200824175 九、發明說明: 【發明所屬之技術領域】 尤指一種鹼性直接乙醇燃料 本發明係有關一種電池之製法 電池之製法。 【先前技術】 有鑒於地球石油及天然氣之蘊藏量,預估在未來3〇~4〇年户 右用罄,以及日益嚴重的溫室效應所引起的問題,歐美各國莫不 戮力開發「新能源」或「綠色或替代能源」。氫能即因為其係為一 種非常乾淨而又來源充足之能源,而受到相當的重視。日本政府 於1993年正式成立一國際性研究計晝we-νετ,結合美、加、 歐洲各國,共同推動氳能之相關研究。其中最直接之應用,即為 「燃料電池」。燃料電池是一種直接將化學能轉變成電^的電彳匕學 裝置,其係一種高效率、乾淨且安靜的電力來源,隨著技術不斷 地進步,結構體可大可小,可以廣泛應用在發電廠、汽/機車、家 庭、手機、筆記型電腦等用途。 目前電池系統還是以「鉛酸電池」為主,而其他較先進的二 次電池,例如:鎳氮、鋰離子等,這些二次電池的成本都太高。 • 另外一個缺點是這些二次電池的充電時間太長約需8〜12小時,且 可使用的二次電池能量密度太低,這些原因使得二次 大 量生產及商業化。 ^ 1838年,Grove以電解水產生氫氣及氧氣的逆向概念,製 作,第一個燃料電池組。不像燃燒程序先將熱能轉為動能再轉為 電能,該燃料電池是透過電化學直接將化學能轉為電能,所以能 源效^高(約30〜35%)。如果產生的馳再回收使用,效率更可高 達70%以上。同時,以電池用於汽車引擎亦可達到低排放或零排 放之要求。 燃料電池依電解質的應用種類不同,可分為:(1)鹼液型 200824175 (AFC) ; (2)填酸型(PAFC) ; (3)溶融碳酸鹽型(MCFC) ; (4)固態氧 化物型(SOFC);及(5)質子交換膜燃料電池(PEMFC)等五種。高電 能密度及高能量轉換率是發展輕量化、低成本及高比能量^度 (Wh/kg或Wh/L)燃料電池系統的先決條件。目前,具備大二^ W/cm2之高功率密度的燃料電池為質子交換膜及鹼性燃料電池系 統。由於固態高分子電解質具有高離子導電度、低電子導電度^ 化學安定佳等特性,可解決液態電解質易漏液及内部短二二問 題,而在PEMFC中使用Nafion固態高分子電解質膜,擔負著電 解質及隔離層的雙層功能。 % 雖然高活性氫氣(H2)是燃料電池的最佳燃料,但是氫氣需由天 然氣、石油、酒精等燃料重組(reforming)反應而得,燃料電池因 而需再加入重組器(reformer),使整個系統趨於複雜。由於直接乙 醇燃料電池(Direct ethanol fuel cell,DEFC),不需要轉化裝置,負 載響應特性佳,燃料安全性高,可應用於移動式電源設備,例如 電動汽車、電動機車及攜帶式電力,諸如:行動電話、筆記型電 腦,所以目前直接乙醇燃料電池也最具有發展潛力成為攜帶式電 力之熱門能源之一。 由於乙醇可由生質(biomass)經發酵(fermentation)取得,不會 破壞大自然的C〇2平衡問題。另外,比較甲醇及乙醇之能量密^ 分別是6_1 kWh/kg對8.0 kWh/kg,乙醇當做燃料時具有下列 優點:(1)毒性低(non-t〇xicity) ; (2)大自然到處可得(natura| 3ν3Π3_Υ);⑶可再生的(renewability) ; (4)高功率密度(a high power density);以及(5)零污染(zero emjss丨〇n,green 卽沉⑽ 專。在固態咼分子直接乙醇燃料電池使用Nafion-115 (膜厚5 mj|) 或Nafion 117(膜厚7 mil)高分子電解質膜,工作溫度可由7〇。〇提 升至90。(:左右,乙醇燃料電池性能可顯著的提高。但許多研究指 出’乙醇的電催化氧化活性及電池的性能均隨著電池溫度上升而 200824175 顯著提高。另外,乙醇的電催化觸媒相當重要,觸媒主要功能是 將乙醇的C-C鍵直接打斷,而形成c〇2產物。結果顯示乙醇氧化 後有許多的中間物生成例如:ch3cho、CH3COOH、coads(—氧 化石厌吸附在觸媒表面)、CO-CHs等。目前所知,翻(Platinum, Pt) 疋極佳4寸性及電化性質吸附有機小分子物質,但易被c〇吸附而 失去活性,這使得乙醇燃料電池性能極速下降。最近的研究乙醇 燃料電池性能主要是找到功能性強的鉑合金觸媒,尤其是二成份 (bimetallic)和三成份(tertiary)合金觸媒,而其中二成份的有 Pt/Ru、Pt/Sn、Pt/W 等,三成份的有 p^/Ru/sn、pt/Ru/yy、pvpd/Bi 或 Pt/Pd/Pb 等。 乙醇燃料電池在同樣的工作電壓下,1〇〇°C下電池電流密度比 60°C時高出很多。由於Nafion為全氟化的酸性高分子電解質 (perfluorinated sulfonic acid polymer)膜,具有極佳的化學性、熱 穩定性與高離子傳導性,且質輕、機械強度高,易於加工等優點, 而成為多數酸性燃料電池系統的主要高分子電解質膜。但是,當 Nafion南分子膜應用於DEFC上,也具有顯著的乙醇滲透(ethan〇| crossover)問題,造成DEFC的電性性能減弱下降問題。 乙醇滲透的基本原因,是乙醇在Nafion高分子膜中具有很高 的擴散係數,而影響乙醇滲透率之因素很多,例如:乙醇濃度、 壓力、溫度、膜厚和當量重。研究發現量測乙醇在Nafj〇n 117高 分子膜之滲透率,且滲透率隨溫度上昇而增加,乙醇滲透率也因 而提高。探討不同厚度的Nafion高分子膜在DEFC陰極所殘留之 乙醇及水,實驗結果顯示Nafion高分子膜愈厚乙醇滲透較缓和。 另外,實驗發現增加乙醇進料濃度,該乙醇燃料的電池開路電位 (open circuit potent丨al,〇CP)也會下降,此可能是因為乙醇滲透高 分子膜現象所造成。 200824175 ‘200824175 IX. Description of the invention: [Technical field to which the invention pertains] In particular, an alkaline direct ethanol fuel The present invention relates to a method for producing a battery. [Prior Art] In view of the reserves of the earth's oil and natural gas, it is estimated that in the next three to four years, the right-handed use of households and the problems caused by the increasingly serious greenhouse effect, Europe and the United States will not develop "new energy". Or "green or alternative energy." Hydrogen is highly valued because it is a very clean and well sourced source of energy. In 1993, the Japanese government officially established an international research program, we-νετ, which combined with the United States, Canada, and European countries to jointly promote the related research. The most direct application is the "fuel cell". A fuel cell is a kind of electric sputum device that directly converts chemical energy into electricity. It is a high-efficiency, clean and quiet source of electricity. With the continuous advancement of technology, the structure can be large or small, and can be widely used in Power plants, steam/locomotives, homes, mobile phones, notebook computers, etc. At present, the battery system is still dominated by "lead-acid batteries", while other more advanced secondary batteries, such as nickel-nitrogen, lithium ions, etc., are costly. • Another disadvantage is that the charging time of these secondary batteries is too long, about 8 to 12 hours, and the secondary battery energy density that can be used is too low, which makes the second mass production and commercialization. ^ In 1838, Grove produced the first fuel cell stack with the reverse concept of generating hydrogen and oxygen from electrolyzed water. Unlike the combustion process, which converts thermal energy into kinetic energy and then converts it into electrical energy, the fuel cell directly converts chemical energy into electrical energy through electrochemistry, so the energy efficiency is high (about 30 to 35%). If the resulting recycling is recycled, the efficiency can be as high as 70% or more. At the same time, the use of batteries for automotive engines can also achieve low emissions or zero emissions. Fuel cells can be divided into: (1) lye type 200824175 (AFC); (2) acid filling type (PAFC); (3) molten carbonate type (MCFC); (4) solid state oxidation depending on the type of electrolyte application. Five types of material type (SOFC); and (5) proton exchange membrane fuel cell (PEMFC). High energy density and high energy conversion are prerequisites for the development of lightweight, low cost and high specific energy (Wh/kg or Wh/L) fuel cell systems. At present, fuel cells having a high power density of a large two ^ W/cm 2 are proton exchange membranes and alkaline fuel cell systems. Since the solid polymer electrolyte has high ionic conductivity, low electron conductivity, good chemical stability, and the like, it can solve the problem of liquid electrolyte leakage and internal shortness, and the Nafion solid polymer electrolyte membrane is used in PEMFC. Double layer function of electrolyte and separator. % Although high activity hydrogen (H2) is the best fuel for fuel cells, hydrogen needs to be reformed by natural gas, petroleum, alcohol and other fuels. The fuel cell needs to be added to the reformer to make the whole system. It tends to be complicated. Due to the direct ethanol fuel cell (DEFC), no conversion device is required, the load response characteristics are good, and the fuel safety is high. It can be applied to mobile power equipment such as electric vehicles, electric motors and portable electric power, such as: Mobile phones, notebook computers, so the current direct ethanol fuel cell also has the most potential to become one of the hot energy sources of portable power. Since ethanol can be obtained by fermentation of biomass, it does not destroy the C〇2 balance problem of nature. In addition, comparing the energy density of methanol and ethanol is 6_1 kWh/kg to 8.0 kWh/kg, respectively. When ethanol is used as fuel, it has the following advantages: (1) low toxicity (non-t〇xicity); (2) nature can be everywhere (natura| 3ν3Π3_Υ); (3) renewable (renewability); (4) high power density; and (5) zero pollution (zero emjss丨〇n, green sinking (10) special. Molecular direct ethanol fuel cell uses Nafion-115 (film thickness 5 mj|) or Nafion 117 (film thickness 7 mil) polymer electrolyte membrane, the working temperature can be increased from 7 〇 to 90. (: around, ethanol fuel cell performance can be Significant improvement. However, many studies have pointed out that 'the electrocatalytic activity of ethanol and the performance of the battery are significantly improved with the increase of battery temperature. 200824175. In addition, the electrocatalytic catalyst of ethanol is very important. The main function of the catalyst is to convert the CC of ethanol. The bond is directly interrupted to form the c〇2 product. The results show that there are many intermediates formed after the oxidation of ethanol, such as: ch3cho, CH3COOH, coads (the oxidized stone is adsorbed on the catalyst surface), CO-CHs, etc. , (Platinum, Pt) 疋 Excellent 4 The indirect and electrochemical properties adsorb organic small molecules, but they are easily deactivated by c〇, which makes the performance of ethanol fuel cells drop rapidly. Recently, the performance of ethanol fuel cells is mainly to find functional platinum catalysts, especially It is a bimetallic and a tertiary alloy catalyst, and the two components are Pt/Ru, Pt/Sn, Pt/W, etc., and the three components are p^/Ru/sn, pt/Ru/ Yy, pvpd/Bi or Pt/Pd/Pb, etc. Ethanol fuel cell under the same working voltage, the battery current density is much higher than that at 60 ° C at 1 ° C. Because Nafion is perfluorinated high acidity The perfluorinated sulfonic acid polymer membrane has excellent chemical properties, thermal stability and high ion conductivity, and is light in weight, high in mechanical strength, easy to process, etc., and becomes the main polymer of most acidic fuel cell systems. Electrolyte membrane. However, when Nafion South molecular membrane is applied to DEFC, it also has significant ethanol penetration (ethan〇|crossover) problem, which causes the degradation of DEFC's electrical properties. The basic reason for ethanol penetration is ethanol. There is a high diffusion coefficient in the Nafion polymer membrane, and there are many factors affecting the ethanol permeability, such as ethanol concentration, pressure, temperature, film thickness and equivalent weight. The study found that the measurement of ethanol in Nafj〇n 117 polymer film The permeability, and the permeability increases with increasing temperature, and the ethanol permeability is thus increased. The ethanol and water remaining in the DEFC cathode of different thickness Nafion polymer membranes were investigated. The experimental results show that the thicker the Nafion polymer membrane is, the ethanol penetration is milder. In addition, it was found that increasing the ethanol feed concentration, the open circuit potent 丨 (〇CP) of the ethanol fuel also decreased, which may be caused by the phenomenon of ethanol permeation of the high molecular membrane. 200824175 ‘
$夕卜,,有些研究者提出複合式電解質膜可以做為〇,〇或 DEFC的乙醇不渗透膜,它是設計使用特殊的三明治結構,其係採 用Nafion與PVA之複合_,例如:探討非全氣石黃酸根系列離子 交麵之質子導電度與乙醇選擇率。結果指出pB| (polybenzimidazole)高分子膜,雖然質子導電度比Nafj〇n高分子膜 低仁PBI具有較低的乙醇渗透率,相較於Nafi〇 多,選擇率也較Nation高分子膜為高。 、下和F 在燃料電池中的負電極,使用的觸媒材料主要是以銘為主 體’因為其具有極佳的電化學性質,這也是燃料電池成本偏高的 主要原因之-。目前,研究者可將鉑含量降低〇〇2〜〇 13叫加2, 以降低觸媒成本,並同時可以兼顧電池性能表現。乙醇在觸媒層 銘表面的電吸附,隨著質子和電子的產生和遷移而連續進行,形 成觸媒毒化的-氧化碳中間物(Pt_c〇)且不易脫附,而使得辦料 池效能下降。 ^因為吸附在鉑的一氧化碳(CO)要氧化成二氧化碳(C〇2),需由 氧化吸_水分子提供第二俯性氧原子。某些第二金屬(例如: 釕(,u))形成的合金,對於乙醇的氧化活性增強不大可以增強 鲁 的氧化活性,因此’觸媒相關研究朝向雙金屬觸媒或多金屬觸媒, 例如:Pt/Ru、Pt/Sn、P_、隨等。根據許多研究文獻報導指 ^ ’陽極觸媒材料中是以銘/釘(1:1 M(R/Ru(1:1 )/c)電極的觸媒效 能較佳。對乙醇的氧化能力隨著釕的含量的增加而增加,但有些 研九學者(Lamy等人Electrochimica Acta,49 (2004) P.3901-3908),發現鍚(Sn)含量10〜20 at %時達到最佳值。另外, 以,渡元素Fe、Co、Ni、W與Pt形成的雙金屬觸媒,對乙醇之氧 化能力做研究,實驗數據顯示,只有Pt/Sn/C具有較佳的性能表現。 在3C市場上以小型化、輕型化為風潮,大部分市售的鋰離子 電池(手機通訊只能1〇〇分鐘),或鹼性鋅錳圓筒型AA、AAA規格 200824175 ‘ 的電池,則因尺寸大小關係受到限制,厚度約為9〜12mm,應用 在3C電子產品上受限於厚度。目前市面上現代3〇電子產品,例 如··打,電話、手提式電腦、攝影機、多功能手機等,都要求短 小、輕薄、體積小的電池。鹼性鋅錳電池或鋰電池在應用上受到 很大侷限。鹼性鋅錳電池或鋰電池,不能滿足在3C電子產品的高 功率、高能量密度且薄型化的特殊要求。 【發明内容】 本發明是開發一種複合式鹼性交聯(cr〇sslinked)聚乙烯醇 (徵)_高分子電解質膜,其厚度只有5G〜_ pm,可以適合 於目前的DEFC電池技術,應用在薄型化3C電子產品之電池。 因此DETC電池具有高能量密度(8〇〇〇Wh/kg)且乙醇成本低、易 儲存使用等優點,是-個非常有競爭力的燃料電池,該乙醇燃料 電池可應用在現代3C電子產品上,依產品要求做〖寸上彈性設 计。在電子產品上使用上也沒有漏液問題,因為係使賴態高分 子電解質膜。 目前,PEO-PVA_KOH驗性固態高分子電解質膜(Yang等人 Jouma丨of Power So瞻s 112 (2〇〇2) p傭棚)應用在能源電 • 池上的研究已經有很多實例,例如:Ni/Cd、Ni/Zn、Ni/MH、Zn/air 等。這些都歧用驗性固態高分子電解質膜的應用實例,而本發 鄕制複合式祕贿交聯高分子電解賊_子導電度大約 在10 3〜10 2 S/cm。在文獻上研究報告指出,Lewsnd〇wskj等人 製備=Ε〇_=〇Η_Η2〇驗性固態高分子電解質,其離子導電度大約 在10-S/cm之間,說明使用固態高分子電解質比使用氫氧 化鉀(KOH)水溶液的電解質的還要好。Iwaskura等人研究發現 PAA-KOH _、高分子電解質膜,聽子導電度__s/cm, 此鮮導電舰接近32 wt_% KOH讀_ _ S/Gm,主要是 PAA高分子賴質具雜高躲轉性。本發·職合式驗性 200824175 固態交聯PVA/TI〇2高分子電解質膜應用在DEFC上。 一般而言,酸性(acidic)系統的DEFC主要是使用Nafion高分 子電解質膜,在25°C時離子導電度可達α〇ΐ8 S/cm,此膜雖有非 的物理及化學性質,但目前Nafi〇n高分子電解質膜的價格非 常南(US$800〜1〇〇〇/m2),此外,在酸性系統的DEFC使用Nafi〇n =分子膜時,有另一個嚴重問題,亦即在操作時有乙醇會從陽極 牙透(crossover)至陰極,乙醇分子與H+離子之傳輸機構有些相似 之處’此致使DEFC性能急速衰退,主要原因為Naflon高分子膜 _ 阻擋乙醇分子穿透力不佳。 、 為了改善穿透問題,使用固態聚乙烯醇(PVA)為主幹高分子電 解質膜可以應用在DMFC上。Shao和Hsing等人(JES Letter,5 (2002) ^A185-A187))製備Nafion/PVA(1:1)高分子膜主要是應用 在酸性系統DMFC上。另外,u和Wang等人(Materials Letters, 57 (2003) p_ 1406-1410製備PVA/PWA高分子膜也是應用在酸性 的DMFC系、統上,在25。〇下,離子導電度可達6 27x1〇.3 3細, 甲醇穿透係數(methanol permeability)在 1〇-7 cm2/s 左右。Xu 等 人(Solid State l〇n丨cs,171 (2004) 121_127)製備 ρνΑ/ρ· (phosphotung幼c acid))/s丨&複合式固態高分子膜也應用在酸性 DMFC系統上,其離子導電度可達〇 〇12〜〇 〇〇4 之間,但甲 醇穿透係數(P)約在1〇·7〜1〇_8cm2/s左右,這些研究發現pvA高 分子對醇類(alcohols)分子的穿透有非常佳的阻擋效果。 ° 本發賴出製備完成的複合式_高分子電解質 娜DErc t,-般刪 學此(8,000 Wh/kg)為液態氳氣的4倍,是鐘離子(2〇〇術⑽的 40^,並且可直接以乙醇為鋪,而提高飾時之安全性。因此, 固接乙馳料電池是十分具有市場競爭力之新電源。該驗性 固悲直接乙_料電池之基本顧’是將乙醇與水之混合物送至 200824175 4 陽極,乙醇發生氧化反應生成水(H2〇)和二氧化碳(C02),並釋放 出電子,其反應式如下式(1)所示: C2H5OH + 120H'_> 2C〇2+9H2〇 +12e , Ean〇de= -0.810V (1) 陽極消耗之OH·是由陰極遷移穿過中間的複合式固態高分子電解 質膜,並與陰極之氧氣反應生成〇Η·,其反應式如下式(2)所示: _ 302 + 6H20 + i 2e- — 120Η,Ecath()de = 0.402V (2) (或 02 +2H20 +4e_ 40H ) 而電子由陽極經環外電路轉移至陰極形成迴路,其DEFC的總反 應式為: “ C2H5OH + 30卜 2C02 + 3H20, Eovera" = 1 ·21 v (3) 縣魅接乙ϋ轉電池可賤崎擇祕或酸性液體電解 馨質”的工作溫度約在6Qt:,電池性能很差且電極間存在有 乙醇渗透現象。目前,採用NaflQn_117高分子膜作為直接乙醇舞 料電狀電解質,S NafiQn高分子難有高__度、有較佳 的化學及熱安定性、質輕且#加卫及較高雜子導群等優點, ^Nafbn^分子職祕雜直接乙醇祕電鱗,會有相當顯 =的「乙醇滲透問題」’此乃造成酸性直接乙_料電池性^ 的主要原因。 4 士從以上的說明可知鹼性固態直接乙醇燃料電池(Defc)是具 開,潛力之電源產品,目此,本發明提出驗性直接乙醇燃料電 "㈣法’其巾該複合式鹼性_高分子轉質膜也是重要開發 11 200824175 主題,針對乙醇滲透及離子導電度之問題進行研究。 卜 化鈦(丁丨〇2)之奈米材料,可當做乙醇滲透阻礙的介子,做 驗性固態高分子電㈣賴合成改質,並探討在添加奈料^式 微粒下,在不簡健件,對於複合式驗性關高^解新 離子導電㈣影響,錢細姆子導紐(_複 高分子電解質膜。 双性at 【實施方式】 茲將本發明之鹼性直接乙醇燃料電池製法敘述如下·· 春 本發明製備電極是由電極原料特性分析做為開始,以瞭解各 ,池材料成份的雜及組成,麟從半雜的製備,最後到組成 單一「鹼性直接乙醇燃料電池」,對於製備完成的半電極做性 分^使半電極製備條件最佳化(動力學方面),電極則重點在^ 谷虿、電阻值等電性分析。本發明自行製備的乙醇陽極(鉑釕黑) 與自行製備成的空氣陰極(Mn〇2/BP2000碳黑+CNTs(奈米碳… 管)),搭配自行製備成的複合式鹼性固態高分子電解質火 (crosslinked PVA/Ti02 composite po_er membrane),組裝成稜 柱型(prismatic)鹼性直接乙醇燃料電池,並依組成之不同的乙醇進 馨 料浪度、溫度、基材、高分子電解質膜厚度,對此驗性直接乙醇 燃料電池(DEFC)進行全電池電性分析。其中,該鹼性直接乙醇燃 料電池中之陽極燃料可為乙醇、異丙醇或丁醇,其燃料濃度變化 為0.1〜10 Μ之間,亦即0_1〜30 wt_%之間,且該陽極燃料進料(feed) 方式可以是液體或氣體。此外,該鹼性直接乙醇燃料電池中之電 解質可為 KOH、NaOH、UOH、NaOH+LiOH、KOH+LiOH 等, 其濃度變化為〇·1~15 Μ之間(0.3〜45 wt·%),且該電解質進料 (feed)方式可以是液體或氣體。 A、乙酵&極的製備· 本發明主要陽電極成分組成以1〜50wt_%的鉑釕黑(PtRu 12 200824175 cJ" 末為主’控制極板厚度在α2〜〇_7 mm,面積為1〜100 率用:米級邮时1觸媒粉材,並變化使^ xo^r ^ )^tbt*(mA/g catalyst)〇 t反hY Μυν碳黑或奈米碳管(諸如·SWCT(Single姻carbon CT{M^ ^ ;士 °包'生的影響很大。陽電極製備時,控制溫度、速率、厚度、 巧’媒使用量(在1〜2〇 mg,cm2)、乾燥_在彻〜12〇。。,2 =夺,條件。檢測時陽電極以j _s速率掃描,比較各種陽 “亟那二個觸媒用量下的翻釕黑性質為較佳,影響陽電極電性 之因素’求出最佳觸媒仙量大小,使其在定電壓 的氧化電流密度為最大。 聆 其中,該乙醇陽極之基材可選自碳布、碳紙、碳纖維布、石 墨、銅網、鎳網、鈦網、鉑鈦網、金網、不銹鋼網等金屬導體材 料’或者以銅荡、鎳箔、鈥簿、銘箱、金羯金屬導體材料為之, 該基材厚度為0.01〜30 mm,其中以〇_〇卜川⑴⑴為較佳。 “此外,該乙醇陽極的觸媒鉑釕黑之比例除前述之1:1之外, ⑩ 尚可為:PtRu(1:9)/C、PtRu(2:8)/C、PtRu(3:7)/C、PtRu㈣ PtRu(5:5)/C、PtRu(6:4)/C、PtRu(7:3)/C、PtRu(8:2)/C 或In other words, some researchers have suggested that the composite electrolyte membrane can be used as an ethanol-impermeable membrane of bismuth, bismuth or DEFC. It is designed to use a special sandwich structure, which is a combination of Nafion and PVA. For example: Proton conductivity and ethanol selectivity of the total gas rhein series ion interface. The results indicate that the pB| (polybenzimidazole) polymer film has a lower ethanol permeability than the Nafj〇n polymer film PBI. Compared with Nafi〇, the selectivity is higher than that of the Nation polymer film. . , and the negative electrode of F in the fuel cell, the catalyst material used is mainly based on the 'because of its excellent electrochemical properties, which is the main reason for the high cost of the fuel cell. At present, researchers can reduce the platinum content by 〇〇2~〇13 and add 2 to reduce the cost of the catalyst, and at the same time can balance the battery performance. The electrosorption of ethanol on the surface of the catalyst layer is continuously carried out along with the generation and migration of protons and electrons, forming a catalytically poisoned carbon monoxide intermediate (Pt_c〇) and not easily desorbed, which makes the efficiency of the storage tank decrease. . ^ Since carbon monoxide (CO) adsorbed on platinum is oxidized to carbon dioxide (C〇2), a second ductile oxygen atom is required to be provided by the oxidizing water molecule. Some alloys of the second metal (for example: 钌(,u)) have little effect on the oxidation activity of ethanol, which can enhance the oxidation activity of Lu. Therefore, the catalyst-related research is toward bimetallic or polymetallic catalysts. For example: Pt/Ru, Pt/Sn, P_, and so on. According to many research literatures, it is suggested that the anode catalyst material is better at the catalyst of the 1:1 M (R/Ru(1:1)/c) electrode. The content of strontium increases, but some researchers (Lamy et al. Electrochimica Acta, 49 (2004) P.3901-3908) have found that the optimum value of strontium (Sn) content is 10~20 at %. The bimetallic catalyst formed by the elements Fe, Co, Ni, W and Pt is used to study the oxidation ability of ethanol. Experimental data shows that only Pt/Sn/C has better performance. In the 3C market Miniaturization and light weight are the trend. Most of the commercially available lithium-ion batteries (mobile phone communication can only be used for 1 minute), or alkaline zinc-manganese cylinder type AA, AAA specification 200824175 'battery, are affected by size. Restricted, the thickness is about 9~12mm, and it is limited by the thickness applied to 3C electronic products. Currently, modern 3〇 electronic products on the market, such as ···, telephone, portable computer, camera, multi-function mobile phone, etc., are required to be short. Light, thin, small battery. Alkaline zinc-manganese battery or lithium battery is subject to application There is a great limitation. Alkaline zinc-manganese batteries or lithium batteries cannot meet the special requirements of high power, high energy density and thinness in 3C electronic products. SUMMARY OF THE INVENTION The present invention is to develop a composite alkaline cross-linking (cr〇 Sslinked) polyvinyl alcohol (Q) _ polymer electrolyte membrane, its thickness is only 5G ~ _ pm, can be suitable for the current DEFC battery technology, applied to the battery of thin 3C electronic products. Therefore DETC battery has high energy density (8 〇〇〇Wh/kg) and low cost of ethanol, easy to store and use, etc., is a very competitive fuel cell, which can be applied to modern 3C electronic products, according to product requirements Design. There is no leakage problem in the use of electronic products, because the polymer electrolyte membrane is used. Currently, PEO-PVA_KOH organic polymer electrolyte membrane (Yang et al. Jouma丨of Power So s 112 ( 2〇〇2) p shed) There have been many examples of applications in energy and electricity pools, such as Ni/Cd, Ni/Zn, Ni/MH, Zn/air, etc. Electrolyte membrane Examples, while the hairpin compound bribery cross-linked polymer electrolysis thief _ sub-conductivity is about 10 3~10 2 S / cm. In the literature research report pointed out that Lewsnd〇wskj et al. prepared = Ε〇 _ = 〇Η Η 2 〇 固态 固态 固态 固态 固态 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 PAA-KOH _, polymer electrolyte membrane, listener conductivity __s / cm, this fresh conductive ship is close to 32 wt_% KOH read _ _ S / Gm, mainly PAA polymer lysate with high hiding ability. This issue, the occupational testability 200824175 solid cross-linking PVA / TI 〇 2 polymer electrolyte membrane applied to DEFC. In general, the DEFC of the acidic system mainly uses Nafion polymer electrolyte membrane, and the ionic conductivity can reach α〇ΐ8 S/cm at 25 ° C. Although the membrane has non-physical and chemical properties, it is currently The price of Nafi〇n polymer electrolyte membrane is very south (US$800~1〇〇〇/m2). In addition, when the DEFC of the acidic system uses Nafi〇n=molecular membrane, there is another serious problem, that is, during operation. Ethanol will crossover from the anode to the cathode. The ethanol molecule has some similarities with the transport mechanism of H+ ions. 'There is a rapid decline in DEFC performance, mainly due to the poor penetrating power of Naflon polymer membranes. In order to improve the penetration problem, solid polyvinyl alcohol (PVA) as the main polymer electrolyte membrane can be applied to the DMFC. Shao and Hsing et al. (JES Letter, 5 (2002) ^ A185-A187)) The preparation of Nafion/PVA (1:1) polymer membranes is mainly applied to the acidic system DMFC. In addition, u and Wang et al. (Materials Letters, 57 (2003) p_ 1406-1410 prepared PVA/PWA polymer film is also applied to the acidic DMFC system, at 25 〇, the ionic conductivity can reach 6 27x1 〇.3 3 fine, methanol permeability is about 1〇-7 cm2/s. Xu et al. (Solid State l〇n丨cs, 171 (2004) 121_127) prepare ρνΑ/ρ· (phosphotung young c acid)) / s 丨 & composite solid polymer membrane is also applied to the acidic DMFC system, its ionic conductivity can reach between 〇〇12~〇〇〇4, but the methanol penetration coefficient (P) is about 1〇·7~1〇_8cm2/s, these studies have found that pvA polymers have a very good barrier to the penetration of alcohols. ° The preparation of the composite _ polymer electrolyte Na DErc t, the general deletion of this (8,000 Wh / kg) is four times the liquid helium gas, is the clock ion (2 〇〇 ( (10) 40 ^, And it can directly use ethanol as a shop to improve the safety of decoration. Therefore, the fixed battery is a new power source with market competitiveness. The basic concern of the battery is that A mixture of ethanol and water is sent to the anode of 200824175 4 , and ethanol is oxidized to form water (H2 〇) and carbon dioxide (C02), and electrons are released. The reaction formula is as shown in the following formula (1): C2H5OH + 120H'_> 2C 〇2+9H2〇+12e, Ean〇de= -0.810V (1) The OH consumed by the anode is a composite solid polymer electrolyte membrane that migrates from the cathode through the middle and reacts with the oxygen of the cathode to form 〇Η·, Its reaction formula is as shown in the following formula (2): _ 302 + 6H20 + i 2e - 120 Η, Ecath () de = 0.402V (2) (or 02 + 2H20 + 4e_ 40H ) and electrons are transferred from the anode through the external circuit To the cathode forming circuit, the total reaction formula of DEFC is: “C2H5OH + 30 Bu 2C02 + 3H20, Eovera" = 1 · 21 v (3) The operating temperature of the ϋ ϋ 电池 贱 择 择 择 或 或 或 或 或 或 或 或 或 或 或 或 或 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择 择Electrolyte, S NafiQn polymer is difficult to have high __ degree, better chemical and thermal stability, light weight and #加卫和高杂子导群, ^Nafbn^ molecular secrets direct direct ethanol secret The electric scale will have a significant "ethanol permeation problem". This is the main reason for the acidity of the battery. 4 From the above description, the alkaline solid direct ethanol fuel cell (Defc) is open. The potential power supply product, the present invention proposes an experimental direct ethanol fuel electric " (four) method 'the towel of the composite alkaline _ polymer transfer film is also an important development 11 200824175 theme for ethanol penetration and ionic conductivity The problem is studied. The nanomaterial of Titanium (Dingshao 2) can be used as a meson for the inhibition of ethanol permeation, and it can be used to test the solid polymer (4) Lai synthesis and to explore the addition of na[iota] ,in Jianjian, for the composite testability, to solve the effect of new ion conduction (4), Qianmimzi guide (_ complex polymer electrolyte membrane. Bisexat [Embodiment] The alkaline direct ethanol fuel of the present invention The battery manufacturing method is described as follows. · The spring preparation of the electrode is based on the analysis of the characteristics of the electrode material to understand the composition and composition of the material of the pool, the preparation of the material from the semi-heterogeneous, and finally to the composition of a single "alkaline direct ethanol fuel. "Battery", for the preparation of the completed half electrode to make the half electrode preparation conditions (dynamic aspects), the electrode is focused on ^ glutinous, resistance value and other electrical analysis. The self-prepared ethanol anode (platinum black) and the self-prepared air cathode (Mn〇2/BP2000 carbon black+CNTs (nanocarbon...tube)) are prepared by using the composite alkaline solid polymer prepared by ourselves. Electro-fired (crosslinked PVA/Ti02 composite po_er membrane), assembled into a prismatic (prismatic) alkaline direct ethanol fuel cell, and according to the composition of different ethanol into the craze, temperature, substrate, polymer electrolyte membrane thickness, A full battery electrical analysis was performed on this qualitative direct ethanol fuel cell (DEFC). Wherein, the anode fuel in the alkaline direct ethanol fuel cell may be ethanol, isopropanol or butanol, and the fuel concentration varies between 0.1 and 10 Torr, that is, between 0 and 30% by weight, and the anode fuel The feed can be a liquid or a gas. In addition, the electrolyte in the alkaline direct ethanol fuel cell may be KOH, NaOH, UOH, NaOH+LiOH, KOH+LiOH, etc., and the concentration change thereof is between ~·1 and 15 Μ (0.3 to 45 wt·%). And the electrolyte feed mode can be a liquid or a gas. A, the preparation of the enzyme & pole preparation · The main anode component composition of the present invention is 1~50wt_% of platinum ruthenium (PtRu 12 200824175 cJ" the end of the main control panel thickness is α2~〇_7 mm, the area is 1~100 Rate: Meter-scale 1st catalyst powder, and change to make ^ xo^r ^ )^tbt*(mA/g catalyst)〇t anti-hY Μυν carbon black or carbon nanotube (such as · SWCT (Single marriage carbon CT{M^ ^ ; 士°包' has a great influence. When preparing the anode electrode, it controls the temperature, rate, thickness, and the amount of media used (in 1~2〇mg, cm2), drying _ In the case of ~12〇., 2 = capture, the condition. When the detection, the anode electrode is scanned at the rate of j _s, and it is better to compare the various properties of the cations under the two catalysts, which affects the electrical properties of the anode electrode. The factor 'determines the optimal amount of catalyst mass to maximize the oxidation current density at a constant voltage. The substrate of the ethanol anode can be selected from carbon cloth, carbon paper, carbon fiber cloth, graphite, copper mesh. , nickel mesh, titanium mesh, platinum-titanium mesh, gold mesh, stainless steel mesh and other metal conductor materials' or copper, nickel foil, enamel, name box, metal enamel metal conductor material The thickness of the substrate is 0.01 to 30 mm, wherein 〇_〇卜川(1)(1) is preferred. "In addition, the ratio of the catalytic platinum black of the ethanol anode is 1:1 except for the above 1:1, 10 : PtRu(1:9)/C, PtRu(2:8)/C, PtRu(3:7)/C, PtRu(iv) PtRu(5:5)/C, PtRu(6:4)/C, PtRu(7 :3)/C, PtRu(8:2)/C or
PtRu(9:1)/C等不同比例的鉑釕/碳成份的化學組成;另於陽電極觸 ,鉑釕/碳(PtRu/C)觸媒中可加入不同材料的奈米微粒材料,其係 選自:Ti〇2、八丨2〇3、S丨〇2、Zr〇2或LiAINi〇3,該奈米微粒材料大 小為1〜1000 nm之間,比表面積為1〜5000 m2/g之間。 B、空氣陰極的製備: 本發明提出製備直接乙醇燃料電池中的空氣陰極,例如:空 氣碳電極(air carbon electrode)的製備方法。目前市面上所使用的 空氣陰極觸媒主要是翻/碳為主,但是鈾貴金屬價格高且容易一氧 13 200824175 4' 化,吸附而中毒,使的空氣陰極極化而失去活性。在鹼性溶液中 的氧還原反應(oxygen reduction reaction, ORR),於文獻中,發 現還有其他不同觸媒可以使用,例如:per〇VSkjte(Lacac〇〇3)、 3帥细(〇0〇3、从〇0204)啊「0比丨0邮、具有(:0和「6之口7『0^6€1 macrocycles 或猛氧化物(Μη02、KMn〇4)等。 在驗性糸統中氧氣(〇2)的還原反應式如下所示: 〇2 +2H20 + 4e'~> 40H", E°= 0.40 V, _ 若以鉑為觸媒時,此為4e-電子的轉移反應,然而,使用二氧化鐘 (Mn〇2)為觸媒時,則反應式如下: 〇2 + H20 + 2e H02" + OH', 此為2e電子的轉移反應(Mn02),產生中間物(h〇2》即 hydroperoxide,而此中間物經觸媒化學反應再生成〇2和〇阡兩 產物: • _ H02-1/2 〇2 + OH' 在ORR反應時,主要的碳基材是XC-72R活性碳或使用 BP2000碳黑(大小10〜20 nm,1500 m2/g),或使用多層奈米碳管 (MWCNTs大小10〜20 nm,比表面積200〜300 m2/g)之基材。活 性碳的小孔(micropore)不易被利用,一般會以化學活化法 (chemical activation method)製造中孔(mesopore)及大孔 (macropore),此法以氫氧化鈉(NaOH)混合活性碳(2:1)在不同溫 度下(700、800、900、1〇〇〇°〇進行活化2小時,而後經清洗、 200824175 乾燥(120 C,12小時)完成。奈米碳管(mwcNTs)經12N濃HN〇3 處理在120 C,8小時,改善表面官能基(furictjona卿例如· ac|d sites、COOH、CHO、OH 等),清洗後備用。 本發明使用低成本的奈米級非結晶性二氧化鍅(Mn〇2)觸媒, 而奈米粉末非結晶性Mn〇2觸媒(amorphous Μη〇2, α-Μη02)的合 成‘備方法主要可分為兩種方式,一種是利用大塊材料分解成小 粒子的物理方法,另—種方酬是_離子或分子作為前驅物 (precursor),例如:__3)2而形成核種,而在核種成形後控制 成長以形成奈米微粒材料,即化學方法或所謂之溶膠_凝膠法 (sol-gel)。而化學方法有製備較小奈米微粒且大小均勻的粒子,故 -般仍以?學方法進行㈣為主要路財法。而製備時是利用溶 液中進行還原反應製備Mn〇2奈米微粒,同時,在反應物中加入 適當的保護劑(SLS)或有機添加劑以戦奈米微粒的聚集。另外也 可透H之氧化劑或還原劑的濃度、冑彳量、麵 而製備各種職、大小的奈米金屬氧化物材料。 本發明提出製備-種低成本的空氣陰極的方法,主要是 陰極成分_媒使用5〜8Q説的Μη〇2/ΒΡ2_—+εΝ f官)碳粉末,制空氣陰極之_板厚度在α2〜〇 6晒,面下積 為4〜100 cm2,而奈米級Mn〇2/Bp2〇〇〇碳黑+c啊奈米碳、 2以溶膠_轉法製備並變化_成分組狀百分率。由電化學 密m片2 性質製作陰電極,分析空氣陰極的還原電流 慝工碰極製備時控制溫度、速率、厚度、時間、 伙f在 〇〇 k9f/Cm2)、乾燥(d⑺在120。〇,1〜2小時等操作 。自行製備成的空氣陰極做陰電極掃描以1 mV/s分析, ΐ 觸媒用ΐ的空氣陰極的電性,影響空氣陰極之因 度為最大^__#小,使其在定電壓下產生還原電流密 200824175 其中,該空氣陰極,例如空氣碳電極係以二氧化錳(chMn〇2) 觸媒所製備而成,除前述之溶膠-凝膠法製備空氣陰極之外,其餘 之亦可以1知製法,例如水熱合成法(Hydr〇thermal)、微波法 (Microwave irradiation method)、化學沈殿法(chemical precipitation method)或超重力反應法等技術及方法來製備而成。 C、複合式鹼性固態高分子電解質膜製備: …本發明提出開發一種聚乙烯醇(PVA)為主幹固態高分子膜,該 膜係經由溶液成膜法(S〇|uti〇n cast|ng meth〇d)製備而成合成方 _ 法是先選用尚親水性之聚乙烯醇(Polyvinyl alcohol,PVA)為基 材,然後,$並選用為多孔性高比面積的二氧化鈦(Ti〇2)奈米微粒(7 380 m2/g,anatase)做為填充料,該二氧化鈦奈米微粒有二個 作用·(1)可以阻礙6醇小分子的直接穿透乙烯醇高分子膜(此膜 有,佳,阻擋能力其乙醇穿透係數(ethan〇| permeabj||_ty)約在 1〇j cm2/s左右,而Nafion 117高分子膜的乙醇穿透係數在10·6 cnri /s左右);(2)Ti〇2奈米微粒材料在聚乙烯醇高分子基材中,可 以吸附較多的氫氧化鉀電解質,所以離子導電度維持在1〇-2 s/cm 良好的狀況。該固態PVA/TI〇2(Ti〇2含量1〜50 wt_%之間)高分子 • 膜,將做最後交聯(cross_linked)反應處理,使用5 vol%的75%戊 二齡(glutaraldehyde,GA)交聯劑,在丙酮(acet〇ne)中加入〇朽叫 vol%鹽酸(HCI)為觸媒’ 40°C,約1〜48小時交聯處理,可以使高 分子膜有良好的機械強度,此交聯完成的複合式高分子膜再浸潰 在32 wt_%氫氧化钾溶液中24小時,高分子膜可量測離子導電度 及組裝成燃料電池使用。該高分子膜經由交聯處理並提昇DEFc 使用操作溫度,使得系統可以具有良好的化學穩定性及長久的操 作性。其中,所選用之交聯劑不以前述之戊二醛為限,其亦得使 用蘋果酸(malic acid)為之。 所製備的交聯的複合式鹼性固態PVA/Ti02高分子電解質 16 200824175 膜,做離子導電度分析、含水率(%)、電化學穩定性分析、FT|R 化學性質分析、熱性質的分析(DSC及TGA>,表面觀察分析 (SEM)、結構分析(例如xrd分析)、及相關電性分析檢測,例如: CV、AC impedance等分析,最後進行高分子膜機械強度測試等。 然後,將此複合式鹼性固態高分子電解質膜應用在DEFC上。本 發明不同於傳統於酸性系_ DEFC所使用之Nafk)n高分子電解 貝,’而疋使用複合式驗性固態高分子電解質膜。此複合式驗性 固態高分子電解質膜中有掺合Tj〇2奈米材料為填充料,1中該太 米材料之填紐可選自單-之Ti02、Ab03、si02、z「02、UAINj= 或者二種以上奈米㈣混合個,耻可改善高分子膜之崎及 機械強度。更重要的是,降低乙醇之渗鱗同時轉良好的 導電度’所以PVA及Ti02、水混合反應形成高财驗,铁後再 形成高分子膜(thin film),最後經交聯反應處理, 容液中至少24小時。本發曰月製備的複合式驗㈣態高分子 電解貝膜具有很好的物理/化學性質、熱安定性、高的離 产 (σ=0·001〜0_01 S/cm)、尺寸安定性佳、機 2 性等,很適合翻在DEFC上。 加 【實施例】 實施例1 ·· 乙=極製備的主要成分係以5〜100就〇/〇的_ =Ru b_觸媒塗佈在金屬鈦_彳咖,η咖en De =Ρ·公司生產)上,控制極板厚度在02〜0 7_ =,主要使用奈米級編(pt:Ru=i:”末= ’該陽電極的表面形態圖,麻第彳圖的 中孔洞為鈦網,上面塗佈鉑釕黑觸媒。由 厭、、,、 17 200824175 ^電流密度(mA/cm2)、E_t電位、Ε_、丨_、p D隨等參數, 乙醇乳化_黑觸射可加人碳基材,可改善_率;碳材可選 擇市售的XC72R(由Cabot公司生產)或Bp2〇〇〇碳黑(由⑽以 上司^產)或奈米碳管(SWCT、_CT)f具有不同比表面積碳 士 ’ 些喊粉末性質對乙騎極有很大的影響。乙醇陽極製備 時’控^溫度、厚度、處理乾燥時間(卜2小時)、觸媒用量(在卜1〇 〇 巾_!)、乾燥溫度在8〇〜賦等操作條件。裝備完成之乙醇陽 極做電性掃描分析,_速率為彳_s,由此可分析比較出各種 =同電極配方的陽f極性能差異,朗定最佳_釕黑觸媒使用 ^,求出最佳條件的觸媒使甩量範圍,使其在定電壓下產生的乙 醇氧化的電流密度為最大。 實施例2 : •空氣陰極製作時,包含有三層結構,即·· (1)一空氣擴散層 (diffusion layer)、(2)-活化層(actjve |ayer),及⑶一鎳發泡網 (Ni-foam);該鎳發泡網做為電流收集器,而擴散層中使用7〇哳% 疏水性乙炔黑(Shawinigan acetylene black, AB50,比表面積為 馨 80 m /g)及 30 Wt·%聚四氟乙烯(p〇|ytetraf|u〇r〇ethy|ene,pTFE>J^ >谷液(Teflon-30, Dupont)。在活化層中主要使用5〜80 wt·%非結晶 性的a-Mn〇2觸媒粉末及60 wt·%之BP2000碳黑+CNTs(奈米碳 管)雙碳材及15 wt.%PTFE水溶液(Teflon-30, Dupont)、及適量異 丙醇(isopropyl alcohol, IPA)溶劑製備成油墨(ink)塗佈(spray)成活 化層’在陰電極化學組成百分率影響很大。另外,極板厚度控制 在0·3〜0·6 mm,面積大小為1〜1〇〇 cm2,該陰電極中使用的 a-Mn〇2/BP2000+CNTs觸媒漿料主要是以溶膠·凝膠法製備而 成,成分組成之變化百分率在5〜60 wt·%之間。由實驗室之壓片 機依其性貝製作成空氣陰極,分析時檢測空氣陰極的氧還原電流 18 200824175 j度(mA/cm )。衫響空氣陰極電性的參數,例如··溫度、觸媒用 量、電極厚度、燒結時間(320〜360。〇、屢力(在1〇〇〜5〇〇 ” 細)、電極乾燥時間等製備條件,所完成之空氣陰極的表面形 恶,則如弟2圖所示(SEM圖,5〇〇x下),較大倍率則如第3圖所 不(SEM,7kX下),其表面上有許多奈米碳管(CNTs)呈現。另外, 製備完成的空氣陰極做電性掃描分析(1 mV/sec),並比較各種不同 觸媒料_η〇2/雙碳粉)的電性好壞,並求出最佳製備條件及觸 媒含量大小,使其在定電壓下產生〇2還原電流密度為最大。 ® 實施例3: k用尚親水性之聚乙細醇(PVA)高分子(分子量約為10QQQ0) ,基材(M_W_大小可以在80,_〜2〇〇,_之間),然後並選用為 多孔性咼比面積的二氧化鈦(Tl_〇2)奈米微粒(粒徑為5〜2〇晒,比 表面積為2〜1000 m2/g,具有rutile或anatase結構)做為填充料, 加入水中混合反應形成高粘度粘液,乾燥完成獲得此複合式固態 聚乙烯醇/二氧化鈦高分子膜,最後經交聯處理,使用5 v〇|%的75 wt%戊二酿(GA)交聯劑,在丙酮溶劑中加入〇 15 v〇|0/〇鹽酸(HC|) φ 觸5'40°C,交聯處理約12〜48小時,而獲得複合式鹼性固態聚 乙烯醇/二氧化鈦高分子電解質膜,其表面形態sEM分析結果, 如弟4圖所示。 另外,被合式驗性固處聚乙烯醇/二氧化欽高分子電解質膜表 面形態的XRD分析結果,如第5圖所示,結果顯示GA交聯劑使 得聚乙烯醇之結晶性下降,2Θ=19。之主峰明顯減弱,此有助於離 子之導電性改善。再者,交聯完成的複合式鹼性固態聚乙烯醇/二 氧化鈦高分子電解質膜,再浸潰於32wt_%KOH中24小時後,量 測離子導電度(σ, S/cm),該複合式鹼性固態聚乙烯醇/二氧化鈦高 刀子%解質膜的Nyqulst分析圖’則如第6圖所示。實驗結果顯 19 200824175 不在30 C下,此複合式鹼性固態聚乙烯醇/二氧化鈦高分耕 膜的離子導電度約在心S/cm左右。最·_複合& 聯驗性_紅_/二氧減高奸制财料良 械強度及尺寸紋性,此射大大提昇DEFC之使職作溫产, 使得乙醇燃料電池系統可以具有良好的化學穩定性及長久操作 性。由TGA熱性分析該複合性目態聚㈣醇/ 穩定性 子電解質膜,其實聽果齡,如第7圖卿^人 =及GA交聯劑後,都具有非常好的熱穩定性,大大提昇操^The chemical composition of platinum rhodium/carbon components in different proportions such as PtRu(9:1)/C; in addition to the anode electrode, the platinum rhodium/carbon (PtRu/C) catalyst can be added with nano-particle materials of different materials. It is selected from the group consisting of Ti〇2, gossip 2〇3, S丨〇2, Zr〇2 or LiAINi〇3. The nanoparticle material has a size of 1~1000 nm and a specific surface area of 1~5000 m2/g. between. B. Preparation of Air Cathode: The present invention proposes a method of preparing an air cathode in a direct ethanol fuel cell, such as an air carbon electrode. At present, the air cathode catalyst used in the market is mainly turned/carbon, but the price of uranium precious metal is high and it is easy to be oxidized. The adsorption and poisoning make the air cathode polarized and lose its activity. Oxygen reduction reaction (ORR) in an alkaline solution, in the literature, found that there are other different catalysts that can be used, for example: per〇VSkjte (Lacac〇〇3), 3 handsome (〇0〇) 3, from 〇 0204) ah "0 than 丨 0 mail, with (: 0 and "6 mouth 7 "0 ^ 6 € 1 macrocycles or masque oxide (Μ η02, KMn 〇 4), etc. in the nature of the system The reduction reaction formula of oxygen (〇2) is as follows: 〇2 +2H20 + 4e'~>40H", E°= 0.40 V, _ If platinum is used as a catalyst, this is a 4e-electron transfer reaction. However, when a oxidizing clock (Mn〇2) is used as a catalyst, the reaction formula is as follows: 〇2 + H20 + 2e H02" + OH', which is a 2e electron transfer reaction (Mn02), which produces an intermediate (h〇 2" is hydroperoxide, and this intermediate is chemically reacted to form 〇2 and 〇阡2 products: • _ H02-1/2 〇2 + OH' In the ORR reaction, the main carbon substrate is XC-72R Activated carbon or BP2000 carbon black (size 10~20 nm, 1500 m2/g), or a multi-layer carbon nanotube (MWCNTs size 10~20 nm, specific surface area 200~300 m2/g). Activated carbon Small hole (micropore) It is not easy to be used, and mesopores and macropores are generally produced by chemical activation method. This method uses sodium hydroxide (NaOH) to mix activated carbon (2:1) at different temperatures ( 700,800,900, 1〇〇〇°〇 was activated for 2 hours, then washed, 200824175 dried (120 C, 12 hours). The carbon nanotubes (mwcNTs) were treated with 12N concentrated HN〇3 at 120 C. After 8 hours, the surface functional groups (furictjonaqing, for example, ac|d sites, COOH, CHO, OH, etc.) are improved and used after washing. The present invention uses a low-cost nano-scale amorphous cerium oxide (Mn〇2). The medium, and the synthesis method of nanocrystalline powder non-crystalline Mn〇2 catalyst (amorphous Μη〇2, α-Μη02) can be mainly divided into two ways, one is the physical method of decomposing into small particles by using bulk materials. Another type of compensation is _ ions or molecules as precursors, for example: __3) 2 to form a nuclear species, and after the nuclear species are shaped to control growth to form nanoparticulate materials, ie chemical methods or so-called sol-condensation Sol-gel, while chemical methods have small nanoparticles and sizes Uniform particles, so - like a still? The method of learning is carried out (4) as the main road finance method. In the preparation, the Mn〇2 nanoparticle is prepared by a reduction reaction in a solution, and at the same time, a suitable protective agent (SLS) or an organic additive is added to the reactant to aggregate the nanoparticle. In addition, it is also possible to prepare nano metal oxide materials of various sizes and sizes by the concentration, amount and surface of the oxidizing agent or reducing agent of H. The invention proposes a method for preparing a low-cost air cathode, which mainly uses a carbon powder of a cathode component_media using 5~8Q, and a thickness of the air cathode is α2. ~ 〇 6 sun, the surface under the product is 4 ~ 100 cm2, and nano-scale Mn 〇 2 / Bp2 〇〇〇 carbon black + c ah nano carbon, 2 prepared by sol_transfer method and change _ composition group percentage. The cathode electrode is made of electrochemical dense m sheet 2, and the reduction current of the air cathode is analyzed. The temperature, velocity, thickness, time, fk9f/Cm2), dryness (d(7) at 120. , 1~2 hours, etc. The self-prepared air cathode is used for the analysis of the cathode electrode at 1 mV/s, and the electrical conductivity of the air cathode of the ΐ catalyst is the largest ^__# small. Reducing current at a constant voltage. 200824175 wherein the air cathode, such as an air carbon electrode, is prepared by using a manganese dioxide (CHMn〇2) catalyst, in addition to the sol-gel method described above for preparing an air cathode. In addition, the rest can also be prepared by a known method, such as a hydrothermal synthesis method, a microwave irradiation method, a chemical precipitation method, or a supergravity reaction method. C. Preparation of composite alkaline solid polymer electrolyte membrane: The present invention proposes to develop a polyvinyl alcohol (PVA) as a main solid polymer membrane, which is formed by a solution film formation method (S〇|uti〇n cast| Ng meth〇d) Prepare the synthetic method _ The method is to select the hydrophilic polyvinyl alcohol (PVA) as the substrate, and then select the titanium dioxide (Ti〇2) nano particles with high porosity and specific area (7). 380 m2/g, anatase) as a filler, the titanium dioxide nanoparticle has two functions. (1) It can block the direct penetration of a small molecule of 6 alcohol into a vinyl alcohol polymer film (this film has a good, blocking ability. The ethanol penetration coefficient (ethan〇|permeabj||_ty) is about 1〇j cm2/s, while the ethanol penetration coefficient of Nafion 117 polymer film is about 10.6 cnri /s); (2) Ti〇2 The nanoparticulate material can adsorb a large amount of potassium hydroxide electrolyte in the polyvinyl alcohol polymer substrate, so the ion conductivity is maintained at 1 〇 -2 s / cm. The solid state PVA / TI 〇 2 (Ti 〇2 content between 1~50 wt_%) Polymer • Membrane, which will be treated as a final cross-linked reaction using 5 vol% of 75% glutaraldehyde (GA) crosslinker in acetone (acet 〇ne) added 〇 叫 vol% hydrochloric acid (HCI) as a catalyst '40 ° C, about 1 to 48 hours cross-linking treatment, can make the polymer film have a good The mechanical strength, the cross-linked composite polymer film is re-impregnated in a 32 wt_% potassium hydroxide solution for 24 hours, and the polymer film can measure the ion conductivity and assemble into a fuel cell. The combination process and increase the operating temperature of DEFc, so that the system can have good chemical stability and long-term operability. Among them, the crosslinking agent selected is not limited to the above-mentioned glutaraldehyde, and it is also required to use malic acid. The prepared crosslinked composite alkaline solid PVA/Ti02 polymer electrolyte 16 200824175 membrane, ion conductivity analysis, water content (%), electrochemical stability analysis, FT|R chemical property analysis, thermal property analysis (DSC and TGA), surface observation analysis (SEM), structural analysis (such as xrd analysis), and related electrical analysis, such as: CV, AC impedance, etc., and finally polymer film mechanical strength test, etc. The composite alkaline solid polymer electrolyte membrane is applied to DEFC. The present invention is different from the conventional Nafk)n polymer electrolysis shell used in the acid system DEFC, and the composite type solid polymer electrolyte membrane is used. The composite organic polymer electrolyte membrane has a Tj〇2 nanometer material as a filler, and the filler of the rice material may be selected from the group of Ti02, Ab03, Si02, z "02, UAINj". = or two or more kinds of nano (four) mixed, shame can improve the texture and mechanical strength of the polymer film. More importantly, reduce the osmosis of ethanol and turn good conductivity 'so PVA and Ti02, water mixed reaction to form high After the test, the iron film is formed into a thin film, and finally treated by cross-linking reaction, at least 24 hours in the liquid. The compound test (four) polymer electrolyte shell film prepared by the present invention has good physicality. /Chemical properties, thermal stability, high yield (σ=0·001~0_01 S/cm), good dimensional stability, machine 2, etc., are very suitable for turning over DEFC. Add [Examples] Example 1 ································································································· The thickness is in the range of 02~0 7_ =, mainly using the nano-scale (pt:Ru=i:" end = 'the surface morphology of the anode electrode, the middle hole of the map For titanium mesh, coated with platinum-ruthenium black catalyst. From ano,,,, 17 200824175 ^ current density (mA / cm2), E_t potential, Ε _, 丨 _, p D with parameters, ethanol emulsification _ black light shot Can be added to the carbon substrate, can improve the _ rate; carbon material can choose the commercially available XC72R (produced by Cabot company) or Bp2 〇〇〇 carbon black (produced by (10) or above) or carbon nanotubes (SWCT, _CT ) f has different specific surface area carbons ' Some shouting powder properties have a great influence on the B. When the ethanol anode is prepared, 'control temperature, thickness, treatment drying time (2 hours), catalyst dosage (in Bu 1) 〇〇 _!), drying temperature in 8 〇 ~ Fu and other operating conditions. Equipped with the completed ethanol anode for electrical scanning analysis, _ rate is 彳 _s, which can be analyzed and compared various = the same electrode formula of the positive f The difference in polar performance, the best _ 钌 black catalyst using ^, find the optimum conditions of the catalyst to make the range of the enthalpy to maximize the current density of ethanol oxidation produced at a constant voltage. Example 2: • When the air cathode is fabricated, it has a three-layer structure, that is, (1) an air diffusion layer, and (2) an activation layer (act). Jve |ayer), and (3) a nickel foam net (Ni-foam); the nickel foam net is used as a current collector, and 7% by weight of acetylene black (AB50) is used in the diffusion layer (Shawinigan acetylene black, AB50, ratio The surface area is 80 m / g) and 30 Wt·% polytetrafluoroethylene (p〇|ytetraf|u〇r〇ethy|ene, pTFE>J^ > trough (Teflon-30, Dupont). 5~80 wt.% of amorphous a-Mn〇2 catalyst powder and 60 wt·% of BP2000 carbon black+CNTs (nanocarbon tube) double carbon and 15 wt.% PTFE are mainly used in the active layer. The aqueous solution (Teflon-30, Dupont), and the appropriate amount of isopropyl alcohol (IPA) solvent to prepare the ink to spray into the active layer' has a great influence on the chemical composition percentage of the cathode electrode. In addition, the thickness of the plate is controlled at 0·3~0·6 mm, and the area is 1~1〇〇cm2. The a-Mn〇2/BP2000+CNTs catalyst slurry used in the cathode electrode is mainly a sol· Prepared by the gel method, the percentage change of the composition of the components is between 5 and 60 wt.%. The laboratory tablet is made into an air cathode according to its shape, and the oxygen reduction current of the air cathode is detected during analysis. 18 200824175 j (mA/cm). The parameters of the air-cathode electrical properties of the shirt, such as temperature, amount of catalyst, electrode thickness, sintering time (320~360. 〇, repeated force (in 1〇〇~5〇〇) fine), electrode drying time, etc. Conditions, the surface shape of the completed air cathode is as shown in Figure 2 (SEM image, 5〇〇x), and the larger magnification is as shown in Figure 3 (SEM, 7kX), on the surface. There are many carbon nanotubes (CNTs) present. In addition, the prepared air cathode is electrically scanned (1 mV/sec) and compared with various dielectric materials _η〇2/double carbon powder. Bad, and find the optimal preparation conditions and catalyst content to maximize the 〇2 reduction current density at a constant voltage. ® Example 3: k is still hydrophilic polyethylene (PVA) polymer (Molecular weight is about 10QQQ0), the substrate (M_W_ size can be between 80, _~2〇〇, _), and then selected as the porous 咼 area of titanium dioxide (Tl_〇2) nano particles (granules) The diameter is 5~2 〇, the specific surface area is 2~1000 m2/g, with rutile or anatase structure) as a filler, mixed with water to form high viscosity Liquid, drying to obtain the composite solid polyvinyl alcohol / titanium dioxide polymer film, and finally cross-linking treatment, using 5 v 〇 |% of 75 wt% pentane (GA) cross-linking agent, adding hydrazine in acetone solvent 15 v〇|0/〇 hydrochloric acid (HC|) φ touch 5'40 ° C, cross-linking treatment for about 12 to 48 hours, and obtain a composite alkaline solid polyvinyl alcohol / titanium dioxide polymer electrolyte membrane, its surface morphology sEM The results of the analysis are shown in Fig. 4. In addition, the results of XRD analysis of the surface morphology of the polyvinyl alcohol/dioxymethylene polymer electrolyte membrane which is combined with the test, as shown in Fig. 5, show that the GA crosslinker makes The crystallinity of polyvinyl alcohol decreases, 2Θ=19. The main peak is significantly weakened, which contributes to the improvement of the conductivity of the ions. Furthermore, the cross-linked composite alkaline solid polyvinyl alcohol/titanium dioxide polymer electrolyte membrane is re-bonded. After immersing in 32 wt_% KOH for 24 hours, the ionic conductivity (σ, S/cm) was measured, and the Nyqulst analysis chart of the composite alkaline solid polyvinyl alcohol/titanium dioxide high knife % solution was as the sixth The figure shows that the experimental results are 19 200824175 not at 30 C, this complex base The ionic conductivity of the solid polyvinyl alcohol/titanium dioxide high-density ploughing membrane is about S/cm of the heart. The most _ composite & joint test _ red _ / dioxi reduction of good material strength and size, This shot greatly enhances the temperature production of DEFC, which makes the ethanol fuel cell system have good chemical stability and long-term operation. The composite target poly(tetra) alcohol/stabilized electrolyte membrane is analyzed by TGA. Age, such as the 7th figure ^ ^ people = and GA cross-linking agent, have very good thermal stability, greatly improve the operation ^
實施例4: 依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 有 0·25〜4_50 mg/cm2 的鉑釕黑 PtRu(1:1) b|ack |nks 量),取該陽 電極面積8 Gm2,另取實補2製備完成之空氣陰極 " (Mn〇2/BP2000+CNTs),再搭配實施例3製備完成之複合式驗性 固態高分子電解質膜(PVA/Ti〇2 (10%) comp〇sjte p〇_erExample 4: According to the preparation method of Example 1, different ethanol anodes (containing platinum rhodium black PtRu (1:1) b|ack | nks amount of 0·25~4_50 mg/cm2) were prepared by using titanium mesh. The positive electrode area is 8 Gm2, and the air cathode " (Mn〇2/BP2000+CNTs) prepared by the actual compensation is prepared, and the composite organic polymer electrolyte membrane (PVA/Ti〇) prepared in the same manner as in the third embodiment is prepared. 2 (10%) comp〇sjte p〇_er
membrane cr0SSh_nked by GA),交聯完成的複合式鹼性固態 PWH02高分子電解質膜’再浸潰在泣就佩加水溶液中以 小時,此驗應用在乙醇直接祕電池上,該電池可組裝成正方 ^、圓桂型(里水管型)、長方型、祕料雖直接乙醇燃料電池 模組(MEA),且該鹼性高分子直接乙醇燃料電池可做成任何電壓大 小的,池堆(cell stack)。在2M K0H + 2M c^oh之水溶液中, 於25 C下’依實施例1之製備方法完成的鈦網陽極,組成各種不 同的驗性直接乙醇燃料電池模、組,並做單電池的電池電性檢測分 析。於25°C(常溫)及常壓下(1 atm),量測各種不同的驗性直接乙 醇燃料電_ OCV變麵線並分析比較,縣如第8圖所示,結 果發現該等直接乙醇燃料電池的Emean ocv(或E0CV)= 20 200824175 0·717〜0.855V之間,詳細實驗結果,如表1所示。 表1、直接乙醇燃料電池的E〇cv變化值(會不同始#了黑觸Μ暑下> X^PtRu 量 (mg/bn^) 0.25 0.50 1.00 2.00 4.50 參數 Eiviax. (V) 0.724 0.730 0.793 0.851 0.858 ElVlin. (V) 0.702 0.705 0.778 0.840 0,848 Eiviean (V) 0.717 0.723 0.792 0.845 0.855 實施例5 : 依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 有 0 25〜4_50 mg/cm2 的鉑釕黑 PtRu(1:1) black inks 量),取陽電 極面積8 cm2,另並取實施例2製備完成之空氣陰極 (Mn〇2/BP2000+CNTs),再搭配實施例3製備完成之複合式鹼性 固態高分子電解質膜,將交聯完成的複合式鹼性固態pVA/Tj〇2高 分子電解質膜,再浸潰在32 wt_%KOH中約24小時後,應用在2 醇燃料電池上,組成正方形鹼性直接乙醇燃料電池模組,在2m KOH + 2M〇2Η5〇Η之水溶液中,於25°C下,依實施例1之製備 方法完成的鈦網陽極,組成各種不同的驗性直接乙醇燃料電池 (DEFC) ’並做單電池的電性檢測分析。在25°c(常溫)及常壓下(1 atm) ’量測各種不同的鹼性直接乙醇燃料電池,在定電池電壓汨⑽ F〇_4?V)下,乙醇氧化電流密度變化曲線並比較分析,變化曲: 則如第9圖所不,結果發現直接乙醇燃料電池的冑流密度在巧9〜拍 mA/cm2之間,發現鉑釕黑觸媒量塗佈愈增多,則直接乙醇燃料 池的平均放電電流密度(jmean)愈大,詳細結果如表2所示。 21 200824175 % 表2、在0.4V直接乙醇燃料電池的k變化值(不同銘釕望觸 下) …^ ^媒量(mg/cm2) 參數 0.25 0.50 1.00 2.00 4.50 iMax. (mA/cmz) 25.54 27.16 35.31 40.92 40 89 Wean (mA/cm勹 19.33 20.35 30.80 36.66 39.11 實施例6 : 依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 L 有 0.25〜4·50 mg/cm2 的銘釕黑 PtRU(1:1) black inks 量),取面積 8 cm2,另取實施例2製備完成之空氣陰極(a-Mn〇2/Bp2〇〇〇+ CNTs)’再搭配實施例3製備完成之複合式鹼性固態高分子電解質 膜’組成正方形鹼性直接乙醇燃料電池模組,在2m koh + 2M ' 〇2Η5〇Η之水溶液中,於25°C下,依實施例、之製備方法完成的 鈦網陽極,組成各種不同的鹼性直接乙醇燃料電池,並做單電池 的電性檢測分析。於25 C(常溫)及常壓下(1 atm),量測各種不同 的驗性直接乙醇燃料電池,在定電流密度下燃料電池(即i = 2〇 • mA/cm2下)的Ecell電壓變化曲線,並比較各燃料電池之性能差異, 變化曲線則如第10圖所示。結果發現直接乙醇燃料電池在流 密度放電下,其工作(Ecell)電壓在0_41〜0_53 V之間,發現銘釘黑 觸媒量增加時,直接乙醇燃料電池的Ece||電壓愈高,^驗結果的 參數如表3所示。 22 200824175 ♦ 表3、在定電流20 mA/cm2下及25°C下直接乙醇燃料電池的E-t 變化值(不同鉑釕黑觸媒量下)Membrane cr0SSh_nked by GA), the cross-linked composite alkaline solid PWH02 polymer electrolyte membrane is re-impregnated in the weeping Pei aqueous solution for one hour. This test is applied to the ethanol direct cell, which can be assembled into a square ^, round gui (type water pipe type), rectangular type, secret material, although direct ethanol fuel cell module (MEA), and the alkaline polymer direct ethanol fuel cell can be made into any voltage, pool (cell Stack). In the 2M K0H + 2M c^oh aqueous solution, at 25 C, the titanium mesh anode completed according to the preparation method of Example 1 constitutes a battery of various kinds of inspective direct ethanol fuel cells, and a single cell battery. Electrical detection analysis. At 25 ° C (normal temperature) and normal pressure (1 atm), measuring various different direct ethanol fuel electric _ OCV transformation lines and analysis and comparison, the county as shown in Figure 8, the results found that these direct ethanol The fuel cell Emean ocv (or E0CV) = 20 200824175 0·717~0.855V, detailed experimental results, as shown in Table 1. Table 1. E〇cv change values of direct ethanol fuel cells (will be different from the beginning of the black tapping heat > X^PtRu amount (mg/bn^) 0.25 0.50 1.00 2.00 4.50 Parameter Eiviax. (V) 0.724 0.730 0.793 0.851 0.858 ElVlin. (V) 0.702 0.705 0.778 0.840 0,848 Eiviean (V) 0.717 0.723 0.792 0.845 0.855 Example 5: According to the preparation method of Example 1, using titanium mesh to prepare different ethanol anodes (containing 0 25~4_50 mg/cm2) The platinum-plated black PtRu (1:1) black inks amount), taking the anode electrode area of 8 cm2, and taking the air cathode (Mn〇2/BP2000+CNTs) prepared in Example 2, and preparing with the preparation of Example 3 The composite alkaline solid polymer electrolyte membrane is a crosslinked composite alkaline solid pVA/Tj〇2 polymer electrolyte membrane, which is then impregnated in 32 wt_% KOH for about 24 hours, and then applied to 2 alcohol fuel. On the battery, a square alkaline direct ethanol fuel cell module is formed, and in the 2m KOH + 2M 〇 2 Η 5 〇Η aqueous solution, the titanium mesh anode completed by the preparation method of the first embodiment is formed at 25 ° C to form various kinds of different Authentic direct ethanol fuel cell (DEFC) 'and single cell Sexual detection analysis. Measurement of various alkaline direct ethanol fuel cells at 25 ° C (normal temperature) and normal pressure (1 atm), under the constant battery voltage 汨(10) F〇_4?V), ethanol oxidation current Density curve and comparative analysis, variation: As shown in Figure 9, the results show that the turbulent density of the direct ethanol fuel cell is between 9 and mA/cm2, and the coating of platinum and black catalyst is more and more The larger the average discharge current density (jmean) of the direct ethanol fuel pool, the detailed results are shown in Table 2. 21 200824175 % Table 2, k change value of 0.4V direct ethanol fuel cell (different from the point of view) ... ^ ^media (mg/cm2) Parameter 0.25 0.50 1.00 2.00 4.50 iMax. (mA/cmz) 25.54 27.16 35.31 40.92 40 89 Wean (mA/cm勹19.33 20.35 30.80 36.66 39.11 Example 6: According to the preparation method of Example 1, using titanium mesh to prepare different ethanol anodes (including L with 0.25~4·50 mg/cm2) Black PtRU (1:1) black inks), taking an area of 8 cm2, and taking the air cathode (a-Mn〇2/Bp2〇〇〇+ CNTs) prepared in Example 2, and then preparing with Example 3 The composite alkaline solid polymer electrolyte membrane constituting a square alkaline direct ethanol fuel cell module is completed in an aqueous solution of 2m koh + 2M ' 〇 2 Η 5 , at 25 ° C according to the preparation method of the examples and the preparation method. Titanium mesh anodes, which are composed of various alkaline direct ethanol fuel cells, and are used for electrical detection and analysis of single cells. Various kinds of qualitative direct ethanol fuels are measured at 25 C (normal temperature) and normal pressure (1 atm). Battery, Ecell voltage of fuel cell (ie i = 2〇• mA/cm2) at constant current density The curve is compared and the performance difference of each fuel cell is compared. The curve is shown in Fig. 10. It is found that the direct ethanol fuel cell has a working (Ecell) voltage between 0_41 and 0_53 V under flow density discharge. When the amount of black catalyst increases, the higher the Ece|| voltage of the direct ethanol fuel cell, the parameters of the test results are shown in Table 3. 22 200824175 ♦ Table 3, under constant current 20 mA/cm2 and 25 °C Et change value of direct ethanol fuel cell (different platinum and black catalyst amount)
實施例7 : 依實施例1之製備方法,使用鈦網製備完成不同乙醇陽極(含 有 0·25〜4_50 mg/crn2 的鉑釕黑 PtRu (1:1) black inks 量),取面積 8 cm2,另取實施例2製備完成之空氣陰極(MnO2/BP2000+ CNTs),再搭配實施例3製備完成之複合式鹼性固態高分子電解質 膜,組成正方形鹼性直接乙醇燃料電池模組,在2M KOH + 2M CsHsOH之水溶液中,於25°C下,依實施例1之製備方法完成的 鈦網陽極,組成各種不同的驗性直接乙醇燃料電池,並做單電池 的電性檢測分析。25°C及常壓下(1 atm),量測各種不同的鹼性直 接乙醇燃料電池,在OCV下的Nyquistplot變化曲線並比較分 析,變化曲線則如第11圖所示。圖中結果顯示乙醇陽極(含不同 量之始釕黑觸媒),其電極阻抗值(Rb),仍可維持在3~3_5 〇hm cm2 之低電阻。為由分析的Nyquist圖中發現,此乙醇陽極的乙醇氧化 反應是在動力控制下(oxidation kinetic controlled)。反應阻抗值 (Rct)愈來愈小,當鉑釕黑觸媒量增加時,發現反應阻抗值(Rct)有明 顯下降的趨勢。 實施例8 : 依實_ 1之製備方法,制鈦網·完成乙㈣極(含 同量的舶釕黑 PtRu (1:1) black, 0.25〜4_5 mg/cm2),取面積 8 23 200824175 200824175 cm 另取實施例2製備完成之空氣陰極 (a-Mn〇2/BP2000+CNTs) ’再搭配實施例3製備完之入 性固態高分子電解質膜,組成正方雜誠接乙醇燃土:式? 2M KOH + W⑽别之水溶液中,於6叱下;實二二在 製備方法完成齡峨極,組成各種柯峡性直接乙:^ 池,並做單電池的電性檢測分析,結果如第12圖所示,在、 及常壓下(1_下各種不同的驗性直接乙醇燃料電軸μν變化 曲線’和功率密度變化曲線(powerdensitycurve)分析比較圖由 圖中可以發現比較’所製備之乙醇陽極塗佈4.5〇 mg/cm2量之鉑 釕黑具有最佳的性能,因為此直接乙醇燃料電池可得到最高之功 率^度(peak power density)為約 16.71 mW/cm2。從這些電極組 ,完成的驗性直接乙醇燃料電池,發現該直接乙醇燃料電池的最 尚之功率密度可維持在11〜16mW/cm2左右之間,詳細結果如表 4所示。 表4、直接乙醇燃料電池的|Λ/及功率密度變化值 体不同 PtRu black 60°C 下 \觸媒量 \ (mg/cm2) \ 參數 N. 0.25 0.50 1.00 2.00 4.50 E〇cp (V) 0.728 0.728 0.789 0.839 0.858 Ep,max (V) 0.269 0.262 0.269 0.282 0.296 *p,max (mA/cm ) 41.50 44.55 53.40 57.98 56.45 P-D.max (mW/cm2) 11.19 11.68 14.40 16.37 16.71 【圖式簡單說明】 24 200824175 蜷 第1圖:本發明乙醇陽極於掃瞄式電子顯微鏡(100X)之表面形態 圖。 第2圖:本發明空氣陰極於掃瞄式電子顯微鏡(500X)之表面形態 圖。 第3圖:本發明空氣陰極於掃瞄式電子顯微鏡(7kX)之表面形態圖。 第4圖:本發明複合式鹼性固態PVA/Tj〇2高分子電解質膜於掃瞄 式電子顯微鏡(500X)之表面形態圖。 第5圖:複合式鹼性固態pVA/Tj〇2高分子電解質膜的表面形態的 XRD分析結果圖。 • 第Θ圖:複合式鹼性固態pvA/Ti〇2高分子電解質膜的Nyquist分 析圖。 第7圖:由TGA熱定性分析複合式鹼性固態PVA/Tj〇2高分子電 解質膜之分析圖。 第8圖:量測各種不同的鹼性直接乙醇燃料電池的〇cv變化曲線 分析比較圖。 第9圖··量測各種不同的鹼性直接乙醇燃料電池,在定電池電壓 fcell= 0.40V)下,乙醇氧化電流密度變化曲線分析比較圖。 馨 第10圖·量測各種不同的驗性直接乙醇燃料電池,在定電流密度 下燃料電池(即i = 20 mA/cm2下)的Ecell電壓變化曲線分析比較 圖。 弟11圖·量測各種不同的驗性直接乙醇燃料電池,在〇cv下的 Nyquistplot變化曲線分析比較圖。 第12圖··依實施例!製備之鈦網陽極組成各種 燃料電池(DEFC),並做單電池的電性_分析^__ 25Example 7: According to the preparation method of Example 1, different ethanol anodes (PtRu (1:1) black inks containing 0·25~4_50 mg/crn2) were prepared using a titanium mesh, and the area was 8 cm2. The air cathode (MnO2/BP2000+ CNTs) prepared in Example 2 was prepared, and the composite alkaline solid polymer electrolyte membrane prepared in Example 3 was combined to form a square alkaline direct ethanol fuel cell module at 2M KOH + In the aqueous solution of 2M CsHsOH, the titanium mesh anode completed by the preparation method of Example 1 was formed at 25 ° C to form various kinds of inspective direct ethanol fuel cells, and the electrical detection analysis of the single cells was performed. At 25 ° C and atmospheric pressure (1 atm), the Nyquistplot curves of various alkaline direct ethanol fuel cells were measured and compared under OCV. The curve is shown in Figure 11. The results show that the ethanol anode (containing different amounts of the initial black catalyst), its electrode resistance value (Rb), can still maintain a low resistance of 3~3_5 〇hm cm2. For the analysis of the Nyquist plot, the ethanol oxidation of this ethanol anode was controlled by oxidation kinetic. The reaction resistance value (Rct) is getting smaller and smaller. When the amount of platinum ruthenium black catalyst increases, the reaction resistance value (Rct) tends to decrease significantly. Example 8: According to the preparation method of _1, the titanium mesh was completed. The B (four) pole was completed (containing the same amount of black PtRu (1:1) black, 0.25~4_5 mg/cm2), and the area was 8 23 200824175 200824175 Cm The air cathode (a-Mn〇2/BP2000+CNTs) prepared in the second embodiment was further prepared. The organic solid polymer electrolyte membrane prepared in the third embodiment was further mixed with the composition of the square and the ethanol burning soil: 2M KOH + W (10) in the other aqueous solution, under 6 ;; real two two in the preparation method to complete the age of bungee, to form a variety of Kexia direct B: ^ pool, and do the electrical analysis of the single cell, the results as the 12th As shown in the figure, at and under normal pressure (1_ different kinds of experimental direct ethanol fuel electric axis μν curve ' and power density curve (powerdensitycurve) analysis comparison chart can be found in the figure comparing 'the prepared ethanol Anodic coating of platinum ruthenium in an amount of 4.5 〇 mg/cm 2 has the best performance because the direct ethanol fuel cell can obtain the highest peak power density of about 16.71 mW/cm 2 . Authentic direct ethanol fuel cell, found that direct ethanol fuel The most powerful power density can be maintained between 11~16mW/cm2. The detailed results are shown in Table 4. Table 4: Direct/Ethanol Fuel Cell's |Λ/ and Power Density Change Values PtRu black 60°C\ Catalyst amount \ (mg/cm2) \ Parameter N. 0.25 0.50 1.00 2.00 4.50 E〇cp (V) 0.728 0.728 0.789 0.839 0.858 Ep,max (V) 0.269 0.262 0.269 0.282 0.296 *p,max (mA/cm) 41.50 44.55 53.40 57.98 56.45 PD.max (mW/cm2) 11.19 11.68 14.40 16.37 16.71 [Simple description of the diagram] 24 200824175 蜷 Figure 1: Surface morphology of the ethanol anode of the present invention on a scanning electron microscope (100X). Figure: Surface morphology of the air cathode of the present invention on a scanning electron microscope (500X). Fig. 3: Surface morphology of the air cathode of the present invention on a scanning electron microscope (7kX). Fig. 4: Composite of the present invention Surface morphology of alkaline solid PVA/Tj〇2 polymer electrolyte membrane on scanning electron microscope (500X). Figure 5: XRD analysis of surface morphology of composite alkaline solid pVA/Tj〇2 polymer electrolyte membrane Results Figure • Dimensional diagram: Composite alkaline solid state pvA/ Nyquist analysis of Ti〇2 polymer electrolyte membrane. Figure 7: Analysis of the composite alkaline solid PVA/Tj〇2 polymer electrolyte membrane by TGA heat characterization. Figure 8: Measurement of the 〇cv curve of various alkaline direct ethanol fuel cells. Figure 9 · Measure various different alkaline direct ethanol fuel cells. Under the fixed battery voltage fcell = 0.40V), compare the graph of ethanol oxidation current density curve. Xin Figure 10 · Measure the comparison of Ecell voltage curves of fuel cells (ie, i = 20 mA/cm2) at various current density direct ethanol fuel cells at constant current density. Brother 11 Figure · Measure the comparison of various Nyquistplot curves of different analytical direct ethanol fuel cells under 〇cv. Figure 12 · By example! The prepared titanium mesh anodes constitute various fuel cells (DEFC), and the electrical properties of the single cells _analysis^__ 25