Movatterモバイル変換


[0]ホーム

URL:


TW200839468A - Holographic display device - Google Patents

Holographic display device
Download PDF

Info

Publication number
TW200839468A
TW200839468ATW96140511ATW96140511ATW200839468ATW 200839468 ATW200839468 ATW 200839468ATW 96140511 ATW96140511 ATW 96140511ATW 96140511 ATW96140511 ATW 96140511ATW 200839468 ATW200839468 ATW 200839468A
Authority
TW
Taiwan
Prior art keywords
magneto
display device
spatial light
light
hologram
Prior art date
Application number
TW96140511A
Other languages
Chinese (zh)
Other versions
TWI422999B (en
Inventor
Bo Kroll
Norbert Leister
Armin Schwertner
Ralf Haubler
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0621360.7Aexternal-prioritypatent/GB0621360D0/en
Priority claimed from GB0705399Aexternal-prioritypatent/GB0705399D0/en
Priority claimed from GB0709376Aexternal-prioritypatent/GB0709376D0/en
Priority claimed from GB0709379Aexternal-prioritypatent/GB0709379D0/en
Priority claimed from DE102007024236Aexternal-prioritypatent/DE102007024236A1/en
Priority claimed from DE102007024237Aexternal-prioritypatent/DE102007024237B4/en
Priority claimed from GB0714272Aexternal-prioritypatent/GB0714272D0/en
Application filed by Seereal Technologies SafiledCriticalSeereal Technologies Sa
Publication of TW200839468ApublicationCriticalpatent/TW200839468A/en
Application grantedgrantedCritical
Publication of TWI422999BpublicationCriticalpatent/TWI422999B/en

Links

Landscapes

Abstract

A holographic display device comprising at least one magneto-optical spatial light modulator (MOSLM). The holographic display device may comprise a first MOSLM and a second MOSLM, the first and second MOSLMs encoding a hologram and a holographic reconstruction being generated by the device. An advantage of the device is fast encoding of holograms.

Description

Translated fromChinese

200839468 九、發明說明: 【發明所屬之技術領域】 本案為^^種全像痛不瓜置’在其上電腦產生的影像全像圖會 進行編碼,此裝置包含至少一個磁光空間光調變器 (Magneto-optical Spatial Light Modulators)。此裝置會產生 二維全像重建。 • 【先前技術】 電腦產生的影像全像圖(Computer-generated video holograms, CGHs)是由一個或更多個空間光調變器(Spatial Light Modulators, SLMs)所編碼而成;空間光調變器包括可控 制的元件。這些元件根據影像全像圖來對全像圖值進行編碼,藉 此達到調變光的振幅及相位之目的。電腦產生的影像全像圖是可 以被計算出來的,例如通過同調光線追縱、通過模擬受到場景反 • 射的光以及參考波之間的干擾,或者通過傅立葉(Fourier)或菲涅 1 耳(Fresnel)轉換。一個理想的空間光調變器是能表現任意複數的 、數值,即分別控制進入光波的相位及振幅。然而,典型的空間光 調變器只能控制振幅或相位其中一種特性,並且帶有影響另一種 特性的不良效應。目前具有幾種不同的方式來調變光的振幅及相 位’例如利用電子式定址液晶空間光調變器、光學式定址液晶空 間光調變器、微鏡裝置或者聲光調變器。光的調變可為空間上連 續的或由個別可定址元件所構成,可為一維或二維排列、二進制、 200839468 多階層或連續。磁光空間光調變器(M0SLM)是其中一種已知的空間 光調變器類型。在磁光空間光調變器中,顯示器上線圈内的電流 會控制磁場,藉此依次影響傳播通過顯示器像素的偏化光的偏化 狀態。因此,磁光空間光調變器也是屬於電子式定址空間光調變 器的一種。 在本务明中,專有名3編碼”意指提供空間光調變器控制 值來對王像圖編碼’使得二維場景可以透過m光調變器來進行 重建。關於“空間光調變器編碼全像圖”的意思是指全像圖是在 空間光調變器上編碼。 一相較於純自動式立體顯示板,觀察員透過影像全像圖可觀察 到:維場景光波波前的光學重建。三維場景是在延伸於觀察員的 艮月及上間光5驗敗間或者甚至_光調魏之後的空間進行 變器之前觀察到重建的三維場景物件,而在空間光 凋、艾时上或其後方觀察到其他物件。 變器的元件是光傳輸性較佳的元件,其 f产。、置產生干擾’亚且财超過幾毫米或更多的同雛 、又允許全像重建至少在—個維度上具有足夠的解析度。 7 200839468 這類型的光將稱為”充份同調光”。 為了保證足夠的時間同調性,由光源發射的光譜必需限制於 一個適當狹窄的波長範圍内,也就是必需接近單色。高亮度發光 二極體(LEDs)的光譜頻寬是足夠狹窄的,以確保全像重建的時間 同調性。在空間光調變器上的繞射角度是與波長成比例,意指只 有一個單色光源將產生目標點的明顯重建。寬闊的光譜則會導致 覓闊的目標點以及模糊的目標重建。雷射源的光譜可以被當作為 單色的。單一顏色發光二極體(LED)的光譜線寬是充份狹窄的,能 幫助較佳的重建。 空間同調性與光源的橫向寬度有關。習用的光源,像是發光 -極體(LEDs)或者冷陰極發光燈⑼心),如果它們的發射光是 籲通過充份狹窄賴隙’則也可以滿足這些需求。雷射光源的光可 、 視為從繞射限制的點統所發射,根據形式的純度,將產生目標 顯重建,即每-個目標點被重建為繞射限制的點。 k工間非心周光源所產生的光是橫向延伸,並且會造成重建 目標模糊。模_情況是由重建在既定位置的目標點的寬闊大小 所決定。為了在全像圖重建上使用空__統,必須在亮度 和利用孔徑限制光源橫向寬度之間找到一個折衷點。較小的光 8 200839468 源,會得到比較好的空間同調性。 …果涵餘縱向延展的觀點來觀察,魏光源可被視為點 、…原口此級錢在那個方向進行同調賴,並且非同調於 、 全部其他方向。 般而。王像圖是藉由波在水平和垂直方向的同調超重疊 來王像地重建%景。上述的影像全像圖稱為全視差全像圖。重建 的物件可視為在水平和垂直方向的移動視差,如同真實物件。缺 而’較大的可視纽是需要在如_變㈣水平㈣直方向具 有高的解析度。 通常,空間光觀㈣需求會因為關於僅具水平視差 • (Horizo_-Parallax-〇niy,HP0)的全像圖而減少。全像重建僅 “ 發結水平額’㈣直方向並沒有全像重建。這料致具有水 、平機視差的重建物件。在垂直移動上的透視圖並不會改變。僅 具水平視差的全像圖需要空間光調變器在垂直方向的解析度會少 於全視差的全像圖。也可以採用僅具垂直視差 (Vertica卜paranax_Gnly,_的全側,但是較解見。全像 重建只發生在垂直方向,會產生具有垂直移動視差的重建物件。 而在水平方向不會有移動視差。對於左眼和右眼,必須分別地產 9 200839468 生不同的透視圖。 + 以 WO 2004/044659 (US2006/0055994)作為參考,描述 了一個 藉由充份同調光的繞射來重建三維場景的裝置;裳置包括點 、或直線光源、用於對焦光線的透鏡以及空間光調變器。相較於習 、^的全像顯示,空間光調變器於傳輸模式至少在-個"虛擬觀察 _員視窗"中重建三維場細於虛擬觀察窗的描述及相關的技 術請參考附件-及二)。每—個虛擬觀察員視窗技置在靠近觀察 員的眼睛的位置,並且大小上受到關,所以虛擬觀察員視窗是 於單-的繞射階級,因此每—個眼睛可以看見三維場景在圓錐狀 重建空間的完整重建’圓錐狀的重建空間是延展於空間光調變器 表面及虛織察貞視窗之間。為了讓全像重建沒有干擾,虛擬觀 察員視窗的大小必f不超過重建的—個繞射階級週期性間隔。然 鲁而’這必需至少足夠大’能讓觀察員經由視窗看見三維場景的完 • 整重建。另-個眼睛能經由相_虛峨察員視窗,或是由第二 '個光源所產生的第二個虛擬觀察員視窗來進行觀察。此時,典型 上較大的可見區域會限制於局部設置的虛鏡察員視窗。習用的 解決方法是以微小化方式重建因制空間細變器表面的高解度 所產生的大區域’使其大小能減低符合至虛擬觀察員視窗的尺寸 大小。这將促使因幾何上原因而較小的繞射角度以及目前空間光 調變器的解析度即足夠透過—般消費者層級輯算設備來實現即 200839468 時全像重建的效果 然而,這會遭遇到全像顯示產生的框速率(fr_她)的困 難,尤其是在多個顯示觀看者的情況下。在w〇 2_麵 ⑽20__94)所描述的全像產生方法中,_ 了多個虛擬觀 察員視窗的方式。如果虛擬觀察員視窗是位在觀察㈣眼睛位置 時’重建目標將可看見。每個觀察㈣每個轉皆需要—個虛擬 觀察員視窗。如果虛擬觀察員視窗以及顏色紅色⑻、綠色⑹及 藍色⑻是依序產生的話’則需要高的框速率。“依序,,意指红 色、綠色及技的献域相方式與_,因此對於空間 光調變器上的-像素可使用相同的树依序編碼紅色、綠色及藍 色的光。為了避免_的感覺,對於每個眼睛的框速率至少需要 為施。舉—侧子,例如對於3個觀察者,需要3G Hz * 2個 眼睛* 3個觀察者* 3個顏色=_ &的框逮率。這合比以液 晶為基礎的空間光酸㈣框速度縣的齡多。甚至對於單一 觀f ’18G Hz _峨㈣嶋㈣ 1靖器技術可 f到的極限―些财麵__示製品«現。已知的快 =微_系統_S)-空間光調變器单不提供高解析度的相位調 二關於這些技術’特性切換時間對於液晶約為1〇贴,對於微恭 機糸統約為1G ps。因此習用的裝置在以全複數全像 : 200839468 時。關於單一觀察者的實例,比使用液晶技術可得到的更快框速 率將會具有好處,例如應用在具有快速移動的活動,像是影像遊 戲、觀看運動活動或是動作電影,或是在軍事中的應用。 允許振幅及相位個別調變的空間光調變器(包括串聯成對的 空間光調變器的情況)將更適合應用在全像顯示中。複數值的全像 圖比純粹振幅或純粹相位的全像圖具有較好的重建品質與較高的 亮度。制的法拉第效應磁光空間細變器⑽SLMs)是已知的, 但是它們僅調變傳送光的振幅,並且不是用於產生全像圖。這樣 的空間光調變器已由 Panorama Labs of R0Ckefelier Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www· panoramalabs.com)所發表,例如以 w〇2〇〇5/〇76714A2 為參考,而其它這類型的磁光空間光調變器也是已知的。 因此,對於全像顯示裝置,以及對於全像顯示裝置中的空間 光調變II,將會需要能離供高的框鱗,邱好㈣獨立=編 碼相位及振幅資料。 【發明内容】 在第-方面’提供了-個全像顯稍置,此全像顯示裝置至 少包含一個磁光空間光調變器。 12 200839468 此全像顯示裝置可包含第一磁光空間光調變器與第二磁光空 間光調變器,第一與第二磁光空間光調變器會編碼全像圖,且裝 置可產生全像重建。此全像顯示裝置可讓第一磁光空間光調變器 與第二磁光空間光調變器以控制且獨立的方式調變全像圖像素陣 列的振幅及相位。此全像顯示裝置可包含第一磁光空間光調變器 與第二磁光空間光調變器的緊密組合,可使用來依序且緊密的調 變光的振幅及相位’使得由振幅與相位所構成的複數值,可以逐 一像素的方式在傳送光中進行編碼。 此全像顯示裝置可包含磁光空間光調變器與充份同調性緊密 型光源的緊密組合,這樣的組合能夠在適當照明情況下產生三維 圖像。 此全像顯示裝置可包含構成要素包含一個或二個磁光空間光 調變器的緊密組合,且具有目標全像重建的大倍率三維圖像顯示 裝置。 , 一、 此全像顯示裝置可包含一個或兩個磁光空間光調變器的緊密 組合,其也可作為投影機使用。 13 200839468 此全像顯示裝置可具有至少一個空間光調變器來編碼全像 圖,且裝置會產生全像重建。 此全像顯示裝置可為一種使用法拉第效應(Faraday effect) ▲ 來調變光的裝置。此全像顯示裝置可為一種利用磁性光子晶體 ^ (magneto—photonic crystal)來實現法拉第效應的裝置。此全像 • 顯示裝置可為一種透過摻雜玻璃纖維(doped glass fibres)來實 現法拉纽應_置。此全像顯示裝置可為—種使用磁光薄膜 (magneto-optical film)來實現法拉第效應的裝置。 此全像顯: |示裝置可為-種在其經由虛擬觀察員視窗可觀察到 全像重建的裝置。 此全像顯示裝置可為一種裝置, ‘上進行時間上依 序地重新編$馬全像 對於觀察員的麵接著魏,在包含全像的ς是可操作的,以 圖 此全像顯轉置可為—種裝置 在其中顯示是可操作的 以 14 200839468 對於兩個或多個觀察員的左眼接 行時間上依序地重新編竭全像圖 著右眼,在包含全像的媒介上 進 ,在其中顯示器具有光束指向 此全像顯示裝置可為一種裝置 或光束分光鏡元件。 • 此全像顯示裝置可為一種裝置,在其中顯示器具有顯示哭中 的電腦層。 此全像顯示裝置可為-種裝置,在其中顯示器具有眼睛追縱。 此全像顯示裝置可為-魏置,在其中顯的是细背光及 微透鏡陣列進行照射。微透鏡陣列可在顯示器的小區域上提供局 • 調性’此區域為顯示器的唯一部份,用來編碼使用在重建物 件之給定點的貧訊。此顯示器可包含反射式偏光片。此顯示器可 '包含稜鏡光學膜。 此全像顯示裝置可以發光二極體作為它的光源。 此全像裝置可為電視。此全軸对置可騎幕。此全 像顯示裝置可為可攜式的。 15 200839468 在另一方面’提供了一個製造顯示裝置的方法,包括取得玻 璃基板以及在基板上連續地印刷或是以其它方式產生磁光空間光 調變器層的步驟。 在另一方面,提出了一個產生全像重建的方法,包含使用上 述顯示裝置的步驟。 在另一方面,提出了一個包含磁光空間光調變器的全像顯示 裝置,此空間光調變器編碼全像圖,並且裝置會產生全像重建。 此全像顯示裝置可為電視。此全像顯示裝置可為螢幕。此全像顯 不裝置可為筆記型電腦。此全像顯示裝置可為行動電話。此全像 顯不裝置可為個人數位助理。此全像顯示裝置可為數位隨身聽。 • 此全像顯示裝置可使用法拉第效應來調變光。此全像顯示裝置可 • 使用法拉第效應調變光,法拉第效應可透過磁性光子晶體來實 〜 現。此全像顯示裝置可使用法拉第效應來調變光,法拉第效應可 透過摻雜玻璃纖維來實現。此全像顯示裝置可使用法拉第效應來 调麦光,法拉苐效應可透過磁光薄膜來實現。此全像顯示裝置可 利用背光及微透鏡陣列進行照射。此全像顯示裝置的背光可包括 至少一個反射式偏光片,以提供光的直線偏化狀態。此全像顯示 裝置的背光可包括至少一個反射式偏光片,以提供光的圓形偏化 16 200839468 狀態。此全像顯示裝置的微透_可在顯㈣的小區域上提 部同調性,此區域為顯示器的唯—部份,用來編碼使用在重建物 件之給定點的魏。此全像顯稀置的空間光調變器可提供拍位 編碼。此全賴示裝置的郎光靖料提供振幅編碼。此 顯示裝置的全像重建可經由虛擬觀察員視窗進行觀察。此全像顯 示裝置的虛擬觀察貞視窗可_空間或咖上多功進行舖置。、 此全像顯钱置可射操控的,以使得只有#祕者的眼睛是接 近光源的圖像平面位£時,才能正確觀察到全像鍵。此全像顯 示裝置可讓銳三_景的大小為具全像_介敎小的函數 重建三維場景可位於由具全像_媒介以及可觀看難建三維場 景的虛擬觀察員視窗所定義出的體積内之任何地方。此全像顯示 裝置可編碼全像圖,此全像圖可包含具有重建三維場景單一點所 需貧訊的區域,此點可從已定義的觀看位置所看見;此區域⑷編 碼關於在重建場景中單-點的資訊,⑹且為全像财唯一編碼那 點資§11的區域,以及(c)尺寸大小是受到限制,以形成整體全像圖 的一部分,尺寸大小需讓由較高繞射階層對於那點所產生的多重 重建能不被已定義的觀看位置所觀看到。此全像顯示裝置可為可 操作的,以對於觀察員的左眼接著右眼,在包含全像的媒介上進 行時間上依序地重新編碼全像圖。此全像顯示裝置可為可操作 的,以對於二個或更多個觀察員的左眼接著右眼,在包含全像的 媒介上進行時間上依序地重新編碼全像圖。此全像顯示裝置可讓 17 200839468 全像重建為全像陶m耳賴丨顧㈣,而不是全 八®、專立葉轉換㈤证敗廿咖如心此全像顯示裝置可編碼 王像圖此王像圖可透過決定在接近觀察員眼睛位置的波前而產 生’此波别可由4建物件的真實版本所產生。此全像顯示裝置可 具有棱鏡7L件,以提供光束指向。此全像顯示裝置可具有顯示器 中的電腦層。此全_錢置可具魏睛追蹤。 在另方面,提出了一個產生全像重建的方法,包含使用上 述顯示裝置的步驟。 在另一方面,提供了一個包含第一磁光空間光調變器與第二 磁光空間光調變H的全像顯示裝置,第—與第二磁光空間光調變 為會編碼全像圖,且裝置會產生全像重建。此全像顯示裝置可為 一種I置,在其中第一與第二磁光空間光調變器是以控制且獨立 的方式來機全像11像素陣列的振幅及她。此全像顯示裝置可 為一種裝置,在其中一個磁光空間光調變器調變全像圖像素陣列 的振幅’另一個磁光空間光調變器調變全像圖像素陣列的相位。 此全像顯不裝置可為一種裝置,在其中一個磁光空間光調變器調 變全像圖像素陣列的振幅及相位的第一組合,另一個磁光空間光 調變器調變全像圖像素陣列的振幅及相位的第二不同的組合。此 全像顯示裝置可為一種裝置,在其中傳播透過裝置的光會先編碼 18 200839468 它的相位,接著編碼它的振幅。此全像顯示裝置可為電視。此全 像顯示裝置可為螢幕。此全像顯示裝置可為筆記型電腦。此全像 顯示裝置可為行動電話。此全像顯示裝置可為個人數位助理。此 全像顯示裝置可為數位隨身聽。此全像顯示裝置可為一種裝置, 在其中每個磁光空間光調變器是使用法拉第效應來調變光。此全 像顯示裝置可為一種裝置,在其中裝置是使用法拉第效應來調變. Μ 光,且至少在一個磁光空間光調變器中,法拉第效應是使用磁性 Φ 光子晶體來實現。此全像顯示裝置可為一種裝置,在其中裝置是 使用法拉第效應來調變光,且至少在一個磁光空間光調變器中, 法拉第效應是使用摻雜玻璃纖維來實現。此全像顯示裝置可為一 種裝置,在其中裝置是使用法拉第效應來調變光,且至少在一個 磁光空間光調變器中,法拉第效應是使用磁光薄腊來實現。此全 像顯不裝置可為一種裝置,在其中磁光空間光調變器之間是透過 分隔層來進行分隔。此全像顯示裝置可為一種裝置,在其中分隔 •層疋足夠薄的,以避免一個磁光空間光調變器的電磁場對另一個 磁光空間光調變器的效能產生不良的影響。此全像顯示裝置可為 種衣置,在其中分隔層也對於至少一個磁光空間光調變器提供 枝棒支援Α全像顯示裝置可為—種裝置,在其巾分隔層是低於 或等於10微米到議微米的等級。此全像顯示裝置可為一種裝 置,在其中顯示裝置編碼全像圖,且能夠產生全像重建。此全像 顯示裝置可為—種裝置,在其中顯示器是_背光及微透鏡陣列 200839468 進行照射。此全像顯示裝置可為—種裝置,在其中背光包括至少 -個反射式偏光片’以提供光的直線偏化狀態。此全像顯示裝置 可為種衣置在其中背光包括至少一個反射式偏光片,以提供 光的圓形偏化狀態。此全像顯轉置可為—種裝置,在其中微透 •鏡_在顯示器的小區域上提供局部_性,此區域為顯示器的 ★唯—部份,用來編碼使用在重建物件之給定點的資訊。此全像顯 不衣置可&種衣置’在其中全像重建可經由虛擬觀察員視窗觀 ilti像顯枚置可為—種裝置,在其巾触觀察員視窗可 利用工間或日守間上多工進行舖置。此全像顯示裝置可為一種裝 置’在其巾只有當觀察者的眼睛是接近統_像平面位置時, 才能正確觀察到全像鱗。此全像顯錄置可為—種裝置,在其 中鍵三維場景的大小是為具全像_介大小的函數,重建I 維場景可位於由具全像圖的媒介以及可觀看到重建三維場景的虛 •擬觀,視窗所定義出的體積内之任何地方。此全像顯示裝‘ • 4種衣置’在其中顯示器會編碼全像圖,此全像圖包含具有重 .建二維%景單-點所需資訊的區域,此點可從已定義的觀看位置 所看見,此區域(a)編石馬關於在重建場景中單一點的資訊,⑻且 為王像圖中唯-編碼那點資訊的區域,以及(c)尺寸大小是受到限 制’以形成整體全像_-部分,尺寸大彳、需軸較S繞射階層 對於那點所產生的多重重建能不被已定義的觀看位置所觀看到。 此王像顯tf裝置可為〜種裝置,在其中顯示器是可操作的,以對 20 200839468 於觀察員的左眼接著右眼,在… 地重新編碼全像圖。此全像顯示裝置可為二=進仃時間上依序 :::::^ 示梦晉可傳轉觀。此全像顯 透過決〜在接衣置’在其中顯示^會編瑪全像圖,此全像圖可 物件:〜 員眼睛位置的波前而產生,此波前可由重建 牛I貫版本所產生。此全像顯示裝置可為—難置,在其中 /、有k鏡7G件’以提供絲指向。此全像顯示裝置可為—種褒置, 在其中具有—個顯示器中的電腦層。此全像顯示裝置可為-種且 有眼睛追蹤的裝置。 、 π在另一方面,提供了一個製造全像顯示裴置的方法,包括取 得玻璃基板,以及在基板上連續地印刷或是以其它方式產生第一 磁光空間光調變II與第二磁光空間光調魏層的步驟。 在另一方面,提出了一個產生全像重建的方法,包含使用上 述顯示裝置的步驟。 在另方面,提供了一個磁光空間光調變器與充份同調性的 21 200839468 緊密型光源驟密組合,此組合能夠在適#的酬情況下產生二 維圖像。«密的組合可為—種裝置,在射不需要具備成像光 學。此緊_組合可為置,在其巾裝置元件的全部厚戶是 少於3 on。此緊密的組合可為一置,在其中具有柔軟孔顿 供緊密組合的像素。 在另一方面,提供了兩個磁光空間光調變器的緊密組合,可 使用來依序且緊㈣觀光的振幅及相位,使得由振幅與相位所 構成的複數值,可賤—像韻方式在傳絲巾進行編碼。此緊 密的組合可為-種裝置,在其中不f要具備有成像光學。此緊密 的組合可為-種裝置,在其中裝置元件的全部厚度是少於3咖。 此緊密的組合可為一種裝置,在其中具有柔軟孔徑提供裝置的像 素。此緊密的組合可為一種裝置,在其中兩個磁光空間光調變器 是利用排列像素直接連接或是黏合在一起。此緊密的組合可為一 種裝置,在其中兩個磁光空間光調變器的間隔是低於或等於丨〇微 米到100微米的等級。此緊密的組合可為一種裝置,在其中從— 個磁光空間光調變器通過另一個磁光空間光調變器的光的繞射是 採用制夫朗和斐繞射(Fresnel diffraction)方式,而不是採用遠 場繞射(far-field diffraction)方式。此緊密的組合可為一種裳 置’在其中於兩個磁光空間光調變器之間具有透鏡陣列,以使得 每個透鏡成像第一空間光調變器的像素至第二空間光調變器的對 22 200839468 應像素上。此緊密的組合可為一種裝置,在其中第一磁光空間光 調變器像素的孔徑寬是使得像素串音能夠獲得最小化。此緊密的 組合可為-種裝置,在其中第-磁光空間光調變器像素的孔徑寬 是使得它能讓到第二磁光空間光調變器像素的像素串音,以夫朗 和斐繞射方式獲得最小化。此緊密的組合可為一種裝置,在其中 疋使用光緘面板來成像第一磁光空間光調變器的像素至第二磁光 空間光調變器的像素上。. 在另一方面,提供了一個大倍率的三維圖像顯示裝置元件, 包含一個或二個磁光空間光調變器的緊密組合,且具有目標的全 像重建。此顯示裝置元件可包含一個或二個磁光空間光調變器與 充伤同调性緊遂、型光源的緊密組合。此顯示裝置元件可包含一個 或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合, 以使得這樣的組合能產生三維圖像。此顯示裝置元件可包含一個 或一個磁光空間光調變器與充份同調性緊密型光源的緊密組合, 在其中光源會經由透鏡陣列擴大10至倍。此顯示裝置元件可 包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊 密組合,在其中至少一個磁光空間光調變器是設置在光源的30腿 範圍之内。此顯示裝置元件可包含一個或二個磁光空間光調變器 與充份同調性緊密型光源的緊密組合,以使得這樣的組合能產生 可經由虛擬觀察員視窗觀察到的三維圖像。此顯示裝置元件可為 23 200839468 3在其中虛擬觀察員視窗是限制在空間光調變器中所編 =的貝_傅立葉頻譜的—鐵射階級。所顯示的虛擬觀察員視 *α :、〜处式或疋不可追縱式。所顯示的虛擬觀察員視窗可利 4 ?或才間上心’將數個虛擬觀察員視窗拼湊成擴大的虛擬 觀τ員視自細不裝置讀可包含—個或二個磁光空間光調變 器與充份_性緊_光源㈣密組合,且在其中光源陣列中的 麵具有物响勝《嫩撕⑽在個人數 位助理中。_示裝置元件可包含在行動電話中。在空間光調變 吐編碼物編物由_編解純行,接著再將顯 π貝料傳达至裝置元射,以齡全像錢的三維圖像。 〜在另-方面,提供了—健造全翻示裝朗方法,包括取 付玻璃基板从在基板上連續地印刷或是叫它方式產生一個或 •二個磁光空間光調變器層的步驟,此裝置包含-個大倍率的三維 -目像顯示裝置元件,此大倍率的三維圖像顯示裝置元件是由一個 .或二個磁光空間光調變器的緊密組合所構成,並且有目桿的全像 重建。 ^ 建的方法,包含使用上 在另一方面,提出了一個產生全像重 述顯示裝置元件的步驟。 24 200839468 闕於“空間光調變器 變器上進行編碼。 編瑪全像®,,是指全像W是在空間光調 【實施方式】 以下將描述各種實施例。 A.具有磁光郎光調魏的全像顯示裝置 这個實施例提供了 —種具有磁光空間光調變器的 置,這樣的組合能夠在適當的照明情況下產生三維圖像。 可由多絲或單—絲所照亮。此全細示裝置可使用在電t 螢幕、筆記㈣腦、行動電話、個人數位助理、數位隨身聽或是 任何其它具有顯示器的裝置。 攻個實施例細於光的機的空間細魏、有關,例如:振 中田相位或疋振幅及相^立組合的調變H這是關於以利用法 拉第效應進行細縣基礎較間光機器。此空間光調變器可 使用在全像顯示中。 才艮據磁場在光傳播方向的應用,法拉第效應能將其本身展現 為媒介中線性偏光的旋轉。它是由此方程式量化描述 25 200839468 α- V L Η (1) 其中’ α是_匕旋轉的角度,V是費爾德(Verdet)常數,L是媒介 的長度及Η是磁場強度。法拉第效應是透過磁場引入的非均質性 (anisotropy)所產生。磁場為一種軸向量(axiai vect〇r),也就 疋對於方疋轉f*貝用手(handedness 〇f 了0拉七丨011)的敏感度 (sensitivity)。因此,左與右圓偏光不再是為衰退狀態,它們在 媒介中會經歷不同的折射率以及經歷不同的相位位移。因為線性 偏光是由慣用左手及慣用右手的圓形偏光所構成,若這些構成要 素具有不同的相位位移,當這些圓形構成要素要再組合成線性偏 光時,將會導致線性偏化角度的旋轉。 通常,費爾德常數V是很小的,因此顯著的旋轉角α是需要 長的長度L或者高的磁場η。法拉第效應在包含磁光層堆疊的磁性 光子晶體(magneto-photonic crystal)中會顯著的增加。對於空 間光調變器,這幫助了法拉第效應在具小磁場的薄結構中的使 用。這疋描述在’例如,從網際網路中所獲得的“A presentation for Investors^ by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www.panoramalabs.com)(此文件在此列為參考)。此文件可從 web· archive· org 網站中獲得。 26 200839468 如圖三所示’ Pa_raaLabs已經發表了朗法拉第效應的空 間光調變H。它包含磁性光子晶體、輸人和輸出偏光片,以及線 圈陣列。對於具有16卿像素間距的空間光調變器的每個像素,都 有-個對應的線圈。磁性光子晶體是由多個磁光層的堆疊所構 成’多個磁光層她於單-層可顧法拉第效應。陳電流的應 用’線圈會在每Η目像素中產生局部磁場,使得通過此像素的光 轉性偏化引發旋轉。輸出偏光片只傳送特定的偏化角度。因此, 每-個像素的透射比(tmnsinittanee)能藉自細巾的電流進行 調變。圖三顯示了&含偏光片3〇卜磁性光子晶體(Mpc)、線圈 303及分析器302的空間光調變器的一個像素。常數輸入強度 冒被调變,以給定時間(t)相依輪出強度函數p(t)。 相較於液晶或是微電機系統_空間光調變器,法拉第效應空間 光調變器的優勢是具錢速咖麟ip··論發表了 2 0 n s回應時間的法拉第效應空間光調變器,這比液晶(大約仞贴) 或疋微電齡統(大約1Qus)m光鐵器是要快上許多的。磁光 空間光調變器可用於電子式全像顯示。在全像顯示的一個方法 中’會產生虛擬觀察員視窗(v〇w)。如果虛擬觀察員視窗是位在觀 察員生的眼睛位置時’重建的目標將可被看見。每個觀察員的每個 眼目月都而要—個虛擬觀察員視窗。如果虛擬觀察實視窗與顏色紅 27 200839468 色⑻、綠色⑹及監色⑻是依序產生時,則需要較高的框速率。 為了避免閃爍,對於每個眼睛的框速率至少需要為纖z。舉一個 例子’例如對於3個觀察者,需要3〇 Hz * 2個眼睛* 3個觀察 者* 3輸色=540 Hz的框速率。這會比液晶-空間光調變器的 框速度要來的快許多。已知的㈣微電機祕—空間細變器並沒 有提供高解析度的相位調變。調變振幅及相位的空間光調變器是 更適合應用在電子式全像顯示中。複數值的全像圖比純粹振幅或 純粹相位的全像圖具有較好的重建品質與較高的亮度。在圖三 中’ S用由Panorama Labs所發表的法拉第效應空間光調變器的 唯一顯著影響,是它對於傳送光振幅_變。除此之外,圖三中 白用由Panorama Labs所發表的法拉第效應空間光調變器,並沒 有照射充份同調性的光,以促使三維圖像的產生。 圖一為一個實施例。10是照明裝置,用於提供平面區域的照 明’其中_是具有充份的同調性,以便能夠產生三維圖像。在 US 2006/2漏1巾提出了-細於大區域影像全像義例子,在 此作為參考,並且於圖四顯示了其中一個例子。如同1〇的裝置可 採用白色光源陣列的形式,例如冷陰極螢光燈(c〇ld cath〇de fluorescent lamps)或是發出的光線為入射在聚焦系統上的白光 發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡 陣列。或者,用於10的光源可由紅色、綠色及藍色雷射所組成, 28 200839468 或是由發出充份同調性光的紅色、綠色及藍色發光二極體所組 成。然而,相較於雷射光源,具有充份空間同調性的非雷射光源 (例如·發光二極體、有機發光二極體、冷陰極螢光燈)是更佳的。 田射光源具有一些缺點,例如會在全像重建上造成雷射斑點 (laser speckle)、相對上較為昂貴以及可能會傷害全像顯示觀看 者或是進行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 疋件10可包含一個或兩個稜鏡光學膜,用以增加顯示器的亮 度:這樣的膜是已知的,例如在us 5,〇56,892與邶5,919,551 中所描述的内容。 全像圖產生器15的大小可具有一定範圍,像是從應用在行動 電居人螢幕中一公分的螢幕尺寸(或更小),直至用於室内大型顯 示的一公尺螢幕寸尺大小(或更大)。因此,元件1〇—14全部的厚 度可從一公釐,或甚至更小,一直到數十公分,或甚至更多(例如 應用在室内大麵示的情況)。元件n是偏光元件,献一組偏 光70件。其中—侧子克線性偏光片。另外—侧子是反射式偏 光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態一 這樣的薄片是已知的,例如在US 5, 828, 4明中所描述的内容。另 個例子疋反射式偏光片,可傳送一個圓形偏化狀態,並且反射 正又圓形偏化狀恶-這樣的薄片是已知的,例如在US6,181,395 29 200839468 中所也述的内容。树12可由色彩過濾轉賴構成,使得彩色 光線(例如紅色、綠色及藍色光)的像素是射向元件,儘管如果 使用彩色光源時,並不需要色彩過濾器。元件13是磁光空間光調 變器。在最簡單的形式巾,耕13是祕導材料線麵形成的陣 ' ?卜每個皆縣獨立控細示II巾紐光橫越它所對應的像素的 ★ 购。攻樣的控制可由光通過具有顯著費爾德常數V的媒介來獲 鲁传#助’使得線性偏光可在其通過媒介時,獲得顯著的旋轉α,如 同方粒式⑴中所描述的。此媒介可為摻雜玻璃_圓柱的形式, 或是類似的形狀,如在__2_5中所描述的内容。此媒介 也可為磁光薄膜的形式,如在W〇2〇〇5/122479A2中所描述的内容, 或疋為磁性光子晶體層的形式。離開媒介的光會接著通過光偏化 層14,例如線性偏光片。 鲁如果元件11是用於光的圓形偏化狀態的反射式偏光片,則圓 '形·光會從元件Π傳送至元件12,而正交航光纽射回元件 • 忉,以提供可能的回收,且在此期間它的偏化可能會改變為由元 件11所傳送的狀態。在這個例子中,元件13之後的偏光片14是 由四分之一波片(quarter wave plate)所組成,用以將圓形偏化 光轉換成線性偏化,接著之後為線性偏化薄片。四分之一波片的 作用可能會超過可見光譜,例如在US 7, 054, 049中所描述的内 容;也具有其它已知作用超過可見光譜的四分之一波片。線性偏 30 200839468 化片14可設定在方位旋轉角度,使得在沒有電流流過陣列線圈的 賴,H為零且遍及像素的_,因崎於_較部像素而言, 偏化狀態並沒有改變,並且顯示器是為暗的狀態。其它的設定, 可從習用技術中獲得。在陣列線圈中的電流可以逐—像素的方式 • 改變偏化狀態,由此使得圖像(例如彩色圖像)可被顯示。其中, 至磁光空間光調變器的光輸入偏化狀態是單純圓形偏化狀態,在 線圈内的電齡使得相錄夠在_偏化㈣上編碼,如同在本 籲案其b地方所贿的喊。這樣的她編碼可讓具她資訊的全 像圖編碼於其上。 如果元件11是用於光的線性偏化狀態的反射式偏光片,則線 性偏化光會從元件11傳送至元件12,而正交偏化光會反射回元件 10,以提供可能的回收,且在此期間它的偏化可能會改變為由元 _ 件11所傳送的狀態。在這個例子中,在元件13之後的偏光片μ 是線性偏化片。線性偏化片14可設定在方位旋轉角度,使得在沒 有電流流過陣列線圈的時候,Η為零且遍及像素的陣列,因此對於 陣列的全部像素而言,偏化狀態並沒有改變,並且顯示器是為暗 的狀態。其它的設定,可從習用技術中獲得。在陣列線圈中的電 流可以逐一像素的方式改變偏化狀態,由此使得圖像(例如彩色圖 像)可被顯示。其中,至磁光空間光調變器的光輸入偏化狀態是單 純線性偏化狀態,在線圈内的電流會使得振幅能夠在偏化狀態上 31 200839468 編碼 ’如同在本案其它地方所描述的内容 具振幅資訊的全像圖編竭於其上。 這樣的振幅編碼可讓 離:二,:於點16離包含全像圖產生器15的裝置-些距 可攸15的方向觀看到三維圖像。元件10、11、12、 及I4可配置成實體連接(真實上連接),每一個形成結構的— ^使得整體為單-务的物件。實體物綱的。或是 :的,如果有薄的中間層,形成覆蓋在相鄰層之間的膜。實體 姑接可限制在小區域中,以確保正確的相互排列關係,或是可延 大的區域,甚至層的整個表面。實體連接可由層與層的黏 “貝現’ m嗜由朗光學傳轉_的方式,以形成緊密的 全像圖產生1、15’或是藉由任何其它的方式(參考概要製造程序部 份)。然而,如果元件15並不是特別要求緊密時,則元件ι〇、η、 13及14巾’ 口|5伤或全部的元件是可被分離的。 圖四是習用技術側視圖,顯示出垂直聚焦系統11〇4的三個聚 焦元件110卜1102、_,採用圓柱形透鏡水平排列於陣列中的 形式。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦 π件1102至觀察員平面〇ρ為例子。根據圖四,許多的線光源l幻, LS2, LS3是-個個上下排列。每一個光源發射的光,在垂直方向 是具有充份_性的,在水平方向是為非關性的。職光會通 32 200839468 過光调變8 SLM的傳輸元件。這個光藉由編碼全像圖的光調變器 SLM的το件,僅在垂直方向產生繞射。聚焦元件11〇2在觀察員平 面op以數個繞射階級(只有一個是有用的)成像光源LS2。由光源 LS2所發射的光束是用來作為只通過聚焦系統i i 〇4的聚焦元件 1102的例子。在圖四中,三個光束呈現了第一繞射階級·、第 零階級1106及負-p皆級11〇7。與單一點光源相比,線光源可允許 非常高的光強度產生。使用多個已增加效率且針對重建三維場景 的每一個部分皆指派一個線光源的全像區域可提升有效的光強 度。另一個不採用雷射的優點是多個例如設置在可為遮光器一部 份的槽光’lot diaphragm)之後的傳統統可產生充份的同調 光。其中包含了眼睛1108。 雖朗於全像編碼t請人的較佳方法(透過使賴纖察員 φ 視窗)是描述在如由申請人所提出的W0 2004/044659 ' (US2006/0055994)t,在其中描述了-種充份_光的繞射 ,重建三_景的裝置,但是需要釐清的是,在此·述的全像顯 示並不是侷限在使用這樣的方法,而是包含全部已知可與磁光空 間光調變器-起使用的全像顯示類型,像是已知的技術。 B·具有兩個串聯的磁光空間光調變器的全像顯示裝置 這個實施例是關於提供光的複雜調變的空間光調變器 33 200839468 (SLM) ’即振幅及相位的獨立調變。尤其,這是關於以利用法拉第 效應進,光調變為基礎較間光調變器。此雜光調變器可使用 在全像和巾。此全像顯示可制在電視、螢幕、筆記型電腦、 行動電話、個人數位祕、數位隨身聽或是任何其它具有顯示哭 的裝置。 ^ 這個貫施例提供了 一種具有兩個串聯的磁光空間光調變器的 全像顯示裝置,這制組合錢在適當賴明情況下產生三維圖 像。此顯示器可由多個光源或單一光源所照射。 這個貫施例是關於二個用於光的調變的磁光空間光調變器, 其中,每一個磁光空間光調變器調變振幅、相位或是振幅與相位 的組合。尤其,每一個磁光空間光調變器是使用法拉第效應來調 變光。此兩個形成組合的磁光空間光調變器可使用在全像顯示 中。因此,由振幅與相位組成的複數可以逐一像素的方式在傳送 光中編譯。 包含一個或多個光源以及二個串聯的磁光空間光調變器的全 像顯不裝置可用來依序調變光的振幅及相位’並且如果需要的 話,可採用緊密的方式。這個實施例的例子包含第一磁光空間光 調變器與第二磁光空間光調變器。第一磁光空間光調變器調變傳 34 200839468 达光的振幅’第二磁光空間光調變器調變傳送光的相位。或者, 也可以是第-磁光空間光調變_變傳送光的相位,·第二磁光空 間光调kg峨傳送細振幅。或者,也可以是每個磁光空間光 調變器調變振幅與她的組合,使得兩侧光空間細變器的組 合旎%助全複雜調變。每一個磁光空間光調變器可如同上述A部 伤所描述的内容。全部的裝配可如同在㈣份所描述的内容,除 了在此疋使用兩個磁光空間光調變器。 在第-個步驟中,用於相位調變的圖樣是在第一磁光空間光 調變器中寫人。在第二個麵巾,用於振幅調變關樣是在第二 磁光空間光賴器中寫入。從第二磁光空間光調變器所傳送的 光,在振幅及相位上已完成調變,因此,當觀察員觀察這二個磁 光空間光调變斋的裝置所發射的光時,可觀察到三維圖像。 由於習用技術的發展,相位與振幅的調變技術促進了複數數 值的表現。因此,這個實施例可應用於產生全像圖像,使得觀看 者可看到三維圖像。 圖二描述了這個實施的例子。2〇是照明裝置·,用於提供平面 區域的照明’其中照明是具有充份的同調性,以便能夠產生三維 圖像。在US 2006/250671中提出了一個用於大區域影像全像圖的 35 200839468 例子。如同20的裝置可採用白色光源陣列的形式,例如冷陰極營 光燈(cold cathode fluorescent lamps)或是發出的光線為入射 在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如 透鏡狀陣列或微透鏡陣列。或者,用於2〇的光源可由紅色、綠色 及藍色雷射所組成’或是由發出充份同調性光的紅色、綠色及藍 -色發光二極體所組成。然而,相較於雷射光源,具有充份空間同 雛的非雷射光源(例如:發光二極體、有機發光二極體、冷陰 極榮光燈)是更佳的。雷射絲具有—些缺點,例如會在全像重建 上造成雷射賴、補上較為昂細及可能會傷害全像顯示觀看 者或是進行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 元件20可包含-個或兩個稜鏡光學膜,用以增加顯示器的亮 度:這樣的膜是已知的,例如在邶5 〇56 892與邶5,919 551 中所描述的内容。 全像圖產生器25的大小可具有一定範圍,像是從應用在行動 電話次螢幕巾-公分的螢幕尺寸(或更小),直至驗室内大型顯 不的一公尺螢幕寸尺大小(或更大)。因此,元件2〇-23、26—狀全 部的厚度可從-公釐,或甚至更小,—直到數十公分,或甚至更 多(例如應用在室内大型顯示的情況)。元件21是偏光元件,或是 -組偏光元件。其巾-侧子是雜偏光片。另外—個例子是反 36 200839468 射式偏光4,可傳送—錄性偏化狀態,並且反射正交線性偏化 狀態-這樣的薄片是已知的,例如在⑽5,828,488巾所描述的 内容。另-飾仔是反料偏以,可傳送—侧频化狀態, 並且反射正交®形偏化狀態-這樣的薄片是已知的,例如在us 6,⑻,=中所描述的内容。元件22可由色_滤器陣列所構 成,使得彩色光線(例如紅色、綠色域色光)的像素是射向元件 23,儘管如果使_色光科,並不f要色細㈣。元件四是 磁光空間光調變ϋ。在最鮮的形式中,元件23是為傳導材料線 圈所形成的_,每個㈣來獨立控侧示器巾録光橫越它所 對應的像素的磁場。這樣的控制可由光通過具有顯著費爾德常數V 的媒介來獲料助,使得·偏光可在魏職介時,獲得顯著 的她τα如同方程式⑴巾所描述的。此媒介可為摻雜玻璃纖維 圓柱的瓜式或疋類似的形狀,如在脱㈣麵服中所描述的 内谷媒”也可為磁光薄膜的形式,如在觀祕m_A2中所 描述的内容,或是為磁性光子晶體。 7L件26疋偏光①件’或是—組偏光元件。猶27是磁光空 門光》周艾例如上述關於轉23所描述的内容。離開磁光空間 光調變器的光會接著通過光偏化層28,例如線性偏光片。關於傳 光元件23 振巾@ ’元件27調變相位。也可以是元件2?調 變振幅’元件23調變相位-對於振幅為最大值時,希望能更精確 37 200839468 的調變相位的情況(即具有較少的雜訊),這樣是被認為較好的。 將磁光空間_麵23及27 #魏_少光學耗損朗光束分 歧而產生的像素串音問題:當磁光空間光調變器23及27是非^ 靠近時,可實現通過魏空縣調賴_色絲束的非^疊^ 播的較佳近似值。 ' 位於點24離包括緊密全像圖產生器25的裝置一些距離的 看者’可從25的方向觀看到三維圖像。元件2〇、21、四、烈、%、 27及28可以配置成實體連接(真實上連接),每一個形成結構的一 層’使得整體為單-、統-的物件。實體連接可為直接的。或是 間接的’如果有薄的中間層,形成覆蓋在相鄰層之間的膜。實體 連接可限制在小區域巾’吨狂確_互_祕,或是可延 ^大的區域,甚至層的整個表面。實體連接可由層與層的點 八來只見爿如藉由使用光轉鱗賴的方式,則彡成緊密的 =像圖纽ϋ 25,或是藉由任何其它的方式(參考概要製造程序部 心而如果並不是特別要求緊密時,則元件m烈、 26、27及28中,部份或全部的元件是可被分離的。 、這裡、七疋編碼m光調變n的兩個串聯磁光空間光調 的卩I單數學處理,對每個像素而言,為兩個線圈中的電流的 、、。更精確的處理是有可能的。對於這些計算,調變相位的第 38 200839468 一法拉第旋轉器、第一線性偏光片、調變振幅的第二法拉第旋轉 器以及第二線性偏光片會按照此順序被考慮進來。 第一線圈的長為Li,電流為Ιι,匝數為Νι。沿著本身軸線而 產生的磁場因此而為Hi=NiIi/Li。第二線圈的長為L2,電流為ι2, 臣數為N2。沿者本身轴線而產生的磁場因此而為 i2/l2。這 些方程式是從 “Electromagnetic Fields and Waves” Seecmd ⑩ Edition by P. Lorrain and D. Corson (W. H. Freeman and Co, San Francises USA,1970)第 315-318 頁中所獲得的。 輸入光具有圓形偏化,且圓形偏化的複雜振幅可根據瓊斯運 异法則(Jones calculus)表示為: 鲁在第-旋轉器的法拉第效應會位移這個圓形偏化成份的相位: . Vi Li Hi = Vi Ni Ii , ㈣絲式⑴所描述的。在法拉第旋_之後的振幅為 Εχ =(l)exp(/ai) 在第一線性偏光片之後的振幅為 E2 = ^jexpOaj) 關於由第二法拉第旋轉器所偏化 欠轉的计异,線性偏化是分解成 39 200839468 左及右圓形偏化狀態,並且j / 且相值分別位移α2與-α2,其中 a2=r V2 L2 H2 = V2 N2 I2 在弟一法拉弟旋轉器之後的振幅為 E3 =-exp〇*a1) 卜㈣+ U eXp(*2) exp(iai)· 最後’在第二線性偏光片之後的振幅為 cos(a2)、 -sin(a2)y200839468 IX. Description of the invention: [Technical field to which the invention pertains] The present invention encodes a full-image image of a computer generated on the computer, and the device includes at least one magneto-optical spatial light modulation. Magneto-optical Spatial Light Modulators. This device produces a two-dimensional holographic reconstruction. • [Prior Art] Computer-generated video holograms (CGHs) are encoded by one or more Spatial Light Modulators (SLMs); Spatial Light Modulators Includes controllable components. These components encode the hologram values based on the image hologram, thereby achieving the purpose of modulating the amplitude and phase of the light. The computer-generated image hologram can be calculated, for example, by coherent ray tracing, by simulating the interference between the reflected light and the reference wave, or by Fourier or Fresnel ( Fresnel) conversion. An ideal spatial light modulator is a numerical value that can represent any complex number, that is, the phase and amplitude of the incoming light wave are separately controlled. However, a typical spatial light modulator can only control one of the amplitudes or phases and has an adverse effect that affects the other. There are currently several different ways to modulate the amplitude and phase of the light', e.g., using an electronically addressed liquid crystal spatial light modulator, an optically addressed liquid crystal spatial light modulator, a micromirror device, or an acousto-optic modulator. The modulation of light can be spatially continuous or consist of individual addressable elements, which can be one or two dimensional, binary, 200839468 multi-level or continuous. The magneto-optical spatial light modulator (M0SLM) is one of the known spatial light modulator types. In a magneto-optical spatial light modulator, the current in the coil on the display controls the magnetic field, which in turn affects the biased state of the polarized light propagating through the display pixels. Therefore, the magneto-optical spatial light modulator is also a type of electronic address space light modulator. In this document, the proprietary name 3 code "means to provide the spatial light modulator control value to encode the image map" allows the two-dimensional scene to be reconstructed through the m-optic modulator. About the "space light modulator" "Coded full image" means that the hologram is encoded on the spatial light modulator. Compared with the pure automatic stereo display panel, the observer can observe through the image hologram: the optical of the wavefront of the dimensional scene Reconstruction. The 3D scene is a reconstructed 3D scene object that is observed before the observer's 艮月和上光5 败失, or even _光调魏的空间的变器, but in the space light, Ai time Other objects are observed at or after the rear. The components of the transformer are components with better optical transmission, which are produced, and the same kind of interference is generated, and the hologram reconstruction is allowed at least in the - There is sufficient resolution in one dimension. 7 200839468 This type of light will be called "full dimming." To ensure sufficient time homology, the spectrum emitted by the source must be limited to a suitably narrow wavelength range. That is, it must be close to monochrome. The spectral bandwidth of high-brightness light-emitting diodes (LEDs) is narrow enough to ensure the time homology of holographic reconstruction. The diffraction angle on the spatial light modulator is the wavelength Proportional means that only a single monochromatic source will produce a significant reconstruction of the target point. A broad spectrum will result in a broad target point and a blurred target reconstruction. The spectrum of the laser source can be treated as a single color. The spectral linewidth of a light-emitting diode (LED) is sufficiently narrow to aid in better reconstruction. The spatial homology is related to the lateral width of the light source. Conventional light sources, such as light-emitting diodes (LEDs) or cold cathodes. The illuminating lamps (9) are also able to meet these requirements if their emitted light is called through a sufficient narrow gap. The light from the laser source can be emitted as a point from the diffraction limit, depending on the purity of the form. The target reconstruction will be generated, that is, each target point is reconstructed as a point of diffraction limitation. The light generated by the non-peripheral light source of the k-work is horizontally extended and causes the reconstruction target to be blurred. The width of the target point at a given location is determined. In order to use an empty __ system on the hologram reconstruction, a compromise must be found between the brightness and the lateral width of the source using the aperture. Smaller light 8 200839468 Source, Will get better spatial coherence. ... The perspective of the longitudinal extension of the fruit to observe, Wei light source can be regarded as a point, ... the original mouth of this level of money in the same direction, and non-coordinated, all other directions. The image of the king is reconstructed by the coherent super-overlap of the wave in the horizontal and vertical directions. The above-mentioned image hologram is called the full-view hologram. The reconstructed objects can be regarded as horizontal and vertical. The mobile parallax is like a real object. The lack of a 'larger visible key' is that it needs to have a high resolution in the straight direction as in the _change (four) level. (IV) Usually, the spatial light view (4) demand will be due to only the horizontal parallax • (Horizo_ -Parallax-〇niy, HP0) is reduced by the hologram. The holographic reconstruction only has a “hairline level” (four) straight direction and no holographic reconstruction. This results in a reconstructed object with water and plane parallax. The perspective of the vertical movement does not change. Only the horizontal parallax The image requires that the resolution of the spatial light modulator in the vertical direction will be less than the full-image of the full-parallax. It can also be used with only the vertical parallax (Vertica b paranax_Gnly, _ full-side, but more illustrative. holographic reconstruction only Occurs in the vertical direction, resulting in a reconstructed object with vertical moving parallax. There is no moving parallax in the horizontal direction. For the left and right eyes, different perspectives must be generated separately. + WO 2004/044659 ( US 2006/0055994), for reference, describes a device for reconstructing a three-dimensional scene by diffracting with sufficient dimming; the skirt includes a point, or a linear source, a lens for focusing light, and a spatial light modulator. The hologram of Yu and ^ shows that the spatial light modulator reconstructs the description of the three-dimensional field and the virtual observation window in the transmission mode at least in a "virtual observation_person window" Please refer to the attachments - and 2). Each virtual observer window is placed close to the observer's eyes and is closed in size, so the virtual observer window is in the single-diffraction class, so each eye can be seen The complete reconstruction of the three-dimensional scene in the conical reconstruction space 'conical reconstruction space is extended between the surface of the spatial light modulator and the virtual weaving window. In order to make the holographic reconstruction without interference, the size of the virtual observer window must be f More than the reconstructed--a radial interval of the diffraction class. However, 'this must be at least large enough' allows the observer to see the completion of the 3D scene through the window. Another eye can pass through the phase observer window. Or a second virtual observer window generated by the second 'light source' to observe. At this time, the typically large visible area is limited to the partially set virtual observer window. The conventional solution is to use tiny Reconstruction of large areas due to the high resolution of the surface of the space finer's size can be reduced to meet the size of the virtual observer window This will result in a smaller diffraction angle for geometric reasons and the resolution of the current spatial light modulator, which is sufficient to achieve the effect of holographic reconstruction at 200839468 through a consumer-level grading device. However, this will be encountered. The difficulty of displaying the resulting frame rate (fr_her) to the hologram, especially in the case of multiple display viewers. In the hologram generation method described by w〇2_face (10)20__94), _ multiple virtual The way the observer window is. If the virtual observer window is in the observation (4) eye position, the 'reconstruction target will be visible. Each observation (4) each rotation requires a virtual observer window. If the virtual observer window and the color red (8), green (6) And if the blue (8) is generated sequentially, then a high frame rate is required. "In order, it means red, green, and the way the technology is done with _, so for the pixels on the spatial light modulator, the same tree can be used to sequentially encode red, green, and blue light. To avoid The feeling of _, for each eye frame rate needs to be at least for the application. For the three observers, for example, 3G Hz * 2 eyes * 3 observers * 3 colors = _ & The rate of catching. This is more than the liquid crystal-based space photo acid (four) box speed county is much older. Even for a single view f '18G Hz _ 峨 (four) 嶋 (four) 1 靖 技术 technology can reach the limit - some financial __ Show products «now. Known fast = micro_system_S) - Space light modulator does not provide high-resolution phase adjustment two on these technologies 'characteristic switching time for liquid crystal is about 1 〇 stickers, for micro-Christine The system is about 1G ps. So the conventional device is in full complex image: 200839468. For a single observer example, it will be better than the faster frame rate that can be obtained by using liquid crystal technology, for example, the application is fast. Mobile activities, like video games, watching sports or moving For film, or for military applications. Space light modulators that allow for individual amplitude and phase modulation (including the case of series-paired spatial light modulators) will be more suitable for use in holographic displays. The hologram map has better reconstruction quality and higher brightness than the pure amplitude or pure phase hologram. The Faraday effect magneto-optical space variators (10) SLMs are known, but they only modulate the transmitted light. The amplitude is not used to generate a hologram. Such a spatial light modulator has been used by Panorama Labs of R0Ckefelier Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www. panoramalabs. Com) is published, for example, with w〇2〇〇5/〇76714A2, and other types of magneto-optical spatial light modulators are also known. Therefore, for a holographic display device, and for spatial light modulation II in a holographic display device, a frame scale that is capable of being high can be required, and Qiu Hao (4) independent = code phase and amplitude data. SUMMARY OF THE INVENTION In the first aspect, a holographic display is provided, and the hologram display device includes at least one magneto-optical spatial light modulator. 12 200839468 The holographic display device may include a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulator, and the first and second magneto-optical spatial light modulators may encode a full-image image, and the device may Produce a hologram reconstruction. The hologram display device allows the first magneto-optical spatial light modulator and the second magneto-optical spatial light modulator to modulate the amplitude and phase of the hologram pixel array in a controlled and independent manner. The holographic display device can comprise a close combination of the first magneto-optical spatial light modulator and the second magneto-optical spatial light modulator, which can be used to sequentially and closely modulate the amplitude and phase of the modulated light such that the amplitude is The complex value formed by the phase can be encoded in the transmitted light one by one. The holographic display device can include a close combination of a magneto-optical spatial light modulator and a sufficiently homogenous compact light source that can produce a three-dimensional image with proper illumination. The omni-directional display device may comprise a large-magnification three-dimensional image display device having a compact combination of constituent elements comprising one or two magneto-optical spatial light modulators and having a target holographic reconstruction. 1. The hologram display device may comprise a compact combination of one or two magneto-optical spatial light modulators, which may also be used as a projector. 13 200839468 This hologram display device can have at least one spatial light modulator to encode the hologram and the device will produce a holographic reconstruction. The hologram display device can be a device that uses a Faraday effect ▲ to modulate light. The hologram display device can be a device that utilizes a magnetic photonic crystal (magneto-photonic crystal) to achieve a Faraday effect. This holographic image • The display unit can be a type of doped glass fibres that can be used to implement the Faraday. The hologram display device can be a device that uses a magneto-optical film to achieve the Faraday effect. This holographic display can be a device that can observe holographic reconstruction through its virtual observer window. The holographic display device can be a device, and the photographic image is re-edited in time for the observer's face, and the hologram containing the hologram is operable to display the holographic transposition. A device in which the display is operable is 14 200839468. For the left eye of two or more observers, the hologram is sequentially re-encoded to the right eye, and the medium containing the hologram is advanced. In which the display has a beam directed to the holographic display device, it may be a device or a beam splitter element. • The hologram display device can be a device in which the display has a computer layer that displays a cry. The holographic display device can be a device in which the display has an eye tracking. The holographic display device can be a set, in which a fine backlight and a microlens array are illuminated. The microlens array provides locality on a small area of the display. This area is the only part of the display that encodes the poorness used at a given point in the reconstructed object. This display can include a reflective polarizer. This display can 'include a 稜鏡 optical film. The hologram display device can have a light emitting diode as its light source. This hologram device can be a television. This all-axis opposite can be used for riding. This holographic display device can be portable. 15 200839468 In another aspect, a method of manufacturing a display device is provided, comprising the steps of obtaining a glass substrate and continuously printing on the substrate or otherwise producing a magneto-optical spatial light modulator layer. In another aspect, a method of generating holographic reconstruction is presented, including the steps of using the display device described above. In another aspect, a holographic display device comprising a magneto-optical spatial light modulator is provided, the spatial light modulator encoding a hologram and the device producing a holographic reconstruction. This hologram display device can be a television. This hologram display device can be a screen. This holographic display device can be a notebook computer. This hologram display device can be a mobile phone. This holographic device can be a personal digital assistant. This holographic display device can be a digital walkman. • This hologram display device allows the Faraday effect to modulate light. This holographic display device can • Use Faraday effect to modulate light, and the Faraday effect can be achieved through a magnetic photonic crystal. This holographic display device allows the Faraday effect to modulate light, and the Faraday effect can be achieved by doping glass fibers. This holographic display device allows the Faraday effect to adjust the glare, and the Faraday effect can be achieved by a magneto-optical film. The hologram display device can be illuminated using a backlight and a microlens array. The backlight of the hologram display device may include at least one reflective polarizer to provide a linearly polarized state of light. The backlight of the hologram display device can include at least one reflective polarizer to provide circular polarization of light 16 200839468 state. The micro-transparent display of the holographic display device can be used to enhance the homology of the small area of the display (4), which is the only part of the display for encoding the Wei used at a given point of the reconstructed object. This omni-directional spatial light modulator provides beat coding. The Lang Guangjing, which relies on the display device, provides amplitude coding. The holographic reconstruction of this display device can be viewed via a virtual observer window. The virtual observation window of the holographic display device can be laid out in space or coffee. This holographic image can be manipulated so that only the #秘者's eye is close to the image plane of the light source, the holographic key can be correctly observed. The holographic display device allows the size of the sharp three-view to reconstruct a three-dimensional scene with a holographically small function. The volume can be located in a virtual observer window defined by the omni- _ medium and the difficult-to-build three-dimensional scene. Anywhere anywhere. The hologram display device can encode an hologram that can include an area having a poor amount of information needed to reconstruct a single point of the three-dimensional scene, which can be seen from a defined viewing position; this area (4) encodes about the reconstructed scene The information in the single-point, (6) and the only area that encodes the point §11, and (c) the size is limited to form part of the overall hologram, the size needs to be higher The multiple reconstructions produced by the shot hierarchy for that point are not visible by the defined viewing position. The holographic display device can be operable to re-encode the hologram sequentially in time for the observer's left eye followed by the right eye on the medium containing the hologram. The holographic display device can be operable to temporally re-encode the hologram in time on the medium containing the hologram for the left and right eyes of two or more observers. This holographic display device allows 17 200839468 hologram to be reconstructed as a holographic terracotta (4), instead of the full eight®, special leaf conversion (five) 廿 如 如 如 此 此 此 此 此 此 此 此 此 此 此The king image can be generated by determining the wavefront near the observer's eye position. This wave can be generated by the actual version of the object. The hologram display device can have a prism 7L to provide beam pointing. This hologram display device can have a computer layer in the display. This full _ money can be traced by Wei. On the other hand, a method of generating omni-image reconstruction is proposed, including the steps of using the above display device. In another aspect, a holographic display device including a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulation H is provided, wherein the first and second magneto-optical spatial light modulations are encoded full-images. Figure, and the device will produce a holographic reconstruction. The hologram display device can be an I-position in which the first and second magneto-optical spatial light modulators are in a controlled and independent manner to fully image the amplitude of the 11 pixel array and her. The hologram display device can be a device in which one magneto-optical spatial light modulator modulates the amplitude of the hologram pixel array. Another magneto-optical spatial light modulator modulates the phase of the hologram pixel array. The omni-directional display device can be a device in which one magneto-optical spatial light modulator modulates the first combination of amplitude and phase of the hologram pixel array, and the other magneto-optical spatial light modulator modulates the hologram A second different combination of amplitude and phase of the pixel array. The hologram display device can be a device in which light propagating through the device first encodes its phase, and then encodes its amplitude. This hologram display device can be a television. This holographic display device can be a screen. The hologram display device can be a notebook computer. This hologram display device can be a mobile phone. This holographic display device can be a personal digital assistant. This holographic display device can be a digital walkman. The hologram display device can be a device in which each magneto-optical spatial light modulator uses a Faraday effect to modulate light. The holographic display device can be a device in which the device is modulated using a Faraday effect.  In the case of at least one magneto-optical spatial light modulator, the Faraday effect is achieved using a magnetic Φ photonic crystal. The hologram display device can be a device in which the device uses a Faraday effect to modulate light, and in at least one magneto-optical spatial light modulator, the Faraday effect is achieved using doped glass fibers. The hologram display device can be a device in which the device uses the Faraday effect to modulate light, and in at least one magneto-optical spatial light modulator, the Faraday effect is achieved using magneto-optical wax. The holographic display device can be a device in which the magneto-optical spatial light modulators are separated by a separation layer. The hologram display device can be a device in which the layers are sufficiently thin to prevent the electromagnetic field of a magneto-optical spatial light modulator from adversely affecting the performance of another magneto-optical spatial light modulator. The holographic display device can be a seeding device, wherein the partition layer also provides branch support for at least one magneto-optical spatial light modulator. The holographic display device can be a device in which the towel separation layer is lower than or Equal to 10 microns to the level of the micron. The hologram display device can be a device in which the display device encodes an hologram and is capable of producing a hologram reconstruction. The holographic display device can be a device in which the display is illuminated by a backlight and microlens array 200839468. The hologram display device can be a device in which the backlight includes at least one reflective polarizer to provide a linearly polarized state of light. The hologram display device can be provided with a seed coating in which the backlight includes at least one reflective polarizer to provide a circularly polarized state of light. The holographic transposition can be a device in which the micro-transparent mirror provides locality on a small area of the display, which is the only part of the display, which is used to encode the reconstructed object. Fixed information. This holographic image can be used in the omni-image reconstruction. The omni-directional reconstruction can be viewed through the virtual observer window. The device can be used in the towel window. Work on the multiplex. The hologram display device can be a device' in order to correctly view the full scale when the subject's eyes are close to the image plane position. The holographic recording device can be a device in which the size of the key three-dimensional scene is a function of the holographic size, and the reconstructed I-dimensional scene can be located in the medium with the hologram and can be viewed to reconstruct the three-dimensional scene. The virtual view, anywhere within the volume defined by the window. This hologram display has ‘4 types of clothing’ in which the display encodes a hologram, and this hologram contains weight. Create a 2D% view-point to the desired area of the information, which can be seen from the defined viewing position. This area (a) is a stone horse with information about a single point in the reconstructed scene, (8) and is a king image. Zhong Wei - the area that encodes the information, and (c) the size is limited 'to form the whole hologram _- part, the size is large, the required axis is more than the S diffraction layer for the multiple reconstruction of the point Viewed by the defined viewing position. The king-like tf device can be a device in which the display is operable to re-encode the hologram at the end of the observer's left eye followed by the right eye on 20 200839468. This holographic display device can be followed by a sequence of ::=::^. This omni-directional display passes through the singularity of the singularity of the occupant's eye position. This hologram can be generated by the wavefront of the eye position of the occupant. produce. The hologram display device can be - difficult to place, in which there is a k-beam 7G piece ' to provide wire pointing. The holographic display device can be a device having a computer layer in a display. The hologram display device can be a device with eye tracking. π, in another aspect, provides a method of fabricating a holographic display device comprising: obtaining a glass substrate, and continuously printing on the substrate or otherwise generating a first magneto-optical spatial light modulation II and a second magnetic The steps of the light space to modulate the Wei layer. In another aspect, a method of generating holographic reconstruction is presented, including the steps of using the display device described above. On the other hand, a magneto-optical spatial light modulator is provided in close-to-close combination with the 21 2008 39468 compact light source, which is capable of producing a two-dimensional image at a suitable time. «The combination of dense can be a kind of device, and it is not necessary to have imaging optics. This tight _ combination can be set to less than 3 on all of the thicker components of the tissue device. This tight combination can be a set of pixels with soft apertures for tight integration. On the other hand, a close combination of two magneto-optical spatial light modulators is provided, which can be used to sequentially and tightly (4) the amplitude and phase of the sightseeing, so that the complex value formed by the amplitude and the phase can be The way to encode the silk scarf. This compact combination can be a device in which imaging optics are not provided. This compact combination can be a device in which the total thickness of the device components is less than 3 coffee. This compact combination can be a device having a pixel with a soft aperture providing device therein. This tight combination can be a device in which two magneto-optical spatial light modulators are directly connected or bonded together by arranging pixels. This compact combination can be a device in which the spacing of the two magneto-optical spatial light modulators is less than or equal to the order of 丨〇 micrometers to 100 micrometers. This compact combination can be a device in which the diffraction of light from one magneto-optical spatial light modulator through another magneto-optical spatial light modulator is in the form of a Fresnel diffraction method. Instead of using far-field diffraction. This tight combination can be a skirting in which there is a lens array between two magneto-optical spatial light modulators such that each lens images the pixels of the first spatial light modulator to the second spatial light modulation The pair of 22 200839468 should be on the pixel. This tight combination can be a device in which the aperture width of the first magneto-optical spatial modulator pixel is such that pixel crosstalk can be minimized. The close combination can be a device in which the aperture of the first magneto-optical spatial light modulator pixel is wide such that it can make the pixel crosstalk to the second magneto-optical spatial modulator pixel, with Fulang and The Fiji diffraction method is minimized. This tight combination can be a device in which a pupil panel is used to image the pixels of the first magneto-optical spatial light modulator to the pixels of the second magneto-optical spatial light modulator. .  In another aspect, a large magnification three dimensional image display device component is provided that includes a close combination of one or two magneto-optical spatial light modulators and has a target holographic reconstruction. The display device component can include one or two magneto-optical spatial light modulators in close combination with a fill-to-tap tightness, type light source. The display device component can comprise a close combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact source to enable such a combination to produce a three-dimensional image. The display device component can comprise a compact combination of one or one magneto-optical spatial light modulator and a sufficiently homogenous compact light source in which the light source is magnified 10 times through the lens array. The display device component may comprise a tight combination of one or two magneto-optical spatial light modulators and a sufficient coherent compact light source, wherein at least one of the magneto-optical spatial light modulators is disposed within 30 legs of the light source . The display device component can include a tight combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact light source such that such a combination produces a three-dimensional image that can be viewed via a virtual observer window. The display device component can be 23 200839468 3 in which the virtual observer window is the iron-emitting class of the Bayesian Fourier spectrum that is limited to the spatial light modulator. The displayed virtual observer sees *α :, ~ or 疋 can not be traced. The displayed virtual observer window can be used to create a virtual view of the virtual observer window. The virtual view of the virtual observer can be included as a small or non-device read to include one or two magneto-optical spatial light modulators. It is combined with a sufficient _ _ _ _ light source (four), and in the face of the light source array has a material victory "near tear (10) in the personal digital assistant. The device component can be included in a mobile phone. In the spatial light modulation, the spit code is edited by the _-editing line, and then the π-bean material is conveyed to the device, and the three-dimensional image of the full-age image is used. ~ In another aspect, a method of providing a full-flooding method, including taking a glass substrate continuously printed on a substrate or calling it to produce one or two magneto-optical spatial light modulator layers, is provided. The device comprises a large-magnification three-dimensional image display device component, and the large-magnification three-dimensional image display device component is composed of one. Or a close combination of two magneto-optical spatial light modulators, and a holographic reconstruction of the eye. ^ Built method, including use On the other hand, a step of generating a holographic retelling display device component is proposed. 24 200839468 编码 “Encoding on a spatial light modulator. The omnidirectional image® means that the hologram W is spatially tuned. [Embodiment] Various embodiments will be described below. Holographic display device with magneto-optical illumination This embodiment provides a configuration with a magneto-optical spatial light modulator that enables three-dimensional images to be produced under appropriate illumination conditions. It can be illuminated by multifilament or single-filament. The full display device can be used in an electric screen, a note (four) brain, a mobile phone, a personal digital assistant, a digital walkman or any other device having a display. For example, the space of the machine that is finer than the light is related to, for example, the vibration of the phase or the amplitude of the 中 and the modulation of the phase combination. This is about the use of the Faraday effect to perform the basic county-level optical machine. This spatial light modulator can be used in a hologram display. According to the application of the magnetic field in the direction of light propagation, the Faraday effect can manifest itself as the rotation of linear polarization in the medium. It is a quantitative description of this equation 25 200839468 α- V L Η (1) where 'α is the angle of _匕 rotation, V is the Verdet constant, L is the length of the medium and Η is the magnetic field strength. The Faraday effect is produced by the anisotropy introduced by the magnetic field. The magnetic field is an axis vector (axiai vect〇r), which is the sensitivity of the square to the f* shell (handedness 〇f 0 0 丨 011). Therefore, the left and right circular polarizations are no longer in a degraded state, they experience different refractive indices in the medium and experience different phase shifts. Because linear polarization is composed of left-handed and right-handed circular polarization, if these components have different phase shifts, when these circular components are combined into linear polarization, it will lead to linear polarization angle rotation. . Generally, the Feld constant V is small, so that a significant rotation angle α is a magnetic field η requiring a long length L or a high. The Faraday effect is significantly increased in a magneto-photonic crystal comprising a magneto-optical layer stack. For spatial light modulators, this helps the use of the Faraday effect in thin structures with small magnetic fields. This is described, for example, in "A presentation for Investors^ by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www. Panoramalabs. Com) (This file is listed here as a reference). This file is available on the web·archive·org website. 26 200839468 As shown in Figure 3, Pa_raaLabs has published the spatial light modulation H of the Langfala effect. It contains magnetic photonic crystals, input and output polarizers, and coil arrays. For each pixel of a spatial light modulator with a 16-pixel pitch, there is a corresponding coil. A magnetic photonic crystal is composed of a stack of a plurality of magneto-optical layers. A plurality of magneto-optical layers can take into account the Faraday effect in a single-layer. The application of the Chen current coil produces a local magnetic field in each pixel, causing the rotation through the polarization of the pixel. The output polarizer only transmits a specific polarization angle. Therefore, the transmittance (tmnsinittanee) per pixel can be modulated by the current from the fine towel. Figure 3 shows a pixel of a spatial light modulator comprising & polarizer 3 磁性 magnetic photonic crystal (Mpc), coil 303 and analyzer 302. The constant input intensity is modulated and the intensity function p(t) is rotated for a given time (t). Compared with liquid crystal or micro-motor system _ spatial light modulator, the advantage of Faraday effect space light modulator is that the Faraday effect space modulator has a 20 ns response time. This is much faster than liquid crystal (about 仞 stickers) or 疋 micro-age system (about 1Qus) m light iron. Magneto-optical spatial light modulators can be used for electronic holographic displays. In a method of holographic display, a virtual observer window (v〇w) is generated. If the virtual observer window is in the eye position of the observer, the reconstructed target will be visible. Each observer's eye has a virtual observer window. If the virtual view real window and color red 27 200839468 color (8), green (6) and monitor color (8) are generated sequentially, a higher frame rate is required. To avoid flicker, the frame rate for each eye needs to be at least fiber z. As an example, for example, for 3 observers, 3 Hz Hz * 2 eyes * 3 observers * 3 color = 540 Hz frame rate is required. This will be much faster than the frame speed of the LCD-space light modulator. The known (4) micromotor secret-space fine transformer does not provide high-resolution phase modulation. A spatial light modulator that modulates amplitude and phase is more suitable for use in electronic holographic displays. A complex-valued hologram has better reconstruction quality and higher brightness than a purely amplitude or purely phase hologram. In Figure 3, the only significant effect of the S-Faraday-effect space optical modulator published by Panorama Labs is that it is a variable for transmitting light amplitude. In addition, in Figure 3, the Faraday effect space modulator modified by Panorama Labs does not illuminate the coherent light to promote the generation of three-dimensional images. Figure 1 is an embodiment. 10 is a lighting device for providing illumination of a planar area where _ is sufficiently homogenous to enable generation of a three-dimensional image. In US 2006/2, a 1 towel is proposed - a detailed example of a large-area image full image, which is hereby incorporated by reference, and one example is shown in Figure 4. A device such as a light source may be in the form of a white light source array, such as a c阴极ld cath〇de fluorescent lamp or a white light emitting diode incident on a focusing system, wherein the focusing system It can be compact, such as a lenticular array or a microlens array. Alternatively, the light source for 10 may be comprised of red, green, and blue lasers, 28 200839468 or consisting of red, green, and blue light emitting diodes that emit sufficient tonal light. However, a non-laser light source (e.g., a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial homology is preferable to a laser light source. Field light sources have some disadvantages, such as laser speckles on holographic reconstruction, relatively expensive, and the eyes of workers who may damage the holographic display viewer or the holographic display assembly. Security issue. The element 10 may comprise one or two xenon optical films for increasing the brightness of the display: such films are known, for example, as described in us 5, 〇 56, 892 and 邶 5, 919, 551. The size of the hologram generator 15 can have a range, such as a screen size (or smaller) from one centimeter applied to the mobile resident screen, to a one meter screen size for large indoor displays ( Or bigger). Therefore, the thickness of the elements 1 - 14 can be from one millimeter, or even less, up to tens of centimeters, or even more (e.g., when applied indoors). Element n is a polarizing element with a set of 70 polarized elements. Among them - side gram linear polarizer. In addition, the side is a reflective polarizer that can transmit a linearly biased state and reflect an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,4. Another example is a reflective polarizer that transmits a circularly polarized state and reflects a positively rounded biased smear - such a sheet is known, for example, as described in US 6,181,395 29 200839468 Content. The tree 12 can be constructed by color filtering, such that pixels of colored light (e.g., red, green, and blue light) are directed toward the element, although a color filter is not required if a colored light source is used. Element 13 is a magneto-optical spatial light modulator. In the simplest form of the towel, the ploughing 13 is the formation of the line of the secret material. The each of the county's independent control details the II towel ray across the pixel corresponding to it. The control of the proof can be obtained by passing the light through a medium having a significant Feld constant V such that the linear polarized light can obtain a significant rotation α as it passes through the medium, as described in the same formula (1). This medium can be in the form of a doped glass-cylinder, or a similar shape, as described in __2_5. This medium may also be in the form of a magneto-optical film, as described in W〇2〇〇5/122479A2, or in the form of a magnetic photonic crystal layer. Light exiting the medium will then pass through the photo-biasing layer 14, such as a linear polarizer. If the element 11 is a reflective polarizer for the circularly polarized state of light, the circular 'shaped light will be transmitted from the element Π to the element 12, and the orthogonal illuminating beam will be returned to the element 忉 to provide the possibility. Recycling, and during this time its biasing may change to the state transmitted by component 11. In this example, the polarizer 14 after the element 13 is composed of a quarter wave plate for converting circularly polarized light into linear polarization, followed by linearly polarized sheets. The effect of a quarter-wave plate may exceed the visible spectrum, such as that described in US 7,054,049; it also has other quarter-wave plates known to act beyond the visible spectrum. Linear offset 30 200839468 The chemical film 14 can be set at the azimuth rotation angle so that no current flows through the array coil, H is zero and spreads over the pixel _, and the polarization state does not change due to the _ _ pixel And the display is in a dark state. Other settings can be obtained from conventional techniques. The current in the array coil can be changed pixel by pixel. • The polarization state is changed, thereby allowing an image (e.g., a color image) to be displayed. Wherein, the optical input polarization state to the magneto-optical spatial light modulator is a simple circularly polarized state, and the electrical age in the coil enables the recording to be encoded on the _-biased (four), as in the b position of the present application. Shouted. Such a code can encode an hologram with her information on it. If the element 11 is a reflective polarizer for the linearly polarized state of light, the linearly polarized light will be transmitted from the element 11 to the element 12, and the orthogonally polarized light will be reflected back to the element 10 to provide a possible recovery, And during this time its bias may change to the state transmitted by the element 11. In this example, the polarizer μ after the element 13 is a linearly polarized sheet. The linearly polarized sheet 14 can be set at an azimuthal rotation angle such that when no current flows through the array coil, the chirp is zero and extends throughout the array of pixels, so the polarization state does not change for all pixels of the array, and the display It is a dark state. Other settings can be obtained from conventional techniques. The current in the array coil can change the polarization state one pixel by pixel, thereby allowing an image (e.g., a color image) to be displayed. Wherein, the optical input polarization state to the magneto-optical spatial light modulator is a purely linearly biased state, and the current in the coil causes the amplitude to be in a biased state. 31 200839468 Encoding 'as described elsewhere in this case A hologram with amplitude information is compiled on it. Such amplitude coding allows for the separation of the two-dimensional image from the direction of the device 15 including the hologram generator 15 at point 16. Elements 10, 11, 12, and I4 can be configured to be physically connected (realally connected), each forming a structure - such that the entirety is a single-object. Physical material. Or: If there is a thin intermediate layer, a film covering between adjacent layers is formed. Entities can be confined to small areas to ensure proper interdependence, or extended areas, or even the entire surface of the layer. The physical connection can be made by layer-to-layer adhesion, to form a compact hologram, or by any other means (refer to the Summary Manufacturing Procedures section). However, if the component 15 is not particularly required to be tight, then the components ι, η, 13 and 14 can be separated. 5 Figure 4 is a side view of the prior art showing vertical The three focusing elements 110 1102 of the focusing system 11〇4 are in the form of a cylindrical lens arranged horizontally in the array, and the nearly collimated beam of the horizontal line source LS2 passes through the focusing unit π 1102 of the illumination unit to the observer plane. 〇ρ is an example. According to Figure 4, many line sources, LS2, LS3, are arranged one above the other. The light emitted by each light source is full-saturation in the vertical direction and non-linear in the horizontal direction. 。光光通通32 200839468 Over-transformation 8 SLM transmission component. This light is only diffracted in the vertical direction by the τ of the optical modulator SLM that encodes the hologram. Focusing element 11〇 2 in the observer plane op to number A diffracting class (only one useful) imaging source LS2. The beam emitted by source LS2 is used as an example of focusing element 1102 that passes only through focusing system ii 。 4. In Figure 4, three beams present a A diffraction class, a zeroth class 1106, and a negative-p level of 11〇7. A line source allows for very high light intensity generation compared to a single point source. Using multiple efficiencies that have been added and are used to reconstruct a three dimensional scene. Each part is assigned a full-image area of the line source to increase the effective light intensity. Another advantage of not using lasers is the tradition of multiple, for example, grooved light that can be part of the shutter. The system can produce sufficient dimming, which includes the eye 1108. Although it is better to use the omni-directional code t to please the person (by making the spectator φ window) is described in W0 2004 as proposed by the applicant. /044659 ' (US2006/0055994)t, in which a device that fully satisfies the diffraction of light, reconstructing the three-view, but it is necessary to clarify that the holographic display described here is not limited to use. Such a method, but a package Contains all holographic display types known to be usable with magneto-optical spatial light modulators, as is known in the art. B. A holographic display device with two magneto-optical spatial light modulators in series. An example is a spatial light modulator that provides complex modulation of light 33 200839468 (SLM) 'that is independent modulation of amplitude and phase. In particular, this is about using the Faraday effect, the light is changed to the basic light. This stray light modulator can be used in holograms and towels. This holographic display can be used on TVs, screens, laptops, mobile phones, personal digital secrets, digital walkmans or any other display crying. Device. ^ This embodiment provides a holographic display device with two magneto-optical spatial light modulators in series, which combines money to produce a three-dimensional image with appropriate ambiguity. This display can be illuminated by multiple light sources or a single light source. This embodiment is directed to two magneto-optical spatial light modulators for modulation of light, wherein each magneto-optical spatial light modulator modulates amplitude, phase or a combination of amplitude and phase. In particular, each magneto-optical spatial light modulator uses the Faraday effect to modulate light. The two combined magneto-optical spatial light modulators can be used in a hologram display. Therefore, a complex number consisting of amplitude and phase can be compiled in the transmitted light pixel by pixel. An holographic display device comprising one or more light sources and two magneto-optical spatial light modulators in series can be used to sequentially modulate the amplitude and phase of the light' and, if desired, in a compact manner. Examples of this embodiment include a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulator. The first magneto-optical spatial light modulator is modulated. 34 200839468 The amplitude of the light reaches the second magneto-optical spatial light modulator to modulate the phase of the transmitted light. Alternatively, the first magneto-optical space may be modulated to change the phase of the transmitted light, and the second magneto-optical spatial light may be transmitted to the fine amplitude. Alternatively, it is also possible to combine the amplitude of each magneto-optical spatial modulator with her, so that the combination of the optical spatial transformers on both sides contributes to full complexity modulation. Each magneto-optical spatial light modulator can be described as described in Section A above. All assembly can be as described in (4), except that two magneto-optical spatial light modulators are used here. In the first step, the pattern for phase modulation is written in the first magneto-optical spatial modulator. In the second facet, the amplitude modulation is written in the second magneto-optical space lighter. The light transmitted from the second magneto-optical spatial light modulator has been modulated in amplitude and phase, so that when the observer observes the light emitted by the two magneto-optical spatial light modulation devices, it can be observed. To a three-dimensional image. Due to the development of conventional techniques, phase and amplitude modulation techniques promote the performance of complex numbers. Thus, this embodiment can be applied to produce a holographic image so that the viewer can see the three dimensional image. Figure 2 depicts an example of this implementation. 2〇 is a lighting device for providing illumination of a planar area where illumination is sufficiently homogenous to enable three-dimensional images to be produced. An example of 35 200839468 for large-area image holograms is presented in US 2006/250671. A device like 20 may take the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that is incident on a focusing system, wherein the focusing system can be tight, Such as a lenticular array or a microlens array. Alternatively, the light source for 2 turns may consist of red, green, and blue lasers' or consist of red, green, and blue-color light emitting diodes that emit sufficient coherent light. However, compared to laser sources, non-laser sources (e.g., light-emitting diodes, organic light-emitting diodes, cold cathode glory lamps) having a sufficient space are preferred. Lasers have some drawbacks, such as safety that can cause lasers on holographic reconstruction, make them more dense, and may damage the eyes of workers who are omnipresent to display viewers or assemble holographic displays. problem. The element 20 may comprise one or two 稜鏡 optical films for increasing the brightness of the display: such films are known, for example, as described in 邶 5 〇 56 892 and 邶 5,919 551. The size of the hologram generator 25 can have a range, such as from a screen size (or smaller) applied to the mobile phone's sub-screen towel-cm, to a large-scale screen size of the large indoor display room (or Bigger). Therefore, the thickness of the elements 2〇-23, 26-like can be from -mm, or even smaller, up to tens of centimeters, or even more (for example, in the case of large indoor displays). Element 21 is a polarizing element or a group of polarizing elements. Its towel-side is a hetero-polarizer. Another example is the anti-36 200839468 ejector polarization 4, which can transmit - the recorded polarization state, and the reflection orthogonal linear polarization state - such a sheet is known, for example, as described in (10) 5, 828, 488. The other-fabric is biased to transmit - the side-frequency state, and to reflect the orthogonal --formed-biased state - such a sheet is known, for example, as described in us 6, (8), =. Element 22 may be constructed of a color filter array such that pixels of colored light (e.g., red, green color light) are directed toward element 23, although if _ chromatic light is used, it is not fine (4). Component 4 is a magneto-optical spatial light modulation ϋ. In the most recent form, element 23 is formed by a coil of conductive material, each of which (4) independently controls the magnetic field across the corresponding pixel of the side. Such control can be assisted by light passing through a medium having a significant Feld constant V, such that the polarized light can be obtained at the time of Wei's occupation, and her τα is as described in equation (1). The medium may be a melon or tantalum-like shape doped with a glass fiber cylinder, such as the inner grain described in the off-four-face garment, or in the form of a magneto-optical film, as described in the view m_A2. The content is either a magnetic photonic crystal. 7L piece 26疋 polarized 1 piece 'or a set of polarizing elements. Jius 27 is a magneto-optical light door light》 Zhou Ai, for example, as described above in relation to turn 23. Leave the magneto-optical space tones The light of the transformer will then pass through a photo-biasing layer 28, such as a linear polarizer. With respect to the light-transmitting element 23, the vibrating towel @'the element 27 is modulated in phase. It can also be the element 2? The amplitude-modulating amplitude' element 23 is modulated in phase - for When the amplitude is at the maximum, it is desirable to be more accurate in the case of the modulation phase of 200839468 (ie, with less noise), which is considered to be better. The magneto-optical space _ surface 23 and 27 #魏_少光学Pixel crosstalk problem caused by dissipating the divergence of the beam: When the magneto-optical spatial light modulators 23 and 27 are close to each other, a better approximation of the non-layered broadcast by the Weikong County ' Located at point 24 from the device including the compact hologram generator 25 The separated viewer's can view a three-dimensional image from the direction of 25. Elements 2〇, 21, 4, 烈, %, 27, and 28 can be configured as physical connections (real connections), each forming a layer of structure' The whole is a single-, unified--object. The physical connection can be direct. Or indirect 'if there is a thin intermediate layer, forming a film covering between adjacent layers. The physical connection can be limited to a small area towel' Madness _ mutual _ secret, or can extend the area of the large, even the entire surface of the layer. The physical connection can be seen from the point of the layer and the layer, such as by using the way of light to scale, then close = Like Figure 25, or by any other means (refer to the outline of the manufacturing process, and if it is not particularly demanding, then the component m, 26, 27 and 28, some or all of the components are Here, the 串联I single mathematical processing of the two series magneto-optical spatial tones of the seven-dimensional code m-modulation n, for each pixel, is the sum of the currents in the two coils. More precise processing is possible. For these calculations, the 38th phase of the modulation 200839468 A Faraday rotator, a first linear polarizer, a second Faraday rotator with a modulated amplitude, and a second linear polarizer are taken into account in this order. The length of the first coil is Li, the current is Ιι, the number of turns The magnetic field generated along its own axis is thus Hi=NiIi/Li. The length of the second coil is L2, the current is ι2, and the number of digits is N2. The magnetic field generated along the axis of the person is thus i2 /l2. These equations are from "Electromagnetic Fields and Waves" Seecmd 10 Edition by P.  Lorrain and D.  Corson (W.  H.  Freeman and Co, San Francises USA, 1970), pp. 315-318. The input light has a circular polarization, and the complex amplitude of the circular polarization can be expressed according to the Jones calculus: The Faraday effect of the rotator shifts the phase of this circularly polarized component:  Vi Li Hi = Vi Ni Ii , (4) described by wire (1). The amplitude after Faraday rotation Εχ is Εχ = (l) exp(/ai) The amplitude after the first linear polarizer is E2 = ^jexpOaj) Regarding the deviation of the partial rotation of the second Faraday rotator, Linear linearization is decomposed into 39 200839468 left and right circular polarization states, and j / and phase values are shifted by α2 and -α2, respectively, where a2 = r V2 L2 H2 = V2 N2 I2 after the brother-Faraday rotator The amplitude is E3 = -exp〇 * a1) Bu (4) + U eXp (*2) exp (iai) · Finally 'the amplitude after the second linear polarizer is cos(a2), -sin(a2)y

E4 =exp(/a1)· cos(a2)、 兩個磁光钟細魏輕域I eGS( α2) I與相位α 1。 □此’線圈電流I!及L可用來控制每一個像素相位⑺及振幅 口子lcos(a2)| ’因為這些量是分別等於與丨⑺s(秘^)丨。 在我們、,'a疋只知的具體例子。㊉個磁光空間光調變器是 、串知的方式組合在n—層包含由賴控制且獨立定址的 調變像素。層錢行_,因此在第—雜素巾機的光會接著 由弟二層對應的像素調變。每—層_變特性是要使得兩個串聯 的層能相光的漏觀,即振幅及她。此空縣機哭 魏場絲躺,蝴非必要的。 此工間先·器可包含整合錢腦,但此為非必要的。 200839468 圖五顯示了剖面圖,其中此空間光調變器包含: •磁光空間光調變器的兩個層53、54、%、Μ •用於光束指向的棱鏡元件59 正口在二間光凋變器中的電腦,提供全像圖的計算及控制調變 -器與棱鏡元件。這可稱為顯示器中的電腦(c卿伽& a ^印⑽, -⑽)52。對於這樣的電腦的電路可在玻璃基板上發展,如由申請 •人提出的專利申請號GB _9376.8及GB 〇7〇9379.2中所描述的 内谷。在圖五中顯示了三個像素,真正的裝置應具有更多的像素, 例如真正的裝置可具有麵xl_的像素_,這包含百萬個像 比率 圖五所顯示的裝置包含三個像素5U、512及513與—個棱鏡 疋件59。當然’實施方式並不會限制在這些數目以及μ這樣的 圖五所顯示的空間光調變器包含幾個層具有 •底部玻璃基板51 •顯示器中的電腦52 •第一具有線圈的層53,在此顯示了三個線圈的剖面圖 200839468 •第一磁性光子晶體層54 •第一偏光片55 •第二磁性光子晶體層56 •第二具有線圈的層57,在此顯示了三個線圈的剖面圖 •第二偏光片58 •用於光束指向的棱鏡元件59 •頂部的玻璃基板510 在圖五中顯示了三個像素5n、512及513。每—個像素堆疊 是從線圈的第-層53延伸至第二偏光片5δ,如虛線所示。有關像 素511的空間光調變器將會說明。光傳播的方向是從 板51至頂部玻璃基板51〇。 在第一磁性光子晶體層(MPC)54中,線圈514產生磁場,並且 控制光的調變。光會通過第一偏光片55,接著由第二線圈516所 控制的第二磁性光子晶體層56進行調變。第二偏光片58是在像 素511的輸出位置。每一個磁性光子晶體層是由磁光層的多層結 構所組成,可大量提高費爾德常數。在“A Presentation for Investors” by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 42 200839468 USA (www· panorama labs· com)中描祕 7 心r細處了一些關於磁性光子晶體層 的多層結構,可從網際網路上獲得。 k兩们磁it光子BB體層54、56是聽調魏過每個像素的光 的相位及振幅。舉例而言’進入像素511的光是在左邊的圓形偏 化狀態。光在通過磁性光子晶體層54之後仍是為左邊圓形偏化, 亚且具有與線圈514所產生的磁場有關的相位位移W。偏化片 55會將f伽職化猶献有常餘巾i及相位位移 pi的線性 偏化。這個光接著會在雖光子晶體層56中調變。之後,偏化仍 為線性,但是触财向會轉α缝,此航會與細516所 產生的磁場有關。在第二線性偏籼5δ之後,光會具有固定的偏 化方向及與旋轉角度α有關的振幅。 -以上是如何兩個磁性光子晶體在像素中調變光的相位及 振巾田的個例子。當然,其它調變特性、輸入和輸出偏化及偏化 片方向的組合都是可能的,如在習馳術可觀察到的方式。在每 一個磁性光子晶體中,可具有振幅及相位的混合調變。對於全複 表周又,在本質上磁性光子晶體54及磁性光子晶體Μ中的組合 调、交會幫助從零到最大振幅值的振幅可控制複雜調變及從〇到 2 7Γ弧度的相位可控制複雜調變。 43 200839468 具有棱鏡元件59的光學層包含電極517、518及填滿兩個分 離液體519、520的凹洞。每一個液體填滿凹洞的棱形部分。舉一 個例子,液體可以是油或水。在液體519、52〇之間介面的斜率是 依據施加在電極517、518的電壓所決定。如果液體具有不同的折 ' 射率,光束將會遭受偏向,偏向是由施加在電極517、518的電壓 ,賴^。因此,棱鏡元件59的作用如同可控制的光束指向元件。 • 這對於申明人的方法應用在需要追蹤虛《I*察員視窗至觀察員眼 睛的電子式全像技術是-個重要的特性。由申請人所提出的專利 申請號DE 1〇2_24237.0及DE麵〇職236 2描述了以棱鏡 元件進行虛擬觀察員視窗至觀察員眼睛的追蹤。 非必要的顯示器中的電腦52是用以計算全像圖與控制像素 的線圈中的電流’以及控制棱鏡元件。由申請人所提出的專利申 鲁請號GB _376.8 AGB _379·2中描述了用於全像顯示的顯 '不器中的電腦實施方式。 在圖五中,顯示器中的電腦52是直接連接底部破璃基板,且 疋利用薄膜電晶體科技所製成。線圈與棱鏡元件的控制信號是經 由圖五中符號515所顯示的饋入裝置或傳導接點所轉換。這即為 個例子。其它位置的顯示器中的電腦也是可能的,例如: 200839468 •兩個顯示器中的電腦,—個在底部而另-個在頂部基板,同步 可經由饋入裝置(f eedthro_s)或是經由兩個顯示器中的電腦的 外部同步操作來達成。 •兩個顯示器中的電腦,位於偏光片55的每一邊。這能確保至線 . 圈的距離是很短的。 ,·-個或二個顯示器中的電腦,位於一個彈性薄片的—邊或兩邊 • 上,此彈性薄片是裝設在玻璃基板、磁性光子晶體、線圈或偏光 片上。 當然’實作方式並不是侷制在這裡所列的顯示器中的電腦的位置。 對於饋人裝置或是介於顯示器中的電腦、線圈與棱鏡元件的 電極之間或是介於數個顯示器中的電腦之間的接點,具有數種可 能性,例如:E4 = exp(/a1)· cos(a2), two magneto-optical clocks, fine-light domain I eGS(α2) I and phase α 1. □ This 'coil current I! and L' can be used to control each pixel phase (7) and amplitude port lcos(a2)| ’ because these quantities are equal to 丨(7)s(秘^)丨, respectively. In our case, 'a 疋 only know the specific example. Ten magneto-optical spatial light modulators are combined in a way that the n-layer contains modulated pixels that are controlled by Lai and are independently addressed. The layer of money _, so the light in the first-of-the-line machine will be modulated by the corresponding pixel of the second layer. The per-layer-variation characteristic is the leakage view of the two layers in series, that is, the amplitude and her. This empty county machine is crying Wei Wei silk lying, butterfly is not necessary. This workstation can contain integrated money brains, but this is not necessary. 200839468 Figure 5 shows a cross-sectional view of this spatial light modulator comprising: • Two layers of magneto-optical spatial light modulators 53, 54, %, Μ • prism elements for beam pointing 59 The computer in the light fader provides the calculation of the hologram and the control of the modulator and prism elements. This can be referred to as a computer in the display (c gamma & a < a print (10), - (10)) 52. The circuit for such a computer can be developed on a glass substrate, such as the inner valley described in the patent application No. GB_9376.8 and GB 〇7〇9379.2 filed by the applicant. In Figure 5, three pixels are shown. The real device should have more pixels. For example, a real device can have a pixel x of the face xl_, which contains millions of image ratios. The device shown in Figure 5 contains three pixels 5U. , 512 and 513 and a prism element 59. Of course, the embodiment is not limited to the number and μ such as shown in Figure 5. The spatial light modulator comprises several layers with a bottom glass substrate 51 • a computer 52 in the display • a first layer 53 with a coil, in This shows a cross-sectional view of three coils 200839468 • a first magnetic photonic crystal layer 54 • a first polarizer 55 • a second magnetic photonic crystal layer 56 • a second layer 57 with coils, here showing a profile of three coils Fig. 2: Second polarizer 58 • Prism element 59 for beam pointing • Glass substrate 510 at the top Three pixels 5n, 512 and 513 are shown in FIG. Each pixel stack extends from the first layer 53 of the coil to the second polarizer 5δ as indicated by the dashed line. The spatial light modulator for pixel 511 will be explained. The direction of light propagation is from the plate 51 to the top glass substrate 51. In the first magnetic photonic crystal layer (MPC) 54, the coil 514 generates a magnetic field and controls the modulation of the light. Light is modulated by a first polarizer 55 followed by a second magnetic photonic crystal layer 56 controlled by a second coil 516. The second polarizer 58 is at the output position of the pixel 511. Each of the magnetic photonic crystal layers is composed of a multi-layered structure of magneto-optical layers, which can greatly increase the Feld constant. In "A Presentation for Investors" by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 42 200839468 USA (www· panorama labs· com) The multilayer structure of the magnetic photonic crystal layer is available on the Internet. The two magnetic photon BB layers 54, 56 are the phase and amplitude of the light that is tuned to each pixel. For example, the light entering the pixel 511 is a circularly polarized state on the left side. The light is still circularly polarized to the left after passing through the magnetic photonic crystal layer 54, and has a phase shift W associated with the magnetic field generated by the coil 514. The skewer 55 will provide a linear bias for the remnant and the phase shift pi. This light will then be modulated in the photonic crystal layer 56. After that, the polarization is still linear, but the touch will turn to the alpha seam, which is related to the magnetic field generated by the fine 516. After the second linear bias 籼 5δ, the light will have a fixed polarization direction and an amplitude associated with the rotation angle α. - The above is an example of how the two magnetic photonic crystals modulate the phase of the light in the pixel and the vibrating field. Of course, other modulation characteristics, input and output biasing, and combination of polarization direction orientations are possible, as can be observed in Hitchcraft. In each of the magnetic photonic crystals, there may be a mixed modulation of amplitude and phase. For the full complex week, in combination, the combined modulation and intersection in the magnetic photonic crystal 54 and the magnetic photonic crystal 帮助 can help the amplitude from zero to the maximum amplitude value to control the complex modulation and the phase control from 〇 to 2 7 Γ radians. Complex modulation. 43 200839468 An optical layer having prismatic elements 59 comprises electrodes 517, 518 and a cavity filled with two separate liquids 519, 520. Each liquid fills the prismatic portion of the cavity. As an example, the liquid can be oil or water. The slope of the interface between the liquids 519, 52A is determined by the voltage applied to the electrodes 517, 518. If the liquid has a different refractive index, the beam will be biased by the voltage applied to the electrodes 517, 518. Thus, prism element 59 acts like a controllable beam directing element. • This is an important feature for the clarifier's approach to electronic holographic techniques that need to track the virtual “I* inspector window to the observer's eye”. Patent application No. DE 1〇2_24237.0 and DE face-to-face 236 2, filed by the Applicant, describe the tracking of the virtual observer window to the observer's eye with prism elements. The computer 52 in the non-essential display is used to calculate the current in the coil of the hologram and control pixels and to control the prism elements. A computer implementation for a holographic display is described in the patent application No. GB _376.8 AGB _379.2 filed by the applicant. In Figure 5, the computer 52 in the display is directly connected to the bottom glass substrate and is made using thin film transistor technology. The control signals for the coil and prism elements are converted by the feed means or conductive contacts shown by symbol 515 in Figure 5. This is an example. Computers in displays in other locations are also possible, for example: 200839468 • Computers in two displays, one at the bottom and the other at the top substrate, synchronized via a feedthrough (feedthro_s) or via two displays In the external synchronization operation of the computer to achieve. • The computer in the two displays is located on each side of the polarizer 55. This ensures that the distance to the line is very short. The computer in one or two displays is located on the side or sides of an elastic sheet. The elastic sheet is mounted on a glass substrate, a magnetic photonic crystal, a coil or a polarizer. Of course, the implementation is not the location of the computer in the display listed here. There are several possibilities for the contact between the feed device or the computer in the display, between the electrodes and the electrodes of the prism elements, or between the computers in several displays, for example:

光片或線圈 洞的_麵孔,或是概填滿料㈣的光石細卩刷製造。 -個層的接赌域與另—層具有料縣劑的接點區域的黏合 製造-個複合多層片,可包含—個或數觸示器中的電滕、偏 當然’貫作方式並不是侷制在這裡所觸可能性。 45 200839468 必須小心避免或補償磁場之間的串音。 •在第-線圈514及第二線圈516(雜散磁場)的磁場之間會導致 光調變錯誤的串音可被計算且進行補償。計算與補償可叫進行 或是使用查表法。 在鄰近像素之關φ音典型上是可以忽略的,因為離開線圈轴 的雜散磁場是彳M、的。酬,φ音是可_即時或是查表法The _ face of the light film or coil hole, or the fine stone brush that is filled with material (4). - The bonding of the layers to the bonding area of the other layer with the material agent - a composite multilayer film, which can contain the electric or the The system is here to touch the possibility. 45 200839468 Care must be taken to avoid or compensate for crosstalk between magnetic fields. • Crosstalk that causes optical modulation errors between the magnetic fields of the first coil 514 and the second coil 516 (stray magnetic field) can be calculated and compensated. Calculations and compensation can be called or used. The φ sound in the vicinity of the pixel is typically negligible because the stray magnetic field leaving the coil axis is 彳M,. Reward, φ sound is _ instant or table look

或補償。 # •顯示器中的電腦至磁性光子晶體(反之亦然)的雜散磁場的串音 可經由小心的佈線設計獲得最小化。舉例而言,具有相同但相^ 方向電流的電路路徑可設置在—起,使得遠場磁魏銷至一個好 的近似值。 光從-個像素到鄰近像素的串音可藉由像素内從犯到犯的 短光學路徑(即在圖五巾,在㈣於51 _向51()的方⑹來避免 之。這可將繞射光到鄰近像素的數量減低至可忽略的數值。 偏光片55、58也應該為薄層。例子包括: •聚合物薄片偏光片(Polymer sheet polarizer) •具有嵌入式小金屬微粒的層,可吸收一個偏化方向。 46 200839468 •金屬線網格偏光片,由平行奈米金屬線的陣列所組成,能傳送 一個偏化方向的光,並且反射另—個偏化方向(例如由fatek k 〇f 452 West 1260 North, Orem, UT 84057, USA^±M^)〇 • 魏㈣細魏可為具錢公分錄尺核顿小型空間 ,_魏,例如可作為行動電話的錢幕,或者具有—公分或更 •]的蛋幕尺寸,例如應用於投影顯示器中的空間光調變器,在其 中會光學放大空間光觀ϋ。或者,它可為具有大至—公尺或甚 至更大螢幕尺寸(用於直視顯示中,在其中多個觀察員可看到空間 光调變器的實際大小)的大型空間光調變器。螢幕尺寸大小介於大 型與小型之間的空間光調變器也是可能應用在各種不同的應用。 在上述例子中所描述的空間光調變器具有下列特性 •兩個磁性光子晶體,用於獨立調變振幅與相位 •用於光束指向的棱鏡元件 •顯示器中的電腦,用於全像圖計算及線圈與棱鏡树的控制。 也可以製造一個較不複雜的空間光調變器: 47 200839468 •不具棱鏡元件的空間光調變器可與外部光束指向元件結合使 用,例如光源追蹤、掃描反射鏡(scanning mirr〇rs)或外部的棱 鏡元件。 不具頒示益中的電腦的空間光調變器可與用於全像圖計算及線 • 圈與棱鏡元件控制的外部電腦結合使用。 •不具眼睛追縱的空間光調變ϋ可在手持式裝置中使用,在其中 _ 使用者會手動旋轉裝置,以便將虛織察員視窗設置在他的眼 位置。 所揭露的空f杭調變奸較適合用於全像顯示中,其為投影 全像顯不或是直視全像顯示。具有驗絲指向的整合型棱鏡元 件勺工間合用於全像顯示中,基於巾請人的方法 應用於使用虛擬觀察員視窗追蹤的全像顯示。 、’、而對於王像編碼,申請人透過使用虛擬觀察員視窗的方 疋4田述在例如由申睛人所提出的恥2_/〇4棚9 ⑽2006/0055994)的崎巾,在射描述了—麵於細充份同 周光的、%射的方法重建三維場景的裝置,必須知道這個實施例的 全像顯示並不是舰麵樣財法,而是包含财已知的全_ 示類型,可與-對磁缝間光調_結合烟,以產生複雜岭 48 200839468 像編碼,如同在習用技術中可見的。 C.磁光空間光調變器與緊密型光源的緊密組合 這個實施例提供了 一種磁光空間光調變器與充份同調性的緊 密型光源的緊密組合,這樣的組合能夠在適當的照明情況下產生 三維圖像。 在這個實施例中,描述了一個不需要成像光學的磁光空間光 凋麦器與緊岔型光源的緊密組合。這個實施例提供了一個光源或 多個光源、聚焦工具、磁光空間光調變器及非必要的光束分光鏡 元件的緊密組合,此組合能夠在適當的照明情況下產生三維圖 像。由於"不需要成像光學",這意謂著沒有聚焦工具,除了用於 聚焦光源絲_方法之外,舉_這,這樣的方法典型為微透 鏡陣列。 。圖十-描述了-種實施的例子。110是照明裝置,用於提供平 面區域的糾’其帽明是具有充份的同雛,以便能夠產生三 拉圖像。在US 2GG6/25G671中提出了一個用於大區域影像全像圖 的照明裂置的例子’圖四顯示了其中一個例子。如同11()的裝置 I採用白色絲_的形式,例如冷陰極f光燈或是發出的光線 :、、、入射在聚焦祕上的技發光二極體,其巾聚減統可為緊密 49 200839468 的’如透鏡狀陣列或微透鏡陣列。或者,用於m的光源可由紅 色、綠色及藍色雷射所城’或是由發出充份同雛光的紅色、 綠色及藍色發光二極體所組成。紅色、、綠色及藍色發光二極體可 為有機發光二極體(0LEDS)。_,相較於雷射光源,具有充份空 間同雛的非雷射光源(例如:發光二鋪、有機發光二極體、 冷陰極螢光燈)是更佳的。光源具有—些缺點,例如會在全像 重建上造成雷射賴(laser speekle)、姆上較為昂貴以及可能 會傷害全像顯示觀看者或是進行全像顯示裝置組裝之功人員的 眼睛等安全性問題。、 7G件110可包含一個或兩個稜鏡光學膜,用以增加顯示器的 亮度:這樣的膜是已知的,例如在us 5,056,892與us 5,919,551 中所描述的内容。 元件110的厚度可約為數公分,或是更低。在較佳的實施例 中,元件110-113 ’ 116全部的厚度會低於3cm,以便提供充份同 雛的緊絲源。元件1U可由色彩過濾鱗列所構成,使得彩 色光線(例如紅色、綠色及藍色光)的像素是射向元件112,儘管如 果使用彩色光源時,並不需要色彩過滤器。元件112是偏化元件, 或是一組的偏化元件。元件113是磁光空間光調變器。元件116 是偏化元件,或是一組的偏化元件。元件116之後可為光學光束 50 200839468 分光鏡元件。位於點114離包含緊密全像圖產生器115的裝置一 些距離的觀看者,可從115的方向觀看到三維圖像。 在A部分所描述的光賴成要素可包含在緊密的全像圖產生 • 器115中,如同在習用技#f中可見的。 磁光空間光調變器是空·調變器的—種,在其中元件陣列 中的每-航件可個電子錢行定址,以细法㈣效應調變 偏化光的偏化狀態。每個元件對人射的光會進行—些作用,例如 調變它所傳送的光雜幅,或者調變它所傳送的光的相位,Z 調變它所傳送的光的振幅及相位的組合。在麵_撕1術中 提供了-個磁光空間光調變涵例子,其它關於這類型的来 調變器也是已知的。 θ 元件110、m、112、113及116可配置成實體連接(直實上 連接),每一個形成結構的—層,使得整體為單一、統—的物件。 倾連接可為直接的。或是間接的,如果有薄的中間層,形成费 蓋在相鄰層之間賴。實體連接可關在小區域中,以確保正^ 的相互排剩係,歧可延伸錄大的_,甚至層的整 =可:_卿見,例如藉由使用光_ 肩方式,以形成緊㈣全像圖產生器115,或是藉由任何其它的 51 200839468 方式(參考概紐序部份)。 圖四疋習用技術側視圖,顯示出垂直聚焦系統11〇4的三個聚 …、元件11G1、11G2、11G3,採關柱形透鏡水平排列於陣列中的 K &以水平線光源LS2幾近準直的光束通過照明單位的聚焦 ,元件1102至觀察員平面〇p為例子。根據圖四,許多的線光源⑸, LS2, LS3是一個個上下排列。每一個光源發射的光,在垂直方向 是具有充份同調性的,在水平方向是為非同雛的。這個光會通 過光調變器SLM的傳輸元件。這個光藉由編碼全像圖的光調變器 slm的元件’僅在垂直方向產生繞射。聚焦元件n〇2在觀察員平 面0P以數個繞射階級(只有一個是有用的)成像光源LS2。由光源 LS2所發射的光束是用來作為只通過聚焦系統聰的聚焦元件 1102的例子。在圖四中,三個光束呈現了第一繞射階級ιι〇5、第 瞻零产身級1106及負-階級1107。與單一點光源相比,線光源可允許 非苇南的光強度產生。使用多個已增加效率且針對重建三維場景 的每一個部分皆指派一個線光源的全像區域可提升有效的光強 度。另-個不採用雷射的優點是多個例如設置在可為遮光器一部 份的槽光圈之後的傳統光源可產生充份的同調光。 -般而言,全像顯示是絲在虛擬觀察員視g中重建波前。 波前是-個實際減會產生的東西,如果它存在的話。當觀察員 52 200839468 的眼睛是位於虛擬觀察員視窗的位置時,他會看見重建的物件, 其中虛擬觀察員視窗可能為多個虛纖察員視窗⑽s)中的一個 虛擬觀察員視窗。如圖六A所示,全像顯示是由下列構成要素所 組成:光源6(U、透鏡602、空間光調變器腿、非必要的光束分 . 光鏡603及觀察員視窗604。 鬌 為了 ^助工間光5贱☆、與可顯示全像圖像的緊密型光源的緊 密組合產生,圖六A中的單-光源及單—透鏡可分別由光源陣列 605及透鏡陣列606或透鏡狀陣列取代,如圖六β所示。在圖六b 中,光源照射空間光調變器,並且透鏡成像光源至觀察員平面。 而空間光調變器編碼全像圖像,且調變進入的波前,使得需求的 波雨可重建在虛織察員視窗中。#必要的光束分光鏡元件可使 用末產生數個虛^:觀祭貞視冑,例如—侧於左眼的虛擬觀察員 視窗與一個用於右眼的虛擬觀察員視窗。 ★ ,假設是使用光源陣列與透鏡陣列或是透鏡狀陣列時,則必須 設置陣列中的光源,使得通過透鏡陣列或是透鏡狀陣列全部透鏡 的光會同時至虛擬觀察員視窗。 圖六B的裝置適合採用可應用於緊密全像顯示的緊密設計$ 這樣的全像顯示可適用於行動應用,例如在行動電話或個人數位 53 200839468 助理中。典型地,這樣的全像顯示將具有一英吋或數英吋大小的 螢幕尺吋。適合的構成元件將在下面作詳細描述。 1)光源/光源陣列 ^ 在簡易的情況下,可使用固定的單一光源。如果觀察員移動, , 則可追蹤觀察員,並且調整顯示器,使得在新位置的觀察員可觀 _ 察到產生的圖像。此時,若不是沒有虛擬觀察員視窗的追蹤,就 疋藉由空間光調器之後的光束指向元彳牛來執行追蹤。 可設定的光源陣列可藉由另一個以背光照射的磁光空間光調 堯益來貝現。為了產生點或線光源的陣列,只有適當的像素會切 換到傳送狀態。這類型陣觸最大切換速度將會比其它^間光調 變器中的切換速度快上許多,例如使用液晶或微電機系統技術的 φ 工間光凋麦為。這些光源的孔徑必須是足夠的小,以保證能提供 充份帥_性給予目標的全像重建。點光__可與二維排 ,列的透鏡_-起使用。線光源的_是較推薦與由平行排列的 圓柱形透鏡所組成的透鏡狀陣列一起使用。 較好的是將有機發光二極體顯示器作為光源陣列。當以有機 發光二極體顯示器作為光源_時’只有在其上有切換的像素必 須用來在眼睛的位置產生虛擬觀制視窗。有機發光二極體顯示 54 200839468 裔可具有二維排列的像素或是一維排列的線光源。每一個點光源 的發光_或是每-個線光_寬度都必須是足_小,以保證 提供充份空間_性給予目標的全像重建。同樣的,點光源的陣 列是較適合與二維排列的透鏡陣列一起使用。線光源的陣列是較 •推薦與由平行排列的圓柱形透鏡所組成的透鏡狀陣列一起使用。 m 2)聚焦工具:單一透鏡,透鏡陣列或透鏡狀陣列 聚焦王具會成像-個光源或是多個絲至觀察員平面。當空 間光調變狀非常靠近聚紅具時,在空間光觀器巾編碼的資 _傅立葉轉換會在觀察員平面中。聚焦工具包含一個或數個聚 焦元件。空間光調變器與聚焦工具的位置是可以交換的。 對於磁光郎光輕H與充朗雛的緊㈣光源的緊密組 合’薄的聚焦工具是必要的:習用具有凸面的折射透鏡是過厚的。 取而代之的是使用繞射或全像透鏡。此繞射或全像透鏡可具有單 一透鏡、透斜列或透鏡狀陣觸魏。這樣的材料是存在的, 如由 Physical 0ptics Corp〇rati〇n,τ〇γγ_,CA,脱所提供 的表面起伏全像產品。或者,可使用透鏡陣列。透鏡陣列包含二 維排列的透鏡,且每-個魏是分配至光轉觸—個光源。另 一個選擇是使贿鏡狀_。透鏡狀_包含—維制的圓柱形 透鏡’且每-個透鏡在光源陣列中具有—個對應的賴、。如上所 55 200839468 述’如果使用光源陣列與透鏡陣列或是透鏡狀陣列,則必須設置 陣列中的光源,使得通過透鏡陣列或是透鏡狀陣列的全部透鏡的 光能同時至虛擬觀察員視窗。 通過透鏡陣列或是透鏡狀陣列的透鏡的光對於任何其它的透 鏡是非同調的。因此,在空間光調變器上編碼的全像圖是由次全Or compensation. # • The crosstalk of the stray magnetic field from the computer in the display to the magnetic photonic crystal (and vice versa) can be minimized by careful wiring design. For example, a circuit path having the same current in the direction of the phase can be set up so that the far field is pinned to a good approximation. The crosstalk of light from a pixel to a neighboring pixel can be avoided by a short optical path from the inside of the pixel (ie, in Figure 5, in (4) at 51 _ to 51 () (6). This can be around The number of light incidents to adjacent pixels is reduced to a negligible value. Polarizers 55, 58 should also be thin layers. Examples include: • Polymer sheet polarizer • Layer with embedded small metal particles that can be absorbed A polarization direction. 46 200839468 • Metal wire grid polarizer consisting of an array of parallel nanowires that transmit a direction of polarization and reflect another polarization direction (eg by fatek k 〇f 452 West 1260 North, Orem, UT 84057, USA^±M^)〇•Wei (4) Wei Wei can be a small space for money-bearing tapes, _Wei, for example, as a money screen for mobile phones, or with - centimeters Or the size of the egg screen, for example, applied to a spatial light modulator in a projection display, in which it will optically magnify the spatial light. Alternatively, it can have a screen size as large as - meter or even larger ( For direct view display, in its Large spatial light modulators with multiple observers seeing the actual size of the spatial light modulator. Space light modulators with screen sizes between large and small are also possible for a variety of different applications. The spatial light modulator described in the examples has the following characteristics: • Two magnetic photonic crystals for independently modulating amplitude and phase • Prism elements for beam pointing • Computers in displays for hologram calculations and coils Control with prism trees. A less complex spatial light modulator can also be fabricated: 47 200839468 • Spatial light modulators without prism elements can be used in conjunction with external beam pointing elements, such as light source tracking, scanning mirrors (scanning) Mirr〇rs) or an external prism element. A spatial light modulator that does not have a computer with a benefit can be used in conjunction with an external computer for hologram calculation and line and prism element control. The spatial light modulation can be used in a handheld device in which the user manually rotates the device to set the virtual weaver window to him. The position of the eye is not suitable for the holographic display, and it is a projection omnidirectional display or a direct-view holographic display. The integrated prism element scaffold with the wire pointing is used for the whole In the image display, the method based on the towel application is applied to the hologram display using the virtual observer window tracking. , ', and for the king image coding, the applicant uses the virtual observer window to describe the image in the image, for example, by the eye-catching person. The proposed shame 2_/〇4 shed 9 (10) 2006/0055994) of the Kasha, in the description of the surface of the fine-filled with the Zhou Guang, % shot method to reconstruct the three-dimensional scene, must know the full implementation of this embodiment The image display is not a ship-like financial method, but a full-known type of wealth, which can be combined with a light-to-magnetic gap to combine the smoke to produce a complex ridge 48 200839468 image code, as seen in the conventional technology. of. C. Close Combination of Magneto-Optical Spatial Modulators and Compact Sources This embodiment provides a close combination of a magneto-optical spatial light modulator and a well-consistent compact source that can be properly illuminated In the case of a three-dimensional image. In this embodiment, a close combination of a magneto-optical spatial light applicator that does not require imaging optics and a compact-type light source is described. This embodiment provides a close combination of a light source or multiple sources, a focusing tool, a magneto-optical spatial light modulator, and an optional beam splitter element that produces a three-dimensional image with proper illumination. Since "no imaging optics is required", this means that there is no focusing tool, except for the method of focusing the light source, which is typically a microlens array. . Figure 10 - depicts an example of implementation. 110 is a lighting device for providing a correction of the flat area, and the cap is sufficiently versatile to be capable of producing a three-pull image. An example of an illumination split for a large area image hologram is presented in US 2 GG 6/25 G 671. Figure 4 shows an example. The device I like 11() adopts the form of white wire _, such as a cold cathode f-light or emitted light: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 200839468's such as lenticular arrays or microlens arrays. Alternatively, the light source for m can be made of red, green, and blue lasers or by red, green, and blue light-emitting diodes that emit sufficient light. The red, green, and blue light emitting diodes may be organic light emitting diodes (OLEDS). _, compared to the laser source, it is better to have a non-laser source with sufficient space (for example, two-spot light, organic light-emitting diode, cold cathode fluorescent lamp). Light sources have some drawbacks, such as laser speekle on holographic reconstruction, expensive on the sturdy, and may damage the hologram to the viewer or the eyes of the holographic display device. Sexual problems. The 7G member 110 may comprise one or two xenon optical films for increasing the brightness of the display: such films are known, for example, as described in us 5, 056, 892 and us 5, 919, 551. Element 110 may have a thickness of about a few centimeters or less. In the preferred embodiment, the elements 110-113' 116 are all less than 3 cm thick to provide a sufficient source of tight wire. Element 1U may be constructed of color filter scales such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 112, although a color filter is not required if a colored light source is used. Element 112 is a biasing element, or a set of biasing elements. Element 113 is a magneto-optical spatial light modulator. Element 116 is a biasing element or a set of biasing elements. Element 116 can be followed by an optical beam 50 200839468 beam splitter element. A viewer located at a distance 114 from the device containing the compact hologram generator 115 can view the three-dimensional image from the direction of 115. The light-receiving elements described in Section A can be included in the compact hologram generator 115 as seen in the conventional technique #f. The magneto-optical spatial light modulator is a kind of null-modulator, in which each of the components in the array of elements can be addressed by an electronic money line, and the partialized state of the polarized light is modulated by the fine (four) effect. Each element performs some action on the light emitted by the person, such as modulating the amount of light transmitted by it, or modulating the phase of the light it transmits, and Z modulating the combination of the amplitude and phase of the light it transmits. . An example of magneto-optical spatial tonal variability is provided in the face-to-tear method, and other types of modulators are also known. The θ elements 110, m, 112, 113, and 116 can be configured to be physically connected (directly connected), each forming a layer of the structure such that the entirety is a single, unified item. The pour connection can be direct. Or indirect, if there is a thin intermediate layer, the formation of the cover is between adjacent layers. The physical connection can be closed in a small area to ensure that the positive lines are mutually exclusive, and the difference can be extended to a large _, or even the whole layer can be: _ see, for example, by using the light _ shoulder way to form a tight (4) The hologram generator 115, or by any other method of 200839468 (refer to the outline portion). Figure 4 is a side view of the conventional technology, showing three poly..., elements 11G1, 11G2, 11G3 of the vertical focusing system 11〇4, K & horizontally arranged in the array horizontally with the horizontal line source LS2 The straight beam passes through the focus of the illumination unit, element 1102 to the observer plane 〇p as an example. According to Figure 4, many of the line sources (5), LS2, and LS3 are arranged one above the other. The light emitted by each light source is sufficiently coherent in the vertical direction and non-same in the horizontal direction. This light passes through the transmission element of the optical modulator SLM. This light is only diffracted in the vertical direction by the element of the optical modulator slm that encodes the full image. The focusing element n 〇 2 is at the observer plane 0P with several diffraction stages (only one is useful) imaging source LS2. The light beam emitted by the light source LS2 is used as an example of the focusing element 1102 which is only passed through the focusing system. In Figure 4, the three beams present a first diffraction class ιι〇5, a first-order zero birth level 1106, and a negative-class 1107. A line source allows non-Southern light intensity to be produced compared to a single point source. The use of multiple holographic regions that have increased efficiency and assigned a line source for each portion of the reconstructed three-dimensional scene enhances the effective light intensity. Another advantage of not using a laser is that a plurality of conventional light sources, such as those disposed behind a slot aperture that can be part of the shutter, can produce sufficient dimming. In general, the hologram display is to reconstruct the wavefront in the virtual observer's view g. The wavefront is something that is actually produced by the reduction, if it exists. When the eye of the observer 52 200839468 is in the virtual observer window, he will see the reconstructed object, where the virtual observer window may be a virtual observer window in the virtual virtual viewer window (10) s). As shown in Fig. 6A, the hologram display is composed of the following components: a light source 6 (U, a lens 602, a spatial light modulator leg, an unnecessary beam splitter, a light mirror 603, and an observer window 604. The assistant light 5贱☆ is produced in close combination with a compact light source capable of displaying a full-image image. The single-light source and the single-lens in FIG. 6A may be respectively arranged by the light source array 605 and the lens array 606 or the lenticular array. Instead, as shown in Figure VI. In Figure 6b, the light source illuminates the spatial light modulator and the lens images the light source to the observer plane. The spatial light modulator encodes the holographic image and modulates the incoming wavefront So that the required wave rain can be reconstructed in the virtual weaver window. #The necessary beam splitter component can use the end to generate several virtual ^: observations, such as - virtual observer window side to the left eye and one Virtual observer window for the right eye. ★ If you are using a light source array and a lens array or a lenticular array, you must set the light source in the array so that the light passing through the lens array or the lenticular array will be simultaneously virtual The device of Figure 6B is suitable for a compact design that can be applied to a compact holographic display. Such a holographic display can be adapted for mobile applications, such as in a mobile phone or personal digital 53 200839468 assistant. Typically such The hologram display will have a screen size of one inch or several inches. Suitable components will be described in detail below. 1) Light source/light source array ^ In a simple case, a fixed single light source can be used. If the observer moves, the observer can be tracked and the display adjusted so that the observer at the new location can see the resulting image. At this time, if there is no tracking of the virtual observer window, the tracking is performed by the beam after the spatial light modulator is directed to the elementary yak. The configurable array of light sources can be realized by another magneto-optical spatial light illumination that is illuminated by the backlight. In order to generate an array of point or line sources, only the appropriate pixels will switch to the transfer state. The maximum switching speed of this type of array touch will be much faster than the switching speed of other types of optical modulators, such as φ inter-work light with liquid crystal or micro-motor system technology. The aperture of these sources must be small enough to ensure a full-image reconstruction of the target. The spot light __ can be used with the two-dimensional row, column lens _-. The line source _ is recommended for use with a lenticular array of cylindrical lenses arranged in parallel. It is preferred to use an organic light emitting diode display as the light source array. When an organic light-emitting diode display is used as the light source, only pixels having switching thereon must be used to create a virtual viewing window at the position of the eye. Organic Light Emitting Diodes 54 200839468 A person can have a two-dimensional array of pixels or a one-dimensional array of line sources. The illumination of each point source _ or each line of light _width must be _ small to ensure that sufficient space is provided to give the holographic reconstruction of the target. Similarly, an array of point sources is more suitable for use with a two-dimensional array of lenses. An array of line sources is more preferably recommended for use with a lenticular array of cylindrical lenses arranged in parallel. m 2) Focusing tool: single lens, lens array or lenticular array The focusing device will image a light source or multiple wires to the observer plane. When the spatial light modulation is very close to the poly red, the Fourier transform encoded in the spatial light wiper will be in the observer plane. The focus tool contains one or several focusing elements. The position of the spatial light modulator and the focusing tool is interchangeable. For the close combination of the magneto-light light H and the compact (four) light source of the sturdy light, a thin focusing tool is necessary: the refractive lens having a convex surface is too thick. Instead, a diffractive or holographic lens is used. The diffractive or holographic lens can have a single lens, a through-the-slope or a lenticular array. Such materials are present, such as surface relief holographic products provided by Physical 0ptics Corp〇rati〇n, τ〇γγ_, CA. Alternatively, a lens array can be used. The lens array comprises a two-dimensional array of lenses, and each of the Weis is assigned to a light-touching source. Another option is to make a bribe _. The lenticular shape contains a dimensional cylindrical lens and each lens has a corresponding one in the array of light sources. As described above, in the case of a light source array and a lens array or a lenticular array, the light sources in the array must be arranged such that the light energy of all the lenses passing through the lens array or the lenticular array simultaneously reaches the virtual observer window. Light passing through a lens array or a lens of a lenticular array is non-coherent to any other lens. Therefore, the hologram image encoded on the spatial light modulator is sub-full

像圖所組成,每-個次全賴對應至—做鏡。每—個透鏡的孔 徑必須是;i夠大的,轉證重建物件的解析度充足。也可以使用 孔徑與全像圖編碼區域典型尺寸幾乎一樣大的透鏡,如在 應為一或 US2006/0055994中所描述。也就是說每一個透鏡的孔徑 數毫米的等級。 3)空間光調變器 全像圖是在空間光爾L馬。通f,對於全像圖的編碼 疋由、㈣複數陣列所組成。因此,理想上空間光調變器應能調 變通過空間光調變n的每—個像素的局部光束陳幅及相位。然 而,典型的空間光調變器只能調變振幅或是相位,而不能獨立調 變振幅與相位。 56 200839468 振幅調變空間光調變器可與軌跡相位編碼組合使用,例如布 克哈特(Burckhardt)編碼。它的缺點是需要三個像素來編碼一個 複數’並且重建物件的亮度會較低。 相位調變空間光調變器可產生較高亮度的重建。舉例而言, 可使用所謂的2相位編碼,利用兩個像素來編碼一個複數。 儘官磁光空間光賴H具有鴨邊緣的特性,會在它們的繞 射圖樣中魅不希朗較高繞概級,但這個問題可藉由使用軟 孔徑來獲得改善或戟。軟餘是不具钱傳賴止(sh卿 transmiss腿cut off)的孔徑。軟孔徑傳送方法的一個例子是具 有高斯圖形(Gaussian profile)。高斯圖形是已知對於繞射系統 具有幫助。朗是高斯函數_立轉換即為高斯練本身的數 學結果。目此’她於_在本身傳送_巾具有魏截止的孔 徑進行傳送’除了橫向比·數之外,繞射不纽變光束強度波 形函數。可提供高斯傳形_片_。#這些被提供且與磁 光空間光觀器的孔轉顺—起時,與在光束傳賴形中具有 尖銳截止的祕相比,將會得顺較高·階級献大量減低較 南繞射階級的系統。 4)光束分光鏡元件 57 200839468 “虛擬觀察員視窗會限制在空間光調變器所編碼的資訊的傅立 =轉換的—__區_。使用現有最大解析度的空間光調變 虛擬觀^、員視窗的大小為10毫米的層級。在一些情況下,對 於應用在財追蹤的全像顯示巾時,這可能會是太小的。關於這 個問題的-個解決方法是糊多個虛擬觀察員視窗的空間多工: f生多個彪疑觀察員視窗。在空間多工的情況下,虛擬觀察員視 έι會在帥麵變H上不同的位飼時產生。這可藉由光束分光 釀鏡s現。舉例而言,空間光調變器上的—組像素糊虛擬觀察員 視窗1的資訊編石馬,另一組像素會利用虛擬觀察員視窗2的資訊 編碼。光束分光鏡會將這二組的光區分,使得虛擬觀察員視窗1 與虛擬觀祭員視窗2會並列在觀察員平面。較大的虛擬觀察員視 _可利用無接縫配置虛擬觀察員視窗i與虛擬觀察員視窗2來產 生。多工也可㈣來產生對於左眼及右眼的虛擬觀察員視窗。在 這樣的情況下,並不需要無接縫並置,且在對於左眼的一個或數 ’個虛擬觀察員視窗與對於右眼的一個或數個虛擬觀察員視窗之間 可能會具有間隙。必需小心不要讓虛擬觀察員視窗的較高繞射階 級與其它的虛擬觀察員視窗重疊。 光束分光鏡元件的一個簡易例子是由黑色條紋所組成的視差 屏障’其中黑色條紋之間具有透明區域,如在US2004/223049中 所描述的内容。另一個例子是雙凸透鏡狀薄片,如在 58 200839468 US·4/22·巾所描賴内容。光束分光鏡元件的其它例子為透 鏡陣列及棱鏡鮮。在緊_全像齡巾,翻地可能會期望具 有光束分統7G件,因為典型丨〇絲大小的虛擬_員視窗僅足 夠提供-眼’這並不符合—般觀看者具有兩舰睛,並且相隔約 為10公分。然而’可以使用時間多工來作為空間多工以外的另— 個選擇。_多工可藉由使用磁光空間光調魏來實現,因為磁 光空間光調變n具有非常快的城能力,如上所述。在缺少空間 多工的情況下’將不需要再使用分光鏡元件。 工間多工也可制在彩色全像重義產生。對於空間色彩多 工,像素會崎紅色’騎及藍色色彩元素進行分群。這些群I f間光調魏上是謂分隔,並且_騎紅色,騎及藍色光。 母-群會利用針對目標的對應色彩元素所計算的全 #碼。每-群會重建全像目標重建中它的色彩元素。 5 )時間多 .彳邮況下,虛擬觀察員視窗會在空間光調變哭上 相同的位置相繼產生。這可藉 I-上 又日7^'的位置_步重編瑪空 間^來實現。光置的转賴使得觀察員平面中的虛 擬觀祭貞絲是無接縫並置的。、亚 果守間夕工疋足夠快的,即完 正週期大於25 Hz,眼晴將會看見連續擴展的虛擬觀察員視窗。 59 200839468 多工也可以用來產生左眼及右眼的虛擬觀察員視窗。在這樣 的情況下,並不需要無接縫並置,且在對於左眼的一個或數個虛 擬觀察員視窗與對於右眼的一個或數個虛擬觀察員視窗之間可具 有間隙。這樣的多工可為空間或時間多工。 空間與時間的多工也可以組合使用。舉一個例子,三個虛擬 祭員視窗。這個擴大的虛擬觀察員視窗是時間多工,以產生對於 左艮的擴大虛擬觀察員視窗以及對於右眼的擴大虛擬觀察員視 窗。 、 心舄〗、〜不要瓖一個虛擬觀察員視窗的較高繞射階級與另一 個虚擬觀察員視窗重疊。 /於擴大虛擬觀察貞視窗的乡工是較_與㈣光調變器的 重、、馬起使用’因為對於觀察員移動,它提供了具連續視差變 、大虛擬觀察員視窗。簡單而言,不具重編碼的多工會在擴 大、虛觀觀察員視窗的不同部份,提供重覆的内容。 、間夕工也可使用在彩色全像重建的產生。對於時間多工, 200839468 三個色彩元素的全像圖會依序在空間光調變器上編碼 。這三個光 源會與帥_魏上的麵侧步切換。如果完整週期的重覆 是足夠快的,即大於25Hz,眼睛會看見連續的色彩重建。 時間多工簡由使_光郎_魏來實現,因為磁光空 間光調變器具有非常快的切換能力,如上所述。 6)眼睛追蹤 光與充份同調性的緊密型 =的緊费組&中’眼睛位置備測器可侧到觀察員的眼睛位 。數健擬觀察員絲可自動地設置在眼睛的位 置使域祭貝可透過虛擬觀察員視窗看到重建的物件。 ==為額外的裝置f求與對於效能的電力需求限制,追 二:疋都“實踐的,尤其是對於可赋裝置。如果 觀察=必須自行調整顯示的位置。這是很容易可以做二,=’ 在較佳的實施例巾,技麵轉 、,、、、 r_或行動電話中。個人數位助二::在 通吊會垂直地觀看顯示器,對於調整虛臾員办 使用者眼睛的錄,並不會社大_難。大__自來對應 裝置的使用者會傾向自己調整手 /逼’手持式 的方向,以獲得最理想的 200839468 觀看狀態,如同在麵/96941中所描述的内容。因此,在這樣的 裝置中’並不需要使用者眼睛追縱的功能以及複雜且不緊密如包 含掃描鏡的追縱光學。但是眼睛追蹤可以應用在其它的裝置中, 如果對於這些裝置而言’額外的設備與電源需求並不會造成過度 . 的負擔。 鲁 *沒有追縱的情況下’為了簡化顯示器的調整,磁光空間光 ^變器與紐_师_光關緊合需要足夠大的虛擬觀 察員視窗。較好的虛擬觀察員視窗大小應該是眼睛瞳孔大小的數 ^可由使則、間距空間光調魏所產生的單-較大虛擬觀察 員視窗來完成’或是由使狀間距空間光調變騎產生的數個較 小虛擬觀察員視窗拼湊而成。 藝雜觀察貞視窗的位置是域轉财的光齡置所決定。 :月位置偵測器會偵測眼睛的位置,並且設定光源的位置,以使 付虛擬觀察員視窗能適合眼睛的位置。在獅〇6/〇55親與 US_/2識71幅述了這_崎蹤。 /、 η、另種方式,當光源是位在固定的位置時,虛擬觀察員視窗 可被移動。光源魏需要對於光源的光的人射賴化相對較不敏 感的二間光調變器。如果光源是為了移動虛織察員視窗位置而 62 200839468 移動,由於在緊禮、組合中可I會有異常光傳播的情況,這樣的設 定將可能很難透過緊密型光源與空間光調變器的緊密組合所實 現。在這樣的情況中,在顯示器中具有固定的光學路徑及作為顯 示器中最後光學元件的光束指向元件將會有所幫助。 7)例子 接著將描述一個磁光空間光調變器與充份同調性緊密型光源 的緊密組合的例子,這樣的組合能夠在適當的照明情況下產生三 維圖像,並且可結合在個人數位助理或行動電話中。磁光空間光 調變器與充份同調性緊密型光源的緊密組合包含作為光源陣列的 有機發光二極體顯示器、磁光空間光調變器與透鏡陣列,如圖十 二所示。在圖十二中,虛擬觀察員視窗是標示為〇w。 根據虛擬觀察員視窗的需求位置,會在有機發光二極體顯示 器中激/舌特定的像素。這些像素會照射磁光空間光調變器MOslm, 並且會藉由透鏡陣列1201成像至觀察員平面⑽。在有機發光二極 體顯示器0UD中,透鏡陣列的每個透鏡至少會有一個像素被激 活。在繪圖給定的尺寸大小中,如果像素間距為2〇jum(12dl),則 可追蹤具有400_(12d2)橫向增量的虛擬觀察員視窗。這樣的追蹤 是準連續的(quasi-continuous)。 63 200839468 -有機毛光―極體像素為僅具有部份空間_性的光源。部分 的同周丨€產生目標點的模糊重建。在繪圖給定的尺寸大小中, 如果像素^度為,則在距_示ϋ mm的目標點會產生具 有100卿板向模糊的重建。這對於人類視覺祕的解析度而言是 足夠的。 L過透鏡_巾關透鏡的光,並沒相著的相互同雛。 同調性的需求是關在透鏡_中的每—個單—透鏡。因此,重 建目=點的解析度是域鏡_關距所決定。所以,對於人類 的視覺系統而言’典型的透鏡間距將為丨麵的層級,以確保充份 的解析度。如果有機發《二極體的間距為,則這表示透鏡間 距與有機發光二極體間距的比值為5Q••卜如果每—個透鏡僅有單 -個有機發光二極體被照射,則這表示每5『2= 2,_個有機發 ,二極體中,僅有—個有機發光二極體將被照射。因此,此顯示 益將為低功率顯TFfg。在實施例的全像顯示與習时機發光二極 體顯示器之間縣異是前者料光於觀看者的_,反之後者發 射光至2π球面度。f用的有機發光二極體顯示器可達到約!,_ 秦2的發光度,(翻者於此實施方式中計算),而在實務應用 上’照射型有機發光二極體應能達到丨,_ ed/nf2發光度的數倍。 虛擬觀察員視窗是限制在空間光調變器情編碼的資訊的傅 64 200839468 立葉頻譜的一個繞射階級。如果磁光空間光調變器的像素間距為 2〇μπι,在50〇nm的波長,虛擬觀察員視窗會具有1〇腿的寬度。虛 擬觀察S視S可糊m或時财,將數個虛擬觀察員視窗拼 凑成擴大的虛擬觀察員視窗。在空間多工的情況下會需要額外的 光學元件,如光束分光鏡。 *色全像重建可由時間多工來實現。彩色有機發光二極體顯 不1§的紅色、綠色及藍色像素是依序糊空間光調㈣的同步重 編碼進行激活’此空間光調變器具有針對紅色、綠色及藍色光學 波長進行計算的全像圖。 顯不為可包含眼睛位置偵測器,用以偵測觀察員眼睛的位 置。眼睛位置_II連接控鮮位,此控鮮蚁用來控 發光二極體顯示器像素的激活。 在空間光調變H上編碼的全像關計算最好是由外部的編竭 單70執行,目為它需要較高的計算能力。齡㈣會接著傳送至 個人數位助理或行動電話,以顯示全像產生的三軸像。/、 D· —對磁光空間光調變器的緊密組合 在另一偭實施例中,可使用二個磁光空間光調變器的組合, 65 200839468 並以緊密的方式依序調變光的振幅及相位。所以,由振幅及相位 所構成的複數可以逐一像素的方式在傳送光中編碼。 這個實施例包含二個磁光空間光調變器的緊密組合。第一磁 光空間光調變器調變傳送光的振幅,第二磁光空間光調變器調變 傳送光的相位。或者,也可以是第一磁光空間光調變器調變傳送 光的相位,第二磁光空間光調變器調變傳送光的振幅—對於振幅 為最大值時,期望能更精確調變相位的情況(即具有較少的雜 吼),這樣是被認為較好的。每一個磁光空間光調變器都可如同c 部份所描述的一樣。除了採用二個磁光空間光調變器之外,整體 的配置可如同c部份所描述的一樣。任何相當於是幫助振幅及相 位的獨立調變的其它種二個磁光空間光調變器調變特性的組合都 是可能的。 在第一步驟中,第一磁光空間光調變器利用圖樣編碼,以進 行振幅調變。在第二步驟中,第二磁光空間光調變器利用圖樣編 碼’以進行相位調變。從第二磁光空間光調變器所傳送的光,在 振幅及相位上已完成調變,因此,當觀察員觀察這二個磁光空間 光调變器的裝置所發射的光時,可觀察到三維圖像。 由於習用技術的發展,相位與振幅的調變技術促進了複數數 66 200839468 值的表現。除此之外,磁光空間光調變器可具有高解析度。因此, 這個貫施例可應用於產生全像圖像,使得觀看者可看到三維圖像。 圖十二描述了一個實施的例子。13〇是照明裝置,用於提供平 面區域的照明,其中照明是具有充份的同調性,以便能夠產生三 維圖像。在US 2_/腿71巾提出了-細於大區域影像全像圖 的例子,圖四顯示了其中一個例子。如同13〇的裝置可採用白色 光源陣列的形式,例如冷陰極螢光_是發出的光線為入射在聚 焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡 狀陣列或微透鏡陣列。或者,用於⑽的光源可由紅色、綠色及 藍色雷射所_ ’或是由發妓侧雛光的处、騎及藍色 發光二極體顺成。紅色、綠色及藍色發光二鋪可為有機發光 二極體(OLEDs)。然而,相較於雷射光源,具有充份空間同調性的 非雷射光源(例如:發光二極體、有機發光二極體、冷陰極榮光 是更佳的。雷射光源具有—些缺點’例如會在全像重建上造成 雷射斑點、相對上較為昂如及可能會傷害全像顯示觀看者或是 進行全像顯稀脸裝之1作人貞的_等安全性問題。 -牛130的厚度可約為數公分,或是更低。在較佳的實施例 中^件130-135全部的厚度會低於3cm,以便提供充份同調性的 緊*光源兀件131可由色彩過遽器陣列所構成,使得彩色光線(例 67 200839468 如紅色、、’亲色及藍色光)的像素是射向元件,儘管如果使用彩 色光源時,並不需要色彩猶器。元件ί32是偏化元件,或是一 組的偏化7G件。元件⑶是磁光空間光調變器。元件⑼是磁光 空間光調變器。元件133及134每—個都包含偏化元件或是一组 的偏化元件。元件135是非必要的光束分光鏡元件。對於傳送光, 元件133調變振幅,而元件购周變相位。或者,由元件⑼調 f振幅,而元件133調變相位。將磁光空間光調變器134及133 靠近能夠減少光學耗損朋光束分歧域生的像素串音問題:當 磁光空間_魏134及⑶是非常靠近時,可實現通過磁光空 間光調變器的觀光光束的非重疊傳播輸佳近健。位於點⑶ 離包括緊密全像圖產生器136的裝置一些距離的觀看者,可從伽 的方向觀看到三維圖像。 ^件130、m、132、133、134及135是配置成實體連接(直 I接),每—個形成結構的一層,使得整體為單-、統-的物 成二=連,可為直接的。或是間接的’如果有薄的中間層,形 正:目_之_膜。實體連接可聞在小區域中,以確保 表面。係’歧可延伸至較大的區域,甚至層的整個 送膠黏層與層^黏接來實現,例如藉由使用光學傳 其它的方购產生器136,或是藉由任何 68 200839468 在磁光空間光調變器執行振幅調變處,典型的設定中,入射 的光學光束將會藉由將光束通過線性偏光片來達到線性偏化。振 幅調變是由沿著光傳播方向施加的磁場中的線性偏化狀態的旋轉 _ 所控制,施加的磁場是利用法拉第效應影響光的偏化狀態。在這 ^ 樣的裝置中,離開磁光空間光調變器的光會通過另一個線性偏光 片,可讓光的偏化狀態發生任何的旋轉而致使強度減弱,如同它 通過磁光空間光調變器時一樣。 在磁光空間光調變器執行相位調變處,典型的設定中,入射 的。貝取光學光束將會藉由將光束通過線性偏光片及四分之一的波 片來達到雜偏化。她觀是由沿著_播方向施加的磁場所 控制’磁場會透過法拉第效應影響光的相位狀態。顧磁場是由 # 流過線_電流所產生。在她調變中,對於每個像素,輸出光 轉輸从束會科她差,鸦流絲轉素眺圈的電 流的函數。 ^ 種用於緊岔全像顯示的緊密組合,包含兩個以小的分隔或 最】刀方式結合的磁光空間光調變器。在較佳的實施例中,兩 2工間光是具有相同數量的像素。因為兩個磁光空間光調 欠口"對於觀察員而言,並不是等距離的,所以兩個磁光空間光調 69 200839468 變器的_距可能__不同,_償不_離對於觀 祭貝所造成的影響。已通過第—空間光調變器的像素的光, 過第二空咖鑛__ ,b,_纖調變μ 變光,並錄酸她的複_討耻實現。舉—個例子y -空間光調變器為振幅調變,而第二空__為相位調變。 同樣地,任何相當於找助振幅及相位的獨立調變的其它種二個Like the picture, each time is corresponding to - mirror. The aperture of each lens must be; i is large enough, and the resolution of the reconstructed object is sufficient. It is also possible to use a lens having an aperture that is almost as large as the typical size of the hologram encoding region, as described in one or US 2006/0055994. That is to say, the aperture of each lens is a few millimeters. 3) Space light modulator The full image map is in the space light L Ma. Pass f, for the encoding of the hologram, (, (4) complex array. Therefore, ideally, a spatial light modulator should be able to modulate the local beam amplitude and phase of each pixel through spatial light modulation n. However, a typical spatial light modulator can only modulate amplitude or phase, and cannot independently modulate amplitude and phase. 56 200839468 Amplitude-modulated spatial light modulators can be combined with track phase encoding, such as Burckhardt codes. Its disadvantage is that it requires three pixels to encode a complex number and the brightness of the reconstructed object will be lower. The phase modulation spatial light modulator produces a higher brightness reconstruction. For example, so-called 2-phase encoding can be used to encode a complex number with two pixels. The performance of the magneto-optical space light H has the characteristics of the duck's edge, and it will be more beautiful in their diffraction pattern, but this problem can be improved or reduced by using a soft aperture. Soft rest is the aperture that does not have money to pass (sh clear transmiss leg cut off). An example of a soft aperture transmission method is to have a Gaussian profile. Gaussian graphics are known to be helpful for diffraction systems. Lang is a Gaussian function. The vertical transformation is the mathematical result of Gaussian training itself. In this case, she transmits in the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Gaussian shape _ slice _ can be provided. # These are provided and are closer to the aperture of the magneto-optical space light viewer, and will have a higher degree than the secret of the sharp cutoff in the beam-transmission shape. Class system. 4) Beam splitter element 57 200839468 "The virtual observer window is limited to the Fourier-converted___region_ of the information encoded by the spatial light modulator. The spatial light modulation virtual view using the existing maximum resolution ^, The size of the window is 10 mm. In some cases, this may be too small for a full-image display of the tracker. The solution to this problem is to paste multiple virtual observer windows. Space multiplex: f has multiple suspected observer windows. In the case of space multiplex, the virtual observer will see that έι will be generated when the face is changed to a different position on the H. This can be done by beam splitting. For example, the information of the group of pixel paste virtual observer window 1 on the spatial light modulator, the other group of pixels will be encoded by the information of the virtual observer window 2. The beam splitter will light the two groups of light The distinction is made such that the virtual observer window 1 and the virtual spectator window 2 are juxtaposed on the observer plane. The larger virtual observer can use the seamlessly configured virtual observer window i and the virtual observer window 2 to produce Multiplex can also (4) create a virtual observer window for the left and right eyes. In this case, no seam juxtaposition is required, and one or several 'virtual observer windows for the left eye and right for There may be gaps between one or several virtual observer windows of the eye. Care must be taken not to overlap the higher diffraction level of the virtual observer window with other virtual observer windows. A simple example of a beam splitter element is a black stripe A parallax barrier is formed in which there is a transparent region between the black stripes, as described in US 2004/223049. Another example is a lenticular sheet, as described in 58 2008 39 468 US 4/22. Other examples of beam splitter elements are lens arrays and prisms. In tight-to-image ages, it may be desirable to have a beam-growth 7G piece because the typical silk-sized virtual _men window is only sufficient to provide - 'This does not match the average viewer has two eyes and is about 10 cm apart. However, 'time can be used as space multiplex Another choice. _ multiplex can be achieved by using magneto-optical spatial tones, because magneto-optical spatial modulation n has very fast city capabilities, as described above. In the absence of space multiplexes, There is no need to use the beam splitter component. Inter-work multiplex can also be produced in the color hologram. For spatial color multiplex, the pixels will be clustered in red and 'blue and color elements. The upper is the separation, and _ riding red, riding and blue light. The mother-group will use the full # code calculated for the corresponding color element of the target. Each group will reconstruct its color element in the holographic target reconstruction. More time. Under the postal conditions, the virtual observer window will be generated in the same position in the space light to change the cry. This can be achieved by the position of the I-up and the day 7^'. The turn of the light makes the virtual sacred silk in the observer's plane juxtaposed without seams. The sub-growth work is fast enough, that is, the completion period is greater than 25 Hz, and the eye will see a continuously expanding virtual observer window. 59 200839468 Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required and there may be a gap between one or more virtual observer windows for the left eye and one or more virtual observer windows for the right eye. Such multiplexing can be space or time multiplex. Space and time multiplexing can also be combined. As an example, three virtual priest windows. This expanded virtual observer window is time multiplexed to create an expanded virtual observer window for the left eye and an expanded virtual observer window for the right eye. , 舄 舄, ~ Do not 瓖 a higher observer class of a virtual observer window overlaps with another virtual observer window. / The rural worker who expanded the virtual observation window is the weight of the _ and (4) optical modulators, and the use of the horses. Because it moves for the observer, it provides a window with continuous parallax and large virtual observers. In simple terms, multi-union unions that do not re-encode provide repetitive content in different parts of the expanded, virtual observer window. Inter-day work can also be used in the reconstruction of color holograms. For time multiplexing, 200839468 The hologram of the three color elements is sequentially encoded on the spatial light modulator. These three light sources will switch to the side steps of the handsome _ Wei. If the repeat of the full cycle is fast enough, ie greater than 25 Hz, the eye will see a continuous color reconstruction. Time multiplex is achieved by _光郎_魏来, because the magneto-optical spatial light modulator has very fast switching capability, as described above. 6) Eye tracking The light and the coherent compact type = tight charge group & middle eye position detector can be sideways to the observer's eye position. The number of simulated observer wires can be automatically placed in the position of the eye so that the domain can see the reconstructed object through the virtual observer window. == For additional devices f to seek power demand limits for performance, chase two: 疋 are "practical, especially for devices that can be assigned. If observation = must adjust the display position by itself. This is very easy to do two, = ' In the preferred embodiment of the towel, technical transfer,,,,, r_ or mobile phone. Personal digital help two:: in the hanging will be vertical viewing of the display, for adjusting the eyes of the virtual employee Recording, it will not be a big _ difficult. Large __ users of the corresponding device will tend to adjust their hand / forced 'hand-held direction to get the most ideal 200839468 viewing status, as described in face /96941 Therefore, in such a device, the function of the user's eyes is not required and the tracking optical is complicated and not as tight as the scanning mirror. However, eye tracking can be applied to other devices, if for these devices 』 'The extra equipment and power requirements do not cause excessive burden. Lu * no case of chasing 'In order to simplify the adjustment of the display, the magneto-optical space light transformer and the new _ _ _ light close A large virtual observer window is needed. The size of the better virtual observer window should be the size of the pupil of the eye ^ can be done by making a single-large virtual observer window generated by the spatial adjustment of the spacing space. The spacing of the space is determined by a number of smaller virtual observer windows. The position of the window is determined by the light age of the domain. The month position detector detects the position of the eye. And set the position of the light source, so that the virtual observer window can be adapted to the position of the eye. In the Griffin 6/〇55 pro and US_/2 to identify 71, this is a _Saki. /, η, another way, when the light source When in a fixed position, the virtual observer window can be moved. The light source requires two optical modulators that are relatively insensitive to the light of the light source. If the light source is to move the virtual weaver window position And 62 200839468 mobile, because in the tight ceremony, the combination can have abnormal light propagation, such a setting may be difficult to achieve through the close combination of compact light source and spatial light modulator. In this case, it would be helpful to have a fixed optical path in the display and a beam pointing element as the last optical component in the display. 7) The example will then describe a magneto-optical spatial light modulator that is closely coherent An example of a tight combination of light sources that produces a three-dimensional image with appropriate illumination and can be incorporated into a personal digital assistant or mobile phone. Magneto-optical spatial light modulators and fully coherent compact light sources The close combination includes an organic light emitting diode display, a magneto-optical spatial light modulator, and a lens array as an array of light sources, as shown in Figure 12. In Figure 12, the virtual observer window is labeled as 〇w. The desired position of the observer window will illuminate the specific pixels in the organic light emitting diode display. These pixels will illuminate the magneto-optical spatial light modulator MOslm and will be imaged by the lens array 1201 to the observer plane (10). In the organic light emitting diode display 0UD, at least one pixel of each lens of the lens array is activated. In drawing a given size, if the pixel pitch is 2〇jum (12dl), a virtual observer window with a 400_(12d2) lateral increment can be tracked. Such tracking is quasi-continuous. 63 200839468 - Organic Hair Light - A polar body pixel is a light source with only partial space _ sex. Part of the same week produces a fuzzy reconstruction of the target point. In the given size of the drawing, if the pixel degree is , a reconstruction with a 100-degree plate blur will be generated at the target point of _ ϋ mm. This is sufficient for the resolution of human visual secrets. L through the lens _ towel off the lens of the light, and not the same as each other. The need for coherence is the one-to-lens of each lens in the lens_. Therefore, the resolution of the rebuild target = point is determined by the domain mirror _off distance. Therefore, for a human visual system, the typical lens spacing will be the level of the facet to ensure adequate resolution. If the organic emitter "the spacing of the diodes is, this means that the ratio of the lens pitch to the spacing of the organic light-emitting diodes is 5Q••b. If only one single organic light-emitting diode is illuminated per lens, then this It means that every 5 "2 = 2, _ organic hair, and only one organic light-emitting diode in the diode will be irradiated. Therefore, this display will show TFfg for low power. The difference between the omnidirectional display of the embodiment and the illuminating diode display of the chronograph is that the former is expected to illuminate the viewer's _, whereas the latter emits light to the 2π steradian. The organic light-emitting diode display for f can reach about! , _ 2 2 luminosity, (returned in this embodiment), and in practical applications, the illuminating organic light-emitting diode should be able to achieve several times the 发光, _ ed / nf2 luminosity. The virtual observer window is a diffractive class of the Fourier Transformer spectrum that limits the information encoded in the spatial light modulator. If the pixel spacing of the magneto-optical spatial light modulator is 2 〇μπι, the virtual observer window will have a width of 1 〇 leg at a wavelength of 50 〇 nm. Virtual observation S can be used to paste a virtual observer window into an expanded virtual observer window. In the case of space multiplexes, additional optical components such as beam splitters are required. * Color hologram reconstruction can be achieved by time multiplexing. The red, green and blue pixels of the color organic light-emitting diode are not activated by the synchronous re-encoding of the paste space light (4). This spatial light modulator has optical wavelengths for red, green and blue. Calculated hologram. An eye position detector may be included to detect the position of the observer's eyes. The eye position _II is connected to the fresh control position, and the control ant is used to control the activation of the pixel of the LED display. The holographic off-code calculation encoded on the spatial light modulation H is preferably performed by an external compilation 70, which requires high computational power. The age (4) will then be transmitted to the personal digital assistant or mobile phone to display the three-axis image produced by the hologram. /, D · - Close combination of magneto-optical spatial light modulators In another embodiment, a combination of two magneto-optical spatial light modulators can be used, 65 200839468 and sequentially modulating light in a compact manner Amplitude and phase. Therefore, the complex number composed of the amplitude and the phase can be encoded in the transmitted light one by one. This embodiment includes a close combination of two magneto-optical spatial light modulators. The first magneto-optical spatial light modulator modulates the amplitude of the transmitted light, and the second magneto-optical spatial light modulator modulates the phase of the transmitted light. Alternatively, the first magneto-optical spatial light modulator may modulate the phase of the transmitted light, and the second magneto-optical spatial light modulator modulates the amplitude of the transmitted light—for a maximum amplitude, it is desirable to more accurately modulate the phase The case of bits (ie, having fewer chowders) is considered to be better. Each magneto-optical spatial light modulator can be as described in section c. In addition to using two magneto-optical spatial light modulators, the overall configuration can be as described in section c. Any combination of other two magneto-optical spatial modulator modulation characteristics that are equivalent to independent modulation of amplitude and phase is possible. In a first step, the first magneto-optical spatial light modulator is encoded using a pattern for amplitude modulation. In a second step, the second magneto-optical spatial light modulator utilizes pattern coding ' for phase modulation. The light transmitted from the second magneto-optical spatial light modulator has been modulated in amplitude and phase, so that when the observer observes the light emitted by the two magneto-optical spatial light modulators, it is observable To a three-dimensional image. Due to the development of conventional techniques, the phase and amplitude modulation techniques promote the performance of the complex number 66 200839468. In addition to this, magneto-optical spatial light modulators can have high resolution. Therefore, this embodiment can be applied to generate a holographic image so that the viewer can see the three-dimensional image. Figure 12 depicts an example of an implementation. 13〇 is a lighting device that provides illumination for a flat area where illumination is sufficiently homogenous to enable the production of three-dimensional images. An example of a large-area image hologram is presented in the US 2_/leg 71 towel, and an example is shown in Figure 4. A 13-inch device can take the form of an array of white light sources, such as cold cathode fluorescent light, which is a white light emitting diode that is incident on a focusing system, where the focusing system can be tight, such as a lenticular array or micro. Lens array. Alternatively, the light source for (10) may be formed by red, green, and blue lasers, or by the hair, ride, and blue light-emitting diodes of the hairpin side. The red, green, and blue light-emitting diodes can be organic light-emitting diodes (OLEDs). However, compared to laser sources, non-laser sources with sufficient spatial coherence (eg, light-emitting diodes, organic light-emitting diodes, cold cathode glory are better. Laser sources have some disadvantages) For example, it will cause laser spots on the holographic reconstruction, relatively high-impact and may damage the holographic display of the viewer or the holographic fascination of the avatar. The thickness may be on the order of a few centimeters or less. In the preferred embodiment, the thickness of the members 130-135 may be less than 3 cm, so as to provide a sufficient coherent tightness of the light source member 131. The array is constructed such that the pixels of colored light (eg, 67, 39, 398, s, red, 'family, and blue) are directed toward the component, although color illuminators are not required if a color source is used. Component ί32 is a polarization component. Or a set of polarized 7G parts. The component (3) is a magneto-optical spatial light modulator. The component (9) is a magneto-optical spatial light modulator. Each of the components 133 and 134 includes a biasing component or a set of partial polarizations. Element 135 is an unnecessary beam splitting For transmitting light, element 133 modulates the amplitude, and the component purchases the phase, or the component (9) adjusts the f-amplitude, and component 133 modulates the phase. The magneto-optical spatial light modulators 134 and 133 are close to each other to reduce the optics. The problem of pixel crosstalk caused by the divergence of the beam is: when the magneto-optical space _Wei 134 and (3) are very close, the non-overlapping propagation of the sightseeing beam through the magneto-optical spatial light modulator can be achieved. (3) A viewer who is some distance from the device including the compact hologram generator 136 can view a three-dimensional image from the direction of the gamma. ^ The pieces 130, m, 132, 133, 134, and 135 are configured to be physically connected (straight I接), each layer forming a structure, so that the whole is a single-, unified - the object into two = connected, can be direct. Or indirect 'if there is a thin intermediate layer, the shape is: _ _ Membrane. The physical connection can be heard in a small area to ensure the surface. The difference can be extended to a larger area, and even the entire adhesive layer of the layer can be bonded to the layer, for example, by using optical transmission. Purchaser 136, or by any 68 200839468 The magneto-optical spatial light modulator performs amplitude modulation. In a typical setting, the incident optical beam will be linearly polarized by passing the beam through a linear polarizer. The amplitude modulation is applied by the direction of light propagation. The rotation of the linearly biased state in the magnetic field is controlled by the applied magnetic field, which affects the polarization state of the light by the Faraday effect. In this device, the light leaving the magneto-optical spatial light modulator passes through another linearity. The polarizer can cause any rotation of the polarization state of the light to cause the intensity to be weakened as it passes through the magneto-optical spatial light modulator. In the typical setting of the magneto-optical spatial light modulator performing phase modulation The incident optical beam will be hetero-biased by passing the beam through a linear polarizer and a quarter-wave plate. Her view is controlled by the magnetic field applied along the _casting direction. The magnetic field affects the phase state of the light through the Faraday effect. The magnetic field is generated by #流线线_电流. In her modulation, for each pixel, the output light is transferred from the beam to the branch, and the current is a function of the current. ^ A compact combination for close-to-image display, consisting of two magneto-optical spatial light modulators combined in a small separation or most knives. In the preferred embodiment, the two-works light has the same number of pixels. Because the two magneto-optical spaces are tuned to the mouth " for the observer, it is not equidistant, so the two magneto-optical spatial tones 69 200839468 The _ distance of the transformer may be different, _ The impact of the sacrifice. The light that has passed through the pixel of the first-space light modulator, the second empty coffee mine __, b, _ fiber tone change μ light, and record her complex _ shame. For example, the y-space optical modulator is amplitude modulated, and the second null __ is phase modulation. Similarly, any other kind of independent modulation that is equivalent to the amplitude and phase of the search.

空間光調變ϋ的調變特性的組合都是可能的。 μ必須小心的疋通過第—空間光調變像素的光,只能通過 第-空間光機讀應的像素。如果通過第—空間光調變器的像 素的光’㈣了第二空間光調變轉近非對躺像素時,將會產 Μ音現象。這個串音可能會致使圖像品質降低。在此提供四種 最小化像素間串音問題的可能方法。由制眺術可顯而易見, 這些方法是同樣可以應用在Β部份的實施例。 (1)第一且最簡單的方法是直接將已調整排列像素過後的兩 個空間光調變器連結_接在_起。在第—空間光調變器的像素 上將會具有繞射現象,致使光發生偏離傳播。空間光調變器之間 的分隔必縣能使得第二空間光調變器、鄰近像素之間的串音到達 可接受的程度。舉一個例子,具有1〇 _像素間距的兩個磁光空 間光調變器的間隔,必須小於或等於1〇一1〇〇_的層級。這在習用 200839468 製造的空間光調變器中是幾乎不可能實現的,因為麵蓋的厚度 即為lmm的層'級。當然,能使空間光調變器之間僅具有薄的分隔 層的二明治製造方式,可列入至其中一個製造的程序當中。可 應用概要製造程序部份所描述的製造方法,來製作包含兩個間隔 距離很小或最小的磁光空間光調變器的裝置。 圖十四顯示了菲淫耳繞射數據圖表,且是針對由_寬狹縫 所產生的繞射所計算而得,在二維模射變化離狹_距離,其 中縱軸為slit(z) ’橫軸為slit(x)。均勻照射的狹縫是位在X 軸上-5_到+5Mm之間的位置’並且z為零微米。採用的光傳送媒 介是要能有1. 5的折醉,這可能是用於緊錄置的典型媒介。 選定的光為具有633 ηιη真纹紅光。綠色與藍色的波長是小 於紅色光’因此對於紅色光的計算,在三侧色紅色、綠色及藍 色當中’表現出最強的繞射影響。可以使用ρ&Γ_^A combination of modulation characteristics of spatial light modulation is possible. μ must carefully pass the first-space light to modulate the light of the pixel, and only read the corresponding pixel through the first-space optical machine. If the light passing through the pixel of the first-space optical modulator is turned on, the second spatial light modulation is turned closer to the non-recumbent pixel, and a click phenomenon is produced. This crosstalk may result in reduced image quality. Four possible ways to minimize crosstalk between pixels are provided here. As is apparent from the sputum technique, these methods are equally applicable to the Β part of the embodiment. (1) The first and easiest way is to directly connect the two spatial light modulators after the adjusted pixels have been connected. There will be a diffraction phenomenon on the pixels of the first-space optical modulator, causing the light to deviate from propagation. The separation between the spatial light modulators enables the crosstalk between the second spatial light modulator and adjacent pixels to reach an acceptable level. As an example, the spacing of two magneto-optical spatial light modulators having a 1 〇 pixel pitch must be less than or equal to the level of 1 〇 1 〇〇 _. This is almost impossible to achieve in a spatial light modulator manufactured in the conventional use of 200839468 because the thickness of the cover is a layer of 1 mm. Of course, the second Meiji manufacturing method that enables only a thin separation layer between the spatial light modulators can be included in one of the manufacturing processes. The fabrication method described in the Summary Manufacturing Procedure section can be used to fabricate a device comprising two magneto-optical spatial light modulators with a small or minimal separation distance. Figure 14 shows the Philippine Luminous Diffraction Data Graph, which is calculated for the diffraction generated by the _wide slit, and the two-dimensional mode change is narrower than the distance, where the vertical axis is slit(z) 'The horizontal axis is slit(x). The uniformly illuminated slit is a position 'between -5 to +5 Mm on the X-axis and z is zero micrometers. The optical transmission medium used is to have a drunk of 1.5, which may be a typical medium for compact recording. The selected light has a true red light of 633 ηιη. The wavelengths of green and blue are smaller than red light. Therefore, for the calculation of red light, the strongest diffraction effect is exhibited in the three sides of red, green and blue. You can use ρ&Γ_^

Technology Corp., Needham, MA, USA. MathCad (RTM)|t 體來執行計算。圖十五顯示—小部份的強度留在狹射心上叫m 見觀圍内’為離狹缝雜的函數。在距離狹縫2_的地方,圖十 五顯示大於9_強度仍然位於狹縫的_寬的範關。因此, 在這個二維難巾,小於_像素強度將會人射在每-個鄰近的 像素上這疋在像素之間為零邊界寬的限制情況下所計算的結 果像素之間貝際的邊界寬是大於零的,因此串音問題在真實系 71 200839468 統中會低於這此所計算的結果。在圖十四中,菲涅耳繞射圖接近 狹縫,例如距離狹縫50μπι,並且有點近似位於狹縫的高帽型強度 函數(top-hat intensity function)。因此,在狹缝附近沒有寬 的繞射特徵。寬的繞射特徵是高帽型函數的遠場繞射函數的特 、性,此為習用已知的sine squared函數。圖十四中所顯示的寬的 •、繞射特徵是作為距離狹缝3〇〇_的例子。這說明了將兩個磁光空 ^ 間光凋、交裔设置的足夠接近可用來控制繞射效應,而且將兩個磁 光蝴光婦器設置的料靠近的優點是祕數細表的函數型 式,會由遠場特性改變至在包含接近垂直於狹縫的軸的光時會較 有效率的函數型式。這個優點是與習用全像技術的想法相違背 的,習用的技術會傾向認為在光通過空間光調變器的小孔徑時, 會引起強的、大的及不可避免的繞射效應。因此,習用的技術不 會有將兩個空間光觀近在—_動機,會預期這樣的方式 •會因為繞射效應引起必然發生且嚴重的像素串音問題。 〆 圖十六顯示強度分佈的等高線圖,為離狹缝距離的函數。等 高線的標妓在對數尺度上,科战性尺度。使用了十條等高 線,全部含括100強度因數範圍。對於ΙΟμιη的狹縫寬度,強度分 配大私度的邊界在距離狹縫大約5Q_的範類是清楚的。 在另一個實施例中,可利用減少第一磁光空間光調變器的像 72 200839468 素孔徑n域來減輕在第二磁光空間光調變器的串音問題。 (2)第一個方法是在兩個空間光調變器之間使用透鏡陣列,如 圖十七所7F。較好的方法是讓透鏡的數量等瞻每—齡間光調 欠為中的像素數量。兩個空間光調變器的間距以及透鏡陣列的間 距可以輕微的不同’以補償與觀察員的距離差 異。每一個透鏡成 像第一空間光調變器的像素至第二空間細變器對應的像素上, 如圖十七中光束171所示。同樣的,會有光通過鄰近的透鏡,因 而可月匕引务串音現象,如光束172所示。如果它的強度是足夠的 低或疋匕的方向是充份的不同,使其無法到達虛擬觀察員視窗 時,這將可以忽略。\一 每個透鏡陳Aperture,NA)必須是足夠 大的,以成像具充份解析賴像素。舉一個例子,對於5卿的解 析度’需要約為0. 2的數值孔徑。這也表示如果假定為幾合光學, 且如果空間光調變器與透鏡__距為_,則透鏡陣列^ 與每-如光調變器,⑽之間的最大距離大約為挪m。发 中包含入射光1701。 “ 也可能將每健間光調變器的數個像素指派給透鏡陣列中的 個透鏡。舉一個例子,以第一空間光調變器的四個像素為一群' 73 200839468 可藉由透鏡陣列中的—個透鏡成像到—個在第二空間光調變器中 由四個像素所組成鱗。這樣的透鏡陣列的顏^數量會為每一個 工間m ☆中的像素數量的四分之一。如此可以允許使用較高 數值孔彳工的透鏡,目此可獲得較高解減的成像像素。 (3)第二個方法是盡可能的減少第一磁光空間光調變器丨別2 的像素孔徑。從繞射的觀點來,在第二空間光調變器中,由第一 空間光調變器的-個像素所照射的區域,是由第—磁光空間光調 變器1802的像纽徑寬度D及繞㈣度所決定 ’如圖十八所示。 在圖十八巾,d為兩個喊空間光調變器⑽SLM)丨謝,剔2之間 的距離,而w是兩個第一階級繞射最小值(發生於第零階級最大值 的任邊)之間的距離。這是假定為夫朗和斐(Fraunho㈣繞射, 或是合理的夫肺魏概似。其巾包含人射紹ncidentTechnology Corp., Needham, MA, USA. MathCad (RTM)|t body to perform calculations. Figure 15 shows that a small part of the intensity is left on the narrow heart and m is seen as a function of the slit. At a distance from the slit 2_, Figure 15 shows that the intensity greater than 9_ is still in the width of the slit. Therefore, in this two-dimensional difficult towel, less than _ pixel intensity will be shot on every adjacent pixel, and the boundary between the calculated pixels between the pixels is limited. The width is greater than zero, so the crosstalk problem will be lower than the result of this calculation in the real system 71 200839468. In Fig. 14, the Fresnel diffraction pattern approaches the slit, for example, 50 μm from the slit, and is somewhat approximate to the top-hat intensity function of the slit. Therefore, there is no wide diffraction characteristic near the slit. The wide diffraction characteristic is the characteristic of the far-field diffraction function of the high-hat function, which is a commonly known sine squared function. The wide, diffractive feature shown in Figure 14 is an example of the distance slit 3 〇〇 _. This shows that the two magneto-optical light and the set of light are close enough to control the diffraction effect, and the advantage of placing the two magneto-optic devices is the function of the secret table. The pattern will change from a far-field characteristic to a more efficient functional version when it contains light that is close to the axis perpendicular to the slit. This advantage is contrary to the idea of conventional holographic techniques, which tend to be thought to cause strong, large, and unavoidable diffraction effects when light passes through a small aperture of a spatial light modulator. Therefore, the conventional technique does not have a close view of the two spaces—the motive, which would be expected in such a way. • The inevitable and serious pixel crosstalk problem caused by the diffraction effect. 〆 Figure 16 shows a contour plot of the intensity distribution as a function of distance from the slit. The contours of the contours are on a logarithmic scale. Ten contours were used, all including a range of 100 intensity factors. For the slit width of ΙΟμιη, the boundary of the intensity distribution with large private degrees is clear in the range of about 5Q_ from the slit. In another embodiment, the problem of crosstalk in the second magneto-optical spatial light modulator can be mitigated by reducing the image aperture 72 of the first magneto-optical spatial light modulator. (2) The first method is to use a lens array between two spatial light modulators, as shown in Figure 17 and Figure 7F. A better approach is to have the number of lenses equal to the number of pixels in each-year-old light. The spacing of the two spatial light modulators and the spacing of the lens arrays can be slightly different' to compensate for the difference in distance from the observer. Each lens is imaged from the pixel of the first spatial light modulator to the pixel corresponding to the second spatial thinner, as shown by beam 171 in Figure 17. Similarly, there will be light passing through the adjacent lens, so that the crosstalk phenomenon can be seen as a beam 172. This can be ignored if its intensity is low enough or the direction of the cymbal is sufficiently different to make it impossible to reach the virtual observer window. \A Each lens Chen Aperture, NA) must be large enough to image the image with sufficient resolution. For example, a numerical aperture of about 0.2 is required for the degree of resolution of 5 qing. This also means that if a polynomial is assumed, and if the spatial light modulator is at a distance from the lens __, then the maximum distance between the lens array ^ and each, such as the optical modulator, (10) is approximately m. The incident light 1701 is included in the hair. "It is also possible to assign several pixels of each inter-well optical modulator to a lens in the lens array. For example, the four pixels of the first spatial light modulator are grouped as '73 200839468 by lens array The lens is imaged into a scale consisting of four pixels in the second spatial light modulator. The number of pixels in such a lens array will be four quarters of the number of pixels in each workspace m ☆ 1. This allows the use of lenses with higher numerical apertures, which results in higher resolution of the reduced imaging pixels. (3) The second method is to reduce the first magneto-optical spatial light modulator as much as possible. The pixel aperture of 2. From the viewpoint of diffraction, in the second spatial light modulator, the region illuminated by the pixels of the first spatial light modulator is the first magneto-optical spatial light modulator The image of the 1802 is determined by the width D and the degree of the circle (four degrees) as shown in Figure 18. In Figure 18, the d is the two shouting spatial light modulator (10) SLM), thank you, tick the distance between 2, and w is the distance between the two first-order diffraction minima (which occurs at any side of the zeroth class maximum) This is assumed to be conflans and Fiji (Fraunho㈣ diffraction, or reasonable Cardiff lung Wei Likelihood its towel included people shot Shao ncident

Light)1801 。 —減少健寬度D-方面可減少照龍域巾叫分的直接投射 範圍’如圖十人中虛線所示。的—方面,依照繞射角度正比於 夫朗和斐繞射中的丨/D,繞射角度會增加。這增加了在第二磁光空 間光》驗社賴紐鋪寬度w. _區域的全部寬冗 夫朗和斐繞射方法中’ D可決定來使得它能在給定分隔d的情況, 利用方程式w = D + 2(1λ/Ι)來最小化w,此絲式是從夫朗和斐繞 74 200839468 射中的兩個第一階最小值之間的距離推得。 、例如’如果λ疋〇· 5 _,d是l〇〇pm及w是2〇_,可得到d 為%m的最小值。然而在這個例子中,夫朗和斐方法可能不會是 -―贿的近似,這侧子綱了仙磁光如光觀㈣之間的距 < 離來控制夫朗和斐繞射方式的繞射過程的準則。 (4)第四個方法使用了光纖面板來成像第一空間光調變器的 像素至第二空間光調變器的像素上。光纖面板是由二維排列的平 行光纖所構成。光纖的長度並且面板的厚度典型為數毫米,面板 表面的對肖線長度是長至數射。舉—個例子,光纖的間距可為 。Edmund Optics lnc· 〇f Barringt〇n,New Jersey,USA 有銷 售具有如絲_距^光纖面板。每—條光纖會將光從它的其中 鲁—端引導至另-端。因此,在面板一端的圖像會被傳送至另一端, 並且具有高解析度且不需要聚焦元件。這樣的面板可作為兩個空 ‘ 目光調變器之間的分隔層。多模光纖會比單模光纖較為合適,因 為多模光纖的搞合效率比單模光纖好。#光纖核心的折射率與液 晶的折射率為相配時,會得到最佳的麵合效率,因為這可最小化 #>l^t^^^^^(Fresnel back reflection losses) 〇 在兩個二間光调變器之間並沒有額外的覆蓋玻璃。通過第一 75 200839468 磁光空間光調變器像素的光會被引導至第二磁光空間光調變器對 應的像素。這會最小化鄰近像素的串音。面板會將第一空間光調 變器輸出端的光分佈傳送至第二空間光調變器的輸入端。平均而 言,每個像素應至少一個光纖。如果平均而言每個像素是少於一 個光纖的話,空間光調變器的解析度將會損失,造成顯示於全像 顯示應用中的圖像品質降低。 圖十顯示了用於編碼全像圖振幅與相位資訊的緊密排列的例 子。104是照明裝置,用於提供平面區域的照明,其中照明是具有 充份的同調性,以便能夠產生三維圖像。在us 2〇〇6/25〇671中提 出了一個用於大區域影像全像圖的照射裝置的例子。如同1〇4的 裝置可採用白色光源陣列的形式,例如冷陰極螢光燈或是發出的 光線為入射在聚焦系統上的白光發光二極體,其中聚焦系統可為 緊密的,如透鏡狀陣列或微透鏡陣列1〇〇。或者,用於1〇4的光源 可由紅色、綠色及藍色f射所組成,或是由發出充份_性光的 、色、、、彔色及監色發光二極體所組成。然而,相較於雷射光源, 具有充份空間同調性的非雷射光源(例如:發光二極體、有機發 光一極體、冷陰極螢光燈)是更佳的。雷射光源具有一些缺點,例 如會在全像重建上造成雷射斑點、相對上較為昂貴以及可能合傷 ,^ l=f 二王像顯示觀看者或是進行全像顯示裝置組裝之1作人員的眼睛 等安全性問題。 76 200839468Light) 1801. - Reducing the health of the width D- aspect can reduce the direct projection range of the photo of the dragon's field towel as shown by the dotted line in the ten people. On the other hand, the diffraction angle increases as the diffraction angle is proportional to the 丨/D in the Fraun and Fiji diffraction. This increases the width of the second magneto-optical space in the width of the w. _ area of the wide-width Fraunhofer and Fiji diffraction method 'D can be decided to make it available in the case of a given separation d The equation w = D + 2(1λ/Ι) is used to minimize w, which is derived from the distance between the two first-order minimums of the Froe and Fibonacci's 74 200839468 shots. For example, if λ 疋〇 · 5 _, d is l 〇〇 pm and w is 2 〇 _, the minimum value of d is %m. However, in this case, the Fulang and Fei methods may not be the approximation of the bribe, which is the distance between the magnet and the light (4). Guidelines for the diffraction process. (4) The fourth method uses a fiber optic panel to image the pixels of the first spatial light modulator to the pixels of the second spatial light modulator. The fiber optic panel is made up of two-dimensionally arranged parallel fibers. The length of the fiber and the thickness of the panel are typically a few millimeters, and the length of the surface of the panel is long to several shots. For example, the spacing of the fibers can be . Edmund Optics lnc· 〇f Barringt〇n, New Jersey, USA is available as a fiber optic panel. Each fiber optics directs light from its lu-end to the other end. Therefore, the image at one end of the panel is transmitted to the other end, and has high resolution and does not require a focusing element. Such a panel acts as a separate layer between two empty ‘eyes modulators. Multimode fiber is more suitable than single mode fiber because multimode fiber is better than single mode fiber. # When the refractive index of the fiber core matches the refractive index of the liquid crystal, the best face-to-face efficiency is obtained, because this can minimize #>l^t^^^^^(Fresnel back reflection losses) There is no additional cover glass between the two light modulators. The light passing through the first 75 200839468 magneto-optical spatial light modulator pixel is directed to the pixel corresponding to the second magneto-optical spatial light modulator. This minimizes crosstalk from neighboring pixels. The panel transmits the light distribution at the output of the first spatial light modulator to the input of the second spatial light modulator. On average, each pixel should have at least one fiber. If, on average, each pixel is less than one fiber, the resolution of the spatial light modulator will be lost, resulting in reduced image quality for display in holographic display applications. Figure 10 shows an example of a tight alignment of the amplitude and phase information used to encode the hologram. 104 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example of an illumination device for a large area image hologram is presented in us 2〇〇6/25〇671. A device like 1〇4 can be in the form of a white light source array, such as a cold cathode fluorescent lamp or a light emitted as a white light emitting diode incident on a focusing system, wherein the focusing system can be compact, such as a lenticular array. Or microlens array 1〇〇. Alternatively, the light source for 1〇4 may be composed of red, green, and blue f-rays, or may be composed of a full-color light, a color, a color, a color, and a color light-emitting diode. However, a non-laser light source (e.g., a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial homology is preferable to a laser light source. Laser light sources have some disadvantages, such as causing laser spots on holographic reconstruction, relatively expensive, and possible injury. ^ l=f Two king images show viewers or perform omnidirectional display device assembly Eyes and other security issues. 76 200839468

元件l〇4、ι〇〇-103及109的全部厚度可約為數公分,或是更 低。元件101可包含色彩過濾器陣列,使得彩色光線(例如紅色、 綠色及藍色光)的像素是射向元件搬,儘管如果使用彩色光源, 色彩猶ϋ是不需要的。元件搬是光偏化姑,或是—組的光 偏化7L件。70件⑽是編碼她資訊的磁光雜光調魏。元件 109是編碼振幅資訊的磁光空間光調變器。元件⑽及⑽每一個 包含光偏化元件或是__光偏化元件。元件⑽的每一個元件 (在此以m表示)會與树⑽中對應的元件排列(在此以⑽表 不)。然而,儘管元件⑽與⑽中的元件具有相同的橫向間隔或 間距’耕1G3中的元件大小會小於或等於元件⑽中的元件, 因為離開元件而的光在進入元件⑽的元件⑽之前,业型地 會經歷-些繞射姻與相位的編碼次序可與圖十中所示的相反。 位於點106離包含緊密型全像圖產生 a# , h 王土沿1卯的裝置一此距離 的親看者,可請的方向觀看到三維圖像。排列元件·⑽、 刖、搬、m請,鐵獅说 =緊㈣王像圖產生器105中,如同辛習用技術中可見 77 200839468 Ε·構成要素包含-個或二個磁光空間光調變器的緊密組合,且具 有目標全像重建的大倍率三維圖像顯示裝置 圖十九顯示了一個構成要素包含一個或二個磁光空間光調變 器的緊密組合,且具有目標全像重建的大倍率三維圖像顯示裝 置。這個裝置的構成要素包括磁光空間光調變器與充份同調性的 緊密型光源的緊密組合,這樣的組合能夠在適當賴明情況下, 產生二維圖像,並可在虛擬觀察員視窗(在圖十九標示為〇f)中觀 祭到,且這個裝置元件可整合在例如個人數位助理或行動電話 中。如圖十九所示,空間光調變器與充份同調性的緊密型光源的 緊密組合包含光源陣列1901、空間光調變器M〇SLM及透鏡陣列 1902。在圖十九中的空間光調變器包含一個或兩個磁光空間光調 變器的緊密組合。 在一個簡單的例子中,光源陣列可由下列方式形成。單一光 源,例如單色的發光二極體,放置在鄰近孔徑陣列的位置,使其 能照射孔徑。如果孔徑是一維陣列的狹縫,由狹縫傳送的光會形 成一維陣列的光源。如果孔徑是二維陣列的圓,圓的照射集合即 形成二維陣列的光源。典型的孔徑寬約為20)um。這樣的光源陣列 適合用於產生對於一眼的觀察員視窗。 在圖十九中’光源陣列是設置在距離透鏡陣列u距離長度的 78 200839468 位置光;斜财為圖—巾元件1G的絲,並且可麵性的包含 圖中的元件12。確切的說,光源陣列中的每一個光源是設置在 距離透鏡_中它所對應騎鏡u距離長度的位置。在較佳的實 施例中光源陣列與透鏡陣列的平面是呈平行狀的。空間光調變 可位在透鏡陣列的任—邊。虛擬觀察員視窗與透鏡陣列的距離 為v。透鏡陣列中的透鏡是聚光鏡,且聚焦長度f ^由f = 1/[1/u + |"/ν]所、’、.疋。在較佳的實施例中,v的值是在細麵到議賺 的犯圍内。在更佳的實施例中,νΑ約為働麵。在較佳的實施例 中’u的值是在1—的範圍内。在更佳的實施例中,u的 值大約為2Gmm。放大隨M是由v/u所決定。M是經由空間光調 變器調變過後的辆,在虛擬觀察員視窗被放大的时。在較佳 的實施例中’ Μ的值是在1G到6_圍内。在更佳的實施例中, Μ所大約為20。為了實現這樣的放大因數,以獲得好的全像圖像品 質’需要準確排列辆_與透鏡_。為了維持精確的排列, ==持光與透僻__離,朗超過元件的使用 ㈣為止’裝置讀需要具有料好的機械穩定度。 =祭員《可為可追縱式或是不可追縱式。如果虛擬觀 追縱式的’則根據所需的虛擬觀察員視窗位置,會 中特定的光源。啟動的光源會照射空間光調變器, 並糟由透鏡陣列成像至觀察員平面。對於透鏡陣列中的每一個 79 200839468 透鏡’至少啟動-個絲_巾的光源。這樣的追蹤是為準連續 的。如果U為20mm且V為400麵,假若像素間距為2〇_,則可追 蹤具有400_橫向增量的虛擬觀察員視窗。這樣的追蹤是準連 的。如果u為20mm且ν為棚刪,則f大概為19麵。 、 在光源_巾的統可紐具有部分雛。部分的 同雛會導致模_目標點重建。如果u為施m且v為侧醜, 假若光源的寬度為2GUra,則距離顯示器議m的目標點的重建會 具有_m賴向麵。這騎人賴勤制贿度而言是足 夠的。 在通過透鏡陣列中不同透鏡的光之間,並不需要具有任何明 顯的相互關性。同調性的需求是限制在透鏡_中的每一個單 -透鏡。因此,重建目標點的解析度是由透鏡陣列的間距來決定。 對於人類的視聽統而言,典型的透鏡間距將為丨咖的層級,以 確保充份的解析度。 虛擬觀务員視窗疋限制在空間光調變器中所編碼的資訊的傅 立葉頻譜的—個繞射階級。如果空間光調變器的像素間距為 ’在500nm的波長,虛擬觀察員視窗會具有咖寬的寬度。 虛擬觀察_ 空__上多卫,細目虛擬觀察員視 200839468 …彩色全像重建可㈣間多工來實現。純有機發光二極體顯 丁。。的、.i色、綠色及藍色像素是依序湘如光調魏的同步重 編碼進行激活,此空間光調變器具有針對紅色、綠色及藍色光學 波長進行計算的全像圖。 -縣顯示器的裝置元件中可包含眼睛位置侧器,用以偵測 ^察貝眼睛的位置。眼睛位置铜器連接控鮮位,此控制單位 是用來控縣轉财的光源的激活。 时在工間光機器上編碼的全像圖的計算最好是由外部的編碼 單兀執因為它需要較高的計算能力。騎㈣會接著傳送至 個人數位助理或行動電話,以顯示全像產生的三維圖像。 F.包含-對或兩對磁光空間光調變器的緊密組合的平面投影機器 除了將光投射至數個虚擬觀察員視窗之外,從全像顯示裝^ 發射的光也可以投射到螢幕或膽上或是一些其它的表面上。因 此,在行動餘軸人數位助理幅三_轉置也麟是以口 袋型投影機財絲朗。贿其它包含―㈣兩對磁光空間光 200839468 調變器的緊密組合的三維顯示裝置也能如同以投影機的方式來使 用0 可藉由使用空間光調變器調變入射光的振幅及相位來提升全 像投影的品質。因此,複數值的全像圖可在空間光調變器上編碼, 邊重建在螢幕或牆上的圖像具有較好品質。 一對或兩對磁光空間光調變器的緊密組合,可作為投影器中 的空間光調變器。由於此組合的大小為緊㈣,投影機也將會是 緊密的。投影機甚至可以是和行動f話或是個人數位助理一樣的 裝置:可在"三維顯示器"與”投影器,,模式間切換。 =較於㈣的二維投顯,全像式二維投職具有不需要投 ^=^鄕_料錢料射铸的轉敎的優點。 11: ^ 谷使用早-空間光調變器,因此無法 描述的全像式二維投影機將能進行複雜二=二= 佳的圖像品質△ u此此具有非常 ;·觀察員視窗的空間多工與二維編碼 這個實施例是關於全像顯 °°的虛捷觀察員視窗(VOWs)的空 82 200839468 間多工,並結合二維編碼的使用。除此之外,全像顯示器可如同 在A、B、C或D部份中所描述的内容,或是如同任何習用°的全像 顯示器。 ' 數個處擬觀察員視窗(例如—細於左眼的虛擬觀察員視窗 * 與一個用於右眼的虛擬觀察員視窗)可利用空間或時财工的^ •式產生是已知的。關於空間多工,兩個虛擬觀察員視窗是在同一 個時間點產生,並且經由絲分光鏡來區分,她於自動立體顯 示器,如在W0 2咖/027228中所描述的内容。而關於時間多工 虛Μ觀祭貝視窗是時間上依序產生的。 然而,習用的全像顯示系統具有―也缺點。對於空間多工而 言’使用賴«統在水平方向是空__性的並且是以水 • 平線光源與透鏡狀陣列為基礎’如圖四所示由習用技術W0 ' 2_/〇27228所獲得的魄。這具有可已知的自動立體顯示器 、技術的伽。糾,它的缺點是不可能在水平方向上產生全像重 建。取而代之的是使用所謂的i維編碼,可使得全像重建與移動 視差僅在垂直方向產生。因此,垂直焦點是在重建物件的平面中, 而水平焦點是在空間光調變器的平面中。這些散光會減少空間視 覺的品質,意即它降低了觀看者接收到的全像重建的品質。同樣 地’日獨多工祕也具有缺點,它們需要快速的空間細變器, 83 200839468 而在所有顯示益的尺寸中尚未有如此快速的空間光調變器,即使 可找到也是過分的昂貴。 只有二維編碼能在水平與垂直方向同時提供全像重建,因此 二維編碼不會產生散光,散光會減少空間視覺的品質,意即降低 觀看者接收到的全像重建的品質。因此,這個實施例的目的是結 合一維編碼以實現虛擬觀察員視窗的空間多工。 在這個實施例中,具有水平與垂直局部空間同調性的照明會 與先束分光鏡結合,光束分光鏡會將光束區分為對於左眼虛擬觀 察員視窗的光束及對於右眼虛擬觀察員視窗的光束。因此,必須 考慮在光束分光鏡上的繞射。光束分光鏡可為棱鏡陣列、第二透 鏡陣列(例如靜態陣列或是變量陣列,如圖二十中所示)或是障礙 遮蔽物。圖二十包含··入射光2001、填滿液晶的凹洞2〇〇2、液晶 排列整齊的凹洞2003、主體材料2004及電場2005, 2006。 圖二十二顯示了這個實施方式的一個例子。圖二十二為包含 二維光源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光 束分光鏡的全像顯示器示意圖。光束分光鏡會將離開空間光調變 器的光線,分離成二束光線,分別照射用於左眼的虛擬觀察員視 ®(VOWL)與用於右眼的虛擬觀察貝視窗(VOWR)。在這個例子中, 84The total thickness of the elements l〇4, ι〇〇-103 and 109 may be on the order of a few centimeters or less. Element 101 may include an array of color filters such that pixels of colored light (e.g., red, green, and blue light) are directed toward the component, although if a colored light source is used, color is not required. The component is moved by photo-biasing, or the group of light-biased 7L pieces. 70 pieces (10) are magneto-optical lights that encode her information. Element 109 is a magneto-optical spatial light modulator that encodes amplitude information. The components (10) and (10) each comprise a photo-biasing component or a __optical polarization component. Each element of the element (10) (here denoted by m) will be aligned with the corresponding element in the tree (10) (here denoted by (10)). However, although the elements (10) and (10) have the same lateral spacing or spacing 'the size of the elements in the 1G3 will be less than or equal to the elements in the element (10), since the light leaving the element is before the element (10) entering the element (10) The pattern will experience - the coding order of the diffraction and phase can be reversed as shown in Figure 10. Located at point 106 from the close-up hologram that produces a#, h Wang soil along the 1 卯 device at a distance, the viewer can view the three-dimensional image. Arrangement components · (10), 刖, move, m please, iron lion said = tight (four) king image generator 105, as seen in the sinus technology 77 200839468 Ε · components contain - or two magneto-optical spatial light modulation A compact combination of large-magnification three-dimensional image display devices with target holographic reconstruction. Figure 19 shows a compact combination of one or two magneto-optical spatial light modulators with target holographic reconstruction. Large magnification three-dimensional image display device. The components of this device include a close combination of a magneto-optical spatial light modulator and a coherent compact light source. Such a combination can produce a two-dimensional image in an appropriate context and can be viewed in a virtual observer window ( This is indicated in Figure 19 as 〇f), and this device component can be integrated, for example, in a personal digital assistant or mobile phone. As shown in Figure 19, the close combination of the spatial light modulator and the well-toned compact light source includes a light source array 1901, a spatial light modulator M〇SLM, and a lens array 1902. The spatial light modulator in Figure 19 contains a close combination of one or two magneto-optical spatial light modulators. In a simple example, the array of light sources can be formed in the following manner. A single light source, such as a monochromatic light-emitting diode, is placed adjacent to the array of apertures to illuminate the aperture. If the aperture is a slit of a one-dimensional array, the light transmitted by the slit will form a one-dimensional array of light sources. If the aperture is a circle of a two-dimensional array, the illumination set of the circle forms a light source of a two-dimensional array. A typical aperture width is about 20 um. Such an array of light sources is suitable for producing an observer window for one eye. In Fig. 19, the 'light source array is a position light disposed at a distance of 78 200839468 from the length of the lens array u; the slanting is the wire of the towel-like element 1G, and the element 12 of the figure is included. Specifically, each of the light sources in the array of light sources is disposed at a distance from the lens _ which corresponds to the length of the mirror u distance. In a preferred embodiment the array of light sources is parallel to the plane of the lens array. Spatial light modulation can be located at any side of the lens array. The distance between the virtual observer window and the lens array is v. The lens in the lens array is a condensing mirror, and the focal length f ^ is f = 1 / [1/u + | " / ν], ', . In the preferred embodiment, the value of v is within the fine range of the profit. In a more preferred embodiment, ν Α is about 働. In the preferred embodiment the value of 'u is in the range of 1'. In a more preferred embodiment, the value of u is approximately 2 Gmm. Magnification with M is determined by v/u. M is the vehicle that has been modulated by the spatial light modulator, when the virtual observer window is enlarged. In the preferred embodiment, the value of '’ is in the range of 1G to 6_. In a more preferred embodiment, the crucible is about 20. In order to achieve such an amplification factor, it is necessary to accurately align the _ and the lens _ to obtain a good holographic image quality. In order to maintain a precise alignment, == holding and escaping __ away, lang exceeds the use of components (4) until the device read requires a good mechanical stability. = "The sergeant" can be either a memorial or a non-trackable. If the virtual view is based on the desired virtual observer window position, a specific light source will be present. The activated light source illuminates the spatial light modulator and is imaged by the lens array to the observer plane. For each of the lens arrays 79 200839468 lens 'at least activates a light source of the wire. Such tracking is quasi-continuous. If U is 20mm and V is 400, if the pixel pitch is 2〇_, the virtual observer window with 400_ lateral increment can be traced. Such tracking is quasi-linked. If u is 20mm and ν is shed, then f is about 19 faces. In the light source _ towel, there are some parts. Part of the same chick will lead to the reconstruction of the model_target point. If u is a m and v is a side ugly, if the width of the light source is 2 GUra, the reconstruction of the target point from the display m will have a _m vertical plane. This rider is sufficient in terms of bribery. There is no need to have any significant correlation between the light passing through the different lenses in the lens array. The need for coherence is limited to each single-lens in the lens_. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. For human audiovisual systems, the typical lens spacing will be the level of the coffee to ensure adequate resolution. The virtual attendant window 疋 limits the diffraction level of the Fourier spectrum of the information encoded in the spatial light modulator. If the pixel pitch of the spatial light modulator is 'at a wavelength of 500 nm, the virtual observer window will have a width of coffee width. Virtual observation _ empty __ on the multi-wei, detailed virtual observers view 200839468 ... color holographic reconstruction can be achieved by (four) multiplex. Pure organic light-emitting diodes are shown. . The .i, green, and blue pixels are activated by synchronous re-encoding of the order of the light, and the spatial light modulator has a hologram for the calculation of the red, green, and blue optical wavelengths. - The device component of the county display may include an eye position side device for detecting the position of the eye. The eye position copper is connected to the control position. This control unit is used to control the activation of the light source of the county. The calculation of the hologram image encoded on the work optical machine is preferably performed by an external coding unit because it requires a higher computing power. The ride (four) is then transmitted to the personal digital assistant or mobile phone to display a three-dimensional image of the full image. F. Planar Projection Machine with Close Combination of Pairs or Pairs of Magneto-Optical Spatial Light Modulators In addition to projecting light into several virtual observer windows, light emitted from the holographic display can also be projected onto the screen or On the biliary or on some other surface. Therefore, the number of assistants in the remaining axis of the action is also the sleek projector. Bribe other three-dimensional display devices containing “(4) two pairs of magneto-optical space light 200839468 modulators can also be used as a projector. 0 can be used to modulate the amplitude and phase of incident light by using a spatial light modulator. To improve the quality of holographic projection. Therefore, a complex-valued hologram can be encoded on a spatial light modulator, and the image reconstructed on the screen or wall has better quality. A close combination of one or two pairs of magneto-optical spatial light modulators can be used as a spatial light modulator in a projector. Since the size of this combination is tight (four), the projector will also be compact. The projector can even be the same device as the action f or the personal digital assistant: it can be switched between the "3D display" and the projector, mode. = 2D projection (4), hologram 2 Dimensional investment has the advantage of not having to cast ^=^鄕_ material for injection molding. 11: ^ Valley uses early-space light modulator, so the holographic 2D projector that cannot be described will be able to Complex two = two = good image quality △ u this is very; · space multiplex and two-dimensional coding of the observer window. This embodiment is about the omni-directional observer window (VOWs) of the full image display 82 200839468 Multiplex, combined with the use of two-dimensional code. In addition, the holographic display can be as described in Sections A, B, C, or D, or as a holographic display of any conventional use. Several observer windows (for example, a virtual observer window* that is closer to the left eye and a virtual observer window for the right eye) are known to be available in space or time. , two virtual observer windows are produced at the same time Born, and distinguished by a wire spectroscope, she is in an autostereoscopic display, as described in WO 02/027228. However, the time multiplex imaginary view is produced in time. However, The conventional holographic display system has “also has shortcomings. For spatial multiplexing, the use of Lai’s system is empty in the horizontal direction and is based on water • flat line source and lenticular array”. Shown by the conventional technique W0 '2_/〇27228. This has the known autostereoscopic display, the technique of gamma correction, which has the disadvantage that it is impossible to generate holographic reconstruction in the horizontal direction. Instead, it is used. The so-called i-dimensional encoding allows the holographic reconstruction and the moving parallax to be generated only in the vertical direction. Therefore, the vertical focus is in the plane of the reconstructed object, and the horizontal focus is in the plane of the spatial light modulator. These astigmatisms are reduced. The quality of spatial vision, which means that it reduces the quality of the holographic reconstruction received by the viewer. Similarly, 'there are also shortcomings, and they need a fast spatial fine transformer, 83 20083946 8 And there is not such a fast spatial light modulator in all the dimensions of display benefits, even if it can be found too expensive. Only two-dimensional coding can provide holographic reconstruction in both horizontal and vertical directions, so two-dimensional coding will not Producing astigmatism, astigmatism reduces the quality of spatial vision, meaning to reduce the quality of holographic reconstruction received by the viewer. Therefore, the purpose of this embodiment is to combine one-dimensional coding to achieve spatial multiplexing of virtual observer windows. In the example, illumination with horizontal and vertical local spatial coherence will be combined with the beam splitter, which splits the beam into a beam for the left-eye virtual observer window and a beam for the right-eye virtual observer window. Consider the diffraction on the beam splitter. The beam splitter can be a prism array, a second lens array (e.g., a static array or a variable array, as shown in Figure 20) or an obstacle shield. Fig. 20 includes incident light 2001, a cavity 2 filled with liquid crystal, a cavity 2003 in which liquid crystals are aligned, a host material 2004, and an electric field 2005, 2006. An example of this embodiment is shown in Figure 22. Figure 22 is a schematic diagram of a holographic display including a light source of a two-dimensional array of light sources, a lens of a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the light exiting the spatial light modulator into two beams that illuminate the virtual observer X (VOWL) for the left eye and the virtual observation window (VOWR) for the right eye. In this example, 84

# 200839468 光源的數量為一個或多個;透鏡的數量與光源的數量是相同的。 在這個例子中,光束分光鏡是在空間光調變器之後。光束分 光鏡與空間光調變器的位置也可相互交換。 圖二十三顯示了這個實施例的平面圖,在其中是使用棱鏡陣 列作為光束分光鏡。照明裝置包含η個元件的二維光源陣列(LS1,# 200839468 The number of light sources is one or more; the number of lenses is the same as the number of light sources. In this example, the beam splitter is after the spatial light modulator. The positions of the beam splitter and the spatial light modulator can also be interchanged. Figure 23 shows a plan view of this embodiment in which a prism array is used as a beam splitter. The illumination device comprises a two-dimensional array of light sources (LS1,

Ls2,··· LSn )及η個元件的二維透鏡陣列(L1,L2,…Ln),在 圖二十三中只顯示了兩個光源與兩個透鏡。每—個光源是利用它 所對應的透鏡成像至觀察貞平面。光源陣列的間距與透鏡陣列的 門距疋要使得全部光源的圖像能同時出現在觀察員平面,即包含 兩個虛擬觀察窗的平面。在圖二十三巾,並沒有顯示左眼虛 擬觀察員視窗(V0WL)與右眼虛擬觀察員視窗㈤fR),因為它們是 在超出圖外的位置,且是在圖的右侧。可增加額外的視野透鏡 (field lens)。為了提供充份的㈣同雛,透鏡陣列的間距是 相似於次全像_典型大小,即—至數絲的層級。當光源是很 小,或為點統,且當使用二維透鏡_時,照明在每一個透鏡 中是水平且垂直空間_性^透鏡_可為崎、燒射或全像 式的。其中包含光束分光鏡2301。 在攻個例子中’光束分紐是一 _垂直棱鏡_。入射在 85 200839468 棱鏡的-鑛_光,會偏斜至左眼虛織察貞視窗㈤祖), 入射在棱鏡的另-個斜_光,會偏斜至右眼虛擬觀察員視窗㈤ 丽)。從_ LS#_it騎產生的祕,麵過光束分光鏡 之後,也為相互關。因此’具有垂直與水平聚焦及垂直與水平 移動視差的二維編碼是可能的。 全像圖是_二軸碼在帥細變器上進行、_。對於左 眼及右眼的全像岐—行行交錯,意即隔行編碼對於左眼與右眼 的全像資訊。更好地是在每一個棱鏡下,具有包含左眼全像資訊 的订及包含右眼全像資訊的行。另一個方法,也可以是在棱鏡的 每-個斜面下具有兩個或更多個全像圖的行,例如三行對於左眼 虛擬觀察貞視s,並且接麟三行對於右眼虛擬觀察貞視窗。光 束分光鏡綱距可與空間光調變⑽間距相同,或為整數(例如二 或三)倍數,或者,為了能容許透視縮短(perspective shortening),光束分光鏡的間距可比空間光調變器的間距稍微小 一點,或是比它的整數(例如兩或三)倍數稍微小一點。 從具左眼全像的行發出的光會重建對於左眼的目標,並且照 射左眼虛擬觀察員視窗(V〇WL);從具右眼全像的行發出的光會重 建對於右眼的目標,並且照射右眼虛擬觀察員視窗(v〇WR)。因此, 每一個眼睛會接收到適當的重建。如果棱鏡陣列的間距是充分小 86 200839468 日守,則眼睛不能解析棱鏡結構,且棱鏡結構不會妨礙全像圖的重 建。每一個眼睛會看見具有全聚焦與全移動視差的重建,並且沒 有散光現象。 當同調光照射光束分光鏡時,在光束分光鏡上將會有繞射。 光束分光鏡可視為產生多重繞射階級的繞射光栅(diffracti〇n gmting)。斜的棱鏡斜面具有閃耀式光柵(blazed肛出呢)的效 果。對於閃耀式光柵,最大強度是導向特定的繞射階級。對於棱 鏡陣列,一個最大強度會從棱鏡的一個斜面導向位於左眼虛擬觀 察員視窗位置的一個繞射階級,另一個最大強度會從棱鏡的另一 個斜面導向位於右眼虛擬觀察員視窗位置的另一個繞射階級。更 精確來說,封裝式(enveloping) sine-squared函數的強度最大值 是位移至這些位置,而繞射階級是位在固定的位置。棱鏡陣列會 在左眼虛擬觀察員視窗的位置產生一個強度封裝sinc-squared函 數的敢大值,在右眼虛擬觀察貝視窗的位置產生另一個強度封裝 sine-squared函數的最大值。其它繞射階級的強度將會很小(意即 sine squared強度函數的最大值是狹窄的),並且將不會產生干擾 串音,因為棱鏡陣列的填充因子(fill factor)是大的,例如接近 100°/〇〇 如同在習用技術中可見的,為了提供虛擬觀察員視窗給予二 87 200839468 個或更多個觀察員,可藉由使用更複雜的棱鏡陣列(例如兩種類型 的棱鏡’具有相同的頂角(apex angles),但是不同程度的非對稱 性’依序相鄰配置)來產生多個虛擬觀察員視窗。然而,使用靜態 的棱鏡陣列是不能夠個別地追蹤觀察員。 ’在另一個例子中,每個透鏡可使用多於一個光源。每個透鏡 馨乡出來的光源可利用來產生額外的虛擬觀察員視窗,提供給予其 wo 2004/044659 (US2006/0055994) 的内合’對於m個觀察員採用一個透鏡與·個光源的例子。關於 此的另個例子,是利用每個透如個光源與雙倍的空間多工來 產生m個左眼虛擬觀察員視窗及m個右眼虛織察員視窗,提供 給m個觀察員。每個透鏡m個光源是以m對1的對應方式,其中m 是一個整數。 » 接著是這個實施方式的例子。使用2〇英忖的榮幕尺寸,並具 有下歹^|的多數值·觀察員的距離為2m,像素間距在垂直上為⑽卵, 在水平上為,_布克哈_urckhardt)編碼,以及光學波 為33nra布克哈特編碼是在垂直方向,具有即卿的次像素間 距與6麵高的虛擬觀察員視窗(垂直期間)。忽略透視縮短,垂直 ▲、二車歹J的間距為414_,也就是在每個全棱鏡下具有兩個空間光 周變w的仃。因此,觀察員平面中的水平期間為3咖。這也同樣為 88 200839468 虛擬,察員視窗的寬度。這個寬度在直徑上是小於理想大約杨 的眼睛瞳孔大小。在另—個相似的例子中,如果空·調變器具 有5〇_交小_巨,虛擬觀察員視窗將會具有25删的寬度/、 .、,如果成年人眼睛的分隔為防咖(這是典型的),棱鏡必須偏斜 =、32. 5mm ’使仔光與包含虛擬觀察貞視窗的平面被。更精確 • ㈣,強度封裝^-squared函數的最大值需要偏斜± 32. 5咖。 這對於2m的觀察員距離相當於是± 〇.⑽。的角度。對於折射率γ 1. 5的棱鏡’適當的棱鏡角度為±丨.86。。棱鏡角度是定義為基底 與棱鏡斜邊之間的角度。 β對於在3mm的觀察員平面中的水平期間,另一個眼睛的位置 疋在大約21、繞射階級的距離(意即65麵除以3mm)。因此,由另 •=個虛擬觀察員視窗的較高繞射階級所導致在左眼虛擬觀察員視 1¾與在右眼虛擬觀察員視窗之中的串音是可以忽略的。 為了貫作追蹤,光源追蹤為一個簡單的追蹤方法,意即調敕 光源的位置。如果空間光調變器與棱鏡陣列不是在相同的平面 上’在m光應_素與棱鏡之間將會具有由視麵導致相關 於橫向偏移的擾亂。這將可能會導致擾亂串音。上述20英吋螢幕 尺寸例子巾的像素,錢直於每錄敎端卿摘細方向, 89 200839468 可能具有屬填充因子,也就是在每個邊上,像素的大小為咖 的作用區域及31_的無作用的區域。如果棱鏡陣列的建構區域是 朝向空間光調變器,在棱鏡陣列與空間光調變器之間的分隔可能 大約為1mm。無串音的水平追縱範圍將會是士 31 咖* 2① =± 62 ram。如果小的串音是可容許的話,那麼追縱的範圍將會更 大。這個追蹤範圍並不是很大,但是對於—些追較充夠的,曰減 少對於觀;#者&限制’像是關他/她魏睛的位置。 空間光調變器與棱鏡陣列之間的視差是可以避免的,較好的 方法是利用將棱鏡陣列整合或是直接整合在空間光調變器中(像 是折射、繞誠是全像式魏_)。這騎I品而謂為特殊構 成要素(specialized咖卿nt)。另—種選擇是橫向機械式移動 棱鏡陣列’雜這是較不建議的,因為移軸械結齡使得裝置 變得更為複雜。 t 另-個關鍵性的問題是由棱鏡角度所決定的虛擬觀察員視窗 之間的固定分隔。這對於眼睛分隔不是標準的觀察賊是&追縱 可能會造成_。其巾-鑛決方法,是可使用包含封裝液晶區 域(encapsulated liquid-crystal domains)的組件,如圖二十— 所示,其中包含入射光2101、液晶排列整齊凹洞21〇2、填滿液晶 的凹洞2103、最大扭轉的光束指向2104、主體材料21〇5及透= 200839468 電木21G6’ 21G7。料’電場可控制折射率,以及偏斜角度。這個 ^决方法可與棱鏡陣恥併,峽分财續地提供變量偏斜與固 =偏斜在另—轉決方法巾,可崎晶層覆蓋棱辦列的結構 =接著,電場可控制折射率,以及偏斜触。如果虛擬觀察員 *視*具有足夠容許不_睛分_觀察s與z-追縱如此大的寬声 • 時,則將不需要變量偏斜組件。" -個較複雜的解決方法是使用可控制式棱鏡陣列,例如 ㈣他禮鏡陣列(如圖二十四所示)或是填滿液晶的棱鏡(如圖 一十所不在圖二十四中’具有棱鏡元件的層159包含電極 15Π、1518、填滿_分離的液體1519、㈣的凹洞及光傳播的 方向讀。每一個液體是填滿一個凹洞的稜形部分。舉-個例子, 液體可以是油或水。在液體⑸9、152G之間介面的斜率是由施加 • 在電極1517、1518的電壓所決定。如果液體具有不同的折射率時, 縣將會遭受偏向,偏向是由施加在電極1517、1518的電壓所決 ^。目此,魏元件159相當於可翻式縣指向树。這對於 申請人的方法制在需要追縱虛纖察員視窗至觀察員眼睛的電 子式全像技術是-健要的雜。由申請人所提㈣專利申請號 DE 102007024237. 0 及 DE 102_24236. 2 描述了以棱鏡元件^ 虛擬觀察員視窗至觀察員眼睛的追蹤。 200839468 這是-侧於緊密型手持式顯示器的實施例。Seik〇 (RTM) Epson (RTM) Corporation of Japan已發表了單色電子式定址空 間光調變器,例如D4:L3D13U 1·3英对螢幕尺寸面板。描述一個 使用D4:L3D13U液晶顯示器面板作為空間光調變器的例子。它具 有HDTV的解析度(1920 X 1〇8〇像素)、15_的像素間距與28· 8mm X 16· 2mm的面板區域。這個面板通常是用於二維圖像投影顯示器。 运個例子是關於663nm的波長與5()αη的觀察M距離的計算。 在這個振巾田调交空間光調變器中是使用軌跡相位⑽-油咖) 為馬(布克合#寸編碼)·需要三個像素來編碼一個複數。這三個關 素疋壬垂直排列。如果棱鏡陣列光束分光鏡是整合在空間光 中’則棱鏡陣列的間距為30_。如果空間光調變器與棱鏡 陣列之間具有分隔,棱鏡陣列關距會職不同,以應付透視縮 虛擬觀察員視窗的高度是由用於編碼一個複數3 *丄5 _ =奶 的間距所决d為?· Q麵。虛纖察貞視窗的寬度是由棱鏡 孔列⑽_間距所決定,且㈣·―。兩個數值都大於眼睛的瞳 _匕*果虛擬觀察員視窗是在眼睛的位i時,每個眼睛都 並、、々 。王像重建是從二維編碼的全像圖而來,因此 亚友有上騎述—維編碼巾本身存麵散棚題。這確保了高的 92 200839468 空間視覺品質與高的深度印象(depth impressi〇n)品質。 “當眼睛的分隔為65mm時,棱鏡必須偏斜光± 32. 5刪。更精確 來說’封裝sine-squared強私數的強度最大值需要偏斜± 32· 5mm。這對於〇· 5m的觀察員距離,相當於是± & 72。的角度。 ^於折射率n = L5,適當的棱鏡角度為± 7 44。。棱鏡角度是定 義為基底與棱鏡斜邊之間的角度。 曰對於在1G. 6麵的觀察員平面中的水平期間,另—個眼睛的位 置疋在大約6繞射階級的距離(意即65mm除以1〇。因此, =較高繞射階級所導致的串音是可以忽略的,因為棱鏡陣列具有 高的填充因子,意即接近於1〇〇%。 這是-細於大顯示器的實施例。全像顯示料料成使用 具有5_像素間距及20英对營幕尺寸的她調變空間光調變 器。對於如電視的應用’螢幕尺寸可能相當接近4G英叶。關於這 個設計的觀察員距離是2m,且波長是633nm。 利用空間光機器的兩個相位婦像素來編碼—個複數。這 兩個關聯的像素是呈垂直排列,並且對應的垂直間距為2 * 5〇卿 =100 4〇1。棱鏡_是整合在空間光調變財,棱鏡陣列的水平 93 200839468 間距也為2 * 5G _ = l〇G _,因為每個棱鏡包含兩個斜面,且 每個斜面疋用於空間光調變涵—個行。這會產生& 了職寬度與 回度的虛擬觀祭員視窗,且比眼睛的瞳孔還來的大。因此,如果 虛擬觀*貞視窗是在眼睛的位置時,每條_可以看見全像重 建。全像鱗是從二維編碼的全像_來,因此並沒有—維編碼 中本身存在的散光問題。這雜了高的空間視覺品質與高的深度 印象品質。 田眼目月的分隔為65mm時,棱鏡必須偏斜光± 32. 5咖。更精確 綠’強度封裂sinc_擊red函數的最大值需要偏斜土 32. 5麵。 這對於2m的觀察員距離,相當於是± 〇.犯。的角度。對於折射率〇 鏡Ls2, ···· LSn ) and two-dimensional lens arrays (L1, L2, ... Ln) of η elements, only two light sources and two lenses are shown in Fig. 23. Each light source is imaged to the viewing pupil plane using its corresponding lens. The spacing of the array of light sources and the gate distance of the lens array are such that images of all of the light sources can simultaneously appear on the observer plane, i.e., the plane containing the two virtual viewing windows. In Figure 23, the towel does not show the left eye virtual observer window (V0WL) and the right eye virtual observer window (f) fR because they are outside the figure and are on the right side of the figure. Additional field lenses can be added. In order to provide sufficient (four) brood, the pitch of the lens array is similar to the sub-holo- _ typical size, ie to the level of the number of filaments. When the light source is very small, or point system, and when a two-dimensional lens _ is used, the illumination is horizontal and vertical space in each lens _ sex lens _ can be sacrificial, burned or holographic. The beam splitter 2301 is included therein. In the example of attack, the 'beam split is a _vertical prism _. Incident at 85 200839468 Prism - mine _ light, will be skewed to the left eye imaginary 贞 window (five) ancestor, the other oblique _ light incident on the prism, will be skewed to the right eye virtual observer window (5) Li). The secret generated from the _ LS#_it ride, after passing through the beam splitter, is also closed. Therefore, two-dimensional encoding with vertical and horizontal focusing and vertical and horizontal moving parallax is possible. The hologram is _ two-axis code on the handsome changer, _. For the left eye and the right eye, the full image is interlaced, meaning that the interlaced code encodes the full image information for the left and right eyes. More preferably, under each prism, there is a line containing the left eye hologram information and a line containing the right eye hologram information. Another method may also be a line having two or more holograms under each of the slopes of the prism, for example, three lines for the left eye virtual observation squint s, and the three lines for the right eye virtual observation贞Windows. The beam splitter pitch can be the same as the spatial light modulation (10) pitch, or an integer (eg, two or three) multiples, or, in order to allow perspective shortening, the beam splitter can be spaced apart from the spatial light modulator. The spacing is slightly smaller, or slightly smaller than its integer (for example, two or three) multiples. Light emitted from a line with a full image of the left eye reconstructs the target for the left eye and illuminates the left eye virtual observer window (V〇WL); light emitted from the line with the right eye hologram reconstructs the target for the right eye And illuminate the right eye virtual observer window (v〇WR). Therefore, each eye will receive an appropriate reconstruction. If the pitch of the prism array is sufficiently small, the eye cannot resolve the prism structure and the prism structure does not interfere with the reconstruction of the hologram. Each eye will see a reconstruction with full focus and full motion parallax, and no astigmatism. When the dimming beam illuminates the beam splitter, there will be diffraction on the beam splitter. The beam splitter can be viewed as a diffracti〇n gmting that produces multiple diffraction levels. The slanted prism bevel has the effect of a blazed grating (blazed anal). For blazed gratings, the maximum intensity is directed to a particular diffraction class. For a prism array, a maximum intensity will be directed from one bevel of the prism to a diffractive stage at the virtual observer window of the left eye, and the other maximum intensity will be directed from the other bevel of the prism to another winding located at the virtual observer window of the right eye. Shooting class. More precisely, the maximum intensity of the enveloping sine-squared function is shifted to these positions, while the diffractive class is in a fixed position. The prism array produces a dare large value for the intensity-encapsulated sinc-squared function at the position of the left-eye virtual observer window, and produces the maximum value of another intensity-encapsulated sine-squared function at the position of the right-eye virtual observation shell window. The intensity of the other diffraction classes will be small (meaning that the maximum value of the sine squared intensity function is narrow) and will not cause interference crosstalk because the fill factor of the prism array is large, for example close 100°/〇〇 as seen in the conventional technique, in order to provide a virtual observer window to give two 87 200839468 or more observers, by using a more complex prism array (eg two types of prisms have the same top) Apex angles, but varying degrees of asymmetry 'sequentially adjacent configurations' to create multiple virtual observer windows. However, the use of static prism arrays does not allow individual observers to be tracked. In another example, more than one light source can be used per lens. The light source from each lens can be used to create an additional virtual observer window, providing an example of the use of a lens and a light source for m observers in the 2004/044659 (US2006/0055994). Another example of this is the use of each light source and double spatial multiplexing to generate m left-eye virtual observer windows and m right-eye virtual observer windows for m observers. The m light sources of each lens are in a corresponding manner of m to 1, where m is an integer. » Next is an example of this implementation. Use a 2 inch glory size with a multi-value of the lower 歹^| the observer's distance is 2m, the pixel pitch is (10) eggs vertically, on the horizontal, _Bukha _urckhardt), and The optical wave is a 33nra Bukhart code that is in the vertical direction, with a sub-pixel pitch of up to six sides and a virtual observer window of six sides (vertical period). Ignore the perspective shortening, the vertical ▲, the two 歹 J spacing is 414 _, that is, under each full prism with two spatial light changes w 仃. Therefore, the horizontal period in the observer plane is 3 coffee. This is also the width of the 88 200839468 virtual, inspector window. This width is smaller in diameter than the ideal pupil size of the eye. In another similar example, if the null modulator has 5〇_交小_巨, the virtual observer window will have a width of 25 deleted /, ., if the adult eyes are separated into anti-coffee (this It is typical), the prism must be skewed =, 32. 5mm 'to make the light and the plane containing the virtual observation window. More precise • (d), the maximum value of the strength package ^-squared function needs to be skewed ± 32. 5 coffee. This is equivalent to ± 〇. (10) for an observer distance of 2 m. Angle. For a prism having a refractive index of γ 1.5, the appropriate prism angle is ±丨.86. . The prism angle is defined as the angle between the base and the bevel of the prism. For the level in the observer plane of 3 mm, the position of the other eye is about 21, the distance of the diffraction class (meaning that the 65 faces are divided by 3 mm). Therefore, the crosstalk between the left eye virtual observer and the right eye virtual observer window caused by the higher diffraction stage of the other = virtual observer window is negligible. For continuous tracking, the source is tracked as a simple tracking method, which means to modulate the position of the light source. If the spatial light modulator is not in the same plane as the prism array, there will be a disturbance between the m-light and the prism that is caused by the viewing surface to be related to the lateral offset. This will probably cause disturbing crosstalk. The above 20-inch screen size example of the pixel of the towel, the money is straight to the direction of each recorded end, 89 200839468 may have a fill factor, that is, on each side, the size of the pixel is the action area of the coffee and 31_ The inactive area. If the construction area of the prism array is toward the spatial light modulator, the separation between the prism array and the spatial light modulator may be approximately 1 mm. The horizontal tracking range without crosstalk will be 31 31 * 21 = ± 62 ram. If small crosstalk is tolerable, then the scope of the memorial will be larger. This tracking range is not very large, but for some to catch up, 曰 reduce the view; #者&limits is like the position of his/her Wei. The parallax between the spatial light modulator and the prism array can be avoided. The better method is to integrate the prism array or directly integrate it into the spatial light modulator (such as refraction, roundness is the full image type Wei _). This ride is a special component (specialized qing nt). Another option is the lateral mechanical movement of the prism array, which is less recommended because the age of the axles makes the device more complicated. Another key issue is the fixed separation between the virtual observer windows as determined by the prism angle. This is not the standard observation thief for eye separation is & 縱 縱 may cause _. In the towel-mine method, an assembly including encapsulated liquid-crystal domains can be used, as shown in FIG. 20, which includes incident light 2101, liquid crystal aligned holes 21, 2 filled with liquid crystal. The cavity 2103, the maximum torsion beam is directed to 2104, the body material 21〇5, and the penetration = 200839468 bakelite 21G6' 21G7. The 'electric field' controls the refractive index, as well as the skew angle. This method can be combined with the prism array, and the gorge is provided with variable skew and solid=skew in the other-transfer method towel, and the crystal layer can cover the structure of the edge array. Then, the electric field can control the refraction. Rate, as well as skewed touch. If the virtual observer * sees * has enough tolerance to allow s and s - z - to track such a large wide sound, then the variable skew component will not be needed. " A more complicated solution is to use a controllable prism array, such as (4) his Mirror array (as shown in Figure 24) or a prism filled with liquid crystals (Figure 10 is not in Figure 24) The layer 159 having the prism element comprises electrodes 15A, 1518, filled liquids 1519, (4) pits and direction of light propagation. Each liquid is a prismatic portion filling a cavity. For example, the liquid can be oil or water. The slope of the interface between the liquids (5) 9, 152G is determined by the applied voltage at the electrodes 1517, 1518. If the liquid has a different refractive index, the county will be biased, biased to It is determined by the voltage applied to the electrodes 1517, 1518. Thus, the Wei element 159 is equivalent to the flip-flop county pointing tree. This is an electronic method for the applicant's method to trace the virtual fiber viewer window to the observer's eyes. The holographic technique is a matter of necessity. The applicant's (4) patent application number DE 102007024237. 0 and DE 102_24236. 2 describe the tracking of the prism element ^ virtual observer window to the observer's eye. 200839468 This is - side close type An embodiment of a hand-held display. Seik(RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as the D4:L3D13U 1.3-inch screen size panel. Describe a use of D4 : L3D13U LCD panel as an example of a spatial light modulator. It has HDTV resolution (1920 X 1〇8〇 pixels), 15_ pixel pitch and 28·8mm X 16·2mm panel area. This panel is usually It is used for two-dimensional image projection display. An example is the calculation of the observed M distance between the wavelength of 663 nm and 5()αη. In this vibrating field, the spatial modulator is used to track the phase (10)-oil. Coffee) For the horse (Bucker code #inch code) · Three pixels are required to encode a complex number. These three levels are arranged vertically. If the prism array beam splitter is integrated into the spatial light' then the prism array has a spacing of 30_. If there is a separation between the spatial light modulator and the prism array, the prism array will be different from the position to cope with the perspective. The height of the virtual observer window is determined by the spacing used to encode a complex number of 3 * 丄 5 _ = milk. for? · Q face. The width of the virtual fiber view window is determined by the prism hole array (10)_ spacing, and (4)·. Both values are greater than the eye's 瞳 _ 匕 * fruit virtual observer window is in the position i of the eye, each eye is combined with, 々. The reconstruction of the king image comes from the two-dimensional coded hologram, so the Yayou has a ride on the horse-dimensional code towel itself. This ensures a high 92 200839468 spatial visual quality and a high depth impressi〇n quality. "When the separation of the eyes is 65mm, the prism must be deflected by light ± 32. 5. More precisely, the maximum intensity of the package sine-squared strong private number needs to be skewed ± 32 · 5mm. This is for the observer of 〇 · 5m The distance is equivalent to the angle of ± & 72. ^ For the refractive index n = L5, the appropriate prism angle is ± 7 44. The prism angle is defined as the angle between the base and the bevel of the prism. 曰 For 1G. During the horizontal period in the 6-sided observer plane, the position of the other eye is at a distance of about 6 diffraction classes (meaning that 65 mm is divided by 1 〇. Therefore, the crosstalk caused by the higher diffraction class is negligible. Because the prism array has a high fill factor, which means close to 1%. This is an embodiment that is finer than a large display. The holographic display material has a 5 pixel pitch and a 20 inch diagonal screen size. She modulates the spatial light modulator. For applications such as television, the screen size may be quite close to 4G English leaves. The observer distance for this design is 2m and the wavelength is 633nm. Using the two phase pixels of the spatial light machine Encoding - a complex number. The associated pixels are arranged vertically, and the corresponding vertical spacing is 2 * 5 〇 qing = 100 4 〇 1. Prism _ is integrated in the spatial light modulation, the level of the prism array 93 200839468 The spacing is also 2 * 5G _ = l〇G _, because each prism contains two bevels, and each bevel is used for spatial light modulation—one line. This produces a virtual view of the width and the return of the spectator window, and The pupil of the eye is still large. Therefore, if the virtual view is in the position of the eye, each _ can be seen as a holographic reconstruction. The hologram is from the two-dimensional coded hologram, so there is no The astigmatism problem inherent in dimensional coding. This is mixed with high spatial visual quality and high depth impression quality. When the separation of the eye and eye is 65mm, the prism must be deflected by light ± 32. 5 coffee. More precise green 'strength cracking The maximum value of the sinc_red function needs to be offset by 32. 5 faces. This is the angle of observer for 2m, which is equivalent to the angle of ± 〇.

麦器的距離為5〇cm與2m的例 觀察員離空間光調變器為2〇cm lcm(例如用於行動電話次螢幕) 之間。 上述是關於觀察員離空間光調 子。概括來說,這個實施例可應用至 至4m之間的距離。螢幕尺寸可介於 至50英吋(例如用於大尺寸電視) 雷射光源 固態雷射光源可為適合的光源,The distance between the apples is 5 〇 cm and 2 m. The observer is between 2 〇cm lcm (for example, for mobile phone sub-screens). The above is about the observer's spatial tonality. In summary, this embodiment can be applied to a distance of between 4 m. Screen sizes from up to 50 inches (eg for large TVs) Laser sources Solid-state laser sources are suitable sources.

對於緊密的全像顯示器,RGB 94 200839468 例如以坤化銦鎵(GaInAs)或氮石申化錮鎵(⑷_)材料為基礎,因 為它們是緊密的,且具有高度的光定向性(light d聰ti〇nality)。這_光源包括由此㈣似(_ .,ca, USA所製造的RGB垂直凹面發射雷射(Verticai —hy耐咖 产Emittlng Lasers,VCSEL)。這樣的光源可提供為單一雷射或雷射 *卩㈣’錄·統可细繞射絲元件來產生多個絲。光束 可在多拉光纖中傳輸,因為如果同調性對於使用在緊密的全像顯 示ϋ中為過高時,這可降朗雛的等級,並且不會導致不需要 的加工品產生,例如雷射班點圖樣。雷射光源陣列可為-維或二 維的。 概要製造程序 接下來描述圖二裝置的製造程序概要,不過在習用技術中將 可以看到許多關於這個程序的變化。 在-個圖二裝置的製造程序中,使用了透明基板。這樣的基 板可為硬式的基板,例如大約2〇〇_厚的硼矽玻璃片,或是它可 為軟式基板,例如聚合物基板(p〇lymer substrate),例如聚碳酸 酉曰(polycarbonate)、丙烯酸(aerylie)、聚丙稀 (polypropylene)、聚氨酯加加^^^此^聚苯乙烯 (polystyrene)、聚氯孔烯(polyvinyl chl〇ride)或是類似的基 95 200839468 板。顯示it㈣麵咖冑繼,_嫩 專利申請⑽__.8、GB_379 2中所描述的内容在: 列為㈣。賴輯算電路可設置在齡料像素⑽。這For compact holographic displays, RGB 94 200839468 is based, for example, on indium gallium (GaInAs) or nitriding yttrium gallium ((4)_) materials because they are compact and have a high degree of light directivity (light d Cong Ti〇nality). This _light source includes RGB vertical concave-emitting lasers (Verticai-hy-Emittlng Lasers, VCSEL) manufactured by (4), _., ca, USA. Such a light source can be provided as a single laser or laser*卩 (4) ' Recording system can be used to produce a plurality of filaments by thinning the filament elements. The beam can be transmitted in a multi-pull fiber, because if the coherence is too high for use in a compact holographic display, this can be reduced. The grade of the chick, and does not lead to the production of unwanted artifacts, such as laser shift patterns. The array of laser sources can be either dimensional or two-dimensional. Summary Manufacturing Procedures Next, an outline of the manufacturing process of the device of Figure 2 is described, but A number of variations on this procedure will be seen in the conventional technique. In the fabrication process of the device of Figure 2, a transparent substrate is used. Such a substrate may be a rigid substrate, such as approximately 2 Å thick borax a glass sheet, or it may be a flexible substrate, such as a p〇lymer substrate, such as polycarbonate, aerylie, polypropylene, polyurethane plus ^^^ Polyphenylene Polystyrene, polyvinyl chlride or similar base 95 200839468 board. Show it (four) noodle 胄, _ tender patent application (10) __.8, GB_379 2 described in: (4). The calculation circuit can be set in the age pixel (10).

路接著由透明絕緣膜所覆蓋,傻H 像疋(Si〇2)。磁光膜是設置在透明絕 緣膜上。設置了微線圈陣列,相對應於顯示器的像素。在、 麵05/1細A2中描述了類_程序。_材料可為傳導材料, 像是銅㈣或⑽!)。__可製絲使其具有_阻值及較 大的隨量。如壯所示,相當於磁光膜72深度_柱凹精7卜 會侵烟磁細内。所示,傳導材料會設置在圓柱凹槽71内,以 實撒線圈81。值得注意的是凹糟可由雷射侧(ι·6她㈣ 所貝現。具有齡之—或千萬億分之—秒脈衝綱以及高峰值功 率的極短脈衝替IMUltra-short pulsed laser)可限制熱的景多響 區域’並且使得材料移除過程由熔損(ablati〇n)所控帝卜因此實 現非常好_細精確性。接著製造—個或—組巾間偏化層。在 之後為另一個磁光膜,在其上製造了另一個如上所述的微線圈陣 列。接著為另一個或是一套的偏化層。這完成了兩個鄰接的磁光 空間光調變器裝置的結構。在之後為非必要的光束指向元件及玻 璃蓋層。 - 對於在兩個磁光空間光調變器裝置之間具有足夠厚度的層是 必要的,以便保證在一個磁光空間光調變器中的磁場不會影響另 96 200839468The road is then covered by a transparent insulating film, and the stupid H is like 疋 (Si〇2). The magneto-optical film is disposed on a transparent insulating film. A micro coil array is provided, corresponding to the pixels of the display. The class_program is described in the face 05/1 detail A2. The material can be a conductive material, such as copper (four) or (10)!). __ can be made to have a _ resistance and a large amount. If it is strong, it is equivalent to the depth of the magneto-optical film 72. As shown, the conductive material is disposed within the cylindrical recess 71 to dispense the coil 81. It is worth noting that the concave can be seen by the laser side (1⁄4). It has an age-- or a petascale-second pulse class and a very short pulse with high peak power for the IMPltra-short pulsed laser. Limiting the thermal lousy area' and making the material removal process controlled by the melt loss (ablati〇n) thus achieves very good_fine precision. Then, a - or - group of inter-fermentation layers is produced. This is followed by another magneto-optical film on which another micro-coil array as described above is fabricated. Then another or a set of polarization layers. This completes the structure of two adjacent magneto-optical spatial light modulator devices. After that, it is an unnecessary beam pointing component and a glass cover layer. - It is necessary to have a layer of sufficient thickness between the two magneto-optical spatial light modulator devices in order to ensure that the magnetic field in a magneto-optical spatial light modulator does not affect the other 96 200839468

layer),例如環氧樹脂(ep〇xy)。配置可利用賤錢(事伽⑽完 成’或是利用化學氣相沉積(chemical vap〇ur deposit)完成 (對於無機絕緣層),或是藉由印刷或塗層來完成(對於聚合型 層)。無論如何’磁光空間光調變器裝置必須不能相隔太遠,以減 少光學繞射效麟致有害的像料音。例如,如果像素寬度為1〇 微米,磁光空間光調變器層餅應相隔小於酬微米。一個磁光 空間光調變H的設定是至少執行振幅調變;另—個磁光空間光調 :個磁光空間光調變器的效能。—個或—組足夠厚度的中間偏化 :麵成這個目標。然而,如果這—個或__偏化層是 不°厚# ’則可以增加層的厚度’例如使用光學膠將磁光空間光 調變器裝置與足解度的玻璃結合,或是設置另—個光學透明 a例如域層或聚合物層。上述另—個光學透明層可為無機絕 騎’例如:氧化外i丨icGn diQxide)、氮化袍1丨⑽浙咖 或石反化石夕(S1l_carbide),或是可為聚合型層⑽幫izabie 變器的設定是至少執行相位調變。 裝置的第二磁光空間光調變器部份可製作成單一元件,接著 結合到裝置的第一磁光空間光調變器部份上,利用例如一個用以 確保磁光空間光調變器層之間具有充分分隔的玻璃層,使得每一 個磁光空間光調變器層的磁場不會影響另一個磁光空間光調變器 層的作用。在其中,裝置的第二磁光空間光調變器部份的製備是 97 200839468 利用配置另外的材料在裝置的第一磁光空間光調變器部分上,這 具有幫助第二磁光空間光調變器的像素與第一磁光空間光調變器 的像素之間的精確排列的優點。 ^ 圖九顯示了一個裝置結構的例子,它可由上述程序或類似的 、 耘序進行製造。在使用的時候,表面909照射充分同調偏化可見 _ 的光至圖九中的裝置結構910,使得在點911位置的觀看者(距離 I置一些距離,與裝置的尺度有關)可看到三維圖像。裝置中的 層,從90直到901的尺度彼此並不相關。層9〇是基底層,例如 玻离層層91疋顯示中的電腦層,在一些實施例中是可以省略 的層92疋、%緣層。層93是磁光膜層。層94是微線圈陣列層。 層95是一個或一組偏化層。層%是非必要的層,用以分離兩個 微線圈陣列至需求標準。層97是另一個磁膜層。層⑽是另一 • 健線圈陣列層。層的是另-個或另-組偏化層。層_是光束 曰向元件陣歹J層層901是遮盍材料的平面,例如玻璃。在製造 的過程中,裝置910的製造可由基底層9〇開始,依次配置每一層, 直到加入最後-層謝為止。上述程序的優點,是能夠幫助、轉 的層的排列更為精確。或者,層的製造可以分成兩個或多個部分, 再經由充份程度的排列結合在一起。 根射關對崎置的製造,將抑姻雙卿轉在最小 98 200839468 值是非常重要的’例如不想要的應力引起雙折射(stress-induced birefringence)。應力引起雙折射會導致光的線性或圓形偏化狀 態改變至光的橢圓偏化狀態。在具有光的理想線性或圓形偏化狀 態的裝置中’光的橢圓偏化狀態的存在會減少對比及色彩保真度 (colour fidelity),也因此會降低裝置的效能。 然而,在此所描述的實施例是強調在磁光空間光調變器中的 振U目位的連續編碼,由於制技術的發展,任何二個不相等 的振幅與相餘合的連續職編碼,原壯都可使絲編碼全像 像素’其中兩她合是無_任何實數倍數上鱗,但是不包含 複數(實數除外)。這個理由是像素可能的全像編碼的向量空間, Γ由任何兩個不鱗的振幅與相位組合,在向量空間感知中延 ’其中兩她合是無_任何實數倍數上相等 數(實數除外)。 疋个匕3稷 照比例的 在此所顯示_示,相_尺寸是不需要按照 雜之触,得由㈣本技術人 所未有之作法亦具備專利性 4而其刚 實施例尚不相/故料利之申請。惟上述之 +疋Μ涵盍本案所欲保 《 專利範圍如附。 f之專利乾圍,因此,提出申請 99 200839468 【圖式簡單說明】 圖一為包含單一磁光空間光調變器的全像顯示裝置示意圖; 圖二為包含一對元件的全像顯示裝置示意圖,每一個元件包 含單一磁光空間光調變器; 圖三為習用的磁光空間光調變器像素元素的部分示意圖; 圖四為習用的全像顯示示意圖; 圖五為包含成對元件的全像顯示裝置的一個實施例的三個像 素剖面示意圖,其中每一個元件包含單一磁光空間光調變器; 圖六A為全像顯示示意圖; 圖六B為適合用於實現緊密的全像顯示示意圖; 圖七為習用一個用於製造微線圈陣列的製造步驟示意圖; 圖八為習用一個用於製造微線圈陣列的製造步驟示意圖; 圖九為全像顯示裝置示意圖;Layer), such as epoxy (ep〇xy). The configuration can be done by using the money (completed by gamma (10) or by chemical vapor deposition (for inorganic insulating layers), or by printing or coating (for polymeric layers). In any case, the magneto-optical spatial light modulator device must not be too far apart to reduce the harmful effects of the optical diffraction effect. For example, if the pixel width is 1 μm, the magneto-optical spatial light modulator layer cake Should be separated by less than the micron. A magneto-optical spatial light modulation H is set to perform at least amplitude modulation; another magneto-optical spatial light modulation: the performance of a magneto-optical spatial light modulator. - or - set of sufficient thickness The middle bias: the surface becomes this target. However, if this or __-biased layer is not thick # ', then the thickness of the layer can be increased', for example, using optical glue to magneto-optical spatial light modulator device and foot The solution of the glass is combined, or another optically transparent layer such as a domain layer or a polymer layer is provided. The other optically transparent layer may be an inorganic barrier (eg, oxidized i丨icGn diQxide), nitriding gown 1丨 (10) Zhejiang coffee or stone anti-fossil eve (S1l_carbide) Or, for the aggregation layer (10), the setting of the izabie transformer is to perform at least phase modulation. The second magneto-optical spatial modulator portion of the device can be fabricated as a single component and then bonded to the first magneto-optical spatial modulator portion of the device, for example, to ensure a magneto-optical spatial light modulator There is a sufficiently separate layer of glass between the layers such that the magnetic field of each of the magneto-optical spatial light modulator layers does not affect the function of the other magneto-optical spatial light modulator layer. In this case, the preparation of the second magneto-optical spatial modulator portion of the device is 97 200839468 by arranging additional material on the first magneto-optical spatial light modulator portion of the device, which has the second magneto-optical spatial light The advantage of precise alignment between the pixels of the modulator and the pixels of the first magneto-optical spatial light modulator. ^ Figure 9 shows an example of a device structure which can be manufactured by the above procedure or the like. When in use, the surface 909 illuminates the device 910 in a sufficiently homogenously polarized visible _ to the device structure 910 in Figure 9, such that the viewer at position 911 (distance from I is related to the scale of the device) can be seen in three dimensions. image. The layers in the device, from 90 to 901, are not related to each other. Layer 9 is the substrate layer, such as the computer layer in the display of the layer of the ionosphere 91, which in some embodiments is a layer 92 疋, % edge layer that may be omitted. Layer 93 is a magneto-optical film layer. Layer 94 is a micro coil array layer. Layer 95 is one or a set of biasing layers. Layer % is an optional layer to separate the two micro-coil arrays to the required standard. Layer 97 is another magnetic film layer. Layer (10) is another layer of the coil array. The layers are another one or another set of polarizing layers. Layer _ is the beam 曰 element 歹 J layer 901 is the plane of the concealer material, such as glass. During the manufacturing process, the fabrication of device 910 can be initiated by the substrate layer 9 ,, with each layer being placed in sequence until the last layer is added. The advantage of the above procedure is that it can help and align the arrangement of the layers more accurately. Alternatively, the layer can be fabricated into two or more sections that are joined together by a sufficient degree of alignment. The root-shooting of the manufacturing of the Nagasaki, the conversion of Shuangqing to the minimum 98 200839468 value is very important 'such as unwanted stress-induced birefringence. Stress induced birefringence causes a linear or circularly polarized state of light to change to an elliptically polarized state of light. In devices with ideal linear or circularly biased states of light, the presence of an elliptically polarized state of light reduces contrast and color fidelity, and thus reduces device performance. However, the embodiments described herein emphasize the continuous encoding of the oscillating U-bits in a magneto-optical spatial light modulator, any two unequal amplitudes and coherent continuous job codes due to the development of the technology. The original Zhuang can make the silk coded full-image pixels 'the two of them are not _ any real multiples on the scale, but do not contain the plural (except the real number). This reason is the vector space of the possible holographic coding of the pixel, 组合 by the combination of the amplitude and phase of any two non-scales, and the delay in the vector space perception, where the two of them are not _ any number in the real multiple (except for the real number). The ratio of 匕 稷 稷 稷 在 在 在 , , , , , , , , , , 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相/ The application for the benefit of the company. However, the above-mentioned + 疋Μ 盍 盍 盍 盍 盍 《 《 《 《 《 《 《 《 《 《 Patent application of f, therefore, application 99 200839468 [Simple description of the drawing] Figure 1 is a schematic diagram of a holographic display device including a single magneto-optical spatial light modulator; Figure 2 is a schematic diagram of a holographic display device including a pair of components Each component contains a single magneto-optical spatial light modulator; Figure 3 is a partial schematic view of a pixel element of a conventional magneto-optical spatial light modulator; Figure 4 is a schematic diagram of a conventional holographic display; Figure 5 is a schematic diagram of a pair of components A schematic diagram of three pixel cross-sections of an embodiment of a holographic display device, wherein each element comprises a single magneto-optical spatial light modulator; Figure 6A is a schematic view of the hologram; Figure 6B is suitable for implementing a compact hologram Figure 7 is a schematic view showing a manufacturing process for manufacturing a micro-coil array; Figure 8 is a schematic view showing a manufacturing process for manufacturing a micro-coil array; Figure 9 is a schematic view of a hologram display device;

圖十為全像顯示裝置示意圖,包含兩個磁光空間光調變器, 用以連續編碼振幅及相位; 圖 回· 圃, 十一為包括單一磁光空間光調變器的全像顯示事置示立 圖十二為全像顯示的一個特定實施例示意圖; 光調變 器, 圖十三為全像顯示裝置示意圖,包含兩個磁光空間 用以連續編碼振幅及相位; 100 200839468 圖十四為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十五為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十六為使用MattiCad (RTM)所獲得的繞射模擬結果; 圖十七為兩個磁光空間光調變器之間具有透鏡層的排列示意 圖; 圖十八為當光從一個磁光空間光調變器行進至第二個磁光空 間光調變器時,可能會發生的繞射程序示意圖; 圖十九為全像顯示元件的一個實施例示意圖; 圖二十為光束指向元件示意圖; 圖二十一為光束指向元件示意圖; 圖二十二為全像顯示的示意圖,包含二維光源陣列形式的光 源2201、二維透鏡陣列形式的透鏡22〇2、空間光調變器(slm)2203 與光束分光鏡2204。光束分光鏡會將離開空間光調變器的光線分 成兩束光,分別照射用於左眼的虛擬觀察員視窗(V〇WL)22〇5及用 於右眼的虛擬觀察員視窗(V〇WR)2206 ; 圖二十二為全像顯示的示意圖,包含光源陣列中的二個光源 LS1,LS2、透鏡陣列中的二個透鏡U,L2、空間光調變器SLM與光 束分光鏡2301。光束分光鏡會將離開空間光調變器的光線分成兩 束光,分別照射用於左眼的虛擬觀察員視窗(v〇WL)及用於右眼的 虚擬觀察員視窗(VOWR); 101 200839468 圖二十四為稜鏡光束指向元件的剖面示意圖。 【主要元件符號說明】 照明裝置....... ····!0 • 偏光元件...................11 、色彩過濾器陣列................12 磁光空間光調變器...............13 ® 偏化片............ · .......14 全像圖產生器.................15 點·············· ...... · 16 照明裝置...................20 偏光元件·· ......··········· 21 色彩過濾器陣列................22 磁光空間光調變器· · · · · ...... · · · 23 黑占......................24 全像圖產生器··.....·········· 25 偏光元件........... 26 磁光空間光調變器··············· 27 光偏化層.....·········.....28 聚焦元件.....·············· 1101 聚焦元件·............... · · · 1102 102 200839468 聚焦元件··.................1103 聚焦系統 ^ ········· .........1104 第一階級...................1105 第零階級·................ · 1106 負一階級...................1107 底部玻璃基板·· · · .............51 顯示器中的電腦·········· ......52 具有線圈的層· · · · · ............ 53 磁性光子晶體層.............. · · 54 偏光片· · ..................55 磁性光子晶體層................56 具有線圈的層.................57 偏光片· · · · · ..............58 棱鏡元件.....·······......· 59 玻璃基板·· · .........······· 510 像素.....................511 像素.....................512 像素.....................513 線圈...... ·········· 514 饋入裝置··.....············ 515 線圈· · ....... ............516 103 200839468 電極···········‘··· ......517 電極.....................518 液體........ ······ 519 液體.....................520 圓柱凹糟...................71 磁光膜....................72 微線圈....................81 基底層·· · ...... ....... · · · 90 顯不裔中的電腦層...............91 絕緣層······· ......······· 92 磁光膜層...................93 微線圈陣列層·· · .............94 偏化層···················· 95 分隔層·· · .................96 磁光膜層· · .......· · · · ......97 微線圈陣列層·................98 偏化層..............······ 99 光束指向元件陣列層· · · · ........ · · 900 遮蓋材料的平面· · · · · ...........901 表面··................ · · · 909 裝置.....................915 104 200839468 黑占......................911 透鏡狀陣列或微透鏡陣列............100 色彩過濾器陣列·········· ......101 光偏化元件..........········ 102 磁光空間光調變器........... · · · · 103 照明裝置·......... 104 全像圖產生器..... 105 點...... 106 元件.....................107 元件··...........········ 1〇8 磁光空間光調變器· · .............109 照明裝置··················· 110 色彩過濾器陣列· · · .............111 偏化元件.......... 112 磁光空間光調變器............. · · 113 1¾ ·········· ............114 緊密全像圖產生器· · ........... · 115 偏化元件........... 116 照明裝置· · ...............--130 色彩過濾器陣列................131 偏化元件...................132 105 200839468 磁光空間光調變器··.......... · · · 133 磁光空間光調變器................134 光束分光鏡元件................135 緊密全像圖產生器......... ......136 點......................137 光束.....................171 光束··...................172 • 具棱鏡元件的層................159 電極· · · · ..........······· 1517 電極·.................... 1518 液體·..............······ 1519 液體.......· · · · ..........1520Figure 10 is a schematic diagram of a holographic display device, comprising two magneto-optical spatial light modulators for continuously encoding amplitude and phase; Figure ·, 十一, eleven is a holographic display including a single magneto-optical spatial light modulator A schematic diagram showing a specific embodiment of the full image display; a light modulator, FIG. 13 is a schematic diagram of a holographic display device, comprising two magneto-optical spaces for continuously encoding amplitude and phase; 100 200839468 FIG. The fourth is the diffraction simulation results obtained using MathCad (RTM); Figure 15 is the diffraction simulation results obtained using MathCad (RTM); Figure 16 is the diffraction simulation results obtained using MattiCad (RTM); 17 is a schematic diagram of the arrangement of lens layers between two magneto-optical spatial light modulators; FIG. 18 is when light travels from a magneto-optical spatial light modulator to a second magneto-optical spatial light modulator, FIG. 19 is a schematic diagram of an embodiment of a hologram display element; FIG. 20 is a schematic diagram of a beam directional element; FIG. 21 is a schematic diagram of a beam directional element; A schematic diagram of the light source 2201 comprising a two-dimensional array of light sources in the form of a two-dimensional lens array form 22〇2 lens, spatial light modulator (SLM) and the beam splitter 2203 2204. The beam splitter splits the light exiting the spatial light modulator into two beams, respectively illuminating the virtual observer window (V〇WL) 22〇5 for the left eye and the virtual observer window (V〇WR) for the right eye. 2206; Figure 22 is a schematic diagram of the holographic display, comprising two light sources LS1, LS2 in the array of light sources, two lenses U, L2, a spatial light modulator SLM and a beam splitter 2301 in the lens array. The beam splitter splits the light exiting the spatial light modulator into two beams, respectively illuminating a virtual observer window (v〇WL) for the left eye and a virtual observer window (VOWR) for the right eye; 101 200839468 Fourteen is a schematic cross-sectional view of the beam pointing element. [Explanation of main component symbols] Lighting device............····!0 • Polarized component...................11, color filter array. ...............12 Magneto-optical spatial light modulator..................13 ® Polarized film....... ..... · .......14 hologram generator................15 points············ ·· ...... · 16 Lighting devices..................20 Polarized components··········· ··· 21 Color filter array................22 Magneto-optical spatial light modulator · · · · · ...... · · · 23 Black occupants. .....................24 hologram generator··············· 25 Polarized elements... ........ 26 Magneto-optical space light modulator········································································ .....28 Focusing elements.....····························································· 102 200839468 Focusing elements··.................1103 Focusing system ^ ···························· ..................1105 The zeroth class·................ 1106 The negative class... .............11 07 Bottom glass substrate ·· · · .............51 Computer in the display···························· · · ............ 53 Magnetic Photonic Crystal Layer.............. · 54 Polarizer · · .......... ........55 Magnetic photonic crystal layer................56 Layer with coils................ .57 Polarizer · · · · · ..............58 Prism Components.....·········· 59 Glass Substrate·· · .........······· 510 pixels........................511 pixels........ .............512 pixels.....................513 coils... ······ ···· 514 Feeding device ········································· 516 103 200839468 Electrode···············... 517 Electrode.....................518 Liquid ........ ······ 519 Liquid.....................520 Cylindrical concave......... ..........71 magneto-optical film....................72 micro-coil............. .......81 basal layer ·· · .................. · · 90 computer layer in the showless............. ..91 absolutely层··············································· ··· .............94 Partialization layer········································· .............96 Magneto-optical film layer · ···· · · · ...97 Micro coil array layer ·....... .........98 Partialization layer.......................... 99 Beam pointing element array layer · · · · ....... · · 900 Covering material plane · · · · · ...........901 Surface ··................ · · · 909 Installation. ....................915 104 200839468 Black occupies........................911 lenticular Array or microlens array............100 Color filter array············101 Polarization element....... ...········ 102 Magneto-optical space light modulator........... · · · · 103 Lighting device·......... 104 Full image Graph generator..... 105 points... 106 components.....................107 components··....... ....·········1〇8 Magneto-optical space light modulator·· .............109 Lighting device·········· ········ 110 Color Filter Array · · · .............111 Polarization Element.......... 112 Magneto-optical Space Light Modulator....... ...... · · 113 13⁄4 ···········............ 114 Close-to-full image generator · · ......... .. · 115 Polarization Element ........... 116 Lighting Device · ·..................--130 Color Filter Array..... ...........131 Polarization element...................132 105 200839468 Magneto-optical space light modulator··.... ...... · · · 133 Magneto-optical space modulator...........134 Beam splitter element............ ....135 Tight hologram generator...............136 points...................... 137 Beams........................171 Beams··..................172 • With prisms Layer of the component................159 Electrode · · · · ............................ 1517 Electrode·..... ............... 1518 Liquid ·..............······ 1519 Liquid.......· · · · ..........1520

106106

Claims (1)

Translated fromChinese
200839468 十、申請專利範圍: 1. 一種全像顯示裝置,包含至少一個磁光空間光調變器 (magneto-optical spatial light modulators)。 • 2·如申請專利範圍第1項所述之全像顯示裝置,其係包含一第一 磁光空間光調變器與一第二磁光空間光調變器,用以編碼—全像 ® 圖,並且該全像顯示裝置會產生一全像重建。 3·如申請專利範圍第2項所述之全像顯示裝置,其中該第一磁光 空間光調變器與該第二磁光空間光調變器係以獨立控制的方式碉 變一全像圖像素陣列的振幅與相位。 ❿ 4.如申料娜圍第2項或#3項所述之全像顯稀置,其中更 包含該第-磁光㈣光·賴該第二磁光郎光靖器的一緊 餘合’可用於以-緊密方式依序調變光的振幅及相位,使得士 振幅與她所構複數值,可以逐—像素的方式被編碼於傳 5.如申請專利棚第1項所述之全像顯示裝置,其中更包含一磁 光空間光調變H與-絲_性的緊密型辆的―緊密組^,該 107 200839468 組合係能夠在適當的照明情況下,產生一三維圖像。 6·如申請專利範圍第1項所述之全像顯示裝置,其中更~人 倍率三維圖像顯示裝置,該大倍率三維圖像顯示裝置係勺1大 或二個具有該目標的全像重建的磁光空間光調變哭個 又μ的〜緊密組 7·如申請專利範圍第1項所述之全像顯示裝置,苴由$ 、甲更包含一個 或兩個磁光空間光調變器的一緊密組合,該緊密組八 、 投影器使用 8·如任何上述申請專利範圍所述之全像顯示裴置,其中至少一個 空間光調變器編碼一全像圖,並且該全像顯示裝置會產生一八 重建。 9·如任何上述申請專利範圍所述之全像顯示裝置,其中該全像頻 示裝置係利用法拉第效應(Faraday effect)調變光。 10·如申請專利範圍第9項所述之全像顯示裝置,其係藉由使用一 磁性光子晶體(magneto—ph〇tonic crystal)實現法拉第效應。 108 200839468 11·如申請專利範圍第9項所述之全像顯示裝置,其係藉由使用摻 雜玻璃纖維(doped glass fibres)貫現法拉第效應。 12. 如申請專利範圍第9項所述之全像顯示裝置,其係藉由使用— 磁光膜(magneto-optical film)實現法拉第效應。 13. 如任何上述申請專利範圍所述之全像顯示裝置,其中全像重建 係可經由一虛擬觀察員視窗看見。 Η·Λ申請專·圍第13賴狀全_林置,射複數個虛 擬觀祭S視窗係可姻m或時間多工進_置拼湊。 係Λ任何上通申請專利範圍所述之全像顯示裝置,其中該顯示器 •庠=於—觀察員的左眼接著右眼,在包含全像的媒介上進行依 • 4編碼一全像圖的操作。 # 述申峋專利範圍所述之全像顯示裝置,並中干哭 係可對於複數個献Μ ^ 衣置…、中該顯不為 媒介1、中母一位的左眼接著右眼,在包含全像的 仃依序重新編碼一全像圖的操作。 7·如住何上述中請專利範騎述之全軸示裝置,其中該顯示器 109 200839468 係具一光束指向元件或一光束分光鏡元件。 18. 如任何上述申請專利範圍所述之全像顯示裝置,其中該顯示器 係具一顯示器中的電腦層。 19. 如任何上述申請專利範圍所述之全像顯示裝置,其中該顯示器 係具眼睛追蹤功能。 20. 如任何上述申請專利範圍所述之全像顯示裝置,其中該顯示器 係利用一背光及微透鏡陣列進行照射。 21. 如任何上述申請專利範圍所述之全像顯示裝置,其係為一電 視0 22. 如任何上述申請專利範圍所述之全像顯示裝置,其係為一螢 幕。 23. 如任何上述申請專利範圍所述之全像顯示裝置,其係為可攜 式。 24. —種製造全像顯示裝置的方法,包含: 110 200839468 提供一玻璃基板; 在該玻璃基板上以連續印刷或是其它方式產生一磁光空間光調變 器的層。 25. —種產生全像重建的方法,包含使用如任何上述申請專利範圍 第1項至第23項所述之全像顯示裝置之步驟。200839468 X. Patent application scope: 1. A holographic display device comprising at least one magneto-optical spatial light modulators. 2. The holographic display device of claim 1, comprising a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulator for encoding - full image® Figure, and the hologram display device produces a holographic reconstruction. 3. The holographic display device of claim 2, wherein the first magneto-optical spatial light modulator and the second magneto-optical spatial light modulator are transformed into a holographic image in an independently controlled manner. The amplitude and phase of the pixel array. ❿ 4. If the hologram described in Item 2 or #3 of Shen Nawei is scarce, it also includes the first magneto-optical (four) light and the second magneto-language It can be used to modulate the amplitude and phase of the light in a closely-tight manner, so that the amplitude of the singularity and the complex value of her can be encoded on a pixel-by-pixel basis. 5. The holographic image as described in the first application of the patent shed. The display device further comprises a magneto-optical spatially modulated H-and-silk-tight compact type, which can generate a three-dimensional image under appropriate illumination conditions. 6. The holographic display device according to claim 1, wherein the multi-magnification three-dimensional image display device is one or two hologram reconstructions having the target The magneto-optical space light modulation is crying and μ ~ close group 7 · The holographic display device as described in claim 1 of the patent scope, 苴 by $, A contains one or two magneto-optical spatial light modulators A compact combination of the projector, the holographic display device of any of the above-mentioned patent applications, wherein at least one spatial light modulator encodes a hologram, and the hologram display device Will produce a reconstruction of eight. 9. The holographic display device of any of the preceding claims, wherein the holographic display device modulates light using a Faraday effect. 10. The hologram display device of claim 9, wherein the Faraday effect is achieved by using a magneto-ph〇tonic crystal. 108. The holographic display device of claim 9, wherein the Faraday effect is achieved by using doped glass fibers. 12. The hologram display device of claim 9, wherein the Faraday effect is achieved by using a magneto-optical film. 13. The holographic display device of any of the preceding claims, wherein the holographic reconstruction is viewable via a virtual observer window. Η·ΛApplications for the special 13th 赖 全 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The holographic display device of any of the above-mentioned patent applications, wherein the display 庠=于-the observer's left eye followed by the right eye performs an MPEG-based hologram operation on the medium containing the hologram . # 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋 峋The hologram containing holograms re-encodes a hologram-like operation. 7. In the above, please refer to the full-axis display device of the patent model, wherein the display 109 200839468 is equipped with a beam pointing element or a beam splitter element. 18. The holographic display device of any of the preceding claims, wherein the display is a computer layer in a display. 19. The holographic display device of any of the preceding claims, wherein the display has an eye tracking function. 20. The holographic display device of any of the preceding claims, wherein the display is illuminated with a backlight and a microlens array. 21. A holographic display device as claimed in any of the preceding claims, which is a television 0. 22. A holographic display device as described in any of the above patent claims, which is a screen. 23. A hologram display device as described in any of the above claims, which is portable. 24. A method of making a holographic display device comprising: 110 200839468 providing a glass substrate; a layer of magneto-optical spatial light modulator is produced by continuous printing or otherwise on the glass substrate. 25. A method of producing a holographic reconstruction comprising the steps of using a holographic display device as described in any of the above-identified patent claims 1 through 23.111111
TW96140511A2006-10-262007-10-26Holographic display device, manufacturing method thereof and method of generating holographic reconstructionTWI422999B (en)

Applications Claiming Priority (21)

Application NumberPriority DateFiling DateTitle
GBGB0621360.7AGB0621360D0 (en)2006-10-262006-10-26Compact three dimensional image display device
GBGB0625838.8AGB0625838D0 (en)2006-10-262006-12-22Compact three dimensional image display device
GB0705399AGB0705399D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705407AGB0705407D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705409AGB0705409D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GBGB0705404.2AGB0705404D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705408AGB0705408D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GBGB0705411.7AGB0705411D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GBGB0705405.9AGB0705405D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705398AGB0705398D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705406AGB0705406D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705401AGB0705401D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705412AGB0705412D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705410AGB0705410D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GBGB0705402.6AGB0705402D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0705403AGB0705403D0 (en)2006-10-262007-03-21Compact three dimensional image display device
GB0709376AGB0709376D0 (en)2007-05-162007-05-16Smart display
GB0709379AGB0709379D0 (en)2007-05-162007-05-16Smart display extended
DE102007024236ADE102007024236A1 (en)2007-05-212007-05-21 Holographic reconstruction system with an array of controllable microprisms
DE102007024237ADE102007024237B4 (en)2007-05-212007-05-21 Holographic reconstruction system with optical waveguide tracking
GB0714272AGB0714272D0 (en)2006-10-262007-07-23Image display spatial light modulator

Publications (2)

Publication NumberPublication Date
TW200839468Atrue TW200839468A (en)2008-10-01
TWI422999B TWI422999B (en)2014-01-11

Family

ID=44817469

Family Applications (2)

Application NumberTitlePriority DateFiling Date
TW96140511ATWI422999B (en)2006-10-262007-10-26Holographic display device, manufacturing method thereof and method of generating holographic reconstruction
TW96140512ATWI403868B (en)2006-10-262007-10-26Holographic display device and method

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
TW96140512ATWI403868B (en)2006-10-262007-10-26Holographic display device and method

Country Status (1)

CountryLink
TW (2)TWI422999B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TWI407148B (en)*2009-12-292013-09-01Au Optronics CorpStereoscopic display device and stereoscopic image displaying method
TWI459037B (en)*2012-09-112014-11-01Delta Electronics IncSystem and method for time-multiplexed autostereoscopic display

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP5338228B2 (en)*2008-09-292013-11-13カシオ計算機株式会社 Image generating apparatus and program
KR101977250B1 (en)2012-11-302019-08-28엘지디스플레이 주식회사Stereoscopic Image Display Device and Manufacturing Method the same
TWI719588B (en)*2019-08-162021-02-21國立中山大學Method of two-dimensional fringe-encoded pattern projection for instantaneous profile measurements
CN110533780B (en)2019-08-282023-02-24深圳市商汤科技有限公司Image processing method and device, equipment and storage medium thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB2350963A (en)*1999-06-092000-12-13Secr DefenceHolographic Displays
GB2350962A (en)*1999-06-092000-12-13Secr Defence BritHolographic displays
RU2363025C2 (en)*2002-11-132009-07-27Сириал Текнолоджиз ГмбхVideo hologram and device for restoration of video holograms
JP2006047690A (en)*2004-08-042006-02-16Ts Photon:KkProjection type ip system three-dimensional display system
DE102004063838A1 (en)*2004-12-232006-07-06Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
TWI407148B (en)*2009-12-292013-09-01Au Optronics CorpStereoscopic display device and stereoscopic image displaying method
TWI459037B (en)*2012-09-112014-11-01Delta Electronics IncSystem and method for time-multiplexed autostereoscopic display

Also Published As

Publication numberPublication date
TWI403868B (en)2013-08-01
TW200827953A (en)2008-07-01
TWI422999B (en)2014-01-11

Similar Documents

PublicationPublication DateTitle
US11953683B2 (en)Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
GengThree-dimensional display technologies
Benzie et al.A survey of 3DTV displays: techniques and technologies
TWI376527B (en)Head-mounted display device
JP5191491B2 (en) Small holographic display device
JP5222300B2 (en) Small holographic display device
US20110149018A1 (en)Holographic display device comprising magneto-optical spatial light modulator
TWI406115B (en)Holographic display device and method for generating holographic reconstruction of three dimensional scene
JP2010507826A (en) Holographic display device including magneto-optical spatial light modulator
JP2010507954A (en) Mobile phone system with holographic display
US9140912B2 (en)Holography 3D display
JP2010507822A (en) Content generation system
JP2010507824A (en) Holographic display device
JP2010507823A (en) Small holographic display device
US10816932B2 (en)Apparatus for displaying a hologram
TW200839468A (en)Holographic display device
KR20190127333A (en)Hologram display device
Surman et al.Solving the 3D Problem—The History and Development of Viable Domestic
CN114167621A (en) A naked eye 3D display device

[8]ページ先頭

©2009-2025 Movatter.jp