion of the substrate adjacent to the channel may be caused by the heater wire 6〇1 without any hindrance. 'The channel contains the line 6〇1β. Figure 13 illustrates another embodiment of the invention. In this alternative embodiment, the line 〇1 is positioned within a channel 317 having a gas diffusion assembly, the gas The diffusion assembly has a plurality of openings 315. The heated wire 601 positioned behind the gas diffusion assembly may be capable of exciting the gas species without significantly altering the local temperature of the substrate. In a detailed embodiment, the wires are heated to excite the gas species while causing A surface temperature change of less than about 10. In various embodiments, the local variation in temperature of the substrate surface is less than about 7 t, 5 C, or 3 C. In a particular embodiment, the local temperature change is less than about 2, 1 ° C. Or 0.5. (: 〇19 201243088 The wire can be made of any suitable material that can be raised to a high temperature in a relatively short period of time. Suitable materials are A gas compatible material. The term "compatible" as used in this specification and the accompanying claims is intended to mean that the line does not spontaneously react with reactive gases at standard temperatures and pressures. The temperature of the line may have an effect on the degree of radicalization of the gas species. For example, oxygen may require temperatures of up to about 2 ' and polymer species may: only need about 300. (: to about (9) generations Temperature. In some embodiments, the wire can be heated to at least about 100 (rc, u〇()t:, 12卯1, 1300.., 1400.., 1500.., 1600.., 17〇 〇, ΐ8〇〇., i9〇 (TC or measured. C temperature. In various implementations), line (four) is heated to about 30 (TC to about 200 (rC range or about 7 〇〇χ: To a temperature in the range of about i4 〇〇 ° C or about 800 〇 to about i300 t: The power supplied to the line can be modulated or turned on and off at any point in the entire process. In part, this allows the wire to be heated, resulting in a species of excited gas. Thickness and length of the wire Depending on the materials used, examples of suitable materials for the wire include, but are not limited to, tungsten, group, silver, ruthenium, ruthenium, ruthenium, graphite, and alloys thereof. For example, in the case of oxygen In the case of a free radicalized species, it may not be desirable to use a crucible or a crane because this specialty material is sensitive to oxygen and may cause breakage of the wire. In a detailed embodiment, the wire contains tungsten. Depending on the material used in the wire, The wire may have any suitable density per unit length. In some embodiments, the wire has a substantially uniform density per unit length of 201243088. The terminology used in the specification and the accompanying claims is generally "Uniform" means that the density change per unit length of the line is not more than 20%, 1 5%, 1 〇〇/ over the entire length of the line. , 5 ° / 〇, 3 ° / 〇 or 1 %. However, it may be advantageous to vary the density per unit length of the line over the entire length of the line. For example, after heating, the wire may tend to sag more severely in the middle of the length than at the end of the length. Here, a line having a lower density per unit length in the middle of the line provides a more consistent process. However, in some embodiments, it may be more beneficial to have a higher density per unit length in the middle of the line length. The shape of the wire may also vary depending on factors such as, but not limited to, the desired degree of ionization and the material from which the wire is made. In some embodiments, the lines are generally straight or substantially linear. As used in this specification and the scope of the accompanying claims, the terms "substantially straight" and "substantially linear" mean that the linearity of the line is less than 10%, 5%, 3% or 1% over the entire length. Deviation. In some embodiments, the wire has a non-linear shape. For example, the wire can be folded, accordion shaped, circular or spiral. In the case of nonlinear lines, the tension provided on the end of the wire may cause the shape of the wire to change slightly as the wire heats up. Changing the shape of the line can also provide a larger surface area where ionization can occur. Figure 14 illustrates a spiral line in accordance with one or more embodiments of the present invention. Returning to Figure 3, the power supply can be any suitable power source capable of controlling the current flowing through the line. The power connection line 321 shown in Fig. 3 has a power 21 201243088 force lead 323 and a tensioning device 325. The power connection line 321 provides a mechanical and electrical support for the line, and the power connection line 32丨 allows the line to be placed in the path of the air flow. The power connection line 3 2丨 is connected to the gas distribution plate 3 via the mounting block 327, which may include an insulator to electrically isolate the power leads 323 and the wires from the gas distribution plate. The line in the embodiment of Figure 3 extends through the first precursor gas passage and may be a single line or a single line that is wrapped around the second precursor gas passage. Figure 6 illustrates a detailed embodiment of the present invention in which the 'gas distribution plate is in a ΑΒΑ configuration and the line 601 is a single line along the two first precursor gases Α (Α and Α ') extends and is wrapped around the second precursor gas 崞B. The insulating material 603 may be provided at the end of the gas distribution plate 3'' so that the wire 601 does not contact the gas distribution plate 30. Additionally, portions of line 601 that are not exposed to the gas passage may be insulative. To facilitate presentation 'the line 601 has been illustrated in the open channel 317, the open channel 317 means a channel that does not have a plurality of openings (as shown in Figure 4). However, line 601 can also be placed in channel 317 behind a plurality of openings. In this type of embodiment shown in the figure, the power leads 323 (see Figure 3) at the input face 3〇1 must have opposite polarities to allow current to flow. Thus one power lead 323 will be positive and the other power lead 323 will be negative. This configuration can be relatively easily set up with a single power supply connected to both of the power leads 323. A single power source (not shown) may include a mechanism to control the current flowing through the line, such as a potentiometer. 22 201243088 In an alternative detailed embodiment shown in Figure 7, the gas distribution plate is composed of an AB A configuration and there are two wires. Each of the two lines extends along one of the front end first precursor 埠A and the rear end first precursor gas 埠A. Therefore, each of the lines needs to have a separate power source for supplying current throughout the line. In addition, each line will require a second power lead 324 to be connected to the power source to complete the circuit. In some embodiments, the line extends along the second precursor gas enthalpy to the excited species in the second precursor gas. The wires of some embodiments may be part of a separate hot wire unit. The hot wire unit can be inserted into the gas distribution plate 30 via one of the gas inlets in the input face. In these embodiments, the wires, associated clips, power leads, and tensioning devices are combined into a single unit. The unit may have a tubular or rectangular cross section and the unit is sized to mount a gas passage within the gas distribution plate. The hot wire unit includes alternating gas inlets (as shown in Figure 3) and openings for the exhaust gas stream. This allows gas to flow through the hot wire unit, thereby contacting the wire and exiting the output face of the gas distribution plate. In some embodiments, the gas distribution plate 30 includes a plurality of elongated gas crucibles that are substantially in sequence from at least the first month of the first precursor gas A and the second precursor gas Two repeating units are formed, and the alternating first precursor gas A and second precursor gas B are followed by the rear first precursor gas A, 埠. In other words, the combination of the first precursor gas A埠 and the second precursor gas B埠 is repeated at least twice, and the combination of the first precursor gas A埠 and the second precursor gas B埠 may be referred to as an AB unit, and thereafter has Back-end first precursor 23 201243088 Gas A, 埠. Figures 8 and 9 illustrate embodiments of these types. The gas distribution plate 3 shown in Figs. 8 and 9 only shows the passage 317 associated with the first precursor gas enthalpy and the second precursor gas enthalpy. Purified gas helium and vacuum helium have been omitted for illustrative purposes only. In addition, each of the channels 317 is illustrated as an open channel that does not have the plurality of openings seen in Figure 4. Those skilled in the art will appreciate that purging enthalpy, vacuum crucible, and a plurality of openings may be present in the gas distribution plate 3〇. Figure 8 has two repeating AB units and a back end first precursor gas 蟑A' ' resulting in an ababa configuration. Therefore, each full cycle (a reciprocating movement of the substrate through the gas stream) will result in the deposition of four layers of B. Figure 9 is similar to the configuration of Figure 8, in which a third ab unit is added. This allows the gas distribution plate to have an ABABABA configuration. Therefore, each full-scale J will produce ± B "six ^ deposits. Passing the % end first precursor gas 埠A, including in each of these configurations, ensures that the substrate moving relative to the gas distribution plate will encounter the second, regardless of the side of the gas distribution plate 30 from which the movement begins. The precursor gas 埠 is encountered before the first precursor gas 埠. Although the illustrated embodiment includes two or three repeats of single/twist, those skilled in the art will appreciate that there may be any number of repeating AB units in a given gas distribution plate 3〇. The number of repeating AB units may vary depending on the size of the gas distribution plate. In some embodiments, there are from about 2 to about 128 AB units. In various embodiments, there are at least about 2, 3, 4, 5, 1〇, 15, 20, 25, 3〇, 35, 4〇, 45, or 5〇 AB units. Moreover, those skilled in the art will appreciate that this configuration is only 24 201243088 is illustrative and the gas distribution plate can include any number of gas injectors. For example, the gas distribution plate can have 100 repeating ab units ^ with or without a back end first gas 埠A. In some embodiments, as shown in Figures 8 and 9, the line states extend along each of the first precursor gases. The line may be a single-wire, the single wire is wound through each of the first precursor gases. In the Figure #, because there are an odd number of first precursor gases, the first power lead 324 is positioned at the back end. A precursor gas A, at the end of the crucible. In Fig. 9, the two terminals of the power lead 323 are positioned on the same side of the gas distribution plate 3 because there are an even number of first-precursor gases. Although the line is illustrated in the first precursor gas helium, it will be understood that the line may extend along each of the second precursor gas helium, in place of or in addition to the line in the first precursor gas helium. Furthermore, similar to Figure 7, individual lines can be used for each of the precursor gases. When using individual lines, there must be separate positive and negative power leads for each line. Figure 10 illustrates another embodiment of the present invention in which the 'line 601 is mounted within the housing 1'. The cover ι can be set to fit within the passage 3 17 of the gas distribution plate 30 so that the wire 601 can be easily added or removed from the gas distribution plate 30. The outer cover 1000 can be attached to the output face of the gas distribution plate 30 and positioned such that gas exiting the precursor gas enthalpy passes through the outer cover 1000. The housing may also include electrical leads 1 0 1 0 '. These electrical leads 1 〇 1 电气 are in electrical communication with line 60 1 to allow current to flow through line 601. The electrical lead 1〇1〇 interacts with the electrical contacts located on the gas distribution board 2012 2012888. For example, pairs of electrical contacts (positive contacts and negative contacts) can be included in the channels of the gas distribution plate. Each of the pairs of electrical contacts can individually apply power or apply power as one or more cells. When the outer cover 1000 is inserted into the passage 317 of the gas distribution plate, the electrical leads 1〇1〇 on the outer cover form an electrical connection with the electrical contacts on the gas distribution plate so that current can flow through the turns. Incorporating the wire 6〇 j into the outer cover 1000 allows the wire 6〇1 to be easily removed from the processing chamber for replacement or cleaning. Line 601 is maintained at a selected tension or tension range. The heating wire will cause the wire to expand and sag "to compensate for this sag, which may include the tensioning device 325 beta tensioning device 325 illustrated in the isometric cross-sectional view of the ji diagram connected to line 601 for the line 601 Provide tension. The wire clamp 111 固 holds the first end (not shown) of the wire 601 connected to the power lead 323. The bushing 1130 connects the tensioning device 325 with the gas imperfection, and the bushing 1130 provides a hermetic seal so that the precursor gas flowing into the gas crucible cannot flow into the tensioning device body. The spring 112 is positioned between the bushing 113A and the wire clamp 1110 to provide tension on the wire 6〇1. The spring 112〇 is not described, but it should be understood that other tensioning mechanisms may be employed. The tensioning device 325 is capable of providing sufficient tension to prevent significant sagging of the wire. Additionally, the tensioning device 325 is configured to provide a tension on the wire that is less than the tension required to cause the wire to break. As used in this specification and the scope of the accompanying claims, the term "significantly sag" means that there is less than 4 〇.1 or less than about 0.05 or less than about 〇〇1 or less than about 或5 or 26 201243088 less than about 0.0025. The ratio of sagging to length. In various embodiments, the sag is less than about 4 mm over a length of 40 Gmm, or less than about 3 within a gamma length or less than about 2 _ over a length of 400 _, or less than about within a length of 40 〇 mm! Mm, or less than about 4 mm in length, or less than about 3 mm in length of 300 mm, or less than about 2 mm in length of 3 mm, or less than about j mm in length of 3 mm » Springs can be used as tensioning mechanisms because material and spring constants can be adjusted to match specific line parameters (eg, material, length, thickness). Additional embodiments of the invention are directed to methods of processing substrates. The substrate 30 is laterally moved adjacent to the gas distribution 30 described herein. The substrate can be moved below or above the gas distribution plate. The first precursor gas is delivered from the first precursor gas gas to the surface of the substrate. A second precursor gas is delivered from the second precursor gas to the substrate surface. The line is positioned within - or more of the first precursor gas enthalpy and the second precursor gas bee. Power is applied to the wire to raise the temperature of the wire. The line is raised to a temperature high enough to cause excitation of the gas species passing through the line. The excited species reacts with the surface of the substrate. Another embodiment of the invention is directed to a method of processing a substrate. The substrate is moved laterally adjacent to the gas distribution plate. The gas distribution plate has a plurality of elongated gas enthalpy consisting essentially of the front first precursor gas 埠 'second precursor gas 埠 and the back end first precursor gas 埠 in order. Having the surface of the substrate sequentially in sequence with the first precursor gas stream from the front-end precursor gas, the second precursor gas stream from the second precursor gas 27 201243088, and the first precursor gas from the back end The first precursor is in contact with the gas stream. The gas species from either or both of the first precursor gas and the second precursor gas are excited by exposing the gas to a high temperature line in the path of the gas stream before the gas contacts the surface of the substrate. Embodiments of the invention may be incorporated into a system having a single gas distribution plate. For example, 5, one or more embodiments are used in a rotary rack type processing system in which a transport in a circular or elliptical path adjacent one or more gas distribution plates is carried out in the rotary rack type processing system More substrates. This can be especially beneficial for high throughput operations. Suitable devices that can be incorporated into the gas distribution plate can be of any shape and are not limited to linear or circular processing paths. This will be understood by those skilled in the art, in which case the gas distribution plate can be used. Although the present invention has been described with reference to the specific embodiments of the present invention, it is understood that the embodiments of the present invention will be apparent to those skilled in the art and that the method and apparatus of the present invention may be modified and changed. Without departing from the spirit and scope of the invention. Modifications and variations are intended to be included within the scope of the appended claims and the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The manner in which the above-described features of the present invention can be obtained and understood in detail, that is, the more detailed description of the present invention briefly described above may be made with reference to the embodiments, and some embodiments are illustrated in additional drawings. in. It is to be noted, however, that the drawings are not to be construed as a limitation 1 is a schematic cross-sectional side view of an atomic layer deposition chamber not according to one or more embodiments of the present invention; FIG. 2 is a perspective view of a susceptor not according to one or more embodiments of the present invention 3 is a perspective view of a gas distribution plate not according to one or more embodiments of the present invention; FIG. 4 is a front view of a gas distribution plate not according to one or more embodiments of the present invention; A front view of a gas distribution plate not according to one or more embodiments of the present invention; a second view of a gas distribution plate according to one or more embodiments of the present invention; FIG. 7 is not according to one of the present inventions The gas distribution plate of the more or more embodiments is circumscribed; FIG. 8 illustrates a front view of the gas distribution plate according to one or more embodiments of the present invention; FIG. 9 illustrates one or more embodiments in accordance with the present invention. Front view of a gas distribution plate; FIG. 1 is a perspective view of a wire cover for use with a gas distribution plate in accordance with one or more embodiments of the present invention; FIG. 11 illustrates one or more of the present invention in accordance with the present invention. Tensioning device of the embodiment 29 201243088 An equal-angled 12th plan view; a plate C: according to the present invention - a more complete implementation of the gas distribution, Figure 13 is a cross-sectional view of the veneer showing gas according to one or more embodiments of the present invention. Circle: and Figure 14 illustrates a front view of a passage of a gas distribution plate in accordance with one or more embodiments of the present invention. [Main component symbol description] 10 Locking chamber 15 Isolation valve 20 Processing chamber 30 Gas distribution plate 60 Substrate 61 Surface 65 Handling shuttle 66 Base 67 Top surface 68 Recess 70 Performing 90 Radiant heat source 100 Deposition system 120 Precursor injector 125 Gas 埠 130 Injector 135 Gas 埠 140 Injector 145 Gas Tan 150 Pumping System 155 Vacuum 埠 160 Separator 198 Arrow 301 Input Face 303 Output Face 305 Gas Input 307 Gas Input 309 Input 311 埠 313 Gas 埠 30 201243088 315 opening 3 17 channel 3 18 opening 321 connecting line 323 power lead 324 power lead 325 tensioning device 327 mounting block 350 arrow 601 line 603 insulation material 1000 housing 1010 electrical lead 1110 inflammation box 1120 spring 1130 bushing A front end first Precursor gas A' rear end first precursor gas 埠 body B second precursor gas 埠P purge gas V vacuum 埠 31