Movatterモバイル変換


[0]ホーム

URL:


TW200812444A - Compound plasma source and method for dissociating gases using the same - Google Patents

Compound plasma source and method for dissociating gases using the same
Download PDF

Info

Publication number
TW200812444A
TW200812444ATW096112804ATW96112804ATW200812444ATW 200812444 ATW200812444 ATW 200812444ATW 096112804 ATW096112804 ATW 096112804ATW 96112804 ATW96112804 ATW 96112804ATW 200812444 ATW200812444 ATW 200812444A
Authority
TW
Taiwan
Prior art keywords
plasma
source
compound
capacitive coupling
coupling electrode
Prior art date
Application number
TW096112804A
Other languages
Chinese (zh)
Other versions
TWI439186B (en
Inventor
Dae-Kyu Choi
Soon-Im Wi
Original Assignee
New Power Plasma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Power Plasma Co LtdfiledCriticalNew Power Plasma Co Ltd
Publication of TW200812444ApublicationCriticalpatent/TW200812444A/en
Application grantedgrantedCritical
Publication of TWI439186BpublicationCriticalpatent/TWI439186B/en

Links

Classifications

Landscapes

Abstract

Disclosed is a compound plasma source. The compound plasma source includes a transformer to generate inductively coupled plasma, and first and second capacitance coupling electrodes to generate capacitively coupled plasma. The transformer includes a magnetic core being partially positioned in a plasma discharge chamber and a primary winding wound around the magnetic core and connected to a first power source. The first capacitance coupling electrode has a body to form the plasma discharge chamber. The magnetic core positioned in the plasma discharge chamber is protected by a core protection tube. The second capacitance coupling electrode is installed in the core protection tube. The second capacitance coupling electrode is connected to a second power source. When the first and second power sources start to supply electric power, a ring-shaped first magnetic field and a radial-shaped second magnetic field are generated to generate the inductively coupled plasma and the capacitively coupled plasma in the plasma discharge chamber in a compound manner.

Description

Translated fromChinese

200812444 (1) 九、發明說明 【發明所屬之技術領域】 本發明有關用於藉著電漿放電產生活性氣體之電漿來 源,且更特別有關一採用結構性裝置之化合物電漿來源, 以用複合之方式產生電容耦合電漿及電感耦合電漿。 【先前技術】 電漿放電被用於一氣體激發,用於產生包含離子、自 由基、原子、分子等之活性氣體。該等活性氣體被用於各 種應用領域,典型應用於半導體製程,諸如鈾刻、沈積、 清洗等。 在此有數種用於產生電漿之電漿來源。譬如,使用比 率頻繁之電容耦合電漿及電感耦合電漿大致上被使用。 如已經習知者,因爲精確地調整一電容耦合及離子之 能力,一電容耦合電漿來源具有一高於其他電漿來源者之 製程生產力。在另一方面,既然射頻電源之能量係經過一 專有之電容耦接連接至該電漿,該電漿離子密度能藉著僅 只增減該電容耦合射頻電力而增減。然而,既然該增加之 電力帶來增加之離子撞擊能量,在此有防止由於該離子衝 擊的損壞之限制。 此外,當該射頻電源增加時,該電感耦合電漿來源可 輕易地增加該離子密度。由於此,其係已知該電感耦合電 漿來源係相當低及得宜’以獲得一高密度電漿。然而,既 然一電感線圈不能控制大部分或整個該電漿離子能量,必 -4- (2) 200812444 需加入一分開之個別裝置,以便控制該電漿離子能量。譬 如,在此有一偏向技術,以施加一獨立之射頻至一設在製 程室中之基板支撐件。然而,既然其係由於施加至該基板 支撐件之偏向而難以控制該電漿離子能量,該偏向技術具 有一*低製程生產力之缺點。 同時,一用於製造半導體裝置之晶圓或液晶顯示器 (LCD )玻璃基板的尺寸正逐漸增加。如此,其係需要開 發一可延伸的電漿來源,並能夠控制該電漿離子能量,且 能夠處理一很大尺寸設計之玻璃基板。 【發明內容】 技術問題 因此,本發明已由於上面之問題所製成,且本發明之 一態樣係提供一可延伸的化合物電漿來源,其藉著順應電 感耦合電漿及電容耦合電漿之優點,具有控制電漿離子能 量及於寬廣區域中處理電漿之高能力;及提供使用該化合 物電漿來源產生活性氣體之氣體解離方法。 技術解決方法 按照本發明之一態樣,本發明之目的能藉著一化合物 電漿來源之製備所完成。 該化合物電漿來源可包含一本體,以形成一電漿放電 室,且包含由導電金屬所製成之第一電容耦接電極;一變 壓器’其包含一*將與該電黎放電室親合之磁心及原繞組’ -5- 200812444 (3) 以於該電漿放電室中產生一電感耦合電漿;一磁芯保護 管,以圍繞著定位在該電漿放電室中之磁芯;及一第二電 容耦接電極,其安裝在該磁芯保護管中。 較佳地是,該第一電容耦接電極可包含一形成電不連 續性之絕緣區域,使得該渦電流被減至最小。 較佳地是,該第二電容耦接電極可包含一形成電不連 續性之絕緣區域,使得該渦電流被減至最小。 較佳地是,該化合物電漿來源可另包含一第一電源, 以將電力供給至該變壓器之原繞組,用於產生一電感耦合 電漿;及一第二電源,以將電力供給至該第一電容耦接電 極或該第二電容耦接電極,用於產生一電容耦合電漿。 較佳地是,該化合物電漿來源可另包含一第一阻抗適 配器,其連接至該第一電源之輸出端部;及一第二阻抗適 配器,其連接至該第二電源之輸出端部。 較佳地是,該化合物電漿來源可另包含一共用電源, 以將用於產生電容耦合電漿之電力供給至該第一電容耦接 電極或至該第二電容耦接電極,及將用於產生電感耦合電 漿之電力供給至該變壓器之原繞組;及一電源分配器,以 將該電力分配至該第一電容耦接電極或至該第二電容耦接 電極、及該變壓器之原繞組。 較佳地是,該化合物電漿來源可另包含一共用電源, 以將用於產生電容耦合電漿之電力供給至該第一電容耦接 電極或至該第二電容耦接電極,及將用於產生電感耦合電 漿之電力供給至該變壓器之原繞組,且該第一電容耦接電 -6- (4) (4)200812444 極或該第二電容耦接電極及該變壓器之原繞組可被串連地 連接至該共用電源。 較佳地是,該化合物電漿來源可另包含一連接至該共 用電源之輸出端部的阻抗適配器。 較佳地是,該磁芯保護管可包含一介電材料。 較佳地是,該化合物電漿來源可另包含一安裝在該磁 芯保護管中之冷卻劑供給通道。 較佳地是,該化合物電漿來源可另包含一形成在該磁 芯的中心區域中之冷卻劑供給通道。 較佳地是,該化合物電漿來源可另包含一氣體入口, 氣體係經過該氣體入口導入該電漿放電室;一氣體出口, 該氣體係經過該氣體出口排出;及一製程室,以容納一經 過該氣體出口排出之電漿,且包含一安裝在其中之基板支 撐件。 較佳地是,該基板支撐件可被連接至一偏向電源。 較佳地是,該化合物電漿來源可另包含一定位在該電 漿放電室中之基板支撐件,以裝載一待處理之基板,且該 基板支撐件可被連接至一偏向電源。 較佳地是,該化合物電漿來源可另包含一第一開關, 以在該第二電源及該接地之間切換該第二電容耦接電極; 及一第二開關,以在該偏向電源及該接地之間切換該基板 支撐件,且該第一開關及該第二開關能以一反向操作關係 彼此有關聯。 根據本發明之另一態樣,在此提供一種利用化合物電 (5) (5)200812444 漿來源解離氣體之方法。該方法包含:提供一本體,以形 成一電漿放電室,且包含由導電金屬所製成之第一電容耦 接電極;提供一變壓器,該變壓器包含一將與該電漿放電 室耦合之磁芯及原繞組,以於該電漿放電室中產生一電感 耦合電漿;提供一磁芯保護管,以圍繞著定位在該電漿放 電室中之磁芯;提供一安裝在該磁芯保護管中之第二電容 耦接電極;及產生一化合物電漿,該化合物電漿藉由驅動 該第一及第二電容耦接電極而電容地耦合及藉由驅動該變 壓器而電感地耦合。 較佳地是,可驅動該第一及第二電容耦接電極,以在 驅動該變壓器之前提供一最初的離子化操作。 較佳地是,該氣體係選自惰性氣體、反應氣體、及該 惰性氣體與該反應氣體之氣體混合物的一群組。 有利的效果 根據本發明之化合物電漿來源及使用該來源以解離氣 體之方法,既然採用該電感耦合電漿及該電容耦合電漿之 所有該等優點,其係可能提供一可延伸的化合物電漿來 源,並具有精確地控制該電漿離子能量及處理大尺寸設計 物體之能力,及提供一產生活性氣體之氣體解離方法。 【實施方式】 下文,將參考所附圖面詳細地敘述本發明之具體實施 例。將更充分地敘述一大氣電漿發生器及一具有該大氣電 -8- 200812444 (6) 漿發生器之大氣電漿處理系統。 圖1係一*剖視圖’說明根據本發明之一具體實施例的 化合物電漿來源,且圖2係一取自圖丨沿著剖線A-A之剖 視圖。 參考圖1及圖2,根據本發明之具體實施例的化合物 電漿來源10使用該電感耦合電漿及該電容耦合電漿讓該 等氣體解離,及產生該活性氣體。 該化合物電漿來源10包含一磁芯31,以產生該電感 耦合電漿;及一具有原繞組3 2之變壓器3 0。該磁芯3 1係 一環形鐵磁體磁芯,且具有捲繞在其上之原繞組3 2,以形 成該變壓器3 0。 該磁芯3 1係由一鐵磁體材料或諸如鐵、空氣等之另 一選擇材料所製成。特別地是,該磁芯3 1係與一本體2〇 癖合’使得該磁芯3 1的一部份係放置在該本體2 〇之內 側,以形成一電漿放電室2 1。該磁芯3 1放置於該電黎放 電室21中之部份係被一磁芯保護管3 3所保護。該磁芯保 護管3 3較佳地是由石英、陶瓷及介電材料所製成。該磁 芯保護管3 3之兩端係連接至該本體20的側壁中所形$ 2 孔口 22,以面朝彼此。該磁芯保護管33及本體所連接 之側壁的孔口 22係以一合適之密封構件(未示出 > 密、 封。 本體20係由諸如鋁、不銹鋼、銅等金屬材料所製 成。該本體20亦可由一已塗附之金屬、譬如陽極電鑛金呂 或塗以鎳之鋁所製成。該本體20亦可由耐火金屬所製 -9 - (7) (7)200812444 成。另一選擇係,一發生器本體20可爲由諸如石英、陶 瓷等之絕緣材料所製成,並可爲由任何合適之材料所製 成,其中實施一想要之電漿製程。該本體20係全部製成 一中空之圓柱形狀。然而,其能了解該本體2 0可被修改 成一盒子形狀或其他各種形狀。 該原繞組3 2係電連接至一第一電源5 0。該第一電源 5 〇係一交流電(AC )電源,以供給RF電力。甚至未顯示 在該等圖面中,該第一電源50的一輸出端部可具有一阻 抗適配器,以匹配阻抗。 然而,熟諳此技藝者將了解該第一電源可藉由一具有 可控制輸出電壓之RF電源所架構,而沒有額外之阻抗適 配器。 該化合物電漿來源10包含第一及第二電容耦接電極 20及40,以產生該電容耦合電漿。該第一電容耦接電極 20包含一具有導電金屬之本體20。於此具體實施例中, 既然本體20具有作爲該第一電容耦接電極20之作用,該 本體20及該第一電容耦接電極被分派以一相同之參考數 字。然而,其已注意到該第一電容耦接電極20可爲由待 建構環繞著該本體20之額外導電金屬所製成’且該本體 20之安裝該導電金屬的一特定部份可形成一介電窗口。 該第二電容耦接電極40係安裝在該磁芯保護管33內 側。較佳地是,該第二電容耦接電極40具有一圓柱形 狀,以圍繞著已插入該磁芯保護管3 3之整個磁芯3 1。該 第二電容耦接電極40可爲由與該第一電容耦接電極20相 -10- (8) (8)200812444 同之材料所製成。 該第二電容耦接電極40係電連接至第二電源5 1,且 該第一電容耦接電極20係接地。 該第一電容耦接電極20用作一陰極,及該第二電容 耦接電極40用作一陽極。然而,如果需要,其功能可交 換。 該第二電源5 1係一交流電源,以供給一 RF電力。雖 然在該等圖面中未示出,在該第二電源51之輸出端部, 可安裝一用於該阻抗匹配之阻抗適配器。然而,熟諳此技 藝者將了解該第二電源可被架構成一具有可控制輸出電壓 之RF電源,而沒有該額外之阻抗適配器。 該第一及第二電容耦接電極20及40分別包含絕緣區 域22及4 1,以形成該電不連續性,以便使由於該電感耦 合電漿之渦電流減至最小。 當該第一及第二電源50及5 1分別供給電力至該化合 物電漿來源10時,在該電漿放電室21中產生第一環狀電 場3 5及第二徑向電場42,如藉著圖1及圖2中之虛線所 分別地指示。如此’該電容耦合電漿及該電感耦合電漿係 以一複合型式在該電漿放電室21中產生。 該第一電場35係藉著該變壓器30所感應,且該第二 電場42係藉著該第〜及第二電容耦接電極20及40所產 生。換句話說’由於一沿著該磁芯3 1藉著該原繞組32所 流出之磁場34,該環形第一電場35被感應,以圍繞著放 置於該電漿放電室21中之整個該磁芯保護管33。該第一 -11 - (9) (9)200812444 電場35產生該電感賴合電漿,以完成該變壓器30之第一 環路。 如上面所述,該電容耦合電漿及該電感耦合電漿係以 一複合方式在該電獎放電室21中產生。b別地是’既然 該第一電場35於該垂直方向中相交該第二電場42’氣體 離子微粒之螺旋狀運動係在該電漿放電室2 1中加速’導 致解離該氣體之高能力。 因此,可藉著控制該第一及第二電源50及51之電力 輕易地控制電漿離子之密度。換句話說,可獲得該電漿離 子之密度,而沒有該離子能量之過度增加。此外,既然該 第一電場3 5大體上係平行於本體2 0及該磁芯保護管3 3 ’ 由於藉著該第一電場35與該第二電場42複合加速之氣體 離子顆粒,藉著該離子撞擊所造成該電漿放電室2 1內部 壁面之損壞係減至極小,且有害顆粒之產生被減至極小。 可由包含惰性氣體、反應氣體、或該惰性氣體與該反 應氣體之氣體混合物的組群選擇注射進入該電漿放電室2 1 氣體。驅動該第一及第二電容耦接電極20及40,以在驅 動該變壓器30之前提供一最初之離子化操作。 圖3至6係各視圖,說明該化合物電漿來源1 0之電 源的各種修改。該上述化合物電漿來源1 0能夠以各種型 式修改,如稍後敘述者。 參考圖3,作爲一項修改,該化合物電漿來源1 〇能經 過單一共用之電源52供給該電力至該變壓器30及該第一 與該弟一電谷稱接電極20及40。用於此,一*電源分配器 -12- (10) 200812444 53可被安裝至該共用電源52之輸出端部。該電源分配 53可使用一變壓器或一平行之電容器形成一電力分配 路。此外,該電源分配器5 3能以各種電子電路建構。 果該變壓器之電容或該平行之電容器係可變的,該電力 適當地調整。 參考圖4,作爲另一項修改,該化合物電漿來源j 〇 藉者將該變壓器30及該第一與該第二電容稱接電極2〇 40串連地連接至該單一之共用電源53所架構。於此案 中,如在圖5所說明,該第二電容耦接電極40可被 地。該共用電源5 2係一交流電(a C )電源,以供給 電力。 參考圖6 ’作爲又另一項修改,藉著以單一金屬線 圏之形式製造該第二電容耦接電極40,該化合物電漿來 1 〇能被架構成具有作爲一電極及感應線圈天線之作用。 如此,能藉著使用該共用電源5 2減少RF電源之 目,以致能以低成本製成一簡單之化合物電漿來源1 0。 然在該等圖面中未示出,該第二電源50之端部可設有 阻抗適配器,以匹配該阻抗。然而,熟諳此技藝者將了 該第二電源可藉著一具有可控制輸出電壓之RF電源所 構,而沒有一額外之阻抗適配器。 雖然在該等圖面中未示出,該化合物電漿來源10 含一安裝在得宜位置之冷卻劑供給通道,以供給冷卻劑 譬如,該冷卻劑供給通道能夠安裝在該磁芯冷卻劑中。 冷卻劑供給通道能被架構成可貫穿該磁芯3 1之中心。 器 電 如 被 能 及 例 接 RF 線 源 數 雖 解 架 包 〇 該 該 -13- (11) 200812444 冷卻劑供給通道可被安裝在主體20內。此外,該冷卻 供給通道可被架構在該保護管3 3中所提供之電極40中 圖7及8係剖視圖,說明在該電漿放電室中形成氣 入口及氣體出口之範例。如在圖7及8所說明,該化合 電獎來源10包含一氣體入口 60,氣體係經過該氣體入 導入該電漿放電室21;及一氣體出口 61,氣體係經過 氣體出口由該電漿放電室21排出。該氣體入口 60及該 體出口 6 1係形成在該本體20之想要位置。 圖9係一視圖,說明根據本發明之具體實施例應用 一遠端電漿處理系統的化合物電漿來源。參考圖9,該 合物電漿來源10係安裝至一電漿處理室70,以建構該 端電漿處理系統,以遠端地提供該電漿。 該製程室70係連接至該化合物電漿來源10、容納 過該化合物電漿來源1 〇的氣體出口 6 1所排出之電漿、 包含一基板支撐件7 1,以支撐件一放置於該製程室70 之基板72。該基板支撐件7 1可包含一連接至偏向電源 之偏向電極(未示出),以加速該氣體離子微粒朝向該 板。該基板支撐件71亦可包含一加熱器,以加熱該 板。 圖1 0係一視圖,說明根據本發明之具體實施例應 於一處理基板的製程室之化合物電漿來源。參考圖10 ’ 架構一化合物電漿來源l〇a,使得一本體20用作一製 室。該電漿放電室21包含該基板支撐件71,以在其中 撐該基板72。該基板支撐件71可包含連接至該偏向電 劑 〇 體 物 □ 該 氣 於 化 遠 經 及 中 73 基 基 用 可 程 支 源 -14- (12) 200812444 73之偏向電極(未示出),以加速該氣體離子微粒朝向 基板。該基板支撐件7 1亦可包含一加熱器,以加熱該 板。 特別地是,於此組構中,該第二電容耦接電極40 連接至在該第二電源5 1及該接地之間切換的第一開 55。此外,該基板支撐件71可連接至在該偏向電源73 該接地之間切換的第二開關75。該第一及該第二開關 及75係彼此有關聯地反向操作。該第一及該第二開關 及75可爲包含浮動電位之三極開關。 於圖9及10中,該製程室70及20可爲實施該電 蝕刻之蝕刻室、或實施電漿沈積之沈積室、或剝除光阻 之鈾刻室。再者,該化合物電漿來源1 0對於處理諸如 體表面、粉末、氣體等之各種物質係有用的。此外,該 合物電漿來源1 〇能具有作爲一離子束來源之作用,用 注射離子或用於磨擠該離子。較佳地是,爲了利用該化 物電漿來源作爲該離子束來源,一適當之離子加速 係安裝環繞著該氣體出口 61。 圖1 1係一示範視圖,說明一化合物電漿來源之可 伸的結構。如圖1 1所示,於一化合物電漿來源1 0 b中 一芯31可被女裝至該電黎放電室21,使得待定位於 電漿放電室2 1中之磁芯3 1的零件係彼此平行。於此案 中,二磁芯保護管3 3及二第二電容耦接電極4 0係分別 裝在該電漿放電室21中。安裝此構造,該化合物電漿 源1 Ob能被延伸。此外,當該磁芯31之長度被拉長時 該 基 可 關 及 55 55 漿 層 固 化 於 合 器 延 該 例 安 來 -15- (13) (13)200812444 產生該電漿的一整個區域可全部被延伸。由於此延伸,根 據本發明之化合物電漿來源係很適合於一很寬廣之高密度 區域產生該電漿,且該電漿離子能量可被輕易地調整。 雖然本發明之一些具體實施例已被顯示及敘述,那些 熟諳此技藝者應了解可在此具體實施例中作各種變化,而 未由本發明之原理及精神脫離,其範圍係在該等申請專利 及其同等項中界定。 工業適用性 如上面所述,根據本發明之化合物電漿來源及利用該 來源以解離氣體的方法,一可延伸的化合物電漿來源係設 有控制電漿離子能量之高能力,且能夠藉著順應該電感耦 合電漿及該電容耦合電漿之優點處理一寬廣區域電漿。此 外,該方法使用該可延伸的化合物電漿來源讓一活性氣體 解離。 本發明之化合物電漿來源及利用該來源以解離氣體的 方法可被用在該電漿沈積、剝除該光阻層之蝕刻、及處理 諸如固體表面、粉末、氣體等各種物質之製程。再者,該 化合物電漿來源及解離氣體之方法能被用作一離子束來 源’用於注射該離子、及用於磨擠該離子。 【圖式簡單說明】 本發明之這些及/或其他態樣與優點將由該等具體實 施例之以下敘述、取自會同所附圖面而變得明顯及更輕易 -16- (14) (14)200812444 地了解,其中: 圖1係一剖視圖,說明根據本發明之一具體實施例的 化合物電漿來源; 圖2係取自圖1沿著剖線A-A之剖視圖; 圖3至6係各視圖,說明根據本發明之一具體實施例 的化合物電漿來源之電源的各種修改; 圖7及8係各剖視圖,說明形成電漿放電室中之氣體 入口及氣體出口的範例; 圖9係一視圖,說明根據本發明之一具體實施例應用 於遠端電漿處理系統的化合物電漿來源; 圖1 0係一視圖,說明根據本發明之一具體實施例應 用於處理基板的製程室之化合物電漿來源;及 圖1 1係一示範視圖,說明根據本發明之一具體實施 例的化合物電漿來源之可延伸的結構。 【主要元件符號說明】 1 0 :化合物電漿來源 1 0 a :化合物電漿來源 10b :化合物電漿來源 20 :本體 20 :第一電容耦接電極 2 1 :電漿放電室 22 :孑L 口 2 2 :絕緣區域 -17- (15) 200812444 30 :變壓器 3 1 :磁芯 3 2 :原繞組 3 3 :磁芯保護管 3 4 :磁場 3 5 :第一環形電場 40 :第二電容耦接電極 4 1 :絕緣區域 4 2 :第二徑向電場 5 0 :第一電源 5 1 :第二電源 5 2 :共用電源 5 3 :電源分配器 5 5 :第一開關 60 :氣體入口 6 1 :氣體出口 70 :製程室 7 1 :基板支撐件 72 :基板 第二開關 73 :偏向電源 7 5 ··200812444 (1) IX. INSTRUCTIONS OF THE INVENTION [Technical Field of the Invention] The present invention relates to a source of plasma for generating an active gas by plasma discharge, and more particularly to a source of a plasma of a compound using a structural device. The composite method produces capacitively coupled plasma and inductively coupled plasma. [Prior Art] Plasma discharge is used for a gas excitation for generating an active gas containing ions, radicals, atoms, molecules, and the like. These reactive gases are used in a variety of applications, typically in semiconductor processes such as uranium engraving, deposition, cleaning, and the like. There are several sources of plasma used to generate plasma. For example, capacitive coupling plasmas and inductively coupled plasmas that use frequent ratios are generally used. As is well known, a capacitively coupled plasma source has a higher process throughput than other plasma sources because of the ability to accurately adjust a capacitive coupling and ion. On the other hand, since the energy of the RF power source is coupled to the plasma via a proprietary capacitive coupling, the plasma ion density can be increased or decreased by merely increasing or decreasing the capacitively coupled RF power. However, since the increased power brings about an increased ion impact energy, there is a limit to prevent damage due to the ion impact. In addition, the source of the inductively coupled plasma can easily increase the ion density as the RF power source increases. Because of this, it is known that the inductively coupled plasma source is relatively low and suitable to obtain a high density plasma. However, since an inductive coil cannot control most or all of the plasma ion energy, it is necessary to add a separate device to control the plasma ion energy. For example, there is a biasing technique to apply a separate RF to a substrate support disposed in the process chamber. However, since it is difficult to control the plasma ion energy due to the bias applied to the substrate support, the deflection technique has the disadvantage of a low process productivity. At the same time, the size of a wafer or liquid crystal display (LCD) glass substrate used to fabricate a semiconductor device is gradually increasing. Thus, it is necessary to develop an extendable plasma source, and to control the plasma ion energy, and to process a large-sized glass substrate. SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems, and an aspect of the present invention provides an extensible source of a plasma of a compound which is coupled to an inductively coupled plasma and a capacitively coupled plasma. The advantages are the ability to control plasma ion energy and the ability to process plasma in a wide area; and a gas dissociation method that uses the plasma source of the compound to produce an active gas. Technical Solution According to one aspect of the present invention, the object of the present invention can be accomplished by the preparation of a chemical source of a compound. The plasma source of the compound may comprise a body to form a plasma discharge chamber, and comprises a first capacitive coupling electrode made of a conductive metal; a transformer comprising a * will be in contact with the electric discharge chamber Magnetic core and primary winding '-5- 200812444 (3) to generate an inductively coupled plasma in the plasma discharge chamber; a magnetic core protection tube to surround the magnetic core positioned in the plasma discharge chamber; A second capacitor is coupled to the electrode and mounted in the core protection tube. Preferably, the first capacitive coupling electrode may comprise an insulating region that forms electrical discontinuities such that the eddy current is minimized. Preferably, the second capacitive coupling electrode may comprise an insulating region that forms electrical discontinuities such that the eddy current is minimized. Preferably, the compound plasma source may further comprise a first power source for supplying power to the primary winding of the transformer for generating an inductively coupled plasma; and a second power source for supplying power to the The first capacitive coupling electrode or the second capacitive coupling electrode is configured to generate a capacitive coupling plasma. Preferably, the compound plasma source may further comprise a first impedance adapter coupled to the output end of the first power source; and a second impedance adapter coupled to the output end of the second power source. Preferably, the plasma source of the compound may further comprise a common power source for supplying power for generating the capacitive coupling plasma to the first capacitive coupling electrode or to the second capacitive coupling electrode, and Supplying power to the inductively coupled plasma to the primary winding of the transformer; and a power distributor to distribute the power to the first capacitive coupling electrode or to the second capacitive coupling electrode, and the original of the transformer Winding. Preferably, the plasma source of the compound may further comprise a common power source for supplying power for generating the capacitive coupling plasma to the first capacitive coupling electrode or to the second capacitive coupling electrode, and The power for generating the inductively coupled plasma is supplied to the primary winding of the transformer, and the first capacitor is coupled to the electric -6-(4) (4) 200812444 pole or the second capacitor coupling electrode and the original winding of the transformer Connected to the shared power source in series. Preferably, the source of the plasma of the compound may further comprise an impedance adapter coupled to the output end of the common power source. Preferably, the core protection tube may comprise a dielectric material. Preferably, the plasma source of the compound may further comprise a coolant supply passage mounted in the core protection tube. Preferably, the plasma source of the compound may further comprise a coolant supply channel formed in a central region of the core. Preferably, the plasma source of the compound may further comprise a gas inlet through which the gas system is introduced into the plasma discharge chamber; a gas outlet through which the gas system is discharged; and a process chamber to accommodate A plasma discharged through the gas outlet and including a substrate support mounted therein. Preferably, the substrate support can be coupled to a biasing power source. Preferably, the plasma source of the compound may further comprise a substrate support positioned in the plasma discharge chamber to load a substrate to be processed, and the substrate support may be coupled to a biasing source. Preferably, the plasma source of the compound may further comprise a first switch for switching the second capacitive coupling electrode between the second power source and the ground; and a second switch for the biasing power supply and The substrate support is switched between the grounds, and the first switch and the second switch can be associated with each other in a reverse operating relationship. According to another aspect of the present invention, there is provided a method of dissociating a gas using a compound (5) (5) 200812444 slurry source. The method includes: providing a body to form a plasma discharge chamber, and including a first capacitive coupling electrode made of a conductive metal; providing a transformer including a magnetic body to be coupled to the plasma discharge chamber a core and a primary winding for generating an inductively coupled plasma in the plasma discharge chamber; a magnetic core protection tube for surrounding a magnetic core positioned in the plasma discharge chamber; and an installation provided on the magnetic core protection a second capacitor in the tube is coupled to the electrode; and a compound plasma is generated. The compound plasma is capacitively coupled by driving the first and second capacitive coupling electrodes and inductively coupled by driving the transformer. Preferably, the first and second capacitive coupling electrodes are driven to provide an initial ionization operation prior to driving the transformer. Preferably, the gas system is selected from the group consisting of an inert gas, a reactive gas, and a gas mixture of the inert gas and the reactive gas. Advantageous Effects According to the source of the plasma of the compound of the present invention and the method of using the source to dissociate the gas, it is possible to provide an extendable compound electricity by using all of the advantages of the inductively coupled plasma and the capacitively coupled plasma. The source of the slurry has the ability to precisely control the ion energy of the plasma and to process large-sized objects, and to provide a gas dissociation method for generating an active gas. [Embodiment] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. An atmospheric plasma generator and an atmospheric plasma processing system having the atmospheric energy -8-200812444 (6) slurry generator will be more fully described. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a source of a compound plasma according to an embodiment of the present invention, and Figure 2 is a cross-sectional view taken along line A-A of Figure 。. Referring to Figures 1 and 2, a compound plasma source 10 in accordance with an embodiment of the present invention uses the inductively coupled plasma and the capacitively coupled plasma to dissociate the gases and produce the reactive gas. The compound plasma source 10 includes a magnetic core 31 to produce the inductively coupled plasma; and a transformer 30 having a primary winding 32. The magnetic core 3 1 is a toroidal ferromagnetic core and has a primary winding 32 wound thereon to form the transformer 30. The magnetic core 31 is made of a ferromagnetic material or another material such as iron, air or the like. Specifically, the magnetic core 31 is coupled to a body 2 such that a portion of the core 31 is placed on the inner side of the body 2 to form a plasma discharge chamber 21. The portion of the magnetic core 31 placed in the electric discharge chamber 21 is protected by a core protection tube 3 3 . The core protection tube 3 3 is preferably made of quartz, ceramic, and dielectric materials. Both ends of the core protection tube 3 3 are connected to the $2 apertures 22 formed in the side walls of the body 20 to face each other. The core protection tube 33 and the opening 22 of the side wall to which the body is attached are formed by a suitable sealing member (not shown). The body 20 is made of a metal material such as aluminum, stainless steel, copper or the like. The body 20 can also be made of a coated metal, such as an anodic gold or aluminum coated with nickel. The body 20 can also be made of refractory metal -9 - (7) (7) 200812444. A selection system, a generator body 20 can be made of an insulating material such as quartz, ceramic, etc., and can be made of any suitable material, wherein a desired plasma process is implemented. All of them are formed into a hollow cylindrical shape. However, it can be understood that the body 20 can be modified into a box shape or other various shapes. The primary winding 32 is electrically connected to a first power source 50. The first power source 5 An alternating current (AC) power source is used to supply RF power. Even though not shown in the drawings, an output end of the first power source 50 can have an impedance adapter to match the impedance. However, those skilled in the art are familiar with the art. It will be understood that the first power source can be provided by one The RF power supply controlling the output voltage is constructed without an additional impedance adapter. The compound plasma source 10 includes first and second capacitive coupling electrodes 20 and 40 to generate the capacitively coupled plasma. The first capacitive coupling The electrode 20 includes a body 20 having a conductive metal. In this embodiment, since the body 20 functions as the first capacitive coupling electrode 20, the body 20 and the first capacitive coupling electrode are assigned the same Reference numerals. However, it has been noted that the first capacitive coupling electrode 20 can be made of an additional conductive metal to be constructed around the body 20 and a specific portion of the body 20 on which the conductive metal is mounted The second capacitive coupling electrode 40 is mounted on the inner side of the magnetic core protection tube 33. Preferably, the second capacitive coupling electrode 40 has a cylindrical shape to surround the inserted The magnetic core protects the entire core 31 of the tube 3. The second capacitive coupling electrode 40 can be made of the same material as the first capacitive coupling electrode 20-10-(8) (8)200812444 The second capacitor is coupled to the electrode The 40 series is electrically connected to the second power source 51, and the first capacitive coupling electrode 20 is grounded. The first capacitive coupling electrode 20 serves as a cathode, and the second capacitive coupling electrode 40 serves as an anode. However, the functions may be exchanged if necessary. The second power source 51 is an AC power source for supplying an RF power. Although not shown in the drawings, at the output end of the second power source 51, An impedance adapter for the impedance matching is installed. However, those skilled in the art will appreciate that the second power source can be configured to form an RF power source having a controllable output voltage without the additional impedance adapter. The capacitive coupling electrodes 20 and 40 include insulating regions 22 and 411, respectively, to form the electrical discontinuities to minimize eddy currents due to the inductively coupled plasma. When the first and second power sources 50 and 51 respectively supply power to the compound plasma source 10, a first annular electric field 35 and a second radial electric field 42 are generated in the plasma discharge chamber 21, such as The dotted lines in Figs. 1 and 2 are indicated separately. Thus, the capacitively coupled plasma and the inductively coupled plasma are produced in the plasma discharge chamber 21 in a composite pattern. The first electric field 35 is induced by the transformer 30, and the second electric field 42 is generated by the first and second capacitive coupling electrodes 20 and 40. In other words, the annular first electric field 35 is induced to surround the entire magnetic field placed in the plasma discharge chamber 21 due to a magnetic field 34 flowing along the core 31 through the primary winding 32. Core protection tube 33. The first -11 - (9) (9) 200812444 electric field 35 produces the inductance depending on the plasma to complete the first loop of the transformer 30. As described above, the capacitively coupled plasma and the inductively coupled plasma are produced in the chargeable discharge chamber 21 in a composite manner. b is otherwise 'since the first electric field 35 intersects the second electric field 42' in the vertical direction. The helical motion of the gas ion particles accelerates in the plasma discharge chamber 21 to cause a high ability to dissociate the gas. Therefore, the density of the plasma ions can be easily controlled by controlling the electric power of the first and second power sources 50 and 51. In other words, the density of the plasma ions can be obtained without an excessive increase in the ion energy. In addition, since the first electric field 35 is substantially parallel to the body 20 and the core protection tube 3 3 ' due to the gas ion particles accelerated by the first electric field 35 and the second electric field 42 The damage caused by the ion impact caused by the internal wall surface of the plasma discharge chamber 21 is minimized, and the generation of harmful particles is minimized. The gas may be selectively injected into the plasma discharge chamber 2 1 by a group comprising an inert gas, a reactive gas, or a gas mixture of the inert gas and the reaction gas. The first and second capacitive coupling electrodes 20 and 40 are driven to provide an initial ionization operation prior to driving the transformer 30. Figures 3 through 6 are various views illustrating various modifications of the power source of the compound plasma source 10. The above-mentioned compound plasma source 10 can be modified in various forms as will be described later. Referring to Fig. 3, as a modification, the compound plasma source 1 can be supplied to the transformer 30 via the single shared power source 52 and the first and the first electric grid electrodes 20 and 40. For this, a *power splitter -12-(10) 200812444 53 can be mounted to the output end of the shared power source 52. The power distribution 53 can form a power distribution path using a transformer or a parallel capacitor. In addition, the power distributor 53 can be constructed in various electronic circuits. If the capacitance of the transformer or the parallel capacitor is variable, the power is appropriately adjusted. Referring to FIG. 4, as another modification, the compound plasma source l connects the transformer 30 and the first and second capacitor scale electrodes 2〇40 in series to the single common power source 53. Architecture. In this case, as illustrated in Figure 5, the second capacitive coupling electrode 40 can be grounded. The shared power source 52 is an alternating current (a C) power source for supplying power. Referring to FIG. 6' as yet another modification, by fabricating the second capacitive coupling electrode 40 in the form of a single metal wire, the compound plasma can be framed to have an antenna and an induction coil antenna. effect. Thus, the RF power source can be reduced by using the shared power source 52, so that a simple compound plasma source 10 can be fabricated at low cost. However, not shown in the drawings, the end of the second power source 50 may be provided with an impedance adapter to match the impedance. However, those skilled in the art will have the second power source constructed by an RF power supply having a controllable output voltage without an additional impedance adapter. Although not shown in the drawings, the compound plasma source 10 includes a coolant supply passage mounted at a suitable location for supplying a coolant, for example, the coolant supply passage can be installed in the core coolant. The coolant supply passage can be formed by the frame to penetrate the center of the magnetic core 31. If the number of RF lines is enabled and the number of RF lines is removed, the -13- (11) 200812444 coolant supply channel can be installed in the main body 20. Further, the cooling supply passage can be constructed in the electrode 40 provided in the protective tube 33. Figs. 7 and 8 are cross-sectional views showing an example of forming a gas inlet and a gas outlet in the plasma discharge chamber. As illustrated in Figures 7 and 8, the compound electric prize source 10 includes a gas inlet 60 through which the gas system is introduced into the plasma discharge chamber 21, and a gas outlet 61 through which the gas system passes through the gas outlet. The discharge chamber 21 is discharged. The gas inlet 60 and the body outlet 61 are formed at desired positions of the body 20. Figure 9 is a view of a source of compound plasma applied to a remote plasma processing system in accordance with an embodiment of the present invention. Referring to Figure 9, the plasma source 10 is mounted to a plasma processing chamber 70 to construct the end plasma processing system to provide the plasma remotely. The process chamber 70 is connected to the plasma source of the compound 10, the plasma discharged from the gas outlet 61 of the compound plasma source, and comprises a substrate support member 711, and the support member is placed in the process. The substrate 72 of the chamber 70. The substrate support 71 may include a deflecting electrode (not shown) coupled to the biasing source to accelerate the gas ion particles toward the plate. The substrate support member 71 may also include a heater to heat the plate. Figure 10 is a view illustrating a source of a compound plasma that is applied to a process chamber of a substrate in accordance with an embodiment of the present invention. Referring to Figure 10', a compound plasma source 10a is used such that a body 20 is used as a chamber. The plasma discharge chamber 21 includes the substrate support 71 to support the substrate 72 therein. The substrate support member 71 may include a deflecting electrode (not shown) connected to the biasing agent body □ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ The gas ion particles are directed toward the substrate. The substrate support member 71 may also include a heater to heat the plate. In particular, in this configuration, the second capacitive coupling electrode 40 is coupled to a first opening 55 that switches between the second power source 51 and the ground. Further, the substrate support 71 can be connected to a second switch 75 that switches between the grounding of the biasing power source 73. The first and second switches and 75 are operated in reverse relative to one another. The first and second switches and 75 can be three-pole switches that include a floating potential. In Figures 9 and 10, the process chambers 70 and 20 can be an etch chamber for performing the etch, or a deposition chamber for plasma deposition, or a uranium engraving chamber for stripping the photoresist. Further, the compound plasma source 10 is useful for treating various substances such as body surfaces, powders, gases, and the like. In addition, the plasma source of the compound can function as an ion beam source for injecting ions or for milling the ions. Preferably, in order to utilize the source of the chemical plasma as the source of the ion beam, a suitable ion acceleration system is installed around the gas outlet 61. Figure 11 is an exemplary view showing the stretchable structure of a compound plasma source. As shown in FIG. 11, a core 31 of a compound plasma source 10b can be worn by the electrician to the electric discharge chamber 21, so that the part of the magnetic core 3 1 to be positioned in the plasma discharge chamber 21 is Parallel to each other. In this case, the two core protection tube 3 3 and the second second capacitor coupling electrode 40 are respectively mounted in the plasma discharge chamber 21. With this configuration installed, the compound plasma source 1 Ob can be extended. In addition, when the length of the magnetic core 31 is elongated, the base can be closed and the 55 55 slurry layer is solidified in the joint extension. An -15-(13) (13) 200812444 produces an entire area of the plasma. All are extended. Because of this extension, the plasma source of the compound according to the present invention is well suited for producing a plasma in a wide, high density region, and the plasma ion energy can be easily adjusted. While the invention has been shown and described, it will be understood by those skilled in the art And its equivalent. Industrial Applicability As described above, according to the source of the plasma of the compound of the present invention and the method of using the source to dissociate the gas, an extendable source of the plasma is provided with a high ability to control the plasma ion energy, and is capable of A wide area of plasma is treated in accordance with the advantages of the inductively coupled plasma and the capacitively coupled plasma. In addition, the method uses a source of the extensible compound plasma to dissociate an active gas. The source of the plasma of the compound of the present invention and the method of dissociating the gas using the source can be used in the process of depositing the plasma, etching the photoresist layer, and treating various substances such as solid surfaces, powders, gases, and the like. Furthermore, the plasma source of the compound and the method of dissociating the gas can be used as an ion beam source for injecting the ions and for milling the ions. BRIEF DESCRIPTION OF THE DRAWINGS These and/or other aspects and advantages of the present invention will be apparent from the following description of the specific embodiments and from the accompanying drawings. Figure 1 is a cross-sectional view showing a source of a compound plasma according to an embodiment of the present invention; Figure 2 is a cross-sectional view taken along line AA of Figure 1; Figures 3 to 6 are views BRIEF DESCRIPTION OF THE DRAWINGS Various modifications of a power source of a compound plasma according to an embodiment of the present invention are illustrated; FIGS. 7 and 8 are cross-sectional views illustrating an example of forming a gas inlet and a gas outlet in a plasma discharge chamber; FIG. A source of a compound plasma applied to a remote plasma processing system in accordance with an embodiment of the present invention; FIG. 10 is a view illustrating a compound electricity applied to a process chamber for processing a substrate in accordance with an embodiment of the present invention Slurry source; and Figure 11 is an exemplary view illustrating an extendable structure of a compound plasma source in accordance with an embodiment of the present invention. [Main component symbol description] 1 0 : Compound plasma source 1 0 a : Compound plasma source 10b: Compound plasma source 20: Body 20: First capacitor coupling electrode 2 1 : Plasma discharge chamber 22: 孑L port 2 2 : Insulation area -17- (15) 200812444 30 : Transformer 3 1 : Core 3 2 : Primary winding 3 3 : Core protection tube 3 4 : Magnetic field 3 5 : First toroidal electric field 40 : Second capacitance coupling Connecting electrode 4 1 : insulating region 4 2 : second radial electric field 5 0 : first power source 5 1 : second power source 5 2 : common power source 5 3 : power distributor 5 5 : first switch 60 : gas inlet 6 1 : gas outlet 70 : process chamber 7 1 : substrate support 72 : substrate second switch 73 : bias power supply 7 5 ··

Claims (1)

Translated fromChinese
200812444 (1) 十、申請專利範圍 1. 一種化合物電漿來源,其包含: 一本體,以形成一電漿放電室,且包含由導電金屬所 製成之第一電容耦接電極; 一變壓器,其包含一將與該電漿放電室耦合之磁芯及 原繞組,以於該電漿放電室中產生一電感耦合電漿; 一磁芯保護管,以圍繞著定位在該電漿放電室中之磁 芯;及 一第二電容耦接電極,其安裝在該磁芯保護管中。 2 .如申請專利範圍第1項之化合物電漿來源,其中該 第一電容耦接電極包含一形成電不連續性之絕緣區域,使 得該渦電流被減至最小。 3 .如申請專利範圍第1或2項之化合物電漿來源,其 中該第二電容耦接電極包含一形成電不連續性之絕緣區 域,使得該渦電流被減至最小。 4.如申請專利範圍第1項之化合物電漿來源,另包 含: 一第一電源,以將電力供給至該變壓器之原繞組,用 於產生一電感耦合電漿;及 一第二電源,以將電力供給至該第一電容耦接電極或 該第二電容耦接電極,用於產生一電容耦合電漿。 5 .如申請專利範圍第 4項之化合物電漿來源,另包 含: 一第一阻抗適配器,其連接至該第一電源之輸出端 -19- 200812444 (2) 部;及 一第二阻抗適配器,其連接至該第二電源之輸出端 部。 6.如申請專利範圍第1項之化合物電漿來源,另包 含·· 一共用電源,以將用於產生電容耦合電漿之電力供給 至該第一電容耦接電極或至該第二電容耦接電極’及將用 於產生電感耦合電漿之電力供給至該變壓器之原繞組;及 一電源分配器,以將該電力分配至該第一電容耦接電 極或至該第二電容耦接電極、及該變壓器之原繞組。 7 ·如申請專利範圍第1項之化合物電漿來源,另包含 一共用電源,以將用於產生電容耦合電漿之電力供給至該 第一電容耦接電極或至該第二電容耦接電極,及將用於產 生電感耦合電漿之電力供給至該變壓器之原繞組,其中該 第一電容耦接電極或該第二電容耦接電極及該變壓器之原 繞組係串連地連接至該共用電源。 8 .如申請專利範圍第6或7項之化合物電漿來源,另 包含一連接至該共用電源之輸出端部的阻抗適配器。 9 ·如申請專利範圍第1項之化合物電漿來源,其中該 磁芯保護管包含一介電材料。 1 〇 ·如申請專利範圍第1項之化合物電漿來源,另包 含一安裝在該磁芯保護管中之冷卻劑供給通道。 1 1 .如申請專利範圍第1項之化合物電漿來源,另包 含一形成在該磁芯的中心區域中之冷卻劑供給通道。 -20- 200812444 (3) 1 2 ·如申請專利範圍第1項之化合物電漿來源,另包 含·· 一氣體入口,氣體係經過該氣體入口導入該電漿放電 室; 一氣體出口,該氣體係經過該氣體出口排出;及 一製程室,以容納一經過該氣體出口排出之電漿,且 包含一安裝在其中之基板支撐件。 1 3 ·如申請專利範圍第1 2項之化合物電漿來源,其中 該基板支撐件係連接至一偏向電源。 14.如申請專利範圍第1項之化合物電漿來源,另包 含一定位在該電漿放電室中之基板支撐件,以裝載一待處 理之基板,其中該基板支撐件係連接至一偏向電源。 1 5 ·如申請專利範圍第1 4項之化合物電漿來源,另包 含: 一第一開關,以在該第二電源及該接地之間切換該第 二電容耦接電極;及 一第二開關,以在該偏向電源及該接地之間切換該基 板支撐件,其中 該第一開關及該第二開關係以一反向操作關係彼此有 關聯。 1 6. —種利用化合物電漿來源解離氣體之方法,其包 含: 提供一本體,以形成一電漿放電室,且該本體包含由 導電金屬所製成之第一電容耦接電極; -21 - 200812444 (4) 提供一變壓器,該變壓器包含一將與該電漿放電室耦 合之磁芯及原繞組,以於該電漿放電室中產生一電感耦合 電漿; 提供一磁芯保護管,以圍繞著定位在該電漿放電室中 之磁芯 ; 提供一安裝在該磁芯保護管中之第二電容耦接電極; 及 產生一化合物電漿,該化合物電漿藉由驅動該第一及 第二電容耦接電極而電容地耦合及藉由驅動該變壓器而電 感地耦合。 1 7 .如申請專利範圍第1 6項的解離氣體之方法,其中 驅動該第一及第二電容耦接電極,以在驅動該變壓器之前 提供一最初的離子化操作。 1 8 ·如申請專利範圍第1 6項的解離氣體之方法,其中 該氣體係選自惰性氣體、反應氣體、及該惰性氣體與該反 應氣體之氣體混合物的一群組。 -22-200812444 (1) X. Patent application scope 1. A compound plasma source, comprising: a body to form a plasma discharge chamber, and comprising a first capacitive coupling electrode made of a conductive metal; a transformer, The magnetic core and the primary winding are coupled to the plasma discharge chamber to generate an inductively coupled plasma in the plasma discharge chamber; a magnetic core protection tube positioned to surround the plasma discharge chamber a magnetic core; and a second capacitive coupling electrode mounted in the magnetic core protection tube. 2. The source of the plasma of the compound of claim 1, wherein the first capacitive coupling electrode comprises an insulating region that forms an electrical discontinuity such that the eddy current is minimized. 3. A source of a plasma of a compound of claim 1 or 2, wherein the second capacitive coupling electrode comprises an insulating region that forms an electrical discontinuity such that the eddy current is minimized. 4. The source of the plasma of the compound of claim 1 further comprising: a first power source for supplying power to the primary winding of the transformer for generating an inductively coupled plasma; and a second power source for Power is supplied to the first capacitive coupling electrode or the second capacitive coupling electrode for generating a capacitive coupling plasma. 5. The source of the plasma of the compound of claim 4, further comprising: a first impedance adapter connected to the output end of the first power source -19-200812444 (2); and a second impedance adapter, It is connected to the output end of the second power source. 6. The source of the plasma of the compound of claim 1 further comprising: a common power source for supplying power for generating the capacitively coupled plasma to the first capacitive coupling electrode or to the second capacitive coupling And a power supply to the primary winding of the transformer; and a power distributor to distribute the power to the first capacitive coupling electrode or to the second capacitive coupling electrode And the original winding of the transformer. 7. The source of the plasma of the compound of claim 1 further comprising a common power source for supplying power for generating the capacitively coupled plasma to the first capacitive coupling electrode or to the second capacitive coupling electrode And supplying power for generating the inductively coupled plasma to the primary winding of the transformer, wherein the first capacitive coupling electrode or the second capacitive coupling electrode and the primary winding of the transformer are connected in series to the common power supply. 8. The source of the plasma of the compound of claim 6 or 7 further comprising an impedance adapter connected to the output end of the shared power source. 9. The source of the plasma of the compound of claim 1, wherein the core protection tube comprises a dielectric material. 1 〇 • The source of the plasma of the compound of claim 1 is included, and a coolant supply passage installed in the core protection tube. 1 1. The source of the plasma of the compound of claim 1 further comprising a coolant supply passage formed in a central region of the core. -20- 200812444 (3) 1 2 · The source of the plasma of the compound of claim 1 of the patent scope, further comprising a gas inlet through which the gas system is introduced into the plasma discharge chamber; a gas outlet, the gas And exiting through the gas outlet; and a process chamber for accommodating a plasma discharged through the gas outlet and including a substrate support member mounted therein. 1 3 . The source of the plasma of the compound of claim 12, wherein the substrate support is connected to a biasing source. 14. The source of the plasma of the compound of claim 1 further comprising a substrate support positioned in the plasma discharge chamber for loading a substrate to be processed, wherein the substrate support is coupled to a biasing source . 1 5 - The source of the plasma of the compound of claim 14 of the patent application, further comprising: a first switch for switching the second capacitive coupling electrode between the second power source and the ground; and a second switch And switching the substrate support between the biasing power source and the ground, wherein the first switch and the second opening relationship are associated with each other in a reverse operating relationship. 1 6. A method for dissociating a gas using a compound plasma source, comprising: providing a body to form a plasma discharge chamber, and the body comprises a first capacitive coupling electrode made of a conductive metal; - 200812444 (4) providing a transformer comprising a magnetic core and a primary winding to be coupled to the plasma discharge chamber to generate an inductively coupled plasma in the plasma discharge chamber; providing a magnetic core protection tube, Surrounding a magnetic core positioned in the plasma discharge chamber; providing a second capacitive coupling electrode mounted in the magnetic core protection tube; and generating a compound plasma, the compound plasma driving the first And the second capacitor is coupled to the electrode and capacitively coupled and inductively coupled by driving the transformer. A method of dissociating a gas according to claim 16 wherein the first and second capacitive coupling electrodes are driven to provide an initial ionization operation prior to driving the transformer. The method of dissociating a gas according to claim 16 of the patent application, wherein the gas system is selected from the group consisting of an inert gas, a reaction gas, and a gas mixture of the inert gas and the reaction gas. -twenty two-
TW096112804A2006-04-112007-04-11Compound plasma source and method for dissociating gases using the sameTWI439186B (en)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
KR1020060032985AKR100972371B1 (en)2006-04-112006-04-11 Complex Plasma Source and Gas Separation Method Using the Same

Publications (2)

Publication NumberPublication Date
TW200812444Atrue TW200812444A (en)2008-03-01
TWI439186B TWI439186B (en)2014-05-21

Family

ID=38581351

Family Applications (1)

Application NumberTitlePriority DateFiling Date
TW096112804ATWI439186B (en)2006-04-112007-04-11Compound plasma source and method for dissociating gases using the same

Country Status (3)

CountryLink
KR (1)KR100972371B1 (en)
TW (1)TWI439186B (en)
WO (1)WO2007117122A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR100955207B1 (en)*2007-10-222010-04-29다이나믹솔라디자인 주식회사 Capacitively Coupled Plasma Reactor for Dual-Substrate Processing
KR100979188B1 (en)*2007-12-172010-08-31다이나믹솔라디자인 주식회사 Physical Vapor Deposition Plasma Reactor with Multi-Source Target Assembly
KR100979189B1 (en)*2007-12-202010-08-31다이나믹솔라디자인 주식회사 Continuous substrate processing system
KR101314666B1 (en)*2011-11-282013-10-04최대규Hybride plasma reactor
KR102194604B1 (en)*2019-05-022020-12-24주식회사 유진테크Batch type substrate processing apparatus
CN110718437A (en)*2019-09-162020-01-21明远精密科技股份有限公司 remote plasma generator
GB2590614B (en)2019-12-162022-09-28Dyson Technology LtdMethod and apparatus for use in generating plasma

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20020029743A (en)*1999-08-062002-04-19로버트 엠. 포터Inductively coupled ring-plasma source apparatus for processing gases and materials and method thereof
KR100599461B1 (en)*2003-06-242006-07-12위순임 Atmospheric Pressure Plasma Generator and Plasma Process System
JP4083716B2 (en)*2004-07-292008-04-30松下電器産業株式会社 Plasma processing method and plasma processing apparatus

Also Published As

Publication numberPublication date
KR100972371B1 (en)2010-07-27
KR20070101067A (en)2007-10-16
TWI439186B (en)2014-05-21
WO2007117122A1 (en)2007-10-18

Similar Documents

PublicationPublication DateTitle
JP5747231B2 (en) Plasma generating apparatus and plasma processing apparatus
KR100499763B1 (en)Plasma etching device
US8222157B2 (en)Hybrid RF capacitively and inductively coupled plasma source using multifrequency RF powers and methods of use thereof
KR101920842B1 (en)Plasma source design
JPH02235332A (en)Plasma processor
CN102197714A (en)Plasma source for chamber cleaning and process
KR20100031960A (en)Plasma generating apparatus
US20010017109A1 (en)Enhanced plasma mode and system for plasma immersion ion implantation
KR100803794B1 (en) Inductively coupled plasma source with plasma discharge tube embedded in magnetic core block
TWI439186B (en)Compound plasma source and method for dissociating gases using the same
KR101496841B1 (en)Compound plasma reactor
JPH06267903A (en)Plasma device
KR100455350B1 (en)Device for prducing inductively coupled plasma and method
KR100871887B1 (en)Inductively coupled plasma treatment apparatus
KR100845917B1 (en) Inductively Coupled Plasma Reactor for Large Area Plasma Treatment
JP3197739B2 (en) Plasma processing equipment
KR100743842B1 (en) Plasma reactor with plasma chamber coupled to the flux channel
JPH1140544A (en)Reactive ion etching equipment
KR100391180B1 (en)Method and apparatus for plasma chemical treatment of a substrate surface
KR20170139759A (en)Plasma chamber having gas distribution plate for uniform gas distribution
KR100753869B1 (en) Hybrid Plasma Reactor
US6432730B2 (en)Plasma processing method and apparatus
KR100772447B1 (en) Inductively Coupled Plasma Source with Built-in Magnetic Core
KR100433032B1 (en)Photo-resister ashing system
JP3884854B2 (en) Reactive ion etching system

Legal Events

DateCodeTitleDescription
MM4AAnnulment or lapse of patent due to non-payment of fees

[8]ページ先頭

©2009-2025 Movatter.jp