200522579 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於通信系統,更明確地說,係關於廣播 與多播内容的傳送。 【先前技術】 無線通信系統傳統上已用於載送語音流量及低資料速率 之非語音流量。今日的無線通信系統係朝可載送高速資料 率(HDR)多媒體流量(例如視訊、資料、以及其它類型的流 量)的方式來設計。多媒體廣播及多播服務(MBMS)頻道可 用來傳輸以語音、聲音以及視訊資料源為主的串流應用, 例如無線電廣播、電視廣播、以及其它類型的聲音或視訊 内容。串流資料源能忍受延遲以及特定的遺失量或位元錯 誤數,因為該些資料源有時候係間歇性且通常會被壓縮。 就此而言,抵達無線電存取網路(RAN)之傳輸資料率可能 會有很大的變化。因為應用緩衝器通常係有限的,所以, 需要MBMS傳輸機制以支援可變的資料源資料率。 【發明内容】 基地台通常會藉由傳輸一時常被組織成複數個封包的資 訊信號以提供此等多媒體流量服務給用戶台。一個封包可 能係-群可被配置成特定格式的位元組,其包含資料(酬載) 以及控制元素。該等控制元件可包含,例如,一前文及一 品質權值,該權值可包括一循環冗餘檢查(cyciicai redundancy check ; CRC)、同位位元(一或多個)及其他類型 權值。一般依據一通信頻道結構而將該等封包格式化成一 95689.doc 200522579 Λ息。δ亥"fa息會在起源終端機及目的終端機之間傳关、、 且可能會受到該通信頻道特徵的影響,例如信號雜气比 信號衰減、時間變異、及其它類似的特徵。此類特徵可對 不同頻道内之已調變信號有不同影響。在其它的考量中 於一無線通信頻道上傳輸一經調變之資訊信號必須選擇正 確的方法來保護該經調變信號中的資訊。舉例來說,此等 方法包括,編碼法、符號重複法、交錯法、及熟習本技藏 的人士所熟知的其它方法。不過,該些方法都會增加附加 資料。所以,設計工程必須在訊息輸送可靠度與負擔量之 間作一折衷。 操作者通常會視有興趣接收該MBMS内容的用戶台咬使 用者設備(UE)的數量以逐個細胞為基礎來選擇點對點 (ΡΤΡ)連接或點對多點(ρτμ)連接。 點對點(ΡΤΡ)傳輸會使用專屬頻道來發送該服務給涵蓋 區域中被選定的使用者。「專屬」頻道會載送送往/來自單 一用戶台的資訊。點對點(ΡΤΡ)傳輸中,可使用一分離的頻 道來傳輸給每個行動台。舉例來說,可經由被稱為專屬流 i頻道(DTCH)的邏輯頻道於前向連結或下行連結方向中來 發送其中一項使用者服務的專屬使用者流量。舉例來說, 若泫涵蓋區域中沒有足夠多的使用者需要特定的多媒體廣 播及多播服務(MBMS)的話,點對點(PTP)通信服務通常係最 有效的。於此等情況中可使用點對點(ρτρ)傳輸,其中基 地台僅會將該服務傳輸給要求該項服務的特定使用者。舉 例來說,於WCDMA系統中,於超過預設數量行動台以前, 95689.doc 200522579 使用專屬頻道或點對點(PTP)傳輸會比較有效。 「廣播通信」或「點對多點(ΡΤΜ)通信」躲—共同通 信頻道上和複數部行動台進行通信。一「共同」頻道會載 在/源自多部用戶台的資訊,並且可被數部終端機同 較用。於點對多點(PTM)通信服務中,若該基地台之涵 蓋區域内需要該項服務的使用者數量超過預設臨界數量的 話,一細胞式基地台便可於一共同頻道上廣播多媒體流量 服務。於CDMA 2000系統中,通常會利用廣播或點對多點 (PTM)傳輸來取代PtP傳輸,因為ptM無線電承載幾乎與 無線電承載同樣有效。源、自—特殊基地台的共同頻道傳輸 未必要與源自其它基地台的共同頻道傳輸產生同步。於一 典型的廣播系統中,會有一部以上的中央台來服務一使用 者廣播網。該(等)中央台可傳輸資訊給所有的用戶台,或 疋給一群特定的用戶台。參與廣播服務的每部用戶台間會 監視一共同前向連結信號。點對多點(pTM)傳輸可能係位 於下行連結或前向共同頻道上。通f會於—單向頻道(例 如存在於岫向連結或「下行連結」方向中的共同流量頻道 (CTCH))上來廣播此共同廣播前向連結信號。由於此頻道 係單向的關係’所以該用戶台通常不會與基地台進行通 乜,因為允彳所有用戶單元反向與該基地台進行通信可能 會讓該通信系統超載。因此,於點對多點(pTM)通信服務 的月景中,田被s亥等用戶台接收的資訊中有錯誤時,該等 用戶台可能無法反向與該基地台進行通信。因此,吾人可 能需要其它的資訊保護方法。 95689.doc 200522579 於CDMA 2000系統中,該用 用戶台可於點對多點(PTM)傳 二=:結合。即使當採取步驟來保護該資訊信號,通 ==Γ可能會衰減,致使目的台無法對於專屬 頻道上被傳輸的部份封包進行解碼。於此等情況中,其中 將is方式係由目的(用戶)台利用自動重發要求(ARQ) ^亥專未被解碼的封包重新傳輪給起源(基地)台。重新傳 輸有助於確保該資料封包的偯私 m ㈣輪。若無法正確傳輪該資料 的話,便可告知傳輸端的尺1^使用者。 用戶台通常會於數種情境中進行傳輸。可^同的方式 來歸類該些傳輸。舉例來說,可將傳輸歸類為「交叉傳 輪」以及「直接傳輸」。亦可將傳輸歸類為「細胞間」傳 輸以及「細胞内」傳輸。 細胞間或傳輸架構間的移轉可能會導致使用者不毕見的 服務中斷。當用戶台或使用者設備⑽)從其中—個細胞移 至另-個細胞或是當該服務細胞中的多媒體廣播與多播服 務(MBMS)内容的傳送從其中-種模式變成另-種模式時 便可能會發生問題。相鄰細胞的傳輸可能會彼此產生如 的時間偏移。再者,於移轉期間可能會引起額外的延遲, 因為該行動台必須決定該目標細胞中的系統資訊,此決定 作業需要w的特定時間處理量。由不同細胞(或是不同傳 輸頻道類型點對點(PTP)/點對多點(PTM))所傳輸的資料串 可能會彼此互相抵銷。所以’於不同細胞的點對多點(漬) 傳輸期間,行動台可能或會接收到兩次的相同的内容區塊, 或是部份的内容區塊可能會遺失’這些都是服務品質所不 95689.doc 200522579 桌見的h形。視移轉的持續時間以及傳輸間的延遲或對齊 偏差而疋,細胞間及/或點對點(ptp)傳輸與點對多點(PTM) 傳輸間的移轉可能會造成服務中斷。 斤以本技術所需要的傳輸技術將可提供服務連續性以 及,少因使用者設備(UE)從一細胞移至另一細胞時發生移 轉或疋*相同服務細胞中的内容傳送從點對點(ρτρ)連接 改支成點對多點(ΡΤΜ)連接(反之亦然)時發生移轉所造成 的内容傳送中斷情形。此等傳輸技術較佳的係可於複數個 細胞邊界上及/或不同傳輸架構(例如點對多點(ΡΤΜ)以及 乂對點(ΡΤΡ))間提供無縫式傳送。同時還希望有可於此等 ㈣期間調整不同資料串以及從每個資料區塊中來還原内 容的機制,致使不會於移轉期間遺失資料。此外還希望在 接收終端機處提供可於解碼期間重新排列資料的機制。 【實施方式】 本文中使用的「範例」一詞係表示「作為一範例」或「說 明」。在此說明的作為任一「示範性」具體實施例不必解釋 為較佳具體實施例或優於其他具體實施例。 本文所使用的「行動台」一詞可與「目的台」、「用戶台」、 「用戶單元」、「終端機」、以及「使用者設備(UE)」等詞互 換,而且本文中係代表可和一存取網路(例如UMTS陸地無 線電存取網路(UTRAN))進行通信的硬體(例如基地台)。於 UMTS系統中,使用者設備(ue)係一種可讓使用者存取 UMTS網路服務的元件,而且較佳的係還包含一含有全部使 用者之訂購資訊的USIM。一行動台可為移動的或靜止的, 95689.doc -10 - 200522579 並一般可包括任何經由一無線頻道或 、$故由一有線頻道而通 信(例如,使用光纖或同軸電纜)之發勃 % m機、資料元件或終端 機。行動台可在包括但不限於pC + 卞、小型快閃記憶體 (compact flash)、外部或内部數據機, 倮戰,或者,無線或有線電 話之類的元件中得到具體化。 「連接設定狀態」一詞代表的係_彳 仃動台正在與一基地 台建立主動流量頻道連接的狀態。200522579 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates generally to communication systems, and more specifically, to the transmission of broadcast and multicast content. [Prior art] Wireless communication systems have traditionally been used to carry voice traffic and non-voice traffic with low data rates. Today's wireless communication systems are designed to carry high-speed data rate (HDR) multimedia traffic, such as video, data, and other types of traffic. Multimedia Broadcast and Multicast Service (MBMS) channels can be used for streaming applications that are primarily voice, sound, and video sources, such as radio broadcasts, television broadcasts, and other types of sound or video content. Streaming data sources can tolerate delays and specific loss or bit error numbers because these data sources are sometimes intermittent and are often compressed. In this regard, the transmission data rate to the radio access network (RAN) may vary significantly. Because application buffers are usually limited, MBMS transmission mechanisms are required to support variable data source data rates. [Summary of the Invention] The base station usually provides such multimedia traffic services to user stations by transmitting information signals that are often organized into a plurality of packets. A packet may be a group-group that can be configured into bytes in a specific format that contains data (payload) and control elements. The control elements may include, for example, a preamble and a quality weight, which may include a cyclic redundancy check (CRC), parity bit (s), and other types of weights. These packets are generally formatted into a 95689.doc 200522579 message based on a communication channel structure. The delta signal will be transmitted between the originating terminal and the destination terminal, and may be affected by the characteristics of the communication channel, such as signal noise ratio, signal attenuation, time variation, and other similar characteristics. Such characteristics can have different effects on modulated signals in different channels. Among other considerations, the transmission of a modulated information signal on a wireless communication channel must select the correct method to protect the information in the modulated signal. These methods include, for example, coding methods, symbol repetition methods, interleaving methods, and other methods well known to those skilled in the art. However, these methods will add additional information. Therefore, the design project must make a compromise between the reliability of the information transmission and the burden. Operators usually select point-to-point (PTP) connections or point-to-multipoint (ρτμ) connections on a cell-by-cell basis depending on the number of user equipment (UE) bites from user stations interested in receiving the MBMS content. Point-to-point (PTP) transmissions use dedicated channels to send the service to selected users in the coverage area. "Exclusive" channels carry information to / from a single user station. In point-to-point (PTP) transmission, a separate channel can be used to transmit to each mobile station. For example, a dedicated user traffic of one of the user services may be sent in a forward link or a downlink direction through a logical channel called a dedicated stream i channel (DTCH). For example, point-to-point (PTP) communication services are usually the most effective if there are not enough users in the coverage area to require specific multimedia broadcasting and multicast services (MBMS). In these cases, point-to-point (ρτρ) transmission can be used, where the base station will only transmit the service to the specific user requesting the service. For example, in a WCDMA system, before exceeding a preset number of mobile stations, 95689.doc 200522579 will be more effective using dedicated channels or point-to-point (PTP) transmissions. "Broadcast communication" or "point-to-multipoint (PTM) communication" hiding—Communication channels communicate with multiple mobile stations. A "common" channel will contain / derive information from multiple subscriber stations and can be compared across several terminals. In point-to-multipoint (PTM) communication services, if the number of users who need the service in the coverage area of the base station exceeds a preset critical number, a cellular base station can broadcast multimedia traffic on a common channel service. In CDMA 2000 systems, broadcast or point-to-multipoint (PTM) transmission is often used to replace PtP transmission because the ptM radio bearer is almost as effective as the radio bearer. Source, self-common channel transmissions from special base stations It is not necessary to synchronize with common channel transmissions from other base stations. In a typical broadcast system, there will be more than one central station serving a user broadcast network. The (etc.) central station can transmit information to all subscriber stations, or to a specific group of subscriber stations. Each subscriber station participating in the broadcast service monitors a common forward link signal. Point-to-multipoint (pTM) transmissions may be on the downlink or forward common channel. Communication f will broadcast this co-broadcast forward link signal on a one-way channel (such as a common traffic channel (CTCH) in the direction of the forward link or "downlink"). Because this channel is unidirectional, ’the subscriber station usually does not communicate with the base station, because allowing all subscriber units to communicate with the base station in the reverse direction may overload the communication system. Therefore, in the monthly scene of the point-to-multipoint (pTM) communication service, if there is an error in the information received by user stations such as Tian Hai, these user stations may not be able to communicate with the base station in the reverse direction. Therefore, we may need other methods of information protection. 95689.doc 200522579 In CDMA 2000 system, the user station can transmit at point-to-multipoint (PTM). Even when steps are taken to protect the information signal, the pass == Γ may be attenuated, making it impossible for the destination station to decode a portion of the packets transmitted on the dedicated channel. In these cases, the is method is re-passed to the origin (base) station by the destination (user) station using the automatic retransmission request (ARQ) packet that has not been decoded. Retransmission helps to ensure the privacy of the data packet. If the data cannot be transferred correctly, the ruler at the transmitting end can be notified to the user. The subscriber station usually transmits in several scenarios. These transmissions can be classified in different ways. For example, transmissions can be categorized as "cross-pass" and "direct transmission." Transmissions can also be classified as "intercellular" transmissions and "intracellular" transmissions. Migration between cells or transport architectures can lead to unseen service interruptions for users. When the subscriber station or user equipment ⑽) moves from one cell to another cell or when the transmission of multimedia broadcast and multicast service (MBMS) content in the serving cell changes from one mode to another Problems can occur from time to time. Adjacent cells may shift from each other by a time shift such as. Furthermore, additional delay may be caused during the transfer, because the mobile station must determine the system information in the target cell, and this decision operation requires a specific amount of processing time. Data strings transmitted by different cells (or point-to-point (PTP) / point-to-multipoint (PTM) of different transmission channel types) may offset each other. So 'During the point-to-multipoint (spot) transmission of different cells, the mobile station may or may not receive the same content block twice, or part of the content block may be lost.' Not 95689.doc 200522579 H-shaped table. Depending on the duration of the migration and the delay or misalignment between transmissions, the migration between cells and / or point-to-point (ptp) transmissions and point-to-multipoint (PTM) transmissions may cause service disruption. The transmission technology required by this technology will provide service continuity and less transfer or user content (UE) transfer from one cell to another. * Content transmission in the same service cell from point-to-point ( ρτρ) When the connection is changed to a point-to-multipoint (PTM) connection (or vice versa), the content transmission is interrupted due to migration. These transmission technologies preferably provide seamless transmission on a plurality of cell boundaries and / or between different transmission architectures (such as point-to-multipoint (PTM) and p-to-point (PTP)). At the same time, it is also hoped that a mechanism can be used to adjust different data strings during these periods and restore the content from each data block, so that no data will be lost during the transfer. It is also desirable to provide a mechanism at the receiving terminal that can rearrange the data during decoding. [Embodiment] The term "example" used herein means "as an example" or "explanation". Any "exemplary" embodiment described herein need not be construed as a preferred embodiment or superior to other embodiments. The term "mobile station" used in this article is interchangeable with the words "destination station", "user station", "customer unit", "terminal", and "user equipment (UE)", and this article represents Hardware (such as a base station) that can communicate with an access network (such as the UMTS Terrestrial Radio Access Network (UTRAN)). In the UMTS system, a user equipment (ue) is a component that allows a user to access UMTS network services, and a better system also includes a USIM containing all user's subscription information. A mobile station can be mobile or stationary, 95689.doc -10-200522579 and can generally include any communication via a wireless channel or, therefore, a cable channel (eg, using fiber optic or coaxial cable). m machine, data element or terminal. Mobile stations may be embodied in components including, but not limited to, pC + 卞, compact flash, external or internal modems, warfare, or wireless or wired telephones. The system represented by the "connection setting status" is the status in which the mobile station is establishing an active traffic channel connection with a base station.
「流量狀態」一詞代表的係一行動A 丁勡口已經與一基地台建 立主動流量頻道連接後的狀態。 本文所使用的「通信頻道」一詞所於 J听知的係依照本文的實 體頻道或邏輯頻道。 ' 本文所使㈣「實體頻道」—詞代表的係載有可於*中 介面中通信之使用者資料或控制資訊的頻道。實體頻道為 提供無線電平台的「傳輸媒體」,資訊實際上係透過該平△ 來進行傳輸,而且實體頻道可心攜載於空中介面中^ 之信令與使用者資料。-實體頻道_般包含頻率擾亂碼: 頻道化碼之組合於上行連結方向中可能還包含相對相位。 依照該行動台試圖進行的動作而^,上行連結方向中可处 會使用數個不同的實體頻道。於UMm中,實體頻^ 詞可能還代表針對Uu介面上不同用途所指派的不同二 類。該等實體頻道會構成該使用者設備(UE)域q網 取域間之Uu介面的實體存在。可㈣用於空中介面二 資料的實體映對及屬性來定義實體頻道。 % 本文所使用的「傳輸頻道 裀冲本 只、」3代表的係用以於同儕實 95689.doc -11 - 200522579 體層實體間進行資料傳輸的通信路徑。傳輸頻道與資訊發 送方式有關。一般來說有兩種傳輸頻道類型,共同傳輸頻 道及專屬傳輸頻道。可利用如何於該實體層之空中介面上 進行資料傳輸以及利用何種特徵來進行傳輸(舉例來說, 是否使用專屬或共同實體頻道、或是是否多工處理邏輯頻 道)以定義傳輸頻道。傳輸頻道可作為該實體層的服務存 取點(SAP)。於UMTS系統中,傳輸頻道會描述如何傳輸該等 邏輯頻道,並且將該些資訊流映對至實體頻道。傳輸頻道 可用於在該媒體接取控制層(Medium Access Contra ; ΜΑ〇 與該實體層(Physical Layer ; L1)之間載送發信與使用者資 料。無線電網路控制(RNC)會參見傳輸頻道。資訊會於能 夠被映對至實體頻道之數個傳輸頻道中任何一者上從該 MAC層傳送至該實體層。 本文所使用的「邏輯頻道」一詞代表的係傳輸特定資訊 類型或该無線電介面專屬的資訊串。邏輯頻道與所發送之 資訊有關。可藉由傳輸何等類型之資訊,例如,發信或使 用者資料,來定義一邏輯頻道,纟可將其理解為該網路及 終端機應實行於不同時間點之不同任務。邏輯頻道可能會 被映對至於該行動台域及該存取$間實施實際資訊傳輸的 傳輸頻道。資訊會透過可經由傳輸頻道(其會被映對至實 體頻道)被映對的邏輯頻道來傳送。 本文所使用的「專屬頻道」一詞代表的係通常專屬於一 特定使用者或為-特定使用者保留的頻道,而且會載送資 訊至一特定的行動台、用戶單元、或㈣者設備:或是從 95689.doc -12- 200522579 -特定的行動台、用戶單元、或使用者設備來載送資$ 一專屬頻道通常會攜载以既定使用者為目標的資气% 含该貫際服務的資料以及更高層的控制資訊。可夢由“匕 特定頻率上之一特定碼來識別一專用頻一 在 寻屬頻道可 能係雙向的,以便允許回授。 本文所使用的「共同頻道」一詞代表的係會攜載資. 多部行動台/從多部行動台攜載資訊的傳輸頻道 ^ %兴同頻 道中,貧訊會被所有的行動台共享。一共用頻道可在 元内的所有使用者或一組使用者之間進行分割。 單 本文所使用的「點對點(PTP)通信」一詞所指的係會可於 一專屬、實體通信頻道上被傳輸給單一行動台的通作。、 本文所使用的「廣播通信」或「點對多點 詞所指的係可於一共同通信頻道上和複數部行The term "traffic status" refers to the status after the active traffic channel has been established by an operation A Dingkoukou with a base station. The term "communication channel" as used in this article was heard by J in accordance with the physical or logical channel of this article. 'The term “physical channel” used in this article refers to a channel that contains user data or control information that can be communicated in the * interface. The physical channel is the "transmission medium" that provides the radio platform. Information is actually transmitted through the flat △, and the physical channel can carry the signaling and user data in the air interface ^. -Physical channels generally include frequency scrambling codes: The combination of channelization codes may also include relative phases in the uplink connection direction. Depending on what the mobile station is trying to do, several different physical channels may be used in the uplink direction. In UMm, entity frequency terms may also represent different types of assignments for different uses on the Uu interface. These physical channels will constitute the physical existence of the Uu interface between the user equipment (UE) domain q network and the domain. It can be used to define the physical channel by using the physical mapping and attributes of the air interface II data. % The "transmission channel Yin Chongben only" used in this article represents the communication path for data transmission between peer entities 95689.doc -11-200522579. Transmission channels are related to how information is sent. Generally speaking, there are two types of transmission channels, a common transmission channel and a dedicated transmission channel. The transmission channel can be defined by how data is transmitted on the air interface of the physical layer and what characteristics are used for transmission (for example, whether to use a dedicated or common physical channel, or whether to multiplex a logical channel). The transport channel can be used as a service access point (SAP) for this physical layer. In the UMTS system, the transmission channel describes how to transmit the logical channels and maps the information streams to the physical channels. The transmission channel can be used to carry messages and user data between the Medium Access Contra; ΜΑ〇 and the physical layer (L1). The Radio Network Control (RNC) will refer to the transmission channel Information is transmitted from the MAC layer to the physical layer on any of several transmission channels that can be mapped to the physical channel. The term "logical channel" as used herein refers to the transmission of a specific type of information or the Radio interface-specific information strings. Logical channels are related to the information sent. What type of information can be transmitted, such as a letter or user data, to define a logical channel, which can be understood as the network and The terminal should perform different tasks at different points in time. The logical channel may be mapped to the transmission channel that implements the actual transmission of information between the mobile station domain and the access $. Information will be transmitted through the transmission channel (which will be mapped To physical channels) to be mapped to logical channels. The term "exclusive channel" as used herein refers to a system that is usually dedicated to a specific user or Channel reserved for a specific user and will carry information to a specific mobile station, user unit, or other device: or from 95689.doc -12- 200522579-specific mobile station, user unit, or use A dedicated channel will usually carry data from a user ’s device. A dedicated channel will usually carry data aimed at a given user.% Contains data about the intermediary service and higher-level control information. To identify that a dedicated frequency may be bidirectional in the homing channel in order to allow feedback. The term "common channel" as used in this article represents a department carrying money. Multiple mobile stations / from multiple mobile stations Information transmission channel ^% In the same channel, the poor information will be shared by all mobile stations. A shared channel can be divided among all users or a group of users in the yuan. The "point-to-point ( The term “PTP) communication refers to the general practice of being transmitted to a single mobile station on a dedicated, physical communication channel. As used herein, the term“ broadcast communication ”or“ point-to-multipoint ”refers to the system Common The letter and the plural channel section line
信。 仃I 動 本文所使用的「反向連結或上行連結」_詞代表的係行 台可於無線電存取網路中透過該連結發送信號給一基地 台的通信頻道/連結。此頻道亦可用於從一行動台向一行動 基地台或從一行動基地台向一基地台傳輸信號。 」一詞所指的係一 給一行動台的通信 本文所使用的「前向連結或下行連結 無線電存取網路中透過該連結發送信號 頻道/連結。 本文所使用的「傳輸時間間距στι)」_詞代表的係資料 從更高層抵達實體層的時間間隔。傳輸時間間距(ττι)可能 代表的係一傳輪區塊集(TBS)的抵達之間時間,並且約等於 95689.doc -13- 200522579 該實體層於該無線電介面上傳輪tbs的週期。π期間於— 傳輸頻道上被發送的資料可能會被編碼且交錯在一起。一 TTI可延展多個無線電訊框’並且可能係最小交錯週期的倍 數。針對早__連接被多工在_起的不同傳輸頻道的π的起 始位置必須進行時間排列。複數個ΤΤΙ會具有一共同起始 點。媒體存取控制會於每個TTI中傳送一傳輸區塊集給該實 體層。被映對至同一實體層的不同傳輸頻道可能會具有不 同的傳輸時間間距(TTI)持續時間,而且可於一 多個PDU。 Χ 本文中所使用的「封包」—詞代表的係_群位元,其包 含被配置成特定格式的資料或酬載及控制元素。舉例來 說,該等控制元素可能包括前文、品質度量值、及熟習本 技術的人士所熟知的其它元素。舉例來說,品質度量值包 括循環冗餘檢查(CRC),同位位元,及熟習本技術的人士所 熟知的其它類型度量值。 本文所使用取網路」一詞所指的係存取該網路所 需要的設備。存取網路可能包括由複數部基地台㈣以及 -個以上基地台控制器(Bsc)所組成的集合或網路。該接取 網路在多個訂戶端台之間傳送資料封包。該存取網路可能 會進一步被連接到該存取網路以外的額外網路,如公司内 部網路或網際網路之類,並且可在複數個存取終端及此等 外部網路之間傳輸資料封包。於UMTS系統中,該存取網路 可能會被稱為UMTS陸地無線電存取網路(UTRAN)。 本文中所使用的「核心網路」一詞代表的係用以連接至 95689.doc -14- 200522579 公眾切換電話網路(PStn)(針對電路切換(cs)域中的電路 切換呼叫)或是封包資料網路(PSDN)(針對封包切換㈣域 中的封包切換呼叫)中任一者的切換或路 ' 一 阳刀月b。「核心網 路」一詞還代表行動能力與用戶位置管理 〜格由功能以及 認證服務的路由功能。該核心網路舍合田认 崎匕3用於切換與用戶控 制所必須的網路元素。 本文中所使用的「基地台」一詞代表的係一「起源 台」’其包含可和行動台進行通信的硬體。於uMTs系統 中,可利用「節點B」一詞來替代「基地台」一詞。一美 地台可能係固定的或是會移動的。 & 本文中所使用的「細胞」一詞代表硬體或地理涵蓋區 域,視使用該術語的内文而定。 本文中所使用的「服務資料單元(SDU)」一詞代表可利 用位於感興趣之協定上方的協定來交換的資料單元。 本文中所使用的「酬載資料單元(PDU)」一詞代表可利 用位於感興趣之協定下方的協定來交換的資料單元。若無 法清楚確認感興趣之協定的話,那麼將會以名稱來作特定 提示。舉例來說,FEC-PDU為FEC層的PDU。 本文所使用的「軟交遞」一詞表示的係介於一用戶△與 兩個以上區段之間的通信,其中每個區段皆屬於不 J自勺細 胞。反向連結通信可被兩個區段接收,而前向連結通作則 可同時於兩個以上區段的前向連結上被攜載。 本文中所使用的「更軟交遞」一詞表示的係介於一用戶 台與兩個以上區段之間的通信,其中每個區段皆屬於一 95689.doc -15- 200522579 個細胞。反向連結通信可被兩個區段接收,而前向連結通 信則可同時於兩個以上區段的前向連結中其中一者上被攜 載。 自本文中所使用的「刪除」一詞表示的係無法確認某項信 息’並且還可用以代表可能於解碼時間中遺失的-組位元。 「 —、- 又又私轉」一同可定義成從點對點(ρτρ)傳輸移轉至 .,占對夕點(ΡΤΜ)傳輸,或是反向移轉。共有四種可能的交 又移轉:從細胞Α中的點對點(ρτρ)傳輸移轉至細胞Β中的點 對多點(ΡΤΜ)傳輸、從細胞a中的點對多點(ρτΜ)傳輸移轉 、’、月Β中的點對點(ρτρ)傳輸、從細胞a中的點對點(ρτρ) 傳輸移轉至細胞A中的點對多點(ρτΜ)傳輸、以及從細胞A中 的點對多點(PTM)傳輪料至細胞a中的點對點(ρτρ)傳輸。 「直接移轉」一詞可定義成從點對點傳輸移轉至另一點 對點傳輸以及從點對多點傳輪移轉至另—點對多點傳輸。 共有兩種可能的直接移轉:從細胞人中的點對點(ρτρ)傳輸 移轉至細胞Β中的點對點(ρτρ)傳輸、以及從細胞Α中的點 對多點(PTM)傳輸移轉至細胞B中的點對多點(ρτΜ)傳輸。 「細胞間移轉」一詞係代表跨越細胞邊界的移轉。共有 四種可能的細胞間移轉:從細胞Α中的點對點(ρτρ)傳輸移 轉至細胞Β中的點對點(ΡΤΡ)傳輸、從細胞Α中的點對多點 (PTM)傳輸移轉至細胞3中的點對多點(pTM)傳輸、從細胞a 中的點對點(ptp)傳輸移轉至細胞6中的點對多點(ρτΜ)傳 輸、以及從細胞Α中的點對多點(ΡΤΜ)傳輸移轉至細⑽中 的點對點(ΡΤΡ)傳輸。一般來說,最常發生的移轉係跨越細 95689.doc -16- 200522579 胞邊界從點對多點(PTM)傳輸移轉至點對多點(PTM)傳輸。 「細胞内移轉」一詞係代表於一細胞内從其中一種模式 移轉至另一種模式。共有兩種可能的細胞内移轉··從細胞A 中的點對點(PTP)傳輸移轉至細胞A中的點對多點(PTM)傳 輸、以及從細胞A中的點對多點(PTM)傳輸移轉至細胞A中 的點對點(PTP)傳輸。 「無線電承載」一詞係代表層2所提供的服務,用以於使 用者設備(UE)及UMTS陸地無線電存取網路(UTRAN)間傳 輸使用者資料。 現在將討論本發明的具體實施例,其中會將上面討論的 觀點實現於WCDMA或UMTS通信系統中。圖1-5C解釋的係 慣用UMTS或WCDMA系統的部份觀點,其中本文所述中可 套用於本說明中的本發明觀點僅供作解釋與限制用途。應 該瞭解的係,本發明的觀點亦可套用於同時攜載語音與資 料的其它系統中,例如符合下面標準的GSM系統與CDMA 2000系統:「第三代夥伴合作計晝」(3GPP),其係具現於包 含下面文件編號之文件組中:3G TS 25.211、3G TS 25.212、 3G TS 25.213 以及 3G TS 25.214(W-CDMA標準);或是 「TR-45.5 cdma2000展頻系統之實體層標準」中的標準 (IS-2000標準);以及GSM規格,例如TS 04.08(行動無線電 介面層3規格)、TS 05.08(無線電子系統連結控制)、以 及TS 05.01(無線電路徑上之實體層(通用說明))。 舉例來說,雖然說明中規定可利用通用陸地無線電存取 網路(UTRAN)空中介面來實現無線電存取網路20,但是於 95689.doc -17- 200522579 GSM/GPRS系統中,無線電存取網路20可能係一 GSM/EDGE 無線電存取網路(GERAN),甚至於系統間的情況中,其可 能會包括UTRAN空中介面的細胞以及GSM/EDGE空中介面 的細胞。 UMTS網路拓樸 圖1為根據UMTS網路拓樸之通信系統的方塊圖。一 UMTS系統包含使用者設備(UE)10、一存取網路20、以及一 核心網路30。UE 10會被耦合至該存取網路,而該存取網路 會被耦合核心網路30,核心網路30則可被耦合至一外部網 路。 UE 10包含行動設備12及一通用用戶識別模組 (USIM) 14,該模組含有使用者的訂購資訊。Cu介面(未顯示) 係介於USIM 14與該行動設備12間的電氣介面。UE 10通常 係一允許使用者存取UMTS網路服務的元件。UE 10可能係 一行動元件(例如細胞式電話)、一固定台、或是其它資料終 端機。舉例來說,該行動設備可能係一於空中介面(Uu)上 進行無線電通信所使用的無線電終端機。UE可經由Uu介面 來存取該系統的固定部份。USIM通常係一駐存在含有一微 處理器的「智慧卡」或其它邏輯卡之上的應用程式。該智 慧卡會保有用戶身份、可實施認證演算法、並且以加密密 鑰來儲存認證信號以及儲存終端機處所需要的訂購資訊。 存取網路20包含用於存取該網路的無線電設備。WCDMA 系統中,該存取網路20係通用陸地無線電存取網路 (UTRAN)空中介面。UTRAN包含至少一無線電網路子系統 95689.doc -18- 200522579 (RNS),該子系統包含至少一基地台或「節點b」22,該基 地台係被麵合至至少一無線電網路控制器(RNC)24。 該RNC會控制該UTRAN的無線電資源。存取網路20的該 等RNC 24會透過Iu介面與核心網路30進行通信。Uu介 面、Iu介面25、Iub介面以及Iur介面可讓不同廠商的設備 進行連網,並且皆規定於3 GPP標準中。無線電網路控制 器(RNC)的設計方式各家廠商皆不相同,所以,下文將作 一般性說明。 無線電網路控制器(RNC)24係作為UMTS陸地無線電存 取網路(UTRAN)的切換與控制元素,並且係位於Iub介面與 Iu介面25之間。該RNC可作為UTRAN提供給該核心網路30 之全部服務的服務存取點,舉例來說,和該使用者設備進 行連接的管理。Iub介面23會連接節點B 22及無線電網路 控制器(RNC)24。Iu介面會將UTRAN連接至該核心網路。無 線電網路控制器(RNC)會於該Iu承載器與該等基地台間提 供一切換點。使用者設備(UE) 10於本身和無線電網路控制 器(RNC)24之間可能會具有數個無線電承載。該無線電承載 和使用者設備(UE)内容有關,該内容為Iub所需要的一組定 義值,用以安排該使用者設備(UE)和無線電網路控制器 (RNC)之間的共同連接及專屬連接。該等個別的RNC 24可 於一選配的Iur介面上彼此進行通信,該介面允許被連接至 不同節點22的細胞之間進行軟交遞。因此,Iur介面允許進 行RNC間連接。於此等情況中,一服務RNC會維持和核心 網路30相連的Iu 25連接,並且實施選擇器及外部迴路功率 95689.doc -19- 200522579 控制功能,同時-漂移RNC會透過—部以上的基地台_ 可於,亥Iur介面上進行交換的訊框傳輸給行動台w。 控制-節點B 22的RNC可稱為節點B的控制rnc,並且控 制自己的細胞的負載和壅塞情形,同時還會針對欲於該些 細胞中被建立的新無線電連結執行許可控制和編碼指派。 跳與基地台(節點B)可透過灿介面如相連並且於該 介面上進行通信。該等RNC會㈣料合至_特殊㈣以 之每部基地台22對該等無線電資㈣❹㈣。每部基地 台22則會控制一個以上的細胞’並且提供和行動台_連 的無線電連結。該基地台可實施介面處理,例如頻道編碼 及交錯處理、速率調適及展開處理。該基地台還會實施基 本的無線電資源管理作業,例如迴路間功率控制。基地台 U會轉換Iul^Uu介面23、%間的資料流。基地台η還會 參與無線電f源管理。空中介面Uu 26會將每部基地台22 麵合至該行動台1〇。該等基地台可負責一個以上細胞至該 行動台_無線電傳輸作業,並且負責從該行動㈣至一 個以上細胞的無線電接收作業。 核心網路30包含所有的切換及路由功能,用以進行下面 工作:⑴若電路切換呼叫存在的話,用以連接至刪42, 或是若封包切換呼叫存在的話’用以連接至封包資料網路 (PDN); (2)實施行動能力與用戶位置管理;以及⑺實施認 證服務。心、網路3〇可能包含__㈣位置登制(hlr)32、 一行動切換服務中心/訪客位置登錄器(msc/vlr)34、一閘 …亍動刀換中^ (GMSC)36、-服務通用封包無線電服務支 95689.doc -20- 200522579 援節點(SGSN)38、以及一閘道GPRS支援節點(GGSN)40。 若電路切換呼叫存在的話,核心網路30可被耦合至一外 部電路切換(CS)網路42(例如公眾切換電話網路(PSTN)或 (ISDN)),用以提供電路切換連接;若封包切換呼叫存在的 話,則可被耦合至一 PS網路44(例如網際網路),用以提供 封包資料服務連接。 UMTS信令協定堆疊 圖2為UMTS信令協定堆疊110的方塊圖。UMTS信令協定 堆疊110包含一存取階層及一非存取階層(NAS)。 存取階層通常包含一實體層120;層2 130,其包含一媒 體存取控制(MAC)層140及一無線電連結控制(RLC)層 150;以及一無線電資源控制(RRC)層160。下文將更詳細地 說明存取階層的各層。 UMTS非存取階層層基本上和GSM上層相同,並且可分割 為一電路切換部份170及一封包切換部份180。電路切換部 份170包含一連接管理(CM)層172及一行動能力管理(MM) 層178。CM層172會處理電路切換呼叫並且包含各子層。呼 叫控制(CC)子層174會執行建立與釋放之類的功能。增補服 務(SS)子層176會執行呼叫前傳及三向呼叫之類的功能。短 訊服務(SMS)子層177會執行短訊服務。MM層178會處理電 路切換呼叫的位置更新與認證作業。封包切換部份1 8 0包含 一交談管理(SM)子層182及一GPRS行動能力管理(GMM)子 層184。交談管理(SM)子層182會藉由執行建立與釋放之類 的功能來處理封包切換呼叫,並且還包含一短訊服務(SMS) 95689.doc -21 - 200522579 區段183。GMM子層184會處理封包切換呼叫的位置更新與 認證作業。 圖3為UMTS協定堆疊之封包切換使用者平面的方塊圖。 該堆疊包含一存取階層(AS)層及一非存取階層(NAS)層。 NAS層包含應用層80及封包資料協定(PDP)層90。應用層80 係位於使用者設備(UE) 10與遠端使用者42之間。PDP層 90(例如IP或PPP)係位於GGSN 40與使用者設備(UE)10之 間。下層封包協定(LLPP)39係位於遠端使用者42與SGSN 38 之間。Iu介面協定25係位於無線電網路控制器(RNC)24與 SGSN 38之間,Iub介面協定係位於無線電網路控制器 (RNC)24與節點B 22之間。下文將說明AS層的其它部份。 存取階層(AS)層 圖4為UMTS信令協定堆疊的存取階層部份的方塊圖。慣 用的存取階層包含實體層(L1) 120 ;資料連結層(L2) 130,其 包含下面的子層:媒體存取控制(MAC)層140、無線電連結 控制(RLC)層150、封包資料收斂協定(PDCP)層156、廣播/ 多播控制(BMC)層158 ;以及一無線電資源控制(RRC)層 160。下文將更詳細地說明該些層。 無線電承載會攜載應用層與層2(L2) 130間的使用者資料 163。控制平面信令161可作為所有的UMTS特定控制信令, 並且於信令承載中包含應用協定,用以傳輸該等應用協定 信息。該應用協定可用來建立送至UE 10的承載。該使用者 平面會傳輸被該使用者發送及接收的所有使用者平面資訊 163,例如語音呼叫中經過編碼的語音或是網際網路連接中 95689.doc -22- 200522579 的封包。使用者平面資訊163會攜載資料串及該些資料串 的資料承載。每個資料串的特徵為該介面所規定的一個以 上訊框協定。 無線電資源控制(RRC)層160可當作該存取階層的總控制 器,並且組織該存取階層中的所有其它層。RRC層160會 產生控制平面信令161,其可控制無線電連結控制單元 152、實體層(L 1)120、媒體存取控制(MAC)層140、無線電 連結控制(RLC)層150、封包資料收斂協定(PDCP)層156、 以及廣播/多播控制(BMC)層158。無線電資源控制(RRC) 層160會決定測量的類型,並且回報該些測量結果。RRC 層16 0還可作為非存取階層的控制與信令介面。 更明確地說,RRC層160會廣播系統資訊信息,該等信 息同時包含所有使用者設備(UE)10的存取階層及非存取階 層資訊元素。RRC層160會建立、維持、以及釋放UTRAN 20 及UE 10之間的無線電資源控制(RRC)連接。UE RRC會要求 該連接,而UTRAN RRC則會建立與釋放該連接。RRC層160 還會建立、重組、以及釋放UTRAN 20及UE 10之間的無線 電承載,其中係由UTRAN 20來啟動該些作業。 RRC層160還會處理使用者設備(UE) 10行動能力的各項 特點。該些程序和UE狀態(不論該呼叫是否為電路切換呼 叫或封包切換呼叫)以及新細胞的無線電存取技術(RAT)相 依。RRC層160還會傳呼UE 10。不論UE是否在傾聽該傳呼 頻道或該傳出指示頻道,UTRAN RRC都會傳呼該UE。該 UE的RRC會通知核心網路(CN)30的上層。 95689.doc -23- 200522579 資料連結層(L2) 130包含一媒體存取控制(MAC)子層 140、一無線電連結控制(RLC)子層150、一封包資料收斂協 定(PDCP)子層156、以及一廣播/多播控制(BMC)子層158。 廣播與多播控制協定(BMC) 158會藉由調適來自該無線 電介面上之廣播域的廣播/多播服務以於該無線電介面上 傳達來自該細胞廣播中心的信息。BMC協定158會提供被稱 為「無線電承載」的服務,並且存在於該使用者平面中。 BMC協定158與RNC會儲存於經排定傳輸之CBC-RNC介面 上被接收到的細胞廣播信息。於UTRAN端,BMC協定158 會以能夠在該CBC-RNC介面(未顯示)上被接收到的信息為 基礎來計算該細胞廣播服務的必要傳輸速率,並且從該 RRC中要求適當的CTCH/FACH資源。BMC協定158還會於 該CBC-RNC介面上接收排程資訊以及每個細胞廣播信息。 該BMC會於UTRAN端以此排程資訊為基礎來產生經排定 的信息並且據此產生經排定的BMC信息序列。於使用者設 備端,該BMC會評估該等排程信息,並且向該RRC表示該 等排程參數,接著,該RRC便可使用該等參數來組織供不 連續接收使用的下層。該BMC還會根據某一排程來傳輸 BMC信息,例如排程信息以及細胞廣播信息。未損毀的細 胞廣播信息可被傳送至上層。UE 10與UTRAN 20間的部份 控制信令可能係無線電資源控制(RRC)160信息,其會攜載 建立、修正、以及釋放層2協定130實體及層1協定120實體 的全部必要參數。RRC信息會於其酬載中攜載全部的更高 層信令。無線電資源控制(RRC)會藉由發出測量結果、交遞 95689.doc -24- 200522579 遞信號、以及細胞更新信號,用以於連接模式中控制使用 者設備的行動能力。 封包資料收斂協定(PDCP) 156存在於源自PS域之服務的 使用者平面中。PDCP所供應的服務可稱為無線電承載。封 包資料收斂協定(PDCP)會提供標頭壓縮服務。封包資料收 斂協定(PDCP) 156含有可提供較佳頻譜服務效率的壓縮方 法用以於無線電上傳輸IP封包。可以運用任何的標頭壓縮 演算法。該PDCP會於傳輸實體處壓縮冗餘協定資訊,並且 於接收實體處進行解壓縮。該標頭壓縮法可能係特殊網路 層、傳輸層、或上層協定組合(舉例來說,TCP/IP與 RTP/UDP/IP)特有的方法。PDCP還會傳輸其從非存取階層 中以PDCP服務資料單元(SDU)形式所接收到的使用者資 料,並且會將其前傳給RLC實體;亦可反向進行。PDCP還 會支援無遺失的SRNS重新定位。當PDCP於循序傳送中使 用已確認模式(AM)RLC時,可被配置成支援無遺失RSRNS 重新定位的PDCP實體便會具有協定資料單元(PDU)序號, 該序號可連同未證實的PDCP封包一起於重新定位期間前 傳給新的SRNC。 RLC層150會透過UE端中的更高層協定以及UTRAN端中 的IURNAP協定能夠使用的服務存取點(SAPS)來提供服務 給更高層(舉例來說,非存取階層)。服務存取點(SAPS)會 描述該RLC層如何處理該等資料封包。所有更高層的信令 (例如行動能力管理、呼叫控制、交談管理等)皆可囊封於該 無線電介面傳輸的RLC信息中。RLC層150包含各種無線電 95689.doc -25- 200522579 連結控制實體152,該等無線電連結控制實體會透過攜載信 令資訊與使用者資料的邏輯頻道被耦合至MAC層140。 於控制平面161上,RLC層可利用該等RLC服務來進行信 令傳輸。於使用者平面163上,該等RLC服務可被服務特定 協定層PDCP或BMC使用,或是被其它更高層的使用者平面 功能使用。對未使用PDCP 156或使用者平面協定的服務來 說,該等RLC服務可稱為控制平面161中的信令無線電承載 以及使用者平面163中的無線電承載。換言之,若該服務不 能使用PDCP與BMC協定,RLC層150便可於控制平面161中 提供被稱為信令無線電承載(SRB)的服務以及於使用者平 面163中提供被稱為無線電承載(RB)的服務。否則,便可由 PDCP層156或BMC層158來提供該RB月艮務。 無線電連結控制(RLC)層150會對使用者與控制資料實施 分框功能,其包含分割/串接以及填補功能。RLC層15 0通常 會針對控制平面161中之控制資料的無線電資源控制 (RRC) 160層以及使用者平面163之使用者資料的應用層提 供分割及再傳輸服務。該RLC層通常會將可變長度更高層 協定資料單元(PDU)分割成複數個較小的RLC協定資料單 元(PDU)或是將複數個較小的RLC協定資料單元(PDU)重組 成可變長度更高層協定資料單元(PDU)。一無線電連結控制 (RLC)協定資料單元(PDU)通常會攜載一個PDU 〇舉例來 說,可以利用該無線電連結控制(RLC)根據該服務的最小可 能位元率來設定該無線電連結控制(RLC)PDU大小。如下文 將討論般,對可變速率的服務來說,只要位元率高於其所 95689.doc -26- 200522579 使用的最低者,便可於一個傳輸時間區間(TTI)期間傳輸數 個無線電連結控制(RLC)PDU。該RLC傳輸實體也會實施串 接作業。若一無線電連結控制(RLC)服務資料單元(SDU)的 内容無法填滿整數個無線電連結控制(RLC)PDU的話,那麼 便可將下個無線電連結控制(RLC)SDU的第一分段内容放 進該無線電連結控制(RLC)PDU之中,用以串接前面RLC SDU的最後一個分段内容。該RLC傳輸實體通常還會實施 填補功能。當欲傳輸的剩餘資料不能填滿特定大小的整個 無線電連結控制(RLC)PDU的話,那麼便可利用填補位元來 填充其餘的貧料搁位。舉例來說’根據下文蒼考圖11 -13所 討論的本發明的觀點,本文會提供縮減或省略所運用之填 補數量的技術。 該RLC接收實體會偵測被接收到的無線電連結控制 (RLC)PDU的副本資料,並且確保更高層PDU中的結果僅會 被傳送至上層一次。該RLC層還會控制該PRLC傳輸實體可 發送資訊給一 RLC接收實體的速率。 圖5A為UMTS信令協定堆疊之無線電連結控制(RLC)層 中所使用的資料傳輸模式方塊圖,並且還顯示與存取階層 有關的邏輯頻道、傳輸頻道、以及實體UMTS頻道的可能映 對關係。熟習本技術的人士將會發現,未必要針對特定的 使用者設備(UE)來同時定義全部的映對,而且可能會同時 出現部份映對的多重例證。舉例來說,語音呼叫可能會使 用被映對至三個專屬頻道(DCH)傳輸頻道的三個專屬流量 頻道(DTCH)邏輯頻道。再者,圖5所示的部份頻道(例如 95689.doc -27- 200522579 CPICH、SCH、DPCCH、AICH以及PICH)係存在於實體層 背景中,而且並不會攜載上層信令或使用者資料。該些頻 道的内容可能會被定義於實體層120(L1)中。 無線電連結控制(RLC)層中的每個RLC例證皆可利用無 線電資源控制(RRC)層160來配置以便運作於下面三種模式 之其中一者中:透通模式(TM)、未確認模式(UM)、或已確 認模式(AM),下文將參考圖5B來詳細說明。該等三種資料 傳輸模式會指出該無線電連結控制(RLC)針對某一邏輯頻 道被配置成的模式。透通與未確認模式的RLC實體會被定 義成單向,而已確認模式的實體則會被定義成雙向。通常, 對所有的RLC模式而言,都會於實體層上實施CRC錯誤檢 查,並且將CRC檢查結果連同真實資料一起傳送給該 RLC。視每種模式的特殊規定而定,該些模式會實施RLC 層150的部份或全部功能,該等功能包含分割、重組、串接、 填補、再傳輸控制、資料流控制、副本偵測、循序傳送、 錯誤修正以及加密。下文將參考圖5B與5C來更詳細說明該 些功能。根據本文所討論之本發明的觀點,本發明可提供 一種新的無線電連結控制(RLC)資料傳輸模式。 MAC層140會利用以被傳輸之資料類型為特徵的邏輯頻 道來提供服務給RLC層150。媒體存取控制(MAC)層140會將 邏輯頻道映對且多工至傳輸頻道。MAC層140會辨識出共同 頻道上的使用者設備(UE)。MAC層140還會將更高層PDU多 工成複數個傳輸區塊以便傳送至共同傳輸頻道上的實體層 或是從共同傳輸頻道上的實體層傳送過來的複數個傳輸區 95689.doc -28- 200522579 塊中來解多工更高層PDU。該MAC會處理共同傳輸頻道的 服務多工作業,因為該項作業無法在實體層中完成。當一 共同傳輸頻道攜載源自專屬型邏輯頻道的資料時,媒體存 取控制(MAC)標頭便會含有該UE的識別符號。該MAC層還 會將更高層PDU多工成複數個傳輸區塊集以便傳送至專屬 傳輸頻道上的實體層或是從專屬傳輸頻道上的實體層傳送 過來的複數個傳輸區塊集中來解多工更高層PDU。 MAC層140會接收複數個RLC PDU以及狀態資訊,數量等 同於RLC傳輸緩衝器中的資料量。MAC層140會將對應該傳 輸頻道的資料量與RRC層160所設定的臨界值作比較。若資 料量太高或太低的話,那麼該MAC便會發送一和流量狀態 有關的測量報告給該RRC。RRC層160可能還會要求MAC層 140週期性地發送該些測量值。RRC層160會使用該些報告 值來觸發該等無線電承載及/或傳輸頻道的再配置作業。 該MAC層還會相依於該等邏輯頻道的瞬間源速率來為每 個傳輸頻道選擇一適當的傳輸格式(TF)。MAC層140會針對 不同的資料流,藉由選擇「高位元速率」與「低位元速率」 傳輸格式(TF)來提供資料流的處理優先序。封包切換(PS) 資料的本質為叢發式資料,因此可發送的資料量會隨著訊 框而改變。當有較多資料可用時,MAC層140便可選擇其中 一個較高的資料速率;不過,當信令與使用者資料皆可用 時,MAC層140則會於其間作選擇,用以最大化由優先序較 高的頻道所發送的資料量。可從每個連接的許可控制所定 義的傳輸格式組合(TFC)中來選擇傳輸格式(TF)。 95689.doc -29- 200522579 媒體存取控制(MAC)層還會實施加密。每個無線電承载 皆可分開加密。於3GPPTS 331〇2中有說明該加密細節。 於WCDMA之類的系統中,可利用三種傳輸頻來傳輪封包 資料。該些頻道為制傳輸頻道、專屬傳輸頻道、以^ 享傳輸頻道。於下行連結中,封包排程演算法會選擇傳輸 頻道封包資料。於上行連結中,行動台财以封包排程^ 算法所設的參數為基礎來選擇傳輸頻道。 ^ 舉例來說,共同頻道可能係上行連結中的隨機存取頻道 RACH以及下行連結中的*向存取頻道fach。㊆者皆攜載 信令資料與使用者資料。共同頻道具有很低的建立時;。 因為可於建立連接之前使用共同頻道來發信,所以,可使 用共同頻道來立即發送封包,而不需要很長的建立時間。 每個區段通常會有少數的11入(::11或17八(::11。共同頻道並不具 有回&頻道’所以’通常會使用開迴路功率控制或是使用 固定功率。再者,共同頻道無法使用軟交遞。因此,共同 頻道的連結位準效能可能會比專屬頻道的連結位準效能還 差,而且所產生的干擾也會比專屬頻道還多。因此,共同 頻道比較適合用來傳輸小型的個別封包。運用於共同頻道 中的應用可能係短訊服務及短文郵件之類的應用。發送單 一要求給一網頁亦非常適合共同頻道的概念,不過,於較 大資料量的情況中,共同頻道則會因不良的無線電效能而 變差。 專屬頻道可以使用快速功率控制及軟交遞特點以改良無 線電效能,而且所產生的干擾通常會比共同頻道還少。不 95689.doc -30- 200522579 過,建立一專屬頻道所花費的時間則比存 共同頻道還 長。專屬頻道具有可變的位元速率,其範圍從每秒數千 位7L組至每秒2百萬個位元組。因為位元速率會於傳輸期間 發生i:化,所以,必須根據最高的位元速率來指派下一連 結正交碼。因此,可變位元速率專屬頻道會耗去可觀的下 行連結正交碼空間。 貫體層(Ll)l20會透過攜載信令資訊與使用者資料的複 數個傳輸頻道耦合至MAC層140。實體層120會透過其特徵 為如何傳輸資料及利用何種特徵來傳輸資料的複數個傳輸 頻道來提供服務給該mac層。 實體層(L 1)120會透過複數個實體頻道於該無線電連結 上接收L令與使用者資料。實體層(L 1 )通常會實施多工及 頻道編碼,其包含CRC計算、前向式錯誤修正(FEC)、速率 匹配、交錯傳輸頻道資料、多工傳輸頻道資料、以及其它 實體層程序(例如獲m、傳彳、以及無線電連結建立 /失效)。貫體層(L1)可能還會負責展開與擾碼處理、調變測 里、傳輸多集、功率加權、交遞、壓縮模式、以及功率控 制。 圖5B為該無線電連結控制(RLC)層的架構方塊圖。如上 所述,無線電連結控制15〇中的每個RLC實體或例 證152皆可利用無線電資源控制(RRC)層16〇來配置以便運 作於下面三種資料傳輸模式之其中一者中··透通模式 (TM)、未確認杈式(UM)、或已確認模式(AM)。可以利用服 務品質(QoS)設定值來控制使用者資料的資料傳輸模式。 95689.doc 200522579 TM係單向且包含一傳輸TM實體152A與一接收TM實體 1 52Β。於透通模式中,沒有任何協定命令會被加入更高層 資料中。有誤的協定資料單元(PDU)可予以丟棄或是標記有 誤。可以使用串流型傳輸,其中通常不會對更高層資料進 行分割處理,不過,於特殊情況中則可完成有限分割/重組 功能的傳輸。當使用分割/重組時,便可於無線電承載建立 程序中進行協商。 UM也是單向且包含一傳輸UM實體152C與一接收UM實 體152D。一 UM RLC實體被定義為單向的原因係因為於上 行連結與下行連結間並不需要有任何關聯。於UM中並不保 證資料傳送正常。舉例來說,UM可使用於確認與再傳輸並 非其一部份的特定RRC信令程序中。使用未確認模式RLC 的使用者服務範例有細胞廣播服務及IP上語音。視組態而 定,可將收到的有誤資料作標記或是予以丟棄。可以套用 無明確信令的計時器型丟棄功能,因此,無法於規定時間 内被傳輸的RLC PDU可逕從傳輸緩衝器中予以移除。於未 確認資料傳輸模式中,該PDU結構包含複數個序號,並且 可實施序號檢查。序號檢查有助於保證經重組PDU的完整 性,並且可提供偵查構件,用以於無線電連結控制 (RLC)PDU被重組成無線電連結控制(RLC)SDU時,藉由檢 查無線電連結控制(RLC)PDU中的序號來偵測已損毀的無 線電連結控制(RLC)SDU。任何已損毁的無線電連結控制 (RLC)SDU皆可予以丟棄。於未確認模式(UM)中也可提供分 割與串接功能。 95689.doc •32- 200522579 於已確認模式中,RLCAM實體係雙向並且能夠運送相反 =使用者資料之方向中的連結狀態指示信號。圖5C為用於 貝現無線電連結控制(RLC)已確認模式(am)實體之實體的 方塊圖,並且顯示如何建構一颜觸。透過抓SAp接收 、自更高層的資料封包(RLC SDU)可被分割及/或串接514成 複數個固定長度的協定資料單以簡)。協定資料單元的長 度係-於無線電承载建立中所決定的半靜態*,並且可經 由RRC無線電承載再組態程序來進行變更。為達串接或填 補目的,可於取後一個協定資料單元的開頭中插入載有和 该長度及延伸部份有關之資訊的複數位位元,或是可納入 源自一SDU的資料。若有數個SDU置入一 ?]〇1;之中的話,便 :八串接在起,並且於該PDU的開頭中插入複數個正 確的長度指不符號(LI)。接著,便可將該等pDU置放於傳輸 緩衝裔520之中,該緩衝器同時也會負責再傳輸管理。 PDU的建構方式如下:從傳輸緩衝器52〇之中取出一個 PDU;為其加入標頭;若該pDut的資料無法填滿整個rlc PDU的話,可以附加一填補攔或是揹負式狀態信息。該揹 負式狀怨信息可能係源自該接收端或是源自該傳輸端,用 以表不一 RLC SDU丟棄情形。該標頭含有RLC pDU序號 (SN); —輪詢位元(P),其可用來向同儕實體要求狀態丨以 及選配的長度指示符號(LI),若於RLC PDU中發生SDU串 接、填補、或揹負式PDU時便可使用該指示符號。 已確認模式(AM)通常係供封包型服務使用,例如網際網 路瀏覽及電子郵件下載。於已確認模式中,可使用自動重 95689.doc -33 · 200522579 複要求(ARQ)機制進行錯誤修正。任何有錯誤的已接收封包 皆可再傳輸。可經由RLC所提供之再發設數量的組態,利 用RRC來控制該RLC的品質對延遲效能。舉例來說,若該 RLC未正確傳送資料的話,若已經達到再傳輸的最大數量 或是已經超過傳輸時間的話,那麼便會通知上層並且丟棄 該無線電連結控制(RLC)SDU。亦可藉由於狀態信息中發送 一移動接收視窗命令來告知同儕實體該項SDU丟棄作業, 致使用者該接收器也會移除隸屬於該已丟棄之無線電連結 控制(RLC)SDU的所有PDU。 可針對循序及無序傳送來組織該RLC。利用循序傳送, 則可維持PDU更高層的順序;反之,無序傳送則會於完全 接收到更高層PDU時便立即前傳。該RLC層可循序傳送更 高層PDU。此功能可保留該等RLC傳輸更高層PDU的順序。 若未使用此項功能的話,則可提供無序傳送。除了資料PDU 傳送以外,亦可於同儕RLC實體間發送狀態與重置控制程 序等的信號。該等控制程序甚至可能使用一分離的邏輯頻 道,因此,一 AM RLC實體便可能會使用一個或兩個邏輯頻 道。 可針對已確認及未確認RLC模式於RLC層中實施加密。圖 5C中,AM RLC PDU會被加密540,其會排除含有PDU序號 及輪詢位元的前兩位位元。PDU序號係該加密演算法的其 中一項輸入參數,而且必須可被同儕實體讀取以便實施該 項加密作業。3GPP規格TS33.102便有說明加密處理。 接著可透過複數個邏輯頻道將該PDU前傳至MAC層 95689.doc -34- 200522579 140。圖5C中利用虛線來表示額外的邏輯頻道 (DCCH/DTCH),該等虛線圖解出一 RLC實體可被配置成利 用不同的邏輯頻道來發送該等控制PDU與資料PDU。AM實 體的接收端530會經由該等邏輯頻道中其中一者從該MAC 層中接收複數個RLC AM PDU。可以利用實體層中針對整 個RLC PDU所算出的CRC來檢查錯誤。實際的CRC檢查可 能係在實體層實施,而且該RLC實體會接收該CRC檢查的 結果以及加密整個標頭後所產生的資料,並且可從該RLC PDU中擷取出可能的揹負式狀態資訊。若被接收的PDU係 一強烈的信息或是若該狀態資訊被揹負至一 AM PDU之上 的話,便可將該控制資訊(狀態信息)傳送至傳輸端,傳輸端 會對照該被接收的狀態資訊來檢查其再傳輸緩衝器。進行 解密550以及將已加密PDU儲存於接收緩衝器中時都會使 用到源自RLC標頭的PDU數。一旦隸屬於某個完整SDU的全 部PDU皆位於該接收緩衝器中時,便可重組該SDU。雖然 圖中未顯示,不過,接著可於RLC SDU被傳送至更高層之 前實施循序傳送檢查以及副本偵測。 當該使用者設備(UE)或行動台於PTM傳輸及點對點 (PTP)傳輸間移動或是改變細胞時,便會重新初始化該RLC 實體152。如此可能會不幸造成無線電連結控制(RLC)緩衝 器中的資料遺失。如上述,當該行動台從一細胞移至另一 細胞或是當該服務細胞中的多媒體廣播與多播服務 (MBMS)内容的傳送從點對點(PTP)傳輸模式改變成點對多 點(PTM)傳輸模式時便可能會發生問題。 95689.doc -35- 200522579 吾人希望於點對點(PTP)傳輸及點對多點(PTM)傳輸兩者 間進行移轉期間或是於不同細胞間進行移轉期間(例如交 遞)保留多媒體廣播與多播服務(MBMS)的連續性,並且避 免遞出副本資訊。為保留MBMS服務的連續性並且避免遞 出副本資訊,層2 1 50應該能夠重新排列來自該等兩個串流 的資料。實體層無法提供此同步作業,因為每種模式中的 網路終止點可能並不相同。若如同3GPP2中的情況般於RLC 層150的下方實施前向式錯誤修正(FEC)的話,那麼從點對 多點(ΡΤΜ)傳輸移轉至點對點(ΡΤΡ)傳輸期間便可能會遺失 資料,反向移轉亦然。此外,舉例來說,於具有共同排程 的多個細胞間可能需要進行實體層同步作業並且分享相同 的媒體存取控制(MAC)。就此而言,此等假設並不適用於 3GPP2中,所此可能會造成問題。 點對點(PTP)傳輸 假設該項應用具有重要的延遲耐受性,那麼點對點(PTP) 傳輸最有效的資料傳輸模式便是無線電連結控制(RLC)已 確認模式(AM)。舉例來說,RLC已確認模式(AM)通常係用 於專屬邏輯頻道(PTP)上的封包切換資料傳輸。該RLC會運 作於專屬邏輯頻道上的已確認模式(AM)中。如圖5 A所示, 下行連結方向中其中一項使用者服務的專屬使用者流量可 經由被稱為專屬流量頻道(DTCH)的邏輯頻道來進行發送。 於已確認模式(AM)中,若該資料有誤的話,便可利用反 向連結來進行再傳輸。該RLC會傳輸複數個服務資料單元 (SDU)並且利用再傳輸來保證可正確地傳送至其同儕實 95689.doc -36- 200522579 體。若RLC無法正確傳送該資料的話,那麼,便會通知傳 輸端處RLC的使用者。運作於RLC AM中通常必須引入額外 的延遲以換取更大的功率效率。 點對多點(PTM)傳輸 共同流量頻道(CTCH)係存在於下行連結方向中的單向 頻道,而且當傳輸資訊給全部終端機或是特定的終端機群 時便可使用該頻道。此兩種資料傳輸模式皆使用單向的共 同頻道,其並不具有反向連結頻道建立作業。 吾人希望提供一種架構讓MBMS服務可於點對點(PTP)傳 輸模式與點對多點(PTM)傳輸模式間透通地切換。為可於點 對點(PTP)傳輸模式與點對多點(PTM)傳輸模式間移轉時獲 得良好效能,吾人還希望提供一種架構允許於不同的無線 電連結控制(RLC)模式間進行切換。舉例來說,此作法可幫 助降低功率需求。 現在將參考圖6至19所示與說明的具體實施例來說明本 發明的各項觀點。除了其它特點之外,該些特點可利用一 新的前向式錯誤修正(FEC)層於此等移轉期間幫助保留服 務連續性。 圖6為具有前向式錯誤修正(FEC)層之經修正的UMTS協 定堆疊的示意圖,其可運作於前向式錯誤修正(FECd)模式 中以及前向式錯誤修正(FECc)模式中。該前向式錯誤修正 (FEC)層允許下方的無線電連結控制(RLC)實體152於該使 用者設備(UE)從點對點(PTP)傳輸改變成與點對多點(PTM) 傳輸時從其中一種無線電連結控制(RLC)資料傳輸模式改 95689.doc -37- 200522579 變成另一種無線電連結控制(RLC)資料傳輸模式,同時可維 持服務連續性。根據本具體實施例,該FEC層可能係運作 於第一模式(FECc)或第二模式(FECd)中。於其中一種實現 方式中,第一模式(FECc)可運用同位區塊,而第二模式 (FECd)運作時則不需要任何同位區塊。於FECd模式與FECc 模式間改變所造成的影響可能遠低於於RLC模式間改變, 並且可能係無縫式作業,致使於該移轉期間不會遺失任何 資料。 前向式錯誤修正(FECc)模式可運用外部編碼技術來保護 使用者資料。此作法在共同頻道上特別有效。前向式錯誤 修正(FECc)模式通常會允許於無線電連結控制(RLC)層上 方進行在未確認模式(UM)中發現到的功能,例如分框(分割 及串接)以及序號加入功能。因此,該無線電連結控制(RLC) 層可針對點對多點(PTM)傳輸來使用透通模式(TM),因為 傳統的未確認模式(UM)功能可能係在該前向式錯誤修正 (FEC)層處被實施。雖然此項功能可能會於無線電連結控制 (RLC)已確認模式(AM)中重複出現,不過ARQ所造成的增 益卻可彌補此副本效應。 將該前向式錯誤修正(FEC)層或外部編碼層置於該無線 電連結控制(RLC)層之上,便可於和無線電連結控制(RLC) 無關的層中加入該序號。使用額外的附加資料(例如序號), 那麼便可於MBMS資料的非同步傳輸期間利用未經確認的 傳輸來讓該等協定資料單元(PDU)重新對齊一編碼器封包 (ΕΡ)〇因為該等序號係被加入於無線電連結控制(RLC)上方 95689.doc -38- 200522579 的層之中,所以,該等序號為點對點(PTP)傳輸以及點對多 點(ΡΤΜ)傳輸兩者所共有,所以,當從點對多點(ΡΤΜ)傳輸 移轉至點對點(ΡΤΡ)傳輸時,便可維持序號的連續性。如此 便可重新排列資料,因而可避免出現副本資料及/或遺失資 外部編碼亦可用於點對點(ΡΤΡ)傳輸中,其可提高該系統 的部份功率增益及/或縮短再傳輸延遲。多媒體廣播及多播 服務(MBMS)資料可忍受某種程度的延遲。於點對點(ΡΤΡ) 傳輸中會提供一條回授路徑。此作法會因為使用ARQ再傳 輸的關係而使得無線電連結控制(RLC)已確認模式(AM)的 使用更為有效,一般來說,當需要ARQ再傳輸時,其無線 電效率會比FEC架構還要有效,因為於FEC技術中必定會發 送額外的複數個同位區塊。就此而言,並不必於專屬邏輯 頻道(舉例來說,點對點(PTP))上在MBMS酬載資料中加入 複數個同位區塊。 圖7A與7B為於無線電連結控制(RLC)層150上置放一前 向式錯誤修正(FEC)層157之存取階層的協定結構的具體實 施例。現在將參考圖11來說明該前向式錯誤修正(FEC)層的 具體實施例。 該前向式錯誤修正(FEC)層157會於該等使用者平面無線 電承載上直接接收使用者平面資訊163。因為該前向式錯誤 修正(FEC)層係位於無線電連結控制(RLC)層的頂端,所以 FEC協定資料單元(PDU)會對應RLC服務資料單元(SDU)。 該FEC層較佳的係支援任意的SDU大小(其限制為8位元的 95689.doc -39- 200522579 倍數)、可變速率資料源、從下層中無序接收封包、以及從 下層中接收副本封包。FEC PDU大小的限制可能係8位元的 倍數。 如下文將翏考圖9A的更詳細說明般,該FEC層157會將更 高層的使用者資料區塊(例如SDU)分割且串接成相同大小 的歹]母列亦可稱為内部區塊。每個協定資料單元(pDu) 皆可能包含附加資料。該附加資料可能包含長度指示符號 (LI),用以表示源自某個特殊使用者資料區塊(例如服務資 料單元(SDU))的資料可放在最後-個協定資料單元(PDU) 中的開頭位置。收集複數個聊便會構成—編碼器封包 (EP)或「編碼器矩陣」。除了其它因 ㈣㈣中的咖數量還會和所使用的外:二二: 母個編碼裔「矩陣」列包裝成一獨立或分離的傳輸時間區 門(TTI)便可增強貫體層效能。為減輕緩衝負擔,可以使用 較短的傳輸時間區間(TTI)持續時間。 。 接著,可經由-外部碼編碼器來傳送該編碼器封包(EP) 二以產生該等同位列。如下文將參考圖9A的更詳細說明 / FEC層157可藉由KUMTS陸地無、線電存取網路 TRAN)20中提供一里德·所羅門(RS)編碼器功能來實施 夕Μ編碼,並a可藉由於使用者設備(u卿 所羅門解碼器功能來實施外部解碼。 '、“ 包=部:碼器所產生的該等同位列可被加入該編碼器封 :可置放於-傳輪緩衝器中當作一群内部 £塊。母個内部區塊皆具有外加的資訊,用以產生一協定 95689.doc -40- 200522579 資料單元(PDU)。接著便可傳輸該等PDU群。 該FEC層157還允許還原隸屬於單一個EP的資料,即使從 不同的細胞中接收不同的内部區塊亦然。經由傳輸每個協 定資料單元(PDU)之標頭中的序號(SN)便可達成此目的。於 其中一具體實施例中,系統訊框編號(SFN)有助於按照編碼 器<封包(EP)來維持資料對齊。本文中將參考圖10A與10B來 更詳細地討論序號。 該FEC層157還可實施填補與重組、使用者資料傳輸、以 及實施上層PDU的循序傳送、副本偵測、以及序號檢查。 於圖6至7A的具體實施例中,該前向式錯誤修正(FEC)層 157係位於封包資料收斂協定(PDCP)層156與無線電連結控 制(RLC)層150之間(例如位於和BMC層相同層級處以及位 於封包資料收斂協定(PDCP)層的下方)。藉由將前向式錯誤 修正(FEC)層157置放於無線電連結控制(RLC)層150的上 方,便可最佳化該外部碼的效能,因為内部區塊大小可匹 配該等欲於空中被發送的封包的「黃金」封包大小。不過, 吾人應該發現,此圖中的前向式錯誤修正(FEC)層僅供作圖 解用途而不具限制性。針對其標頭壓縮功能可於前向式錯 誤修正(FEC)層157的頂端使用封包資料收斂協定(PDCP)層 156。應該注意的係,目前該封包資料收斂協定(PDCP)層156 係針對使用專屬邏輯頻道的點對點(PTP)傳輸來定義。如圖 7B所示,可於該無線電連結控制(RLC)層上的存取階層内或 該應用層中的任何位置提供該前向式錯誤修正(FEC)層。該 前向式錯誤修正(FEC)層可能係位於該封包資料收斂協定 95689.doc -41 - 200522579 (PDCP)層的下方或上方。若於應用層8〇中實施FEC的話, 即使GSM與WCDMA具有不同的「黃金」封包大小,亦可等 同套用至GSM與WCDMA。 外部碼設計 該新的前向式錯誤修正(FEC)層可對使用者平面資訊實 知外部編碼。圖8為一資訊區塊91及一外部碼區塊95的示意 圖,該圖係為圖解外部區塊碼結構的概念。圖9八為如何將 外部碼區塊結構套用至多媒體廣播及多播服務(mbms)資 料91的範例示意圖。當於整個細胞上廣播可耐受延遲的内 各時,外部編碼便可改良實體層效能。舉例來說,外部碼 有助於細胞間的移轉期間以及點對點(ρτρ)傳輸模式與點 對多點(ΡΤΜ)傳輸模式間的移轉期間避免遺失資料。 外部碼區塊95可以一矩陣形式來表示,該矩陣包含k個協 定資料單元91以及N_k個同位列93。於外部區塊編碼中,藉 由分割、串接、以及填補資料(包含於内冑區塊中插入附加 貝料)將使用者資料組織成]^個酬載列便可將資料組成大型 的編碼器封包或資訊區塊91,而且接著可對所生成的資訊 區㈣進仃編碼’用以產生^^個同位列…可將該等同位 列加入至資訊區塊91中以便製造出-外部碼區塊95。該等 同位列93會將冗餘資訊加入至資訊區塊91中。接著便可於 單一或多個傳輸時間區間(TTI)中來傳輸該外部碼區塊的 該等個別列。即使部份協定資料單_DU)於傳輸期間遺 失2組協^資料單印而)的冗餘資訊亦能允許重建原來 95689.doc -42- 200522579 圖9A為被稱為里德-所羅門(RS)區塊碼的示範外部碼區 塊的示意圖。里德-所羅門(RS)碼可用來偵測且修正頻道 錯誤。圖9 A所示之外部碼係一系統性(n,k)區塊碼,其中每 個里德-所羅門(RS)碼符號皆包括一由一列與一行所定義 的資訊位元組。每一行皆包括一里德-所羅門(RS)碼字 組。若欲還原η個遺失區塊,那麼便需要至少n個同位區 塊。就此而言,所需要的記憶體數量便會隨著同位區塊數 量增加而增加。於里德-所羅門(RS)編碼中,可於k個系統 性符號中加入N-k個同位符號,以便產生一碼字組。換言 之’一里德·所羅門(RS)[N,k]的碼字組具有k個資訊或「系 統性」符號以及N-k個同位符號。n係該碼的長度,而k則 係該碼的維度。對每k個資訊位元組來說,該碼會產生n個 編碼符號,其前面k個符號可能與該等資訊符號完全相 同。每一列皆可稱為一「内部區塊」,並且代表每個傳輸 叶間區間(TTI)的酬載。舉例來說,於正常的wcdma系統 中,可於20 ms訊框(TTI)的基本WCDMA結構上進行傳 輸。可以利用下面定義的彦峰哭祐陆p 〜我〜座玍盗矩陣GkxN由該等系統性符 號中推導出該等同位符號: miletter.动 I use the term "reverse link or uplink link" as used in this article to indicate that the station can send a signal to a base station's communication channel / link in the radio access network through the link. This channel can also be used to transmit signals from a mobile station to a mobile base station or from a mobile base station to a base station. The term "refers to a communication to a mobile station" as used herein. "Forward link or downlink radio access network to transmit signal channels / links over that link. The" transmission time interval στι "used in this article "__ represents the time interval between the arrival of data from the higher layer to the physical layer. The transmission time interval (ττι) may represent the time between the arrival of a transfer block set (TBS), and is approximately equal to the period of 95689.doc -13- 200522579 that the physical layer uploads the tbs on the radio interface. Period π-The data sent on the transmission channel may be encoded and interlaced. A TTI can extend multiple radio frames' and may be a multiple of the minimum interleaving period. For early __ connections, the starting position of π for different transmission channels multiplexed from must be time-aligned. A plurality of TTIs will have a common starting point. The media access control sends a transport block set to the entity layer in each TTI. Different transmission channels mapped to the same physical layer may have different transmission time interval (TTI) durations, and may be in multiple PDUs. Χ “packet” as used in this article—the constellation_group bit represented by a word, which contains data or payload and control elements that are configured in a specific format. These control elements may include, for example, the foregoing, quality metrics, and other elements well known to those skilled in the art. For example, quality metrics include cyclic redundancy check (CRC), parity, and other types of metrics known to those skilled in the art. The term "access to a network" as used herein refers to the equipment required to access that network. The access network may include a collection or network consisting of multiple base stations 基地 and more than one base station controller (Bsc). The access network sends data packets between multiple subscriber terminals. The access network may be further connected to additional networks other than the access network, such as a company intranet or the Internet, and may be between a plurality of access terminals and these external networks Transmission of data packets. In UMTS systems, this access network may be referred to as the UMTS Terrestrial Radio Access Network (UTRAN). The term "core network" as used in this article stands for connection to 95689.doc -14- 200522579 Public Switched Telephone Network (PStn) (for circuit-switched calls in the circuit-switched (cs) domain) or Switching or routing of any one of the Packet Data Network (PSDN) (for packet switching calls in the packet switching domain). The term "core network" also stands for mobile capabilities and user location management ~ grid functions and routing functions for authentication services. This core network is used to switch the network elements necessary for user control. The term "base station" as used herein refers to a "origin station" which contains hardware that can communicate with a mobile station. In the uMTs system, the term “node B” can be used instead of the term “base station”. The Yimei platform may be fixed or mobile. & The term "cell" as used herein refers to a hardware or geographic area, depending on the context in which the term is used. The term "service data unit (SDU)" as used herein refers to a unit of data that can be exchanged using a protocol that is above the protocol of interest. As used herein, the term “payload data unit (PDU)” refers to a data unit that can be exchanged using a protocol that is located below the protocol of interest. If the agreement of interest cannot be clearly identified, a specific reminder will be given by name. For example, the FEC-PDU is a PDU at the FEC layer. The term "soft handover" as used herein refers to communication between a user △ and two or more sectors, each of which belongs to a cell that is not self-contained. The reverse link communication can be received by two sectors, and the forward link operation can be carried on the forward links of two or more sectors simultaneously. As used herein, the term "softer delivery" refers to communication between a user station and more than two segments, where each segment belongs to a group of 95689.doc -15-200522579 cells. The reverse link communication can be received by two sectors, and the forward link communication can be carried on one of the forward links of two or more sectors simultaneously. As used herein, the term "deletion" refers to the inability to confirm a certain information 'and can also be used to represent -bits that may be lost in decoding time. "—,-And private transfer" together can be defined as transfer from point-to-point (ρτρ) transmission to., Account for point to point (PTM) transmission, or reverse transfer. There are four possible interactions: transfer from point-to-point (ρτρ) transmission in cell A to point-to-multipoint (PTM) transmission in cell B, and shift from point-to-multipoint (ρτM) transmission in cell a Turn, ', point-to-point (ρτρ) transmission in month B, transfer from point-to-point (ρτρ) transmission in cell a to point-to-multipoint (ρτM) transmission in cell A, and point-to-multipoint transmission in cell A (PTM) point-to-point (ρτρ) transmission from cell to cell a. The term "direct transfer" can be defined as a transfer from point-to-point transmission to another point-to-point transmission and a point-to-multipoint transfer wheel to another-point-to-multipoint transmission. There are two possible direct transfers: transfer from point-to-point (ρτρ) transmission in cell human to point-to-point (ρτρ) transmission in cell B, and transfer from point-to-multipoint (PTM) transmission in cell A to cell Point-to-multipoint (ρτM) transmission in B. The term "intercellular migration" stands for migration across cell boundaries. There are four possible intercellular migrations: transfer from point-to-point (ρτρ) transmission in cell A to point-to-point (PTP) transmission in cell B, and transfer to cell from point-to-multipoint (PTM) transmission in cell A Point-to-multipoint (pTM) transmission in 3, transfer from point-to-point (ptp) transmission in cell a to point-to-multipoint (ρτM) transmission in cell 6, and from point-to-multipoint (PTM) in cell A ) Transmission is transferred to point-to-point (PTP) transmission in the cell. In general, the most frequently occurring migration is from point-to-multipoint (PTM) transmission to point-to-multipoint (PTM) transmission across cell boundaries. The term "intracellular migration" refers to the migration from one mode to another within a cell. There are two possible intracellular transfers: · Transfer from point-to-point (PTP) transmission in cell A to point-to-multipoint (PTM) transmission in cell A, and from point-to-multipoint (PTM) in cell A Transmission is transferred to point-to-point (PTP) transmission in cell A. The term "radio bearer" refers to the services provided by layer 2 to transfer user data between user equipment (UE) and UMTS terrestrial radio access network (UTRAN). Specific embodiments of the invention will now be discussed in which the ideas discussed above can be implemented in a WCDMA or UMTS communication system. Figures 1-5C explain some of the views of a conventional UMTS or WCDMA system, in which the views of the present invention described in this specification that can be applied to this description are for illustrative and limiting purposes only. It should be understood that the idea of the present invention can also be applied to other systems that carry both voice and data, such as the GSM system and CDMA 2000 system that meet the following standards: "3rd Generation Partnership Project" (3GPP), which The kit is now in the file group containing the following file numbers: 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214 (W-CDMA standard); or "TR-45.5 cdma2000 spread spectrum system physical layer standard" Standard (IS-2000 standard); and GSM specifications, such as TS 04.08 (Mobile Radio Interface Layer 3 Specification), TS 05.08 (Radio Subsystem Link Control), and TS 05.01 (Physical Layer on the Radio Path (General Description)) . For example, although the description specifies that the radio access network 20 can be implemented using the Universal Terrestrial Radio Access Network (UTRAN) air interface, in the 95689.doc -17- 200522579 GSM / GPRS system, the radio access network Route 20 may be a GSM / EDGE radio access network (GERAN), and even in the case of systems, it may include cells of the UTRAN air interface and cells of the GSM / EDGE air interface. UMTS network topology Figure 1 is a block diagram of a communication system based on a UMTS network topology. A UMTS system includes a user equipment (UE) 10, an access network 20, and a core network 30. The UE 10 is coupled to the access network, and the access network is coupled to the core network 30. The core network 30 may be coupled to an external network. The UE 10 includes a mobile device 12 and a Universal Subscriber Identity Module (USIM) 14, which contains user subscription information. Cu interface (not shown) is an electrical interface between USIM 14 and the mobile device 12. UE 10 is usually a component that allows users to access UMTS network services. The UE 10 may be a mobile component (such as a cell phone), a fixed station, or other data terminal. For example, the mobile device may be a radio terminal used for radio communications over an air interface (Uu). The UE can access the fixed part of the system via the Uu interface. The USIM is typically an application program that resides on a "smart card" or other logic card containing a microprocessor. The smart card retains the identity of the user, can implement an authentication algorithm, and uses an encryption key to store the authentication signal and the ordering information required at the terminal. The access network 20 contains radio equipment for accessing the network. In a WCDMA system, the access network 20 is a Universal Terrestrial Radio Access Network (UTRAN) air interface. UTRAN includes at least one radio network subsystem 95689.doc -18-200522579 (RNS), which includes at least one base station or "node b" 22, which is connected to at least one radio network controller ( RNC) 24. The RNC will control the radio resources of the UTRAN. The RNCs 24 accessing the network 20 communicate with the core network 30 through the Iu interface. The Uu interface, Iu interface 25, Iub interface, and Iur interface allow devices from different manufacturers to connect to the network, and are all specified in the 3 GPP standard. The design method of the radio network controller (RNC) varies from manufacturer to manufacturer, so it will be described below in general. The radio network controller (RNC) 24 is used as a switching and control element of the UMTS Terrestrial Radio Access Network (UTRAN), and is located between the Iub interface and the Iu interface 25. The RNC can serve as a service access point for all services provided by the UTRAN to the core network 30, for example, to manage connection with the user equipment. Iub interface 23 is connected to Node B 22 and Radio Network Controller (RNC) 24. The Iu interface will connect UTRAN to the core network. The radio network controller (RNC) will provide a switching point between the Iu bearer and the base stations. The user equipment (UE) 10 may have several radio bearers between itself and the radio network controller (RNC) 24. The radio bearer is related to the user equipment (UE) content, which is a set of defined values required by the Iub to arrange the common connection between the user equipment (UE) and the radio network controller (RNC) and Dedicated connection. The individual RNCs 24 can communicate with each other on an optional Iur interface, which allows soft handover between cells connected to different nodes 22. Therefore, the Iur interface allows inter-RNC connections. In these cases, a serving RNC will maintain the Iu 25 connection to the core network 30, and implement the selector and external loop power 95689.doc -19- 200522579 control functions, while the -drift RNC will pass-more than Base station_ can exchange frames transmitted to the mobile station w on the Iur interface. The RNC of the control-node B 22 may be referred to as the control rnc of the node B, and controls the load and congestion of its own cells, while also performing admission control and code assignment for new radio links to be established in those cells. The hop and base station (node B) can be connected via the Can interface and communicate on the interface. These RNCs are expected to integrate each of the base stations 22 with special radio resources. Each base station 22 controls more than one cell 'and provides a radio link to the mobile station. The base station can implement interface processing such as channel coding and interleaving processing, rate adaptation and expansion processing. The base station will also perform basic radio resource management operations, such as inter-loop power control. Base station U will convert the data stream between Iul ^ Uu interface 23 and%. The base station η will also participate in radio f source management. The air interface Uu 26 will close each base station 22 to the mobile station 10. These base stations may be responsible for more than one cell to the mobile station_radio transmission operation, and responsible for radio reception operations from the operation to more than one cell. The core network 30 includes all switching and routing functions to perform the following tasks: ⑴ If a circuit switching call exists, it is used to connect to Delete 42, or if a packet switching call exists, 'to connect to the packet data network (PDN); (2) implementation of mobile capabilities and user location management; and (ii) implementation of authentication services. Heart, network 30 may include __㈣ location registration (hlr) 32, a mobile switching service center / visitor location registrar (msc / vlr) 34, a gate ... (automatic knife change) ^ (GMSC) 36,- Service General Packet Radio Service Support 95689.doc -20-200522579 Supporting Node (SGSN) 38 and a Gateway GPRS Support Node (GGSN) 40. If a circuit-switched call exists, the core network 30 may be coupled to an external circuit-switched (CS) network 42 (such as a public switched telephone network (PSTN) or (ISDN)) to provide a circuit-switched connection; if a packet If a handover call exists, it can be coupled to a PS network 44 (such as the Internet) to provide a packet data service connection. UMTS signaling protocol stack FIG. 2 is a block diagram of the UMTS signaling protocol stack 110. The UMTS signaling protocol stack 110 includes an access hierarchy and a non-access hierarchy (NAS). The access hierarchy typically includes a physical layer 120; a layer 2 130, which includes a media access control (MAC) layer 140 and a radio link control (RLC) layer 150; and a radio resource control (RRC) layer 160. The layers of the access hierarchy are explained in more detail below. The UMTS non-access hierarchy is basically the same as the upper GSM layer and can be divided into a circuit switching section 170 and a packet switching section 180. The circuit switching section 170 includes a connection management (CM) layer 172 and a mobile capability management (MM) layer 178. The CM layer 172 handles circuit switching calls and contains sublayers. The call control (CC) sublayer 174 performs functions such as setup and release. The supplementary services (SS) sublayer 176 performs functions such as call forwarding and three-way calling. The short message service (SMS) sublayer 177 performs short message services. The MM layer 178 handles the location update and authentication operations of the circuit switching call. The packet switching part 180 includes a conversation management (SM) sublayer 182 and a GPRS mobile capability management (GMM) sublayer 184. The conversation management (SM) sublayer 182 handles packet switching calls by performing functions such as setup and release, and also includes a short message service (SMS) 95689.doc -21-200522579 section 183. The GMM sublayer 184 handles location update and authentication operations for packet switching calls. FIG. 3 is a block diagram of a user plane for packet switching in a UMTS protocol stack. The stack includes an access hierarchy (AS) layer and a non-access hierarchy (NAS) layer. The NAS layer includes an application layer 80 and a packet data protocol (PDP) layer 90. The application layer 80 is located between the user equipment (UE) 10 and the remote user 42. The PDP layer 90 (e.g. IP or PPP) is located between the GGSN 40 and the user equipment (UE) 10. The lower layer packet protocol (LLPP) 39 is located between the remote user 42 and the SGSN 38. The Iu interface protocol 25 is located between the Radio Network Controller (RNC) 24 and the SGSN 38, and the Iub interface protocol is located between the Radio Network Controller (RNC) 24 and the Node B 22. The rest of the AS layer is explained below. Access Hierarchy (AS) Layer Figure 4 is a block diagram of the access hierarchy part of the UMTS signaling protocol stack. The conventional access layer includes a physical layer (L1) 120; a data link layer (L2) 130, which includes the following sublayers: a media access control (MAC) layer 140, a radio link control (RLC) layer 150, and packet data convergence A protocol (PDCP) layer 156, a broadcast / multicast control (BMC) layer 158; and a radio resource control (RRC) layer 160. These layers are explained in more detail below. The radio bearer carries user data 163 between the application layer and layer 2 (L2) 130. The control plane signaling 161 can be used as all UMTS-specific control signaling, and includes application protocols in the signaling bearer to transmit such application protocol information. This application protocol can be used to establish a bearer to the UE 10. The user plane transmits all user plane information 163 sent and received by the user, such as encoded voice in a voice call or a 95689.doc -22-200522579 packet in an Internet connection. The user plane information 163 will carry the data string and the data bearer of those data strings. Each data string is characterized by one or more frame protocols specified by the interface. The radio resource control (RRC) layer 160 may act as the overall controller of the access hierarchy and organizes all other layers in the access hierarchy. The RRC layer 160 generates control plane signaling 161, which can control the radio link control unit 152, the physical layer (L 1) 120, the media access control (MAC) layer 140, the radio link control (RLC) layer 150, and packet data convergence Protocol (PDCP) layer 156, and broadcast / multicast control (BMC) layer 158. The radio resource control (RRC) layer 160 determines the type of measurement and reports the measurement results. The RRC layer 160 can also be used as a non-access level control and signaling interface. More specifically, the RRC layer 160 broadcasts system information information, which includes both the access hierarchy and non-access hierarchy information elements of all user equipments (UEs) 10. The RRC layer 160 establishes, maintains, and releases a radio resource control (RRC) connection between the UTRAN 20 and the UE 10. The UE RRC will request the connection, and the UTRAN RRC will establish and release the connection. The RRC layer 160 also establishes, reassembles, and releases radio bearers between UTRAN 20 and UE 10. The UTRAN 20 initiates these operations. The RRC layer 160 also handles the various characteristics of the user equipment (UE) 10 mobile capabilities. These procedures are dependent on the UE status (whether the call is a circuit-switched call or a packet-switched call) and the radio access technology (RAT) of the new cell. The RRC layer 160 will also page UE 10. Regardless of whether the UE is listening to the paging channel or the outgoing indication channel, the UTRAN RRC will page the UE. The RRC of the UE notifies the upper layer of the core network (CN) 30. 95689.doc -23- 200522579 The data link layer (L2) 130 includes a media access control (MAC) sublayer 140, a radio link control (RLC) sublayer 150, a packet data convergence protocol (PDCP) sublayer 156, And a broadcast / multicast control (BMC) sublayer 158. The Broadcast and Multicast Control Protocol (BMC) 158 communicates information from the cell broadcast center on the radio interface by adapting broadcast / multicast services from the broadcast domain on the radio interface. The BMC Agreement 158 provides services called "radio bearers" and exists in the user plane. The BMC protocol 158 and RNC will store the cell broadcast information received on the scheduled CBC-RNC interface for transmission. On the UTRAN side, the BMC protocol 158 will calculate the necessary transmission rate of the cell broadcast service based on the information that can be received on the CBC-RNC interface (not shown), and request the appropriate CTCH / FACH from the RRC Resources. The BMC protocol 158 will also receive schedule information and broadcast information for each cell on the CBC-RNC interface. The BMC will generate scheduled information based on the scheduling information on the UTRAN side and generate a scheduled BMC information sequence accordingly. On the user device side, the BMC evaluates the scheduling information and indicates the scheduling parameters to the RRC. The RRC can then use the parameters to organize the lower layers for discontinuous reception. The BMC also transmits BMC information according to a certain schedule, such as schedule information and cell broadcast information. The undamaged cell broadcast information can be transmitted to the upper layer. Part of the control signaling between UE 10 and UTRAN 20 may be radio resource control (RRC) 160 information, which will carry all necessary parameters for establishing, modifying, and releasing layer 2 protocol 130 entities and layer 1 protocol 120 entities. RRC information carries all higher-level signaling in its payload. The radio resource control (RRC) controls the mobility of the user's device in the connection mode by sending measurement results, transmitting signals 95689.doc -24-200522579, and cell update signals. A Packet Data Convergence Protocol (PDCP) 156 exists in the user plane of services originating from the PS domain. The services provided by PDCP can be called radio bearers. The Packet Data Convergence Protocol (PDCP) provides header compression services. The Packet Data Convergence Protocol (PDCP) 156 contains a compression method that provides better spectrum service efficiency for transmitting IP packets over the air. Any header compression algorithm can be used. The PDCP compresses redundant protocol information at the transmitting entity and decompresses it at the receiving entity. The header compression method may be specific to a special network layer, transport layer, or a combination of upper layer protocols (for example, TCP / IP and RTP / UDP / IP). PDCP also transmits the user data it receives in the form of PDCP Service Data Units (SDUs) from the non-access hierarchy, and forwards it to the RLC entity; it can also do the reverse. PDCP will also support lossless SRNS relocation. When PDCP uses acknowledged mode (AM) RLC in sequential transmission, a PDCP entity that can be configured to support lossless RSRNS relocation will have a protocol data unit (PDU) sequence number, which can be used along with an unconfirmed PDCP packet Passed to new SRNC before relocation. The RLC layer 150 provides services to the higher layers (for example, the non-access layer) through higher-layer protocols in the UE side and service access points (SAPS) that can be used by the IUNAP protocol in the UTRAN side. The service access point (SAPS) will describe how the RLC layer processes the data packets. All higher-level signaling (such as mobility management, call control, conversation management, etc.) can be encapsulated in the RLC information transmitted by the radio interface. The RLC layer 150 contains various radios 95689.doc -25-200522579 link control entities 152, and these radio link control entities are coupled to the MAC layer 140 through logical channels carrying signaling information and user data. On the control plane 161, the RLC layer can use these RLC services for signal transmission. On the user plane 163, these RLC services can be used by the service specific protocol layer PDCP or BMC, or by other higher-level user plane functions. For services that do not use PDCP 156 or user plane agreements, such RLC services may be referred to as the signaling radio bearer in the control plane 161 and the radio bearer in the user plane 163. In other words, if the service cannot use the PDCP and BMC agreement, the RLC layer 150 can provide a service called signaling radio bearer (SRB) in the control plane 161 and a radio bearer (RB) in the user plane 163 ) Services. Otherwise, the PDCP layer 156 or the BMC layer 158 can provide the RB service. The radio link control (RLC) layer 150 implements a framing function on the user and control data, which includes split / concatenation and padding functions. The RLC layer 150 usually provides segmentation and retransmission services for the radio resource control (RRC) 160 layer of control data in the control plane 161 and the application layer of user data in the user plane 163. The RLC layer usually divides a variable-length higher-layer protocol data unit (PDU) into a plurality of smaller RLC protocol data units (PDUs) or recombines a plurality of smaller RLC protocol data units (PDUs) into a variable Length higher layer protocol data unit (PDU). A radio link control (RLC) protocol data unit (PDU) usually carries a PDU. For example, the radio link control (RLC) can be used to set the radio link control (RLC) based on the smallest possible bit rate of the service. ) PDU size. As will be discussed below, for variable-rate services, as long as the bit rate is higher than the lowest used by 95689.doc -26- 200522579, several radios can be transmitted during a transmission time interval (TTI) Link Control (RLC) PDU. The RLC transmission entity also performs the concatenation operation. If the contents of a Radio Link Control (RLC) Service Data Unit (SDU) cannot fill an integer number of Radio Link Control (RLC) PDUs, the first segment of the next Radio Link Control (RLC) SDU can be placed Into the Radio Link Control (RLC) PDU, it is used to concatenate the last segment content of the previous RLC SDU. The RLC transport entity usually also implements padding functions. When the remaining data to be transmitted cannot fill the entire Radio Link Control (RLC) PDU of a certain size, then the fill bits can be used to fill the remaining lean shelves. For example ', this article will provide techniques for reducing or omitting the number of paddings to be used, in accordance with the views of the present invention discussed below in Figs. 11-13. The RLC receiving entity will detect the copy of the received Radio Link Control (RLC) PDU and ensure that the results in the higher layer PDU will be transmitted to the upper layer only once. The RLC layer also controls the rate at which the PRLC transmitting entity can send information to an RLC receiving entity. FIG. 5A is a block diagram of a data transmission mode used in the Radio Link Control (RLC) layer of the UMTS signaling protocol stack, and also shows possible mappings of logical channels, transmission channels, and physical UMTS channels related to the access layer . Those skilled in the art will find that it is not necessary to define all mapping pairs for a specific user equipment (UE) at the same time, and multiple instances of some mapping pairs may occur at the same time. For example, a voice call might use three dedicated traffic channel (DTCH) logical channels mapped to three dedicated channel (DCH) transmission channels. Furthermore, some of the channels shown in Figure 5 (such as 95689.doc -27- 200522579 CPICH, SCH, DPCCH, AICH, and PICH) exist in the physical layer background and do not carry upper layer signaling or users data. The content of these channels may be defined in the physical layer 120 (L1). Each RLC instance in the Radio Link Control (RLC) layer can be configured using the Radio Resource Control (RRC) layer 160 to operate in one of three modes: transparent mode (TM), unacknowledged mode (UM) Or confirmed mode (AM), which will be described in detail below with reference to FIG. 5B. The three data transmission modes indicate the mode in which the radio link control (RLC) is configured for a certain logical channel. RLC entities in transparent and unconfirmed mode will be defined as one-way, while entities in confirmed mode will be defined as two-way. Generally, for all RLC modes, a CRC error check is performed on the physical layer, and the CRC check result is transmitted to the RLC along with the real data. Depending on the special requirements of each mode, these modes will implement some or all of the functions of the RLC layer 150. These functions include segmentation, reassembly, concatenation, padding, retransmission control, data flow control, copy detection, Sequential delivery, error correction, and encryption. These functions will be described in more detail below with reference to Figs. 5B and 5C. According to the viewpoint of the present invention discussed herein, the present invention can provide a new radio link control (RLC) data transmission mode. The MAC layer 140 provides services to the RLC layer 150 using logical channels that are characterized by the type of data being transmitted. The media access control (MAC) layer 140 maps and multiplexes logical channels to transmission channels. The MAC layer 140 recognizes a user equipment (UE) on a common channel. The MAC layer 140 also multiplexes higher layer PDUs into multiple transmission blocks for transmission to or from the physical layer on the common transmission channel. 95689.doc -28- 200522579 block to multiplex higher layer PDUs. The MAC handles the service multitasking task of the common transmission channel because the job cannot be done at the physical layer. When a common transmission channel carries data from a dedicated logical channel, the Media Access Control (MAC) header will contain the UE's identification symbol. The MAC layer will also multiplex higher layer PDUs into multiple transmission block sets for transmission to the physical layer on the dedicated transmission channel or a plurality of transmission block sets transmitted from the physical layer on the dedicated transmission channel to demultiplex. To higher layer PDUs. The MAC layer 140 receives a plurality of RLC PDUs and status information. The number is equal to the amount of data in the RLC transmission buffer. The MAC layer 140 compares the amount of data corresponding to the transmission channel with the threshold set by the RRC layer 160. If the amount of data is too high or too low, the MAC will send a measurement report related to the traffic status to the RRC. The RRC layer 160 may also require the MAC layer 140 to send these measurements periodically. The RRC layer 160 will use the reported values to trigger the reconfiguration of the radio bearers and / or transmission channels. The MAC layer also depends on the instantaneous source rate of the logical channels to select an appropriate transmission format (TF) for each transmission channel. For different data streams, the MAC layer 140 selects a "high bit rate" and a "low bit rate" transmission format (TF) to provide data stream processing priorities. The nature of packet switching (PS) data is burst data, so the amount of data that can be sent changes with the frame. When more data is available, the MAC layer 140 can choose one of the higher data rates; however, when both signaling and user data are available, the MAC layer 140 will choose between them to maximize Amount of data sent by higher priority channels. The transmission format (TF) can be selected from the transmission format combination (TFC) defined by the admission control of each connection. 95689.doc -29- 200522579 The media access control (MAC) layer also implements encryption. Each radio bearer can be encrypted separately. Details of the encryption are described in 3GPPTS 331〇2. In systems such as WCDMA, three types of transmission frequencies can be used to transmit round packet data. These channels are custom transmission channels, exclusive transmission channels, and shared transmission channels. In the downlink, the packet scheduling algorithm will choose to transmit the channel packet data. In the uplink connection, the mobile station selects the transmission channel based on the parameters set by the packet scheduling ^ algorithm. ^ For example, the common channel may be the random access channel RACH in the uplink and the * direction fach in the downlink. Everyone carries signaling data and user data. The common channel has a very low set up; Because the common channel can be used to send a message before the connection is established, the common channel can be used to send packets immediately without requiring a long settling time. Each section usually has a small number of 11 (:: 11 or 17: 8 :: 11. The common channel does not have a return & channel 'so' usually using open loop power control or using fixed power. Also , The common channel cannot use soft handover. Therefore, the link level performance of the common channel may be worse than the link level performance of the dedicated channel, and it will generate more interference than the dedicated channel. Therefore, the common channel is more suitable Used to transmit small individual packets. Applications used in common channels may be applications such as short message services and short messages. Sending a single request to a webpage is also very suitable for the concept of common channels, but for larger data volumes In some cases, the common channel will be deteriorated due to poor radio performance. Dedicated channels can use fast power control and soft handoff to improve radio performance, and the interference will usually be less than common channels. No 95689.doc -30- 200522579 Yes, it takes longer to build a dedicated channel than to save a common channel. The dedicated channel has a variable bit rate It ranges from thousands of 7L groups per second to 2 million bytes per second. Because bit rates occur during transmission, the next link orthogonality must be assigned based on the highest bit rate Therefore, the dedicated channel with variable bit rate will consume considerable downlink orthogonal code space. The L1 120 will be coupled to the MAC layer 140 through a plurality of transmission channels carrying signaling information and user data. The physical layer 120 provides services to the mac layer through a plurality of transmission channels whose characteristics are how to transmit data and which characteristics are used to transmit data. The physical layer (L 1) 120 will provide the radio link through a plurality of physical channels. Receive L commands and user data on the Internet. The physical layer (L 1) usually implements multiplexing and channel coding, which includes CRC calculation, forward error correction (FEC), rate matching, interleaved transmission channel data, and multiplexed transmission channels. Data, and other physical layer procedures (such as acquisition, transmission, and radio link establishment / failure). The body layer (L1) may also be responsible for unrolling and scrambling processing, modulation testing, and transmission of multiple episodes , Power weighting, handover, compression mode, and power control. Figure 5B is a block diagram of the architecture of the radio link control (RLC) layer. As mentioned above, each RLC entity or instance 152 in radio link control 15 can be used. Use the radio resource control (RRC) layer 16 to configure to operate in one of the following three data transmission modes: · transparent mode (TM), unacknowledged branch (UM), or acknowledged mode (AM). Yes Uses the quality of service (QoS) settings to control the data transmission mode of user data. 95689.doc 200522579 TM is unidirectional and includes a transmitting TM entity 152A and a receiving TM entity 152B. In the transparent mode, there is no agreement Commands are added to higher-level data. Incorrect protocol data units (PDUs) can be discarded or mislabeled. Streaming transmission can be used, in which the higher-level data is usually not divided, but in special cases, the transmission of limited division / reassembly functions can be completed. When splitting / regrouping is used, negotiation can be done in the radio bearer establishment procedure. UM is also unidirectional and includes a transmitting UM entity 152C and a receiving UM entity 152D. The reason a UM RLC entity is defined as one-way is because there is no need for any association between the uplink and the downlink. Data transmission is not guaranteed in UM. For example, UM can be used in specific RRC signaling procedures that are not part of acknowledgement and retransmission. Examples of user services that use unconfirmed mode RLC are cell broadcast services and voice over IP. Depending on the configuration, erroneous data received can be marked or discarded. A timer-type drop function without explicit signaling can be applied. Therefore, RLC PDUs that cannot be transmitted within a specified time can be removed from the transmission buffer. In the unconfirmed data transmission mode, the PDU structure includes a plurality of serial numbers, and serial number checking can be implemented. The serial number check helps to ensure the integrity of the reorganized PDUs, and it can provide a detection component to check the radio link control (RLC) when the radio link control (RLC) PDU is reconstituted into a radio link control (RLC) SDU. Sequence number in the PDU to detect a damaged Radio Link Control (RLC) SDU. Any damaged Radio Link Control (RLC) SDU can be discarded. Split and serial functions are also available in unconfirmed mode (UM). 95689.doc • 32- 200522579 In the confirmed mode, the RLCAM real system is bidirectional and can carry the connection status indication signal in the direction of opposite = user data. FIG. 5C is a block diagram of an entity used for the Radio Link Control (RLC) Confirmed Mode (am) entity, and shows how to construct a touch. Data packets received from higher layers (RLC SDU) received through the capture SAp can be divided and / or concatenated 514 into a plurality of fixed-length agreement data sheets (to simplify the process). The length of the agreement data unit is semi-static * determined in the establishment of the radio bearer, and can be changed by the RRC radio bearer reconfiguration procedure. For concatenation or filling purposes, a multiple bit containing information related to the length and extension may be inserted into the beginning of the next agreed data unit, or data from an SDU may be included. If several SDUs are set to one? ] 〇1; then: Eight strings are connected in series, and a plurality of correct length indicators (LI) are inserted in the beginning of the PDU. These pDUs can then be placed in the transmission buffer 520, which is also responsible for retransmission management. The PDU is constructed as follows: a PDU is taken from the transmission buffer 52; a header is added to it; if the data of the pDut cannot fill the entire rlc PDU, a padding or piggyback status information can be added. The piggyback complaint information may originate from the receiving end or the transmitting end to indicate an RLC SDU discard situation. The header contains the RLC pDU sequence number (SN);-Polling bit (P), which can be used to request status from a peer entity and an optional length indicator (LI). If SDU concatenation and padding occur in the RLC PDU This indicator can be used when the PDU is piggybacked. Acknowledged mode (AM) is typically used for packet-based services such as Internet browsing and email downloads. In confirmed mode, you can use the automatic repeat 95689.doc -33 · 200522579 ARQ mechanism to correct errors. Any received packet with errors can be retransmitted. The configuration of the number of retransmissions provided by the RLC can be used to control the quality and delay performance of the RLC by using RRC. For example, if the RLC does not transmit data correctly, if the maximum number of retransmissions has been reached or the transmission time has been exceeded, the upper layer will be notified and the radio link control (RLC) SDU will be discarded. It is also possible to notify a peer entity of the SDU discarding operation by sending a mobile receiving window command in the status information, so that the receiver will also remove all PDUs belonging to the discarded Radio Link Control (RLC) SDU. The RLC can be organized for sequential and out-of-order transmissions. With sequential transmission, the higher order of PDUs can be maintained; conversely, out-of-order transmission will be immediately forwarded when the higher-level PDUs are completely received. The RLC layer can sequentially transmit higher-level PDUs. This function preserves the order in which these RLCs transmit higher layer PDUs. If this function is not used, it can provide out-of-order transmission. In addition to data PDU transmission, status and reset control procedures can also be sent between peer RLC entities. These control procedures may even use a separate logical channel, so an AM RLC entity may use one or two logical channels. Encryption can be implemented in the RLC layer for both confirmed and unconfirmed RLC modes. In Figure 5C, the AM RLC PDU will be encrypted 540, which will exclude the first two bits containing the PDU sequence number and polling bits. The PDU sequence number is one of the input parameters of the encryption algorithm and must be readable by a peer entity in order to perform the encryption operation. The 3GPP specification TS33.102 describes encryption processing. The PDU can then be forwarded to the MAC layer through multiple logical channels. 95689.doc -34- 200522579 140. In FIG. 5C, dashed lines are used to indicate additional logical channels (DCCH / DTCH). These dashed lines illustrate that an RLC entity may be configured to use different logical channels to send the control PDUs and data PDUs. The receiving end 530 of the AM entity receives a plurality of RLC AM PDUs from the MAC layer through one of the logical channels. The CRC calculated for the entire RLC PDU in the physical layer can be used to check for errors. The actual CRC check may be implemented at the entity layer, and the RLC entity will receive the result of the CRC check and the data generated after encrypting the entire header, and may extract possible piggyback status information from the RLC PDU. If the received PDU is a strong message or if the status information is carried on an AM PDU, the control information (status information) can be transmitted to the transmitting end, and the transmitting end will check the received status. Information to check its retransmission buffer. The number of PDUs originating from the RLC header is used for decryption 550 and for storing encrypted PDUs in the receive buffer. Once all PDUs belonging to a complete SDU are located in the receive buffer, the SDU can be reassembled. Although not shown in the figure, sequential transmission check and copy detection can then be performed before the RLC SDU is transmitted to a higher layer. When the user equipment (UE) or mobile station moves between PTM transmission and point-to-point (PTP) transmission or changes cells, the RLC entity 152 is re-initialized. This may unfortunately result in the loss of data in the Radio Link Control (RLC) buffer. As mentioned above, when the mobile station moves from one cell to another or when the delivery of multimedia broadcast and multicast service (MBMS) content in the serving cell changes from a point-to-point (PTP) transmission mode to a point-to-multipoint (PTM) ) Problems may occur during transmission mode. 95689.doc -35- 200522579 I hope to keep the multimedia broadcast and transfer time between the point-to-point (PTP) transmission and the point-to-multipoint (PTM) transmission or between different cells (such as handover). Continuity of Multicast Service (MBMS) and avoid handing out duplicate information. In order to preserve the continuity of the MBMS service and avoid submitting duplicate information, layer 2 150 should be able to rearrange the data from these two streams. The physical layer cannot provide this synchronization because the network termination point may be different in each mode. If forward error correction (FEC) is implemented below the RLC layer 150 as in the case of 3GPP2, data may be lost during the migration from point-to-multipoint (PTM) transmission to point-to-point (PTP) transmission, instead The same goes for migration. In addition, for example, multiple cells with a common schedule may need to perform physical layer synchronization and share the same media access control (MAC). In this regard, these assumptions do not apply to 3GPP2, which may cause problems. Point-to-point (PTP) transmission Assuming the application has significant delay tolerance, the most effective data transmission mode for point-to-point (PTP) transmission is the radio link control (RLC) acknowledged mode (AM). For example, RLC acknowledged mode (AM) is usually used for packet switching data transmission on a dedicated logical channel (PTP). The RLC operates in an acknowledged mode (AM) on a dedicated logical channel. As shown in FIG. 5A, the dedicated user traffic of one of the user services in the downlink direction can be sent via a logical channel called a dedicated traffic channel (DTCH). In the confirmed mode (AM), if the data is wrong, the reverse link can be used for retransmission. The RLC transmits multiple service data units (SDUs) and uses retransmission to ensure that it can be correctly transmitted to its peer 95689.doc -36- 200522579. If the RLC cannot transmit the data correctly, the user of the RLC at the transmitting end will be notified. Operation in RLC AM usually must introduce additional delays in exchange for greater power efficiency. Point-to-multipoint (PTM) transmission The common traffic channel (CTCH) is a unidirectional channel that exists in the downlink direction, and it can be used when transmitting information to all terminals or a specific terminal group. Both of these data transmission modes use a one-way common channel, which does not have a backlink channel creation operation. We want to provide an architecture that allows MBMS services to transparently switch between point-to-point (PTP) transmission mode and point-to-multipoint (PTM) transmission mode. In order to obtain good performance when transferring between point-to-point (PTP) transmission mode and point-to-multipoint (PTM) transmission mode, we also hope to provide an architecture that allows switching between different radio link control (RLC) modes. For example, this approach can help reduce power requirements. Various aspects of the present invention will now be explained with reference to the specific embodiments shown and described with reference to Figs. Among other features, these features can take advantage of a new forward error correction (FEC) layer to help preserve service continuity during these migrations. Figure 6 is a schematic diagram of a modified UMTS protocol stack with a forward error correction (FEC) layer, which can operate in the forward error correction (FECd) mode and in the forward error correction (FECc) mode. The Forward Error Correction (FEC) layer allows the underlying Radio Link Control (RLC) entity 152 to change from one of the types when the user equipment (UE) changes from point-to-point (PTP) transmission to point-to-multipoint (PTM) transmission. Radio Link Control (RLC) data transmission mode is changed to 95689.doc -37- 200522579. It has become another Radio Link Control (RLC) data transmission mode while maintaining service continuity. According to this embodiment, the FEC layer may operate in a first mode (FECc) or a second mode (FECd). In one implementation, the first mode (FECc) can use parity blocks, while the second mode (FECd) does not require any parity blocks. The impact of changes between the FECd mode and the FECc mode may be much lower than the changes between the RLC modes, and may be seamless, so that no data is lost during the migration. Forward Error Correction (FECc) mode uses external coding techniques to protect user data. This is particularly effective on common channels. The forward error correction (FECc) mode usually allows the functions found in the unconfirmed mode (UM) to be performed above the radio link control (RLC) layer, such as sub-frame (split and concatenation) and serial number addition functions. Therefore, the radio link control (RLC) layer can use transparent mode (TM) for point-to-multipoint (PTM) transmissions, as traditional unacknowledged mode (UM) functions may be in the forward error correction (FEC) Layers are implemented. Although this feature may be repeated in Radio Link Control (RLC) Confirmed Mode (AM), the gain caused by ARQ can compensate for this duplication effect. By placing the forward error correction (FEC) layer or external coding layer on top of the radio link control (RLC) layer, the sequence number can be added to a layer unrelated to the radio link control (RLC). With additional additional data (such as serial numbers), unacknowledged transmissions can be used to realign the protocol data units (PDUs) into an encoder packet (EP) during the asynchronous transmission of MBMS data. The serial numbers are added to the layer 95689.doc -38- 200522579 above the Radio Link Control (RLC). Therefore, these serial numbers are common to both point-to-point (PTP) transmission and point-to-multipoint (PTM) transmission, so When transferring from point-to-multipoint (PTM) transmission to point-to-point (PTP) transmission, the continuity of sequence numbers can be maintained. In this way, the data can be rearranged, so that duplicate data and / or lost capital can be avoided. External coding can also be used in point-to-point (PTP) transmission, which can increase part of the power gain of the system and / or reduce retransmission delay. Multimedia broadcast and multicast service (MBMS) data can tolerate some delay. A feedback path is provided in point-to-point (PTP) transmission. This method will make the use of Radio Link Control (RLC) Acknowledged Mode (AM) more effective because of the use of ARQ retransmission. Generally, when ARQ retransmission is required, its radio efficiency will be more than the FEC architecture. Effective, because in FEC technology, an additional plurality of parity blocks must be sent. In this regard, it is not necessary to add multiple parity blocks to the MBMS payload data on a dedicated logical channel (for example, point-to-point (PTP)). 7A and 7B are specific embodiments of the protocol structure of the access layer in which a forward error correction (FEC) layer 157 is placed on the radio link control (RLC) layer 150. A specific embodiment of the forward error correction (FEC) layer will now be described with reference to FIG. The forward error correction (FEC) layer 157 directly receives user plane information 163 on the user plane radio bearers. Because the forward error correction (FEC) layer is at the top of the radio link control (RLC) layer, the FEC protocol data unit (PDU) corresponds to the RLC service data unit (SDU). The FEC layer preferably supports arbitrary SDU sizes (which are limited to 8-bit multiples of 95689.doc -39- 200522579), variable rate data sources, out-of-order reception of packets from the lower layer, and receiving copies from the lower layer Packet. The FEC PDU size limit may be a multiple of 8 bits. As will be explained in more detail below with reference to FIG. 9A, the FEC layer 157 divides and concatenates higher-level user data blocks (such as SDU) into the same size. The parent column can also be called an internal block. . Each protocol data unit (pDu) may contain additional data. The additional data may include a length indicator (LI) to indicate that data originating from a particular user data block (such as a service data unit (SDU)) can be placed in the last-protocol data unit (PDU). Starting position. Collecting multiple chats constitutes an Encoder Packet (EP) or "Encoder Matrix." In addition to other factors, the number of coffees will be used in addition to the following: 22: The "matrix" columns of the parent code are packaged into an independent or separated transmission time zone (TTI) to enhance the performance of the body layer. To reduce the buffering burden, a shorter transmission time interval (TTI) duration can be used. . Then, the encoder packet (EP) 2 can be transmitted via an external code encoder to generate the equivalent bit sequence. As will be explained in more detail below with reference to FIG. 9A / The FEC layer 157 can implement a Reed Solomon (RS) encoder function in the KUMTS terrestrial wireless and wireline access network (TRAN) 20 to implement the encoding, and a can implement external decoding due to the user equipment ’s Solomon decoder function. ',' Package = Department: the equivalent bit sequence generated by the encoder can be added to the encoder cover: can be placed in-pass wheel The buffer is treated as a group of internal £ blocks. The parent internal blocks all have additional information to generate a protocol 95689.doc -40- 200522579 data unit (PDU). These PDU groups can then be transmitted. The FEC Layer 157 also allows data belonging to a single EP to be restored, even if different internal blocks are received from different cells. This can be achieved by transmitting the serial number (SN) in the header of each protocol data unit (PDU) For this purpose, in one embodiment, the system frame number (SFN) helps < Envelope (EP) to maintain data alignment. The serial numbers will be discussed in more detail herein with reference to Figures 10A and 10B. The FEC layer 157 can also perform padding and reassembly, user data transmission, and sequential transmission of upper-layer PDUs, copy detection, and serial number checking. In the specific embodiments of FIGS. 6 to 7A, the forward error correction (FEC) layer 157 is located between the packet data convergence protocol (PDCP) layer 156 and the radio link control (RLC) layer 150 (for example, the BMC layer and the BMC layer). At the same level and below the Packet Data Convergence Protocol (PDCP) layer). By placing a forward error correction (FEC) layer 157 above the radio link control (RLC) layer 150, the performance of the external code can be optimized, as the internal block size can match those intended to be in the air. The "golden" packet size of the packet being sent. However, we should find that the forward error correction (FEC) layer in this figure is for illustration purposes only and is not restrictive. For its header compression, a packet data convergence protocol (PDCP) layer 156 can be used on top of the forward error correction (FEC) layer 157. It should be noted that the packet data convergence protocol (PDCP) layer 156 is currently defined for point-to-point (PTP) transmission using a dedicated logical channel. As shown in FIG. 7B, the forward error correction (FEC) layer may be provided within the access layer on the radio link control (RLC) layer or anywhere in the application layer. The forward error correction (FEC) layer may be located below or above the packet data convergence protocol 95689.doc -41-200522579 (PDCP) layer. If FEC is implemented in the application layer 80, even if GSM and WCDMA have different “golden” packet sizes, they can also be applied to GSM and WCDMA. External Code Design This new forward-looking error correction (FEC) layer enables external encoding of user plane information. FIG. 8 is a schematic diagram of an information block 91 and an external code block 95, which is a diagram illustrating the concept of the external block code structure. FIG. 98 is a schematic diagram of an example of how to apply an external code block structure to multimedia broadcast and multicast service (MBMS) data 91. When delay-tolerant internals are broadcast throughout the cell, external coding can improve physical layer performance. For example, the outer code helps to avoid losing data during the migration between cells and between the point-to-point (ρτρ) transmission mode and the point-to-multipoint (PTM) transmission mode. The outer code block 95 can be represented in the form of a matrix, which contains k agreement data units 91 and N_k parity columns 93. In external block coding, user data can be organized into large codes by dividing, concatenating, and filling the data (including inserting additional materials in the inner block) into a number of payload columns. Device packet or information block 91, and then the generated information field can be coded 'to generate ^^ parity sequences ... the equivalent parity sequence can be added to the information block 91 for manufacturing-external Code block 95. These parity rows 93 add redundant information to the information block 91. The individual columns of the external code block can then be transmitted in a single or multiple transmission time intervals (TTI). Even if part of the agreement data sheet _DU) was lost during the transmission of 2 sets of data sheet ^ data sheet printed) redundant information can allow reconstruction of the original 95689.doc -42- 200522579 Figure 9A is called Reed-Solomon (RS ) A block diagram of an exemplary external code block. Reed-Solomon (RS) codes can be used to detect and correct channel errors. The external code shown in Fig. 9A is a systematic (n, k) block code, in which each Reed-Solomon (RS) code symbol includes an information byte defined by a column and a row. Each line includes a Reed-Solomon (RS) codeword group. If n missing blocks are to be restored, then at least n parity blocks are required. In this regard, the amount of memory required will increase as the number of co-located blocks increases. In Reed-Solomon (RS) coding, N-k parity symbols can be added to k systematic symbols to generate a codeword group. In other words, a code group of Reed Solomon (RS) [N, k] has k information or "systematic" symbols and N-k parity symbols. n is the length of the code, and k is the dimension of the code. For every k information bytes, the code will generate n coding symbols, and the first k symbols may be exactly the same as those information symbols. Each column can be referred to as an "internal block" and represents the payload of each TTI. For example, in a normal wcdma system, transmission can be performed on a basic WCDMA structure with a 20 ms frame (TTI). The equivalent bit symbol can be derived from these systematic symbols by using the following definition of Yan Feng Chou You Lu p ~ I ~ Block Pirate Matrix GkxN: mi
UkxN一 C 1 xN mlxk=資訊字組=[m〇 m卜·叫丨] 等式(2)UkxN- C 1 xN mlxk = Information word group = [m〇 m 卜 · 叫 丨] Equation (2)
CixN =碼字組=[c〇 c丨…Cn]] 等式(3) 其中mi、Cl屬於一任意的伽羅華域。舉例純,若一里押 所羅門(RS)碼字組的符號係一位元的#,那麼便可利用維 度2的伽羅華域(GF⑺)來描述解碼運算。於其中—且體實 95689.doc -43- 200522579 施例中’若該符號係八位元的話,那麼便可利用維度256 的伽羅華域GF(256)來描述解碼運算。於此情況中,每個 >訊行皆係由每列1位元組所構成。每個資訊行皆可利用 維度256的伽羅華域(^(256)上的[N,k]里德·所羅門(RS)碼 來進行編碼。若每列有M個位元組的話,該外部區塊便要 編碼Μ次。所以,每個外部區塊95會有n*m個位元組。 刪除解碼 該外部碼結構允許進行刪除修正。若該解碼器已經知道 那個符號有误的活’那麼重建有誤的系、統性符號便僅需要 極;篁的計算。一編碼器封包(Ep)或矩陣代表的係該外部 編碼器輸出處的整個資料組。冗餘資訊以縱行形式取自每 一列,而且被傳輸的每一列皆於後面附有一crc,該crc 必須經過檢查以確認該資料是否被正確地發送。於mbm 傳輸的情況中,可於每個傳輸頻道區塊中使用—crc^ 表示一内部區塊91是否有誤,而且若該⑽查失敗, 話,便可假設該區塊中的所有符號皆有誤。於一具體實欢 例中,若假定一内部區塊97有誤的兮 ^ ^CixN = codeword group = [c〇 c 丨 ... Cn] Equation (3) where mi and Cl belong to an arbitrary Galois field. For example, if the symbol of the Solomon (RS) code group is a one-bit #, then the Galois Field (GF⑺) of dimension 2 can be used to describe the decoding operation. In it—and the actual 95689.doc -43- 200522579 embodiment ’if the symbol is eight bits, then the Galois Field GF (256) of dimension 256 can be used to describe the decoding operation. In this case, each > message line is composed of 1 byte per column. Each information line can be encoded using the [N, k] Reed Solomon (RS) code on the Galois Field (^ (256)) of dimension 256. If each column has M bytes, the external The block must be encoded M times. Therefore, each external block 95 will have n * m bytes. Deletion and decoding The external code structure allows deletion correction. If the decoder already knows which symbol is wrong, Then the reconstruction of the wrong system and system symbols only needs poles; the calculation of 篁. An encoder packet (Ep) or matrix represents the entire data set at the output of the external encoder. The redundant information is taken in the form of vertical lines. From each column, and each column being transmitted is attached with a crc, the crc must be checked to confirm whether the data was sent correctly. In the case of mbm transmission, it can be used in each transmission channel block— crc ^ indicates whether an internal block 91 is wrong, and if the check fails, it can be assumed that all symbols in the block are wrong. In a specific example, if an internal block 97 is assumed Wrong ^ ^
’力的話’那麼便可刪除該H 塊的所有位元。「刪除一言司所'For words' then all bits of the H block can be deleted. "Delete Yoshiji
斤才曰的係隸屬於一其CRC;N 查失敗之有誤區塊的每一個符鲈 處非删除的符號則可假言j 為正確。忽略CRC未偵測 — 』< 錯块的機率,那麼,每$ x 1行皆含有正確與被刪除的符號。 經接收的向量r則可寫成: 等式(4)Jin Caiyue's department belongs to its CRC; the non-deleted symbol at each symbol in the error block of N check can be assumed to be correct. Ignore CRC undetected — ”< Probability of wrong block, then every $ x 1 line contains correct and deleted symbols. The received vector r can then be written as: Equation (4)
rixN=[c〇 e e c3 c4 e c6 c8...Cn i] 其中e代表刪除。 95689.doc -44- 200522579 口刪除解碼允許修正高達N_k個有誤符號。因為非刪除的符 #ϋ可假設為正確’所以’ 的錯誤修正特性會遠優於標 準RS碼的錯#修正特性。每個内部區塊中所使用的㈣大 -/足X確保未伯测到之錯誤的機率不超過殘留外部區 塊嶋。舉例來說,若該等内部區塊中使用16位元CRC =那麼殘留外部區塊錯誤率的下限便將是2_16吐5·ι〇·5。 J面k個内^區塊中沒有任何錯誤的話,那麼便不需要μ 解^ ’因為該H綠符號等於該等資訊符號。 J w /、要接收到具有良好CRC的k個區塊後,便可例 可實施該外部區塊的解碼,而不必等待接收到全部的N個 内部區塊。為實施刪除解碼,可藉由移除對應複數個刪除 符號或不必要區塊的所有行,以便從該產生器矩陣GkxN中 V出、、工修正的產生器矩陣〇以,舉例來說,僅有前面&個 良好接收的符號可用來代表該經修正的產生器矩陣ω w。 可以利用下面等式來還原原來的資訊字組m: 等式(5)rixN = [c〇 e c3 c4 e c6 c8 ... Cn i] where e stands for deletion. 95689.doc -44- 200522579 Port deletion decoding allows correction of up to N_k erroneous symbols. Since the non-deleted symbol # ϋ can be assumed to be correct ', its error correction characteristic will be much better than the error #correction characteristic of standard RS codes. The large-/ foot X used in each internal block ensures that the probability of undetected errors does not exceed the residual external block. For example, if a 16-bit CRC = is used in these internal blocks, then the lower limit of the residual external block error rate will be 2_16 and 5 · ι0.5. If there are no errors in the k inner blocks of the J plane, then the μ solution ^ ′ is not needed because the H green symbol is equal to the information symbols. J w /. After receiving k blocks with a good CRC, the external block can be decoded without having to wait to receive all N internal blocks. In order to implement deletion decoding, all rows corresponding to a plurality of deleted symbols or unnecessary blocks can be removed from the generator matrix GkxN, and the modified generator matrix can be, for example, only There are preceding & well-received symbols that can be used to represent the modified generator matrix ω w. The following information m can be restored using the following equation: Equation (5)
<k=LUk><k]-1.ylxk :中γ…為利用前面k個良好符號所獲得之經修正的接收沒 量。所以’該刪除解碼複雜度便可減低為kxk矩陣的複錦 又因此,使用RS刪除解碼可大幅地簡化RS解碼的計智 複雜度。 1 資料封包對外部碼效能的影举 如下文將參考圖11-13的討論,若特殊的外部編碼架構 限制於空中發送的填補與附加資料量的話,便可配合可變 速率貝料源來使用該外部編碼,而不會造成過大的附加資 95689.doc -45- 200522579 料。於上面討論的外部碼架構中,可將資料包裝成特定 小的區塊,並且可於該等區塊上執行縮短的里德-所 碼。至少可以兩種不同方式來將該經編碼的封包資料包穿 成複數個TTI ’現在將參考圖9A與9B來作說明。 圖9B為圖9A之外部碼區塊結構的示意圖,其中會有多重 列於每個傳輸時間區間(TTI)中被發送。根據本發明另—工 觀點’會於單一個ΤΤΙ中傳輸源自其,一列的資料。於另: 具體實施例中,會將源自一編碼器封包(Ep)列的資料置入 一個TTI中,致使每個TTI皆含有源自該編碼器封包(EP) = 的資料。就此而言,可於一分離的WCDMA訊框或傳輸 區間(TTI)中來傳輸每—列。於其中一個ττι中來傳輪每一 列將會提供更佳的效能。圖9B中,咖都要除以每個爪 的列數’而且某一列中的錯誤可以完全關聯。如此—來, 觀察職誤率與TTI錯誤率的關係,便可產生顯著的差別。 圖9C為圖9A之外部區塊結構的示意圖,其中每一列比可 多個™中被發送。應該瞭解的係,雖然圖叱於二固 TTKTTI0-TTI3)中發送每一列編碼器封包(Ep),不過,實際 上,每-列卻可於任意數量的TTI中進行發送。因: 皆係一外部碼碼字組,所以,每 W从母個β亥專四個不同的傳輸「相 態」(Τ™·ΤΤΙ3)便合組成-獨立的外部碼。為還原整個封 包’全部該些獨立的外部碼皆必須正確地解瑪。 圖二與為該前向式錯誤修正層所產生之外部碼區 塊的不意圖。 FECc模式可使用於共同或點對多點(ρτΜ)邏輯頻道上, 95689.doc • 46 - 200522579 藉由於MBMS酬載資料91中加入同位列或區塊93以建構外 部碼區塊95。每個外部區塊95皆包含複數個内部區塊91、 93。辨識内部區塊的順序及其相對於編碼器封包的位置便 可將每個可用的内部區塊置放於正確位置處,致使可正確 地完成外部解碼。於其中一具體實施例中,每個内部區塊 皆包含一標頭94,其可利用内部區塊數m及外部區塊η來辨 識該内部區塊。舉例來說,外部區塊η包含一具有m個多媒 體廣播及多播服務(MBMS)酬載區塊的資料部份91,以及一 具有M-(m+l)個内部同位區塊的冗餘部份93。根據本具體實 施例,可針對MBMS來最佳化序號空間,並且利用數個不 同的序號(舉例來說,〇至127)來定義該序號空間。該序號空 間的大小應該足以在任何移轉類型所導致的接收間隙後不 會出現相同的序號。即使有部份内部區塊遺失,該接收UE 應孩還是能夠決定該等内部區塊的順序。若該uE*遺失的 内部區塊超過整個序號空間所能辨識的數量的話,該uE將 無法正確地再排序該等内部區塊。跨越該等區塊與 FECc區塊的相同内部區塊的序號係完全相同的。該等FEcd 區塊並不包含該等FECc區塊中所採用之冗餘部份934^ 實體與FECc實體可於空中使用相同的位元速率。 傳輸端 傳輸前向式錯誤修正(FEC)實體410包含一服務資料單元 (SDU)緩衝器412,用以接收咖:一分割與串接單元414; 一外部編碼器41 6,用以奢力田4 a 只轭里德-所羅門(RS)編碼;一序 號產生器41 8,用以將一岸缺4 λ # μ 序號加入该寺經編碼的PDU中;一 95689.doc -47- 200522579 傳輸緩衝器420,用以於該等邏輯頻道406上傳輸該等 PDU ;以及一排程單元422。 月艮務資料單元(SDU)缓衝器412會於無線電承載402上以 服務資料單元(SDU)的形式來接收使用者資料(FEC SDU),如箭頭所示,並且儲存源自更高層的FEC SDU。該 接收緩衝器412會通知排程單元422將會傳輸多少資料。 如上面的討論,填補一編碼器封包(EP)所花費的時間量 通常都會變動,因為資料源速率通常都係會變動的。如參 考圖1 3的解釋,藉由彈性地決定何時開始包裝該資料,便 可改良訊框填補效率。以該接收FEC實體430的抖動耐受 性為基礎儘可能地延遲該EP的製造時間,便可減少所引入 的填補量。 該排程實體422可決定何時開始編碼。該排程器422較佳 的係會以該項特殊服務的QoS曲線為基礎來決定必須送出 一封包前可以等待的時間長度。一旦該排程器422確定已 經累積足夠的資料時,或是已經耗盡最大可接受封包傳輸 延遲時,該排程器便會觸發產生一編碼器封包(EP)9 1。分 割與串接單元414可將服務資料單元(SDU)分割成各列,並 且產生長度指示符號(LI)。 排程單元422較佳的係可決定該EP或協定資料單元 (PDU)的最佳列大小,致使該等SDU可確實置入於列數(舉 例來說,12列)之中。或者,排程器422會從RRC所組織的 FEC PDU大小中選擇一 FEC PDU大小,其將會導致最少可 能的填補作業,並且要求分割與串接功能414將該等SDU格 95689.doc -48- 200522579 式化成k個大小為pDU—size_FEc一的區塊。此格 式化作業可以改變。下文將參考圖12_13來討論不同格式化 類型的耗例。所考量的總資料量應該包含將會被串接與分 軎’J功旎414併入的附加資料。為產生該編碼器封包(Ep),排 耘裔422會要求串接與分割功能414產生k個此大小的 PDU。此大小包含重組資訊。於其中一具體實施例中,該 等PDU的大小為8位元的倍數,而且連續pDU的資料會對應 該等碼字組中不同的符號。 接著,該等k個PDU區塊便可行經實施里德_所羅門(RS) 編碼的外部編碼器416。該外部編碼器416會產生冗餘或同 位資訊並且將其附加至該編碼器封包(Ep)矩陣中,產生一 外部碼區塊,以便編碼該編碼器封包(Ep)矩陣中的資料。 於一具體實施例中,料部石馬可假設為(n,k)刪除解碼區塊 碼,而且該外部編碼器會產生n_k個同位區塊。該編碼器會 對k列相等長度的資訊實施編碼,並且傳送給相同大小之下 方子層η個協定資料單元(PDU)。前面k個區塊會與其接收的 區塊相同,而後面的n-k個區塊則會對應到同位資訊。 排程器422還會監視PTM串的時間對齊或相對時序,並且 實施傳輸以調整不同邏輯串的對齊情形。舉例來說,於重 新組態期間,可以調整PTP與PTM邏輯串間的時間對齊結 果,以便有利於服務連續性。當該等資料串產生完全同步 時,便可獲得最佳的效能。 不同的基地台(或是不同的傳輸模式PTp、點對多點 (ΡΤΜ))會傳輸相同的内容串,不過,該等内 甲1月b無法 95689.doc -49- 200522579 對齊。不過,若該等資料串的編碼器封包(EP)袼式相同的 話,那麼每個資料串上的資訊便完全相同。將一序號加入 每個外部區塊可讓該使用者設備組合該等兩個資料 串,因為該使用者設備(UE)將會知道該等兩個資料串間的 關係。 序號產生益41 8會以和編碼器416中所使用的相同順序將 一序號附加在每個區塊的前面用以產生PDu。舉例來說, 於一具體貫施例中,該序號產生器會於每個外部碼區塊的 前面加進一八位元的序號,用以產生pDU。亦可於該外部 碼區塊中加入額外的附加資料資訊。序號空間應該足以容 納資料串間最糟的時間差。所以,於另一具體實施例中, 可以使用大小為20的序號空間,並且可於每個標頭中為該 序號保留至少5位位元。可於實施里德_所羅門(RS)編碼後 再將此標頭附加至該外部碼區塊,所以此「外部」標頭並 不受到該外部碼的保護。較佳的係亦可為同位區塊加入序 號,即使該等序號可能不會被傳輸亦無所謂。於其中一具 體實施例中,該序號相態可以對其編碼器封包邊界。序號 前進便代表接收到一新的編碼器封包。 前向式錯誤修正(FEC)標頭格式 如上述,引入含有和PDU排序相關之資訊的序號便可達 到資料串同步化的目的。除了重新排序以及副本偵測之 外,序號還可重新排列源自一編碼器封包中内含之個別資 料源的資料。此序號可明確地指出每個封包應該考慮的2 序。此序號可構成一「FEC標頭」,可於實施編碼之後將該 95689.doc -50- 200522579 標頭同時附加至資訊酬載單元(PDU)以及同位區塊中。該 序號不應該受到該外部碼保護,因為必須利用該序號來進 行解碼。 圖14為一前向式錯誤修正(FEC)標頭格式的具體實施例 示意圖。為幫助讓該資料對齊該編碼器封包(EP),可以分 割該序號使其包含一保留部份(R)402 ; —編碼器封包(EP) 部份404,用以找出該EP(EPSN);以及一内部編碼器封 包,用以於該編碼器封包(IEPSN)406内找出一特殊内部區 塊的位置。 吾人希望FEC層400能夠與所有的無線電連結控制(RLC) 模式中交換運作。因為無線電連結控制(RLC)AM及無線電 連結控制(RLC)UM兩者皆要求服務資料單元(SDU)的大小 為8位元的倍數,那麼,吾人便希望FEC層400亦能支持此 項規定。因為FEC層400的外部碼係以資料位元組大小遞增 的方式來運作,所以,該編碼器封包(EP)列大小也必須為 整數個位元組。所以,FEC標頭大小401應該也是8位元的 倍數,以便讓無線電連結控制(RLC)可接受該FEC協定資料 單元(PDU)大小。於前向式錯誤修正(FEC)標頭401可為一個 位元組的具體實施例中,保留部份(R)402包括單一個位 元,用以辨識該EP(EPSN)404的部份包括3位位元,而用以 於該編碼器封包(IEPSN)406内找出該PDU之位置的IEP部 份則包括4位元。於此具體實施例中,會使用一 8位元的序 號,因為吾人預期每個TTI中將會發送一個PDU且因為吾 人不希望不同細胞的傳輸時序會漂移超過100 ms。 95689.doc -51 - 200522579 傳輸緩衝器420會儲存該等PDU,直到累積一資料訊框 為止。當該等PDU被要求的時候,傳輸緩衝器420便會透 過一邏輯頻道於無線電介面(Uu)上逐一地將該等訊框傳輸 給MAC層。接著,該MAC層便會透過複數個傳輸頻道將 該等PDU送至實體層,最後該實體層便會將該等PDU送至 UE 10 〇 接收端 繼續參考圖11,接收前向式錯誤修正(FEC)實體430包含 一接收緩衝器/再排序/副本偵測單元438 ; —序號移除單元 436 ; —外部解碼器434,其可實施里德-所羅門(RS)解碼; 以及一重組單元/服務資料單元(SDU)傳輸緩衝器432。 該EP矩陣的資訊列會對應複數個PDU。為支援外部編 碼,該接收前向式錯誤修正(FEC)實體430於觸發外部解碼 以前會累積數個FEC PDU。為達成連續接收的目的,任憑 需要解碼複數個編碼器封包,該使用者設備(UE)仍然會於 實施解碼時同時緩衝該等進來的協定資料單元(PDU)。 接收緩衝器438可以累積複數個PDU,直到接收到整個 編碼器封包(EP)為止或是直到該排程單元(未顯示)符合不 會再傳輸該編碼器封包(EP)的條件為止。一旦判斷出不會 再接收到一特定編碼器封包的任何資料後,便可將遺失的 PDU視為刪除資料。換言之,可於解碼過程中利用刪除符 號來取代未通過CRC測試的PDU。 因為部份區塊會於傳輸期間被丟掉,而且因為不同資料 串可能具有不同延遲的關係,所以該接收前向式錯誤修正 95689.doc -52- 200522579 (FEC)實體430會對接收緩衝器/再排序/副本偵測單元州中 的已接收的區塊實施副本制並且可對會實施再排序。可 於每個FEC協定資料單元(pDU)巾使用該序號來協助進行 再排序/副本偵測。可於接收缓衝器438中使用該序號來再 排序無序接收到的資料。一旦對PDU進行再排序後,該副 本偵測單元便會以其序號為基礎來偵測編碼器封包中 的副本PDU,並且消除任何的副本資料。 接著便可移除該等序號。序號移除單元436可從該編碼器 封(EP)中移除序號,因為該序號並非係欲被發送至該里 德-所羅門(RS)解碼器之區塊的一部份。 接著可將該資料送至外部解碼功能434,用以還原遺失的 資訊。該外部解碼器434會接收該編碼器封包(Ep),必要 時,還可利用同位資訊來再生任何有誤或遺失的列,以便 對該編碼器封包(Ep)實施里德-所羅門(RS)解碼。舉例來 說’若含有資訊的全部k個協定資料單元(PDu)皆未被正確 收到的話,或是x^@PDU中少於k個未被正確收到的話,那 麼便可對該等協定資料單元(PDU)實施外部解碼(其數量高 達遠等同位PDU的大小),以便還原遺失的資訊pdu。當實 加外部解碼時,該接收器處將至少有一個同位PDU可用。 若含有資訊的全部k個協定資料單元(PDU)皆被正確收到的 話’或是η個PDU中少於k個被正確收到的話,那麼便不必 貫施解碼。接著便可將該等資訊協定資料單元(PDU)傳送至 該重組功能432。 不論該外部解碼成功與否,皆可將該等資訊列傳送至該 95689.doc -53- 200522579 重組單元/功能432。該重組單元432會利用長度指示符號 (LI)來重組或重建源自該編碼器封包(EP)矩陣之資訊列的 SDU。一旦成功地將複數個SDU放在一起後,該服務資料 單元(SDU)傳輸緩衝器432便會於無線電承載440上傳輸等 服務資料單元(SDU),用以將該等SDU傳送給更高層。 於接收前向式錯誤修正(FEC)實體430處,讓UE可以不同 邏輯串間的時間補償來延遲解碼,便可因為邏輯串間不需 要同步的關係,而讓該系統完整地運用潛在無序接收資料 的好處。如此便可於交遞以及PTP與PTM的移轉期間來讓該 項服務更為流暢。下文將參考圖15來討論讓UE以不同邏輯 串間的時間補償來延遲解碼的演算法。 編碼器封包(EP)選項:固定或可變列大小 該FEC或外部碼實體可彈性決定何時建構協定資料單元 (PDU),因為該等協定資料單元(PDU)並不必於每個傳輸時 間區間(TTI)中.被連續發送。如此便可造成較佳的訊框填補 效率以及較少的填補附加資料。 必要時,該外部碼實體可於每個傳輸時間區間(TTI)處產 生一酬載。可於從更高層接收到服務資料單元(SDU)時便即 時地建構協定資料單元(PDU)。若沒有足夠資料來建立一協 定資料單元(PDU)時,那麼該RLC便可加入填補資訊。 固定列大小編碼器封包(EP) 當編碼SDU 201-204時,吾人會希望儘可能地減少將會被 .傳輸的填補量。 於一具體實施例中,編碼器封包(EP)矩陣205的列大小可 95689.doc -54- 200522579 此係固定大小。預先知道編碼器封包(EP)矩陣2G5的列大 小,便可將該資料對齊原來的組態。因為事先知道將會被 發送的SDU201_204的列大小,所以於接收到資料後便可立 即開始傳輸,而不必等待查看將會有多少資料被發送。 圖12A為用以從複數個資料單元2〇1韻中產生一外部碼 區塊214的編碼過程範例,其中該外部碼區塊川的列大小 可能係固定的。於此範例中,使用者資料的形式為複數個 服務資料單元(SDU)2()1·綱,其包含—任意大小的位元區 塊,其大小和特殊的應用(視訊、語音等)有關。 為能傳輸任意大小的FEC SDU,可於FEC階中實施分割、 串接、以及填補作業。雖然並非絕對需要串接作業,不過, 若無該項作業則會嚴重地損及更高層資料處理量。 可先將該等更高層SDU 201-204格式化成此固定的pDU 大小。於此具體實施例中,分割/串接功能可產生該用戶單 凡專屬之固定大小的複數個内部區塊。步驟22〇處,可分割 且串接該群内部區塊,使其變成一編碼器封包矩陣2〇5的一 部份,該編碼器封包矩陣205含有複數個内部區塊;必要的 填補資訊208;以及長度指示符號(LI)206,其可藉由表示該 EP某一特定列中究竟有多少個SDU,以便指到該等服務資 料單元(SDU)201-204的結束處。下面討論的外部編碼器會 使用該些内部區塊來產生複數個冗餘區塊。 於無線電連結控制(RLC)中,長度指示符號(LI)會表示按 照該協定資料單元(PDU)所找到之每個服務資料單元 (SDU)的結束處,而非按照該服務資料單元(SDU)。如此有 95689.doc -55- 200522579 助於減少附加資料,因為PDU大小通常小於服務資料單元 (SDU)的大小。舉例來說,可利用長度指示符號(LI)來表示 結束於該酬載資料單元(PDU)内之每個FEC服務資料單元 (SDU)的最後八個位元。「長度指示符號」可設為介於該FEC 標頭之結束處與一 FEC SDU分段之最後一個八位元間的八 位元數量。長度指示符號(LI)較佳的係内含於該長度指示符 號(LI)所參照的該等PDU之中。換言之,該等長度指示符號 (LI)較佳的係參照相同的酬載資料單元(PDU),而且較佳的 係和該長度指示符號(LI)所參照的FEC SDU具有相同的順 序。 當接收到該外部區塊時,便可利用資訊(例如長度指示符 號(LI))來讓該接收器知道該服務資料單元(SDU)及/或填補 資訊的開始與結束位置。 因為無法於FEC標頭中使用一位元來表示有長度指示符 號(LI)存在,所以,該FEC層會於該酬載内加入一固定標頭 用以表示有複數個長度指示符號(LI)存在。内部標頭或LI 會提供用來重建該等SDU 201-204所需要的全部資訊。LI 可能係内含於其所參照的RLC-PDU之中。可以利用 RLC-PDU之序號標頭中内含的旗標來表示有第一 LI存在。 可以使用每個LI中的一位位元來表示其延伸部份。為允許 該等長度指示符號(LI)的長度隨著FEC PDU大小而改變,可 為該一位元組的長度指示符號(LI)引進一新的特殊值,用以 表示其中一位元組之結束處的先前SDU,除非填補最後一 個PDU。可以各種方式來實現該等長度指示符號(LI)存在位 95689.doc -56- 200522579 元,下文將討論其中兩種方式。 於其中一具體實施例中,可於每個協定資料單元(PDU) 中提供一長度指示符號(LI)存在位元。舉例來說,可於每個 編碼器封包(EP)列的開頭處加入一位元組,而且該位元組 中的某一位元可表示有該LI存在。每個協定資料單元(PDU) 的整個第一位元組可保留供此「存在位元」使用。為容納 此存在位元,可將該長度指示符號資料縮短一位位元。於 每個協定資料單元(PDU)中提供一存在位元便可於EP解碼 失敗時仍可解碼SDU,即使第一個PDU遺失亦無所謂。如 此便可促成較低的殘留錯誤率。於每個PDU中提供一存在 位元還可允許進行即時串接/分割作業。 於另一具體實施例中,可於第一個PDU中提供一長度指 示符號(LI)存在位元。於該具體實施例中並不會於每個PDU 的開頭處加入該附加資料,取而代之的係,可於該EP之第 一個PDU的開頭處加入全部k個資訊PDU的存在位元。當具 有大型SDU及/或小型PDU時,於編碼器封包(EP)的開頭處 提供該存在位元便可促成較少的附加資料。 經過分割及串接之後,EP 205中便會有數列被該等複數 個服務資料單元(SDU)201-204中至少其中一者及填補區塊 佔據。一外部區塊的列大小可被設計成能夠於一傳輸時間 區間(TTI)期間以尖峰資料速率來傳輸。服務資料單元 (SDU)通常無法對齊於一傳輸時間區間(TTI)期間被發送的 資料量。因此,如圖11所示,第二與第四SDU 202、204並 不能置入該EP第一列與第二列的傳輸時間區間(TTI)之 95689.doc -57- 200522579 中。於此範例中,該EP有12列可供資料來使用,並且可將 · 該等四個SDU 201-204包裝於該等12列的前面三列之中。該 · EP 205的其餘列則會被填補區塊2〇8佔據。因此,可分割第 二SDU 202,致使該第二服務資料單元(§1)1;)2〇2的第一部 份起始於「資訊區塊」第一列,而該第二Sdu 202的第二部 份結束於第二列。同樣地,必須分割第三Sdu,致使該第 二服務資料單元(SDU)203的第一部份起始於第二列,而該 第二SDU 203的第二部份結束於第三列。第四服務資料單元 籲 (SDU)204可置入第三列之中,並且可利用填補區塊2〇8來填 充第二列的其餘部份。於此範例中,編碼器封包(Ep)2丨3大 部份係由填補資訊208所構成。 該編碼器會使用該EP來產生冗餘或同位資訊。步驟24〇 處’ 一編碼器會藉由加入複數個外部同位區塊214來對已經 編碼的中間封包矩陣205進行編碼,用以產生一長度為16 個區塊的外部碼區塊213。該編碼器會從每個區塊的每行中 取出8位元資料,用以產生最後資料21〇。里德_所羅門(汉^) φ 編碼β可對該最後資料21 〇進行編碼,用以取得四列的冗餘 或同位資訊212。同位資訊212可用來產生複數個外部同位 區塊214,該等區塊可附加至該ερ矩陣2〇5,用以產生16區 塊的外部碼區塊213。 . 圖i2B為上面所討論之範例中於空中被傳輸的資訊範 · 例。步驟260中,於EP 205的每列中加入含有序號的額外附 加貧料之後,便可以複數個協定資料單元(pDU)214的方式 於空中來傳輸該16區塊的外部碼區塊213。並不會在該下行 95689.doc -58 - 200522579 連結中被發送的該等協定資料單元(PDU)214中來傳輸全部 或整個編碼器封包(EP)213。更確切地說,該等協定資料單 元(PDU)包含該編碼器封包(Ep)2丨3的資訊位元2〇丨_2〇4以 及長度指示符號(U)206。因為編碼器封包(Ep)213列大小固 定’而且接收器處知道該大小值,所以,並不需要於空中 只際傳輸填補資訊2〇8。因為該等填補值為已知,所以並不 需要傳輸該填補資訊,因此填補#訊並未於下行連 結上被傳輸。舉例來說,若可利用-已知位元序列(例如全 部為〇、t部為1、3戈是由(^組成的交錯圖案)來組成該填 補資訊的話,該接收器便可將該等協定資料單元㈣仍川 填補至標稱的編碼器封包(Ep)213列長度。所以,於傳輪期 間’並非選擇PDU大小等於砂列大小,取而代之的係運 用攜載全部資訊位元2〇i_2〇4及重組附加資料(u)2〇6的最 小可用EP大小。 雖然該編碼H矩陣列大小為固定,不過,卻可於每次傳 輸中從一既定集中選出該FEC PDU大小,致使每_者皆可 包a : -編碼器矩陣列的全部資訊部份(填補資訊可排 除)田接收一小於該編碼器矩陣列大小的?加時,仰便可 利用已知的位元序列來填補至該編碼器矩陣列的大小為 止。如此便可維持固定的内部區塊大小,而不必增加空; 介面的負載。因此’利用固^列大小編碼器封包(Ep)2i3, ;開始傳輸協d料單元(pDU)以前便不需要等待接收到 全部可用的資料,而且也不需要發送填補資訊。 若設計上面的演算法來處理可變速率傳輸的話,那麼便 95689.doc -59- 200522579 可使用速率同等化架構,其中全部的編碼器封包矩陣列皆 具有恆定的大小。當填補資訊構成部份PDu時便可使用較 小型的PDU。該填補資訊可能係由—特定位元序列所構 成,並且可能係位於資料的每個結束位置處。於接收器處, 可藉由於結束位置處附加填補資訊,用以將接收自下方層 的區塊的大小同等化成基線大小。 曰 若可利用預設的位元序列作為填補資訊的話,便不會於 空中傳輸此填補資除非接要執料部解碼,否 則該接收器便不必知道實際的編碼器封包列大小。基本 謂重組並不需要知道—PDU之結束位置處之填補資二的 數量。若已經接收到含有源自前面㈣編碼器封包(EP)列之 資訊的全部觸的話,那麼便不必實施外部解碼。相反地, 若含有源自前面k列編碼器封包(EP)列之資訊的至少一個 PDU遺失的話,那麼便會需要含有源自一同位列之資料的 該等·中至少其中—個。因為同位列通常不會進行填 補’所以’可利用其大小作為實際編碼器封包大小的假設 參考值。 可變列大小編碼器封包(EP) ® 13為^產生-具有可變列大小的外部碼區塊⑴的 編碼過程。 本發明的此項觀點係關於在空中介面上被傳輸之資料的 無性外部區塊編碼。此編碼過程僅會傳輸少量的填補資 訊,所以訊框填補效率會提高。該等編碼器封包㈣奶列 可能係可變的大小,而且可針對每個傳輸時間區間叩)來 95689.doc -60- 200522579 發送不同大小的外部區塊。較佳的係,編碼器封包㈣如 的列大小可改變,致使該等SDU可確實地置人編媽器封包 (卵巨陣305的列數(例如12列)之中。於此具體實施例中匕 該FEC層於建構該即之前必須等待所有的資料皆已經可用 為止,因此,該FEC層可決定最佳的列大小。可以可用資 料的數量為基礎,從數個不同大小中選出該列大小,以便 限制填補資訊。該編碼器封包(EP)的列大小可能會連結到 為S-CCPCH所配置的PDU大小集。視需要產生該編碼_ 包305時可用資料的數量而定,可以選出會造成最少填補資 訊的列大小。縮小外部區塊313的大小以使得每個訊框中的 區塊大小變小,那麼便可於較低的傳輸速率處來發送資 料,因為於相同TTI持續時間中被發送的資料已經變少。利 用編碼器封包(EP)305的可變列大小有助於穩定編碼器封 包(EP)的全部傳輸中的功率需求,並且還可運用較少的同 位附加資料3 14。此具體實施例適用於WCDMA系統中進行 點對多點(PTM)傳輸,該系統中的基本無線協定允許於每個 傳輸時間區間(TTI)中被發送的傳輸區塊的大小有所不同。 步驟320中,可以分割且串接複數個服務資料單元 (SDU)201-204,用以產生一編碼器封包矩陣3〇5,其中 可利用長度指示符號(LI)206指到該等服務資料單元 (SDU)201-204的結束位置。長度指示符號(LI)可内含於終止 每個服務資料單元(SDU)的最後一列中。 步驟330,可從每個資料區塊中取出8位元資料,以行作 為基礎來產生冗餘或同位資訊,並且可將最後資料3 1 〇送至 95689.doc -61 - 200522579 -里德-所羅門(RS)編碼器,用以取得同位資訊3i2。因為 編碼器封包(EP)矩陣305的列數比較少,所以,可以產生比 較少的冗餘資訊。 步驟340中會繼續進行編碼,因為該同位資訊312會被用 來產生複數個外部同位區塊314’該等外部同位區塊314可 被附加至十二區塊的編碼器封包(Ep)矩陣3〇5之中,從而於 本範例中產生長度為16個區塊的外部碼區塊。此具體實 施例可避免進行填補資訊傳輸,進而改良傳輸效率,因為 整個外部碼區塊313都係被SDU、長度指示符號(Li)2〇6、及 /或几餘資3 14佔據。於此特定範例中,並不需要任何的 填補資訊。不過,應該瞭解的係,於部份情況中,因為將 會限制該PDU之組態大小的數量,所以可能會需要部份的 填補資訊,不過填補資訊的數量相當小。如此便可促成更 大的訊框填補效率,並且還可於整個編碼器封包(Ep)中維 持更恆定的功率。此為運用功率控制架構的CDMA系統所 樂見的。 雖然圖中未顯示,不過,於空中傳輸PDU的方式和上面 參考圖12之步驟260所討論者相同。 圖11為為於該無線電連結控制(RLC)層上方之外部編碼 或岫向式錯誤修正(FEC)層400的具體實施例,其具有一 RLC未確認模式(um)+實體(RLC UM+)。一般來說,無線電 連結控制(RLC)會為更高層提供分框處理。此處,係由位於 無線電連結控制(RLC)上方的FEC層來實施分框處理。 該外部編碼層400包含一傳輸前向式錯誤修正(FEC)實體 95689.doc -62- 200522579 410,其可透過複數個邏輯頻道406於無線電介面(Uu) 404 上和一接收前向式錯誤修正(FEC)實體430進行通信。 再排序/副本偵測 圖1 5為讓行動台10利用不同邏輯串間的時間補償來延遲 解碼的再排序協定或演算法示意圖。 接收前向式錯誤修正(FEC)實體430會使用序號來決定一 特定PDU於該EP矩陣内的位置。舉例來說,一部份的序號 (PSN)可辨識該PDU於該編碼器封包(EP)中的位置。 此演算法假設,至多源自兩個編碼器封包(EP)的資料會 於開始進行解碼以前被接收到。於下文的說明中,編碼器 封包(EPd)係欲依序進行解碼的下一個編碼器封包(EP),而 編碼器封包(EPb)則係正在進行緩衝的編碼器封包(EP)。編 碼器封包(EPb)係跟隨在編碼器封包(EPd)後面。需要全部編 碼器封包傳輸時間來實施RS解碼的UE設計方式將會需要 實施雙重緩衝,以便能夠解碼複數個連續封包。所以,該 UE會儲存該編碼器矩陣最大列中至少n+k列,k與η分別為 資訊列的數量以及含有同位資訊在内的總列數。具有較快 速解碼引擎的UE便可降低此規定,不過,不能低於η+1。 舉例來說,若該UE的特定緩衝器空間數量(XtmBffr)超出依 據其解碼能力來接收連續封包所需要的數量,而且若假設 有一 64 kbps的資料串,那麼若要將解碼延遲100 ms而不增 加計算需求的話,便需要增加800個位元組的緩衝器大小。 步驟1410處會判斷是否收到一新的前向式錯誤修正 (FEC)協定資料單元(PDU)。若未收到一新的前向式錯誤修 95689.doc -63- 200522579 正(FEC)協定資料單元(PDU)的話,該程序便會於步驟1410 處重新開始。若有收到一新的前向式錯誤修正(FEC)協定 資料單元(PDU)的話,那麼便會於步驟142〇處判斷該新的 前向式錯誤修正(FEC)協定資料單元(PDU)是否屬於欲依序 進行解碼的下一個編碼器封包(Epd)。 若該前向式錯誤修正(FEC)協定資料單元(PDU)不屬於欲 依序進行解碼的下一個編碼器封包(Ep)的話,那麼便會於 步驟1421處判斷該前向式錯誤修正(FEC)協定資料單元 (PDU)是否屬於欲被緩衝的編碼器封包(Epb)。若該前向式 錯誤修正(FEC)協定資料單元(PDU)不屬於欲被緩衝的編碼 态封包(EPb)的活’那麼便會於步驟144〇處丟棄該協定資 料單元(PDU)。若該前向式錯誤修正(FEC)協定資料單元 (PDU)屬於欲被緩衝的編螞器封包(EPb)的話,那麼於步驟 1423處,便會於相關位置中將該協定資料單元(pDu)加入至 EPb的緩衝器之中。步驟1425處會判斷£?6的資料量是否超 過XtraBffr。若於步驟1426處判斷出Epb的資料量未超過 XtraBffr的話,該程序便會於步驟141〇處重新開始。若Epb 的資料量超過XtraBffr的話,那麼於步驟1428處,該傳輸實 體便會試圖從EPd傳送完整的SDU。接著於步驟143〇處, 便可攸5亥緩衝器中強行逐出其餘的EPd,並且於步驟1434 處將EPb設為EPd。 若於步驟1420處判斷出該前向式錯誤修正(FEC)協定資 料單元(PDU)屬於EPd的話,那麼於步驟1422處,便可於相 關位置中將該協定資料單元(PDU)加入至Epd的緩衝器之 95689.doc -64- 200522579 中。方塊1424處可以判斷該缓衝器是否具有EPd的k個個別 PDU。若該緩衝器未具有EPd的k個個別PDU的話,那麼於 步驟1426處,該程序便會於步驟1410處重新開始。若該緩 衝器具有EPd的k個個別PDU的話,那麼於步驟1427處,該 解碼器便會為EPd實施外部解碼,然後於步驟1428處,該 傳輸實體便會試圖從EPd傳送完整的SDU。接著於步驟 1430處,便可從該緩衝器中強行逐出其餘的EPd,並且於 步驟1434處將EPb設為EPd。 圖16為當某一行動台於從細胞A 98接收一點對多點 (PTM)傳輸及從細胞B 99接收一點對多點(PTM)傳輸間移 轉時被該行動台接收到之外部碼區塊間的時間關係圖。 Grilli等人於2002年8月21曰提出的美國專利申請案第US-2004-0037245-A1 號及第 US-2004-0037246-A1 號,以及 Willenegger等人於2002年5月6日提出的美國專利申請案第 US-2003-0207696-A1號中便有進一步討論圖16的部份觀 點,本文以引用的方式將其全部併入。 圖中的情況假設特定的UMTS陸地無線電存取網路 (UTRAN)20以及使用者設備(UE) 10規定。舉例來說,若 UTRAN 20於複數個細胞中利用相同的外部區塊編碼來發 送内容的話,那麼相鄰細胞中攜載相同資料或酬載的區塊 便應該使用相同的編號。傳輸相同編號的外部區塊時必須 進行非常精確的時間校準。跨越該等細胞進行PTM傳輸的 最大對齊偏差係受控於該無線電網路控制器(RNC)24。 UTRAN 20會控制跨越細胞所進行之點對多點(PTM)上的延 95689.doc -65- 200522579 、斗動边UE 10應該能夠於接收下個外部區塊時,同時 、、、卜々區塊。所以,該UE中的緩衝器空間較佳的係 應該可容納至少兩個外部區塊95A-95C,因為需要一外部 區塊的記憶體來累積目前的外部區塊。若於里德-所羅門 (。)解2期間有該等外部區塊的話,那麼記憶體還應該能 β累積#數列」的内部區塊,並且補償跨越複數部基地 台22的時間對齊中的不精確度。 、、’田胞A %中’於傳輸外部區塊η 9从期間,於傳輸該第 内邛夕媒體廣播及多播服務(MBMS)酬載區塊期間會發 生移轉。箭頭96的斜率(其圖解的係使用者設備(卿〇從 細胞A 98移轉至細胞B99)係非水平,因為於移轉期間會流 C邛伤k間。於该使用者設備(UE) 1 〇抵達細胞b 99的前一 d正在傳輸夕媒體廣播及多播服務(Mbms)酬載資料的第 五區塊。就此而言,該使用者設備(1;:£)1〇會因為該等個別 傳輸之時間對齊偏差以及該移轉期間時間流逝的關係而遺 失第一至第四區塊。若於細胞B 99中接收到足夠區塊的 后,那麼该外部區塊n 95 A便不必進行解碼,因為可以利 用該等同位區塊來重建該等已遺失的區塊。 稍後’於傳輸外部區塊n+2 95C期間,該使用者設備 (UE) 10會經歷從細胞b 99至細胞A 98的另一次移轉,該次 移轉係發生在外部區塊n+2 95C之第五個内部多媒體廣播 及夕播服務(MBMS)酬載區塊處。於此情形中,會於移轉期 間遺失較少的内部區塊,而且仍然可以還原該等外部區塊。 使用外部碼區塊可幫助降低發生任何服務中斷的可能 95689.doc -66- 200522579 性。為確保可進行錯誤還原,應該於相同的傳輸路徑上發 送該等相同的區塊’其意謂著每條傳輪路徑中應該以相同 的方式來建構該等同㈣塊。(因為其為廣播傳輸,所以每 條路徑中的多媒體廣播及多播服務⑽Ms)酬載區塊必須 相同。)於上方應用層80處實施前向式錯誤修正㈣〇有助 於確保每條傳輸路徑中的同位區塊都會相同,因為該編碼 係在前向式錯誤修正(FEC)層157中來進行,所以,每個外 部區塊的編碼方式皆相同。相反地,若於下方層(舉例來 說,個別的無線電連結控制(RLC)實體152)中進行編碼的 話,那麼便必須進行特定的協調作業,,每條傳輸路 徑中的該等同位區塊並不相同。 點對多點(PTM)移轉至點對點(ρτρ) 圖1 7為當某-行動台丨G於點對多點(p 了 M)傳輸及點對點 (PTP)傳輸間移轉時所接收到之外部碼區塊間的時間關係 圖。舉例來說,圖17中所示的架構可套用於使用點對點 (PTP)傳輸的系統(例如WCDMA與GSM系統)中。 本發明的其中-項觀點係關於前向式錯誤修正,其方式 係於PTM傳輸期間將同位f訊或區塊加人至内部⑽⑽ 「酬載」《資料區塊中。於輸中被傳輸的每個外 部碼區塊皆包括至少一内部酬載區塊及至少一内部同位區 塊。外部碼區塊的錯誤修正能力可於移轉(例如當該ue從一 細胞移至另一細胞;或是於相同的服務細胞中,mbmsr 容的傳送從PTM連接改變成Ρτρ連接,或是反向改變)期間 大幅地減低且趨向於沒有任何撾8撾3内容或「酬載」遺失。 95689.doc -67- 200522579 如上述,—特定細胞可利用PTP或PTM傳輸架構傳輸至一 用戶台1〇。舉例來說,於一ΡΤΜ傳輸模式中正常傳輸一廣 播服私㈤、細胞可於該項服務對該細胞㈣需求低於特定臨界 值以下4選擇建立一專屬頻道,並且於ΡΤΡ模式中進行傳輸 (傳輸,、e特又的用戶台10)。同樣地,於一專屬頻道(ρτρ) 上傳輸内谷給個別用戶台的細胞亦可決定於一共同頻道上 將該内容廣播給多位使用者。此外,一特定細胞可於ρτρ 傳輸模式中來傳輸内容,而另一細胞則可於PTM傳輸模式 中來傳輸相同的内容。當該行動台10從-細胞移至另一細 胞’或是當某一細胞内之用戶數改變而促使傳輸架構從ρτρ 改變成PTM或反向改變時,便會發生移轉。 於外部區塊η 95A的點對多點(PTM)傳輸期間,於傳輸該 第四個内部多媒體廣播及多播服務(MBMS)酬載區塊期間 會發生移轉。箭頭101的斜率(其圖解的係使用者設備(ue) 從點對多點(PTM)傳輸移轉至點對點(ρτρ)傳輸)係非水 平’因為於移轉期間會流逝部份時間。當從PTM 1 〇丨移轉至 ΡΤΡΒ^ ’會約略保持相同的空中位元速率。點對點(ρτρ)傳 輸的位元錯誤率通常少於百分之一(舉例來說,傳輸期間, 每100個酬載區塊中僅會有一個以下的錯誤)。相反地,點 對多點(PTM)傳輸的位元錯誤率則可能比較高。舉例來說, 於其中一具體實施例中,基地台會每16個傳輸時間區間 (ττι)便產生一外部區塊,而且其中十二個TTI會被酬載區 塊佔據且四個TTI會被同位區塊佔據。可容忍的最大區塊錯 誤數量應該為16( 12個基本區塊+4個同位區塊)分之4的内 95689.doc -68 - 200522579 部區塊。就此而言,最大可耐受區塊錯誤率便係1M。 當該行動台從點對多點(PTM)傳輸移轉1〇1至點對點 (PTP)傳輸4,便可能會遺失部份的内部區塊。假設點對多 點(PTM)傳輸與點對點(PTP)傳輸於實體層(L1)具有約略相 同的位元速率,那麼,PTP傳輸將會允許該等MBMS酬載區 塊被發送的速度快於PTM傳輸,因為平均來說,被再傳輸 之區塊的百分率通常會低於同位區塊的百分率。換言之, 點對點(PTP)傳輸通常會遠快過點對多點(PTM)傳輸,因為 統計而言,同位區塊的數量會遠大於無線電連結控制(RLC) 傳輸(Re-Tx)的數量。因為從點對多點(PTM)傳輸移轉1〇1至 點對點(ptp)傳輸通常係非常快,所以當使用者設備(ue)i〇 移轉101至點對點(PTP)傳輸時,會正在傳輸多媒體廣播及 多播服務(MBMS)酬載資料的第一區塊。就此而言,個別傳 輸的時間對齊偏差以及該移轉1〇1期間的時間流逝皆不會 造成任何區塊遺失。所以,當從點對多點(pTM)傳輸移至點 對點(ptp)傳輸時,一旦於該目標細胞上建立該ρτρ連結之 後,只要從目前的外部區塊起始處重新開始便可建構出已 遺失的酬載區塊。藉由從同一外部區塊之起始處(也就是, 利用第一個内部區塊)開始進行ρτρ傳輸便可補償該網路。 接著該網路便可還原該移轉因完整外部區塊之較快速傳送 而造成的延遲。減低移轉期間的資料遺失情形便可減低因 此等移轉而造成MBMS内容傳送中斷的情形。 稍後,於進行外部區塊n+2的PTP傳輸期間,使用者設備 (UE)10係正在進行移轉至點對多點(ρτΜ)傳輸模式的另一 95689.doc -69- 200522579 次移轉103。圖I2中,從點對點(PTP)傳輸移轉103至點對多 點(ΡΤΜ)傳輸係發生在外部區塊η+2的最後一個内部多媒體 廣播及多播服務(MBMS)酬載區塊處。於此情形中,外部區 塊η+2中,除了最後一個内部區塊之外,大部份的内部多媒 體廣播及多播服務(MBMS)酬載區塊都已經被傳輸。於無法< k = LUk > < k] -1. ylxk: Medium γ ... is the modified reception amount obtained by using the previous k good symbols. Therefore, the complexity of the deletion decoding can be reduced to the complex value of the kxk matrix. Therefore, the use of RS deletion decoding can greatly simplify the intelligence complexity of RS decoding. 1 The impact of data packets on the performance of external codes is discussed below with reference to Figure 11-13. If the special external coding architecture is limited to the padding and additional data sent over the air, it can be used with variable-rate shell sources This external encoding without causing excessive additional capital 95689. doc -45- 200522579. In the external code architecture discussed above, data can be packed into specific small blocks, and shortened Reed-codes can be performed on these blocks. The encoded packet data packet can be traversed into a plurality of TTIs in at least two different ways. Now, it will be described with reference to Figs. 9A and 9B. Fig. 9B is a schematic diagram of the outer code block structure of Fig. 9A, in which multiple columns are transmitted in each transmission time interval (TTI). According to another aspect of the present invention, data derived from one column is transmitted in a single TTI. In another: In a specific embodiment, data from an encoder packet (Ep) column is placed in a TTI, so that each TTI contains data derived from the encoder packet (EP) =. In this regard, each column can be transmitted in a separate WCDMA frame or transmission interval (TTI). Passing each row in one of ττι will provide better performance. In Fig. 9B, the coffee is divided by the number of columns of each claw 'and the errors in a certain column can be completely correlated. In this way, the relationship between the duty error rate and the TTI error rate can make a significant difference. Fig. 9C is a schematic diagram of the external block structure of Fig. 9A, in which each column ratio can be transmitted in multiple ™ s. It should be understood that although the figure sends the encoder packets (Ep) in each column in Ergu TTKTTI0-TTI3), in reality, each column can be sent in any number of TTIs. Because: All are an external code codeword group. Therefore, four different transmission “phases” (T ™ · ΤΤΙ3) from the parent βH are combined to form an independent external code every W. In order to restore the entire packet, all the independent external codes must be correctly decoded. Fig. 2 is a schematic diagram of an external code block generated by the forward error correction layer. FECc mode can be used on common or point-to-multipoint (ρτΜ) logical channels, 95689. doc • 46-200522579 A parity block or block 93 is added to the MBMS payload data 91 to construct the outer code block 95. Each external block 95 includes a plurality of internal blocks 91, 93. Identifying the order of the internal blocks and their position relative to the encoder's packet allows each available internal block to be placed in the correct position, so that external decoding can be done correctly. In one embodiment, each internal block includes a header 94, which can use the internal block number m and the external block n to identify the internal block. For example, the external block η contains a data portion 91 with m multimedia broadcast and multicast service (MBMS) payload blocks, and a redundancy with M- (m + 1) internal parity blocks Section 93. According to this specific embodiment, the serial number space can be optimized for MBMS, and several different serial numbers (for example, 0 to 127) are used to define the serial number space. This sequence number space should be large enough that the same sequence number does not appear after the reception gap caused by any transfer type. Even if some internal blocks are missing, the receiving UE should be able to determine the order of the internal blocks. If the uE * lost internal blocks exceeds the number that can be identified in the entire serial number space, the uE will not be able to reorder the internal blocks correctly. The sequence numbers of the same internal blocks across these blocks and FECc blocks are exactly the same. The FEcd blocks do not include the redundant part used in the FECc blocks. The 934 ^ entity and the FECc entity can use the same bit rate in the air. The transmitting end transmits a forward error correction (FEC) entity 410 including a service data unit (SDU) buffer 412 for receiving a coffee: a splitting and concatenating unit 414; an external encoder 41 6 for luxury field 4 a yoke Reed-Solomon (RS) code; a serial number generator 41 8 to add a serial number 4 λ # μ to the coded PDU of the temple; a 95689. doc-47-200522579 a transmission buffer 420 for transmitting the PDUs on the logical channels 406; and a scheduling unit 422. The monthly service data unit (SDU) buffer 412 receives the user data (FEC SDU) in the form of a service data unit (SDU) on the radio bearer 402, as shown by the arrow, and stores the FEC from a higher layer SDU. The receiving buffer 412 informs the scheduling unit 422 how much data will be transmitted. As discussed above, the amount of time it takes to fill an encoder packet (EP) usually varies because the data source rate usually varies. As explained with reference to Fig. 13, the frame filling efficiency can be improved by flexibly deciding when to start packing the data. Delaying the manufacturing time of the EP as much as possible based on the jitter tolerance of the receiving FEC entity 430 can reduce the amount of padding introduced. The scheduling entity 422 may decide when to start coding. The scheduler 422 preferably determines the length of time that must be waited before sending a packet based on the QoS curve of the special service. Once the scheduler 422 determines that sufficient data has been accumulated or has exhausted the maximum acceptable packet transmission delay, the scheduler will trigger the generation of an encoder packet (EP) 91. The dividing and concatenating unit 414 can divide the service data unit (SDU) into columns and generate a length indicator (LI). The scheduling unit 422 preferably determines the optimal row size of the EP or the protocol data unit (PDU), so that the SDUs can be placed in the number of rows (for example, 12 rows). Alternatively, the scheduler 422 will select a FEC PDU size from the FEC PDU sizes organized by the RRC, which will result in the least possible filling operation, and requires the segmentation and concatenation function 414 to classify these SDU cells 95689. doc -48- 200522579 is transformed into k blocks of size pDU_size_FEc. This formatting job can be changed. Consumption examples for different formatting types are discussed below with reference to Figure 12-13. The total amount of data considered should include additional data that will be concatenated and merged with the 'J function' 414. In order to generate the encoder packet (Ep), the processor 422 will request the concatenation and segmentation function 414 to generate k PDUs of this size. This size contains reorganization information. In one specific embodiment, the size of these PDUs is a multiple of 8 bits, and the data of consecutive pDUs will correspond to different symbols in these codeword groups. These k PDU blocks can then pass through an external encoder 416 that implements Reed-Solomon (RS) encoding. The external encoder 416 generates redundant or parity information and appends it to the encoder packet (Ep) matrix to generate an external code block to encode the data in the encoder packet (Ep) matrix. In a specific embodiment, the Shima of the material department can assume that (n, k) deletes the decoded block code, and the external encoder will generate n_k parity blocks. The encoder encodes k columns of information of equal length and sends them to n sub-layers of the same size. The first k blocks will be the same as the blocks they receive, while the next n-k blocks will correspond to the parity information. The scheduler 422 also monitors the time alignment or relative timing of the PTM strings and implements transmissions to adjust the alignment of different logical strings. For example, during reconfiguration, the time alignment results between PTP and PTM logic strings can be adjusted to facilitate service continuity. The best performance is obtained when these data strings are fully synchronized. Different base stations (or different transmission modes PTp, point-to-multipoint (PTM)) will transmit the same content string, however, these intra-A January b cannot be 95689. doc -49- 200522579 alignment. However, if the encoder packet (EP) pattern of these data strings is the same, then the information on each data string is exactly the same. Adding a serial number to each external block allows the user equipment to combine the two data strings, because the user equipment (UE) will know the relationship between the two data strings. The serial number generation benefit 418 will add a serial number to the front of each block in the same order as used in the encoder 416 to generate a PDu. For example, in a specific embodiment, the serial number generator adds an eight-bit serial number in front of each external code block to generate a pDU. It is also possible to add additional additional information to the external code block. The ordinal space should be sufficient to accommodate the worst time difference between data strings. Therefore, in another specific embodiment, a serial number space with a size of 20 may be used, and at least 5 bits may be reserved for the serial number in each header. This header can be appended to the external code block after implementing Reed-Solomon (RS) encoding, so this "external" header is not protected by the external code. Better systems can also add sequence numbers to parity blocks, even if such sequence numbers may not be transmitted. In one specific embodiment, the serial number phase can enclose the boundary of its encoder. The sequence number indicates that a new encoder packet has been received. Forward Error Correction (FEC) Header Format As mentioned above, the introduction of a sequence number containing information related to PDU ordering can achieve the purpose of data string synchronization. In addition to reordering and copy detection, serial numbers can also reorder data from individual sources contained in an encoder packet. This sequence number clearly indicates the order in which each packet should be considered. This serial number can form a "FEC header", which can be used after encoding. The doc -50- 200522579 header is attached to both the information payload unit (PDU) and the parity block. The serial number should not be protected by the external code, because the serial number must be used for decoding. FIG. 14 is a schematic diagram of a specific example of a forward error correction (FEC) header format. To help align the data with the encoder packet (EP), the sequence number can be divided to include a reserved portion (R) 402;-the encoder packet (EP) portion 404 to find the EP (EPSN) And an internal encoder packet for finding the location of a special internal block in the encoder packet (IEPSN) 406. We hope that the FEC layer 400 can operate in exchange with all radio link control (RLC) modes. Because both Radio Link Control (RLC) AM and Radio Link Control (RLC) UM require the size of the service data unit (SDU) to be a multiple of 8 bits, we hope that the FEC layer 400 can also support this requirement. Because the outer code of the FEC layer 400 operates in an increasing data byte size, the encoder packet (EP) row size must also be an integer number of bytes. Therefore, the FEC header size 401 should also be a multiple of 8 bits so that the radio link control (RLC) can accept the FEC protocol data unit (PDU) size. In a specific embodiment in which the forward error correction (FEC) header 401 can be a byte, the reserved portion (R) 402 includes a single bit, and the portion used to identify the EP (EPSN) 404 includes 3 bits, and the IEP portion used to find the location of the PDU in the encoder packet (IEPSN) 406 includes 4 bits. In this specific embodiment, an 8-bit sequence number is used because we expect that a PDU will be sent in each TTI and because we do not want the transmission timing of different cells to drift more than 100 ms. 95689. doc -51-200522579 The transmission buffer 420 stores these PDUs until a data frame is accumulated. When the PDUs are requested, the transmission buffer 420 transmits the frames to the MAC layer one by one on the radio interface (Uu) through a logical channel. Then, the MAC layer sends the PDUs to the physical layer through a plurality of transmission channels. Finally, the physical layer sends the PDUs to the UE. The receiver continues to refer to FIG. 11 and receives forward error correction ( FEC) entity 430 includes a receiving buffer / reordering / copy detection unit 438;-serial number removal unit 436;-external decoder 434, which can implement Reed-Solomon (RS) decoding; and a reorganization unit / service Data unit (SDU) transmission buffer 432. The information column of the EP matrix corresponds to a plurality of PDUs. To support external encoding, the receiving forward error correction (FEC) entity 430 accumulates several FEC PDUs before triggering external decoding. In order to achieve the purpose of continuous reception, even if multiple encoder packets need to be decoded, the user equipment (UE) will still buffer the incoming protocol data units (PDUs) at the same time when decoding is performed. The receiving buffer 438 may accumulate a plurality of PDUs until the entire encoder packet (EP) is received or until the scheduling unit (not shown) meets the condition that the encoder packet (EP) will not be transmitted again. Once it is determined that no more data will be received from a particular encoder packet, the missing PDU can be considered as deleted data. In other words, a delete symbol can be used in the decoding process to replace a PDU that fails the CRC test. Because some blocks will be lost during transmission, and because different data strings may have different delay relationships, the forward error correction of the reception 95689. doc -52- 200522579 (FEC) entity 430 implements a copy of the received block in the receive buffer / reordering / copy detection unit state and may reorder the meeting. This sequence number can be used in each FEC protocol data unit (pDU) to assist in reordering / copy detection. This serial number can be used in the receive buffer 438 to reorder out-of-order received data. Once the PDUs are reordered, the duplicate detection unit will detect the duplicate PDUs in the encoder packet based on its serial number and eliminate any duplicate data. These numbers can then be removed. The serial number removing unit 436 may remove a serial number from the encoder envelope (EP) because the serial number is not part of a block to be sent to the Reed-Solomon (RS) decoder. This data can then be sent to an external decoding function 434 to restore the missing information. The external decoder 434 will receive the encoder packet (Ep). If necessary, it can also use parity information to regenerate any error or missing columns in order to implement Reed-Solomon (RS) on the encoder packet (Ep). decoding. For example, 'If all k protocol data units (PDu) containing information are not received correctly, or if less than k of x ^ @ PDUs are not received correctly, then these protocols can be The data unit (PDU) implements external decoding (the number of which is much larger than the size of a bit PDU) in order to restore the lost information pdu. When external decoding is implemented, at least one parity PDU will be available at the receiver. If all k protocol data units (PDUs) containing information are received correctly 'or if less than k of the n PDUs are received correctly, then decoding is not necessary. These information protocol data units (PDUs) can then be transmitted to the reorganization function 432. Regardless of whether the external decoding is successful, the information rows can be transmitted to the 95689. doc -53- 200522579 Restructure unit / function 432. The reassembly unit 432 uses the length indicator (LI) to reassemble or reconstruct the SDU from the information row of the encoder packet (EP) matrix. Once the SDUs are successfully put together, the service data unit (SDU) transmission buffer 432 will transmit the service data unit (SDU) on the radio bearer 440 to transfer the SDUs to higher layers. At the receiving forward error correction (FEC) entity 430, allowing the UE to delay decoding with time compensation between different logical strings, the system can fully utilize potentially out-of-order received data because the logical strings do not need to be synchronized. the benefits of. This will make the service smoother during delivery and during the transfer of PTP and PTM. An algorithm for delaying decoding by the UE with time compensation between different logical strings will be discussed below with reference to FIG. 15. Encoder packet (EP) options: fixed or variable row size. This FEC or external code entity has the flexibility to decide when to construct protocol data units (PDUs), because these protocol data units (PDUs) do not have to be in each transmission time interval ( TTI). Are sent continuously. This results in better frame filling efficiency and less additional data. When necessary, the external code entity may generate a payload at each transmission time interval (TTI). A protocol data unit (PDU) can be constructed immediately when a service data unit (SDU) is received from a higher layer. If there is not enough data to establish a protocol data unit (PDU), the RLC can add padding information. Fixed Column Size Encoder Packet (EP) When encoding SDU 201-204, we would like to reduce as much as possible. The amount of padding transmitted. In a specific embodiment, the column size of the encoder packet (EP) matrix 205 can be 95689. doc -54- 200522579 This is a fixed size. Knowing the column size of the encoder packet (EP) matrix 2G5 in advance, the data can be aligned with the original configuration. Because the column size of SDU201_204 to be sent is known in advance, the transmission can start immediately after receiving the data, without waiting to see how much data will be sent. FIG. 12A is an example of an encoding process for generating an external code block 214 from a plurality of data units 201, where the column size of the external code block stream may be fixed. In this example, the user data is in the form of a plurality of service data units (SDU) 2 () 1 · programs, which contain—bit blocks of any size, the size of which is related to special applications (video, voice, etc.) . In order to be able to transmit FEC SDUs of any size, segmentation, concatenation, and padding operations can be implemented in the FEC stage. Although the serial connection operation is not absolutely necessary, if it is not performed, the higher-level data processing capacity will be seriously damaged. These higher layer SDUs 201-204 can be formatted to this fixed pDU size first. In this specific embodiment, the segmentation / concatenation function can generate a plurality of internal blocks of the user's exclusive fixed size. At step 22, the group of internal blocks can be divided and connected in series to make it part of an encoder packet matrix 205. The encoder packet matrix 205 contains a plurality of internal blocks; necessary padding information 208 ; And the length indicator (LI) 206, which can indicate the number of SDUs in a particular column of the EP, so as to point to the end of these service data units (SDUs) 201-204. The external encoder discussed below will use these internal blocks to generate multiple redundant blocks. In radio link control (RLC), the length indicator (LI) indicates the end of each service data unit (SDU) found in accordance with the protocol data unit (PDU), rather than in accordance with the service data unit (SDU) . So there are 95689. doc -55- 200522579 helps reduce additional data because the PDU size is usually smaller than the service data unit (SDU) size. For example, the length indicator (LI) may be used to indicate the last eight bits of each FEC service data unit (SDU) ending in the payload data unit (PDU). The "length indicator" may be set to the number of octets between the end of the FEC header and the last octet of a FEC SDU segment. The length indicator (LI) is preferably included in the PDUs to which the length indicator (LI) refers. In other words, the length indicator (LI) is preferably referred to the same payload data unit (PDU), and the better system has the same order as the FEC SDU to which the length indicator (LI) refers. When the external block is received, information (such as a length indicator (LI)) can be used to let the receiver know the start and end positions of the service data unit (SDU) and / or padding information. Because it is not possible to use a bit in the FEC header to indicate the presence of a length indicator (LI), the FEC layer will add a fixed header to the payload to indicate that there are multiple length indicators (LI) presence. The internal header or LI will provide all the information needed to rebuild these SDUs 201-204. LI may be included in the RLC-PDU to which it refers. The flag included in the serial number header of the RLC-PDU can be used to indicate the existence of the first LI. One bit in each LI can be used to indicate its extension. In order to allow the length of the length indicator (LI) to change with the size of the FEC PDU, a new special value can be introduced for the length indicator (LI) of the one-tuple, which represents the length of one of the The previous SDU at the end, unless the last PDU is filled. The length indicator (LI) presence bit 95689 can be implemented in various ways. doc -56- 200522579 yuan, two of which are discussed below. In one embodiment, a length indicator (LI) presence bit can be provided in each protocol data unit (PDU). For example, a byte can be added at the beginning of each encoder packet (EP) column, and a bit in the byte can indicate that the LI exists. The entire first byte of each protocol data unit (PDU) is reserved for this "presence bit". To accommodate this presence bit, the length indicator data can be shortened by one bit. By providing a presence bit in each protocol data unit (PDU), the SDU can still be decoded when the EP decoding fails, even if the first PDU is missing. This can lead to lower residual error rates. Providing a presence bit in each PDU also allows for instant concatenation / splitting operations. In another embodiment, a length indicator (LI) presence bit may be provided in the first PDU. In the specific embodiment, the additional data is not added at the beginning of each PDU. Instead, the existence bits of all k information PDUs can be added at the beginning of the first PDU of the EP. When there are large SDUs and / or small PDUs, providing this presence bit at the beginning of the encoder packet (EP) can result in less additional data. After segmentation and concatenation, a number of rows in EP 205 will be occupied by at least one of the plurality of service data units (SDUs) 201-204 and padding blocks. The column size of an external block can be designed to be transmitted at a peak data rate during a transmission time interval (TTI). The service data unit (SDU) is usually not aligned with the amount of data sent during a transmission time interval (TTI). Therefore, as shown in FIG. 11, the second and fourth SDUs 202 and 204 cannot be placed in the transmission time interval (TTI) 95689 of the first and second columns of the EP. doc -57- 200522579. In this example, the EP has 12 columns available for use, and the four SDUs 201-204 can be packed in the first three columns of the 12 columns. The remaining columns of the EP 205 are occupied by padding block 208. Therefore, the second SDU 202 can be divided, so that the first part of the second service data unit (§1) 1;) 202 starts at the first column of the "information block", and the second Sdu 202's The second part ends in the second column. Similarly, the third Sdu must be divided such that the first part of the second service data unit (SDU) 203 starts in the second column and the second part of the second SDU 203 ends in the third column. The fourth service data unit (SDU) 204 can be placed in the third column, and the padding block 208 can be used to fill the rest of the second column. In this example, most of the encoder packets (Ep) 2 丨 3 are composed of padding information 208. The encoder uses the EP to generate redundant or parity information. At step 24 ′, an encoder encodes the encoded intermediate packet matrix 205 by adding a plurality of external parity blocks 214 to generate an external code block 213 with a length of 16 blocks. The encoder takes 8 bits of data from each row of each block to generate the final data 21o. Reed_Solomon (Chinese ^) φ code β can encode the last data 21 0 to obtain four rows of redundant or parity information 212. The parity information 212 can be used to generate a plurality of external parity blocks 214, and these blocks can be appended to the epsilon matrix 205 to generate 16-block external code blocks 213. . Figure i2B is an example of information transmitted over the air in the example discussed above. In step 260, after each column of EP 205 is added with an additional supplementary material containing a serial number, the 16-block external code block 213 can be transmitted in the air by means of a plurality of protocol data units (pDU) 214. It will not be at that line 95689. These protocol data units (PDUs) 214 are transmitted in the doc -58-200522579 link to transmit all or the entire encoder packet (EP) 213. More specifically, the protocol data units (PDUs) include the information bits 2O4-2 of the encoder packet (Ep) 2 丨 3 and the length indicator (U) 206. Because the size of the encoder packet (Ep) 213 columns is fixed and the receiver knows the size value, it is not necessary to transmit padding information 208 in the air. Because the padding values are known, the padding information is not required to be transmitted, so the padding information is not transmitted on the downlink connection. For example, if the padding information can be formed using a known bit sequence (for example, all 0, t parts 1 and 3, and a staggered pattern consisting of (^)), the receiver can change the padding information, etc. The protocol data unit ㈣Shangchuan fills up to the nominal 213-row length of the encoder packet (Ep). Therefore, during the round, 'the PDU size is not selected to be equal to the size of the sand line, instead it is used to carry all the information bits 20i_2 〇4 and the minimum available EP size of the reorganized additional information (u) 206. Although the size of the encoded H matrix column is fixed, the size of the FEC PDU can be selected from a predetermined set in each transmission, so Anyone can include a:-All the information part of the encoder matrix column (filling information can be excluded) Tian receives a smaller than the size of the encoder matrix column? When it is overtime, it can use a known bit sequence to fill it to The size of the encoder matrix column is so far. In this way, a fixed internal block size can be maintained without adding space; the load of the interface. So 'use the fixed column size encoder packet (Ep) 2i3, and start transmitting co-d data Units (pDU) were not needed before You have to wait to receive all available data, and you do n’t need to send padding information. If you design the above algorithm to handle variable rate transmission, then 95689. doc -59- 200522579 can use a rate equalization architecture, in which all the encoder packet matrix columns have a constant size. Smaller PDUs can be used when filling the information component PDu. The padding information may consist of a specific bit sequence and may be located at each end position of the data. At the receiver, the size of the block received from the lower layer can be equalized to the baseline size by adding padding information at the end position. That is, if a preset bit sequence can be used as padding information, the padding data will not be transmitted over the air unless the receiver is required to decode it, otherwise the receiver does not need to know the actual encoder packet column size. Basically, the reorganization does not need to know—the amount of filling capital at the end of the PDU. If all touches have been received that contain information from the previous Encoder Packet (EP) column, then no external decoding is necessary. Conversely, if at least one PDU containing information from the previous k-th column of Encoder Packet (EP) columns is missing, then at least one of these will need to contain data from the same rank. Since the parity column is usually not padded ', its size can be used as a hypothetical reference value for the actual encoder packet size. Variable Column Encoder Envelope (EP) ® 13 is the encoding process for generating ^ outer code blocks with variable column sizes. This aspect of the invention relates to asexual external block encoding of data transmitted over the air interface. This encoding process only transmits a small amount of padding information, so the frame filling efficiency will be improved. These encoder packets may be of variable size and may be 95689 for each transmission time interval. doc -60- 200522579 sends external blocks of different sizes. Preferably, the column size of the encoder packet can be changed, so that these SDUs can be reliably placed in the encoder packet (the number of columns of the egg giant array 305 (for example, 12 columns). In this specific embodiment The FEC layer must wait for all the data to be available before constructing it. Therefore, the FEC layer can determine the optimal row size. Based on the amount of available data, the row can be selected from several different sizes. Size to limit padding information. The column size of the encoder packet (EP) may be linked to the PDU size set configured for the S-CCPCH. Depending on the amount of data available when the encoding_packet 305 is generated, it can be selected Will cause the minimum size of the column to fill the information. Reduce the size of the external block 313 to make the block size in each frame smaller, then you can send data at a lower transmission rate, because the same TTI duration The amount of data being transmitted has been reduced. Using the variable column size of the Encoder Packet (EP) 305 helps stabilize the power requirements in the overall transmission of the Encoder Packet (EP), and also allows for less parity addition Data 3 14. This specific embodiment is applicable to point-to-multipoint (PTM) transmission in a WCDMA system, and the basic wireless protocol in the system allows the size of the transmission block to be transmitted in each transmission time interval (TTI). In step 320, a plurality of service data units (SDUs) 201-204 can be divided and connected in series to generate an encoder packet matrix 3 05, wherein the length indicator (LI) 206 can be used to refer to these End position of service data unit (SDU) 201-204. The length indicator (LI) can be included in the last column of each service data unit (SDU) terminated. Step 330, 8 can be taken from each data block Bit data, based on rows to generate redundant or parity information, and the final data 3 10 can be sent to 95689. doc -61-200522579-Reed-Solomon (RS) encoder to obtain parity information 3i2. Because the number of columns of the encoder packet (EP) matrix 305 is relatively small, less redundant information can be generated. The encoding will continue in step 340, because the parity information 312 will be used to generate a plurality of external parity blocks 314 '. These external parity blocks 314 can be appended to the encoder packet (Ep) matrix of twelve blocks 〇5, thereby generating an outer code block with a length of 16 blocks in this example. This specific embodiment can avoid the transmission of padding information, thereby improving the transmission efficiency, because the entire external code block 313 is occupied by the SDU, the length indicator (Li) 206, and / or several funds 3 14. In this particular example, no padding information is needed. However, it should be understood that in some cases, because the number of configuration sizes of the PDU will be limited, some padding information may be required, but the amount of padding information is quite small. This results in greater frame filling efficiency and maintains a more constant power throughout the encoder packet (Ep). This is a welcome feature of CDMA systems using power control architectures. Although not shown in the figure, the manner of transmitting PDUs over the air is the same as that discussed above with reference to step 260 of FIG. FIG. 11 is a specific embodiment of an external coding or heading error correction (FEC) layer 400 above the radio link control (RLC) layer, which has an RLC unconfirmed mode (um) + entity (RLC UM +). In general, Radio Link Control (RLC) provides sub-frame processing for higher layers. Here, the frame processing is performed by the FEC layer located above the radio link control (RLC). The outer coding layer 400 includes a transmission forward error correction (FEC) entity 95689. doc -62- 200522579 410, which can communicate with a receiving forward error correction (FEC) entity 430 over a radio interface (Uu) 404 through a plurality of logical channels 406. Reordering / Copy Detection Figure 15 is a schematic diagram of a reordering protocol or algorithm that allows the mobile station 10 to use time compensation between different logical strings to delay decoding. The receiving forward error correction (FEC) entity 430 uses the sequence number to determine the position of a particular PDU within the EP matrix. For example, a partial sequence number (PSN) can identify the position of the PDU in the encoder packet (EP). This algorithm assumes that data from at most two encoder packets (EP) will be received before decoding can begin. In the following description, the encoder packet (EPd) is the next encoder packet (EP) to be decoded in sequence, and the encoder packet (EPb) is the encoder packet (EP) being buffered. The encoder packet (EPb) follows the encoder packet (EPd). A UE design that requires full encoder packet transmission time to implement RS decoding will need to implement double buffering in order to be able to decode multiple consecutive packets. Therefore, the UE stores at least n + k columns in the largest column of the encoder matrix, where k and η are the number of information columns and the total number of columns including parity information, respectively. UEs with faster decoding engines can reduce this requirement, however, it cannot be lower than n + 1. For example, if the UE's specific buffer space (XtmBffr) exceeds the number required to receive consecutive packets based on its decoding capability, and if a 64 kbps data string is assumed, then the decoding should be delayed by 100 ms without If you increase the computational requirements, you need to increase the buffer size of 800 bytes. At step 1410, it is determined whether a new forward error correction (FEC) protocol data unit (PDU) has been received. If you do not receive a new forward error repair 95689. doc -63- 200522579 (FEC) protocol data unit (PDU), the process will restart at step 1410. If a new forward error correction (FEC) protocol data unit (PDU) is received, it is determined at step 1420 whether the new forward error correction (FEC) protocol data unit (PDU) is Belongs to the next encoder packet (Epd) to be decoded in order. If the forward error correction (FEC) protocol data unit (PDU) does not belong to the next encoder packet (Ep) to be decoded in sequence, then the forward error correction (FEC) is determined at step 1421. ) Whether the protocol data unit (PDU) belongs to the encoder packet (Epb) to be buffered. If the forward error correction (FEC) protocol data unit (PDU) does not belong to the activity of the encoded state packet (EPb) to be buffered, then the protocol data unit (PDU) is discarded at step 1440. If the forward error correction (FEC) protocol data unit (PDU) belongs to the EPB packet to be buffered, then at step 1423, the protocol data unit (pDu) will be placed in the relevant position. Added to EPb's buffer. At step 1425, it is determined whether the amount of data of £? 6 exceeds XtraBffr. If it is determined at step 1426 that the amount of Epb data does not exceed XtraBffr, the program will restart at step 1410. If the amount of Epb data exceeds XtraBffr, then at step 1428, the transmitting entity will attempt to transmit the complete SDU from the EPd. Then at step 1440, the remaining EPd can be forcibly evicted from the buffer, and EPb is set to EPd at step 1434. If it is determined in step 1420 that the forward error correction (FEC) protocol data unit (PDU) belongs to EPd, then in step 1422, the protocol data unit (PDU) can be added to the Epd in the relevant position. 95689. doc -64- 200522579. At block 1424, it can be determined whether the buffer has k individual PDUs of EPd. If the buffer does not have k individual PDUs of EPd, then at step 1426, the process will restart at step 1410. If the buffer has k individual PDUs of EPd, then at step 1427, the decoder will perform external decoding for EPd, and then at step 1428, the transmitting entity will attempt to transmit a complete SDU from the EPd. Then at step 1430, the remaining EPd can be forcibly evicted from the buffer, and EPb is set to EPd at step 1434. Figure 16 shows the external code area received by a mobile station when it moves between receiving a point-to-multipoint (PTM) transmission from cell A 98 and receiving a point-to-multipoint (PTM) transmission from cell B 99. Diagram of time between blocks. Grilli et al., U.S. Patent Applications Nos. US-2004-0037245-A1 and US-2004-0037246-A1, filed on August 21, 2002, and Willenegger et al., U.S.A., filed May 6, 2002 A partial discussion of FIG. 16 is further discussed in Patent Application No. US-2003-0207696-A1, which is incorporated herein by reference in its entirety. The situation in the figure assumes specific UMTS Terrestrial Radio Access Network (UTRAN) 20 and User Equipment (UE) 10 regulations. For example, if UTRAN 20 uses the same external block code to send content in multiple cells, the blocks carrying the same data or payload in adjacent cells should use the same number. Very accurate time calibration must be performed when transmitting external blocks of the same number. The maximum alignment deviation for PTM transmissions across these cells is controlled by the Radio Network Controller (RNC) 24. UTRAN 20 controls the point-to-multipoint (PTM) delay 95689. doc -65- 200522579, UE10 should be able to receive blocks at the same time when receiving the next external block. Therefore, the better buffer space in the UE should be able to accommodate at least two external blocks 95A-95C, because an external block of memory is needed to accumulate the current external blocks. If there are such external blocks during Reed-Solomon (.) Solution 2, then the memory should also be able to β internally accumulate the #number of internal blocks, and compensate for any inaccuracies in the time alignment across multiple base stations 22. Accuracy. During the transmission of the external block η 9 from the "Tian A A% Zhong", the transfer will occur during the transmission of the media broadcast and multicast service (MBMS) payload block. The slope of the arrow 96 (the diagram is for the user equipment (Qi0 migrated from cell A 98 to cell B99) is non-horizontal, because C will hurt C and k during the migration. In this user equipment (UE) The 10th day before the arrival of cell b 99 is transmitting the fifth block of the media broadcast and multicast service (Mbms) payload data. In this regard, the user equipment (1 ;: £) 10 will Blocks 1 to 4 are lost after the timing misalignment of individual transmissions and the relationship of time lapse during the transfer. After receiving enough blocks in cell B 99, the external block n 95 A is unnecessary The decoding is performed because the equivalent bit block can be used to reconstruct the lost blocks. Later, during the transmission of the external block n + 2 95C, the user equipment (UE) 10 will experience a cell b 99 to Another transfer of Cell A 98 occurred at the fifth internal multimedia broadcast and evening service (MBMS) payload block in the external block n + 2 95C. In this case, it will be in Fewer internal blocks are lost during the migration, and these external blocks can still be restored. With external code block can help reduce the occurrence of any service disruption might 95689. doc -66- 200522579 sex. To ensure error recovery, these same blocks should be sent on the same transmission path, which means that each equivalent path should construct the equivalent block in the same way. (Because it is a broadcast transmission, the multimedia broadcast and multicast service (Ms) in each path) The payload block must be the same. ) Implementing forward error correction at the upper application layer 80 helps to ensure that the co-located blocks in each transmission path will be the same, because the encoding is performed in the forward error correction (FEC) layer 157, Therefore, the encoding method of each external block is the same. Conversely, if encoding is performed in a lower layer (for example, an individual radio link control (RLC) entity 152), then a specific coordination operation must be performed. The equivalent bit block in each transmission path must be Not the same. Point-to-multipoint (PTM) transfer to point-to-point (ρτρ) Figure 17 shows the data received when a mobile station G moves between point-to-multipoint (p-M) transmission and point-to-point (PTP) transmission. Time relationship diagram between external code blocks. For example, the architecture shown in Figure 17 can be applied to systems that use point-to-point (PTP) transmissions, such as WCDMA and GSM systems. One of the aspects of the present invention relates to forward error correction, and the method is to add parity information or blocks to the internal ⑽⑽ "payload" and "data blocks" during PTM transmission. Each external code block transmitted during the transmission includes at least one internal payload block and at least one internal parity block. The error correction capability of the outer code block can be transferred (for example, when the UE moves from one cell to another; or in the same serving cell, the transmission of mbmsr content is changed from PTM connection to Pτρ connection, or Towards a change) period has been greatly reduced and tends to be without any content or "payload". 95689. doc -67- 200522579 As mentioned above, a specific cell can be transmitted to a subscriber station 10 using PTP or PTM transmission architecture. For example, in a PTM transmission mode, a broadcast server is normally transmitted. Cells can choose to establish an exclusive channel in the service when the demand for that cell is below a certain threshold. 4 Select a dedicated channel and transmit in the PTP mode. Transmission, e special user station 10). Similarly, cells transmitting inner valleys to individual user stations on a dedicated channel (ρτρ) can also decide to broadcast the content to multiple users on a common channel. In addition, a specific cell can transmit content in ρτρ transmission mode, while another cell can transmit the same content in PTM transmission mode. Migration occurs when the mobile station 10 moves from -cell to another cell 'or when the number of users in a certain cell changes to cause the transmission architecture to change from ρτρ to PTM or vice versa. During the point-to-multipoint (PTM) transmission of the external block η 95A, the transfer occurs during the transmission of the fourth internal multimedia broadcast and multicast service (MBMS) payload block. The slope of arrow 101 (which is illustrated by the user equipment (ue) transitioning from a point-to-multipoint (PTM) transmission to a point-to-point (ρτρ) transmission) is non-horizontal 'because some time passes during the transition. When migrating from PTM 1 〇 丨 to PTPB ^ ', it will maintain approximately the same bit rate in the air. Bit-to-point (ρτρ) transmissions typically have a bit error rate of less than one percent (for example, during transmission, there will be only one or less errors per 100 payload blocks). Conversely, bit-to-multipoint (PTM) transmissions may have higher bit error rates. For example, in one specific embodiment, the base station generates an external block every 16 transmission time intervals (ττι), and twelve TTIs will be occupied by the payload block and four TTIs will be occupied by Occupied blocks. The maximum tolerable number of block errors should be within 4 of 16 (12 basic blocks + 4 parity blocks) 95689. doc -68-200522579 blocks. In this regard, the maximum tolerable block error rate is 1M. When the mobile station shifts from point-to-multipoint (PTM) transmission to 101 to point-to-point (PTP) transmission4, some internal blocks may be lost. Assuming point-to-multipoint (PTM) transmission and point-to-point (PTP) transmission at the physical layer (L1) have approximately the same bit rate, then PTP transmission will allow these MBMS payload blocks to be sent faster than PTM Transmission, because on average, the percentage of retransmitted blocks is usually lower than the percentage of co-located blocks. In other words, point-to-point (PTP) transmission is usually much faster than point-to-multipoint (PTM) transmission, because statistically, the number of co-located blocks is much larger than the number of radio link control (RLC) transmissions (Re-Tx). Because moving from point-to-multipoint (PTM) transmission to 101 to point-to-point (ptp) transmission is usually very fast, when user equipment (ue) i0 moves from 101 to point-to-point (PTP) transmission, it will be transmitting. The first block of multimedia broadcast and multicast service (MBMS) payload information. In this regard, neither the time alignment deviation of individual transmissions nor the passage of time during the transfer of 101 will cause any block loss. Therefore, when moving from point-to-multipoint (pTM) transmission to point-to-point (ptp) transmission, once the ρτρ connection is established on the target cell, it can be constructed by restarting from the beginning of the current external block. Missing payload block. The network can be compensated by starting the ρτρ transmission from the beginning of the same external block (that is, using the first internal block). The network can then restore the delay caused by the transfer due to the faster transfer of complete external blocks. Reducing the loss of data during the migration can reduce the interruption of MBMS content transmission due to these migrations. Later, during the PTP transmission of the external block n + 2, the user equipment (UE) 10 series is migrating to another point-to-multipoint (ρτΜ) transmission mode. doc -69- 200522579 transfers 103. In Figure I2, the transfer from point-to-point (PTP) transmission 103 to point-to-multipoint (PTM) transmission occurs at the last internal multimedia broadcast and multicast service (MBMS) payload block in the external block η + 2. In this case, in the external block η + 2, except for the last internal block, most of the internal multimedia broadcast and multicast service (MBMS) payload blocks have been transmitted. Unable to
使用回授的情形中通常都會使用FEC。因為ΡΤΡ傳輸會使用 專屬頻道,反向連結上具有回授功能,因此使用FEC並無 好處。為最小化或消除交錯移轉時的資料遺失情形,UMTS 陸地無線電存取網路(UTRAN)20較佳的係依賴PTP傳輸中 之RLC已確認模式(AM)的低殘留區塊錯誤率,用以還原於 移轉至PTM傳輸期間可能會遺失的所有内部區塊。換言FEC is often used in situations where feedback is used. Because PTP transmission uses a dedicated channel and has a feedback function on the reverse link, there is no benefit in using FEC. To minimize or eliminate data loss during interleaved transfers, the UMTS Terrestrial Radio Access Network (UTRAN) 20 preferably relies on the low residual block error rate of the RLC confirmed mode (AM) in PTP transmission. In order to restore all internal blocks that may be lost during the migration to PTM transmission. In other words
之,可利用正常的層2再傳輸來再傳輸於原來傳輸中有偵分 到錯祆的任何封包。因此,如圖丨7所示,ρτρ傳輸中並不言 要同位區塊。不過,若點對點(ΡΤΡ)傳輸期間於該等酬載這 塊中出現錯誤的話,則仍然會解碼該外部區塊,因為該矣 線^連結控制(RLC)層將會要求再傳輸任何有誤的區塊。也 就疋,S於PTP傳輸期間出現錯誤時,該行動台丨〇可能會要 求再傳輸(re-TX);或是當所有區塊皆正確時,則不㈣行 任何再傳輸’並且可運用傳輸格式零(TFG)。外部編碼較佳 Λ & Θ協&堆豐的層2中完成’致使每個内部區塊97的大 確實地置人—傳輸時間區間(ΤΤΙ)之中,因為如此便 月匕^局編碼效率。 碼係於該協定堆疊的較 麼不論係何種傳輸架構 若前向式錯誤修正(FEC)外部編 阿層(例如應用層)中完成的話,那 95689.doc -70- 200522579 (點對點(PTP)或點對多點(PTM)),皆會發送同位區塊。因 此,同位區塊也會被附加至點對點(PTP)傳輸中。 如上述,於ΡΤΡ傳輸中,未必要使用同位區塊,因為可以 利用更有效的再傳輸架構來取代前向式錯誤修正。因為於 ρτρ傳輸中以不傳輸同位區塊為宜,所以若假設空中的位元 速率相同的話,那麼傳送一個完整的外部區塊平均上便會 快過ΡΤΜ。如此便可讓該UE補償因點對多點(ΡΤΜ)移轉至 點對點(ΡΤΡ)所造成的中斷情形,因為ΡΤΡ傳輸可能會領先 ΡΤΜ傳輸。該使用者設備(UE)可藉由下面的資料來正確地 還原該外部區塊··(1)於點對點(PTP)傳輸中所收到的内部區 塊’於新細胞中或經過轉移之後所收到的内部區塊,(2)於 點對多點(ΡΤΜ)傳輸中所收到的内部區塊,於舊細胞中或經 過轉移之前所收到的内部區塊。該使用者設備(UE)可結合 隸屬於同一外部區塊之轉移前所收到之内部區塊以及轉移 後所收到之内部區塊。舉例來說,使用者設備(UE)丨〇可結 合透過點對點(PTP)傳輸所收到之外部區塊n+2中的内部多 媒體廣播及多播服務(MBMS)酬載區塊以及透過點對多點 (PTM)傳輸所收到之外部區塊n+2中的内部多媒體廣播及多 播服務(MBMS)酬載區塊以及同位區塊。UMTS陸地無線電 存取網路(UTRAN)20可利用欲被送給從ρτρ連結中來接收 MBMS内容之所有使用者的外部區塊傳輸稍微「領先」ρτΜ 連結上的傳輸來幫助此方法的進行。 因為該UTRAN可領先PTM傳輸來進行外部區塊的傳輸, 所以便可達到PTP至PTM的「無縫式」移轉結果。因此,跨 95689.doc -71 - 200522579 越細胞邊界及/或於不同傳輸架構(例如PTM與PTP)間來傳 _ i^MBMS内容以可為「無縫」。此r時間領先量」可表示為 内部區塊數量。當該使用者設備(UE) 1 〇移轉至PTM傳輸 枯’即使於移轉期間並無通信連結存在,該使用者設備 (UE) 10仍可能會遺失高達r時間領先量」數量的内部區塊, 但是其並不損及MBMS接收的Q〇S。若該UE直接於PTP中開 始進行MBMS接收的話,該UTRAIS^£可於開始進行ρτρ傳輸 時立刻套用該「時間領先量」,因為UTRAN 20可藉由避開 春 空的内部區塊(TF 〇)慢慢地領先外部區塊的傳輸作業,直到 抵達必要的「時間領先量」數量的内部區塊為止。自此點 開始,UTRAN便可維持恆定的「時間領先量」。 於點對多點(ΡΤΜ)中,並無法依賴無線電連結控制(RLc) 令可用的UE特有回授資訊。點對點(ρτρ)傳輸中,該仙 可通知該RNC,使其知道移轉前被正確接收之最後外部區 塊的編號。此作法應該套用至變成PTP的任何移轉中(從 TM或疋攸PTP移轉至ρτρ)。若此回授被視為無法接受❸ φ 話,那麼㈣謂20便可預測狀態移轉前最可能被該使用者 又備(UE) 1 〇接收的最後外部區塊。此項預測作業可依據不 同細料輸間可預測之最大時間不精確性以及該目標細胞 中目則正被傳輸或即將被傳輸的外部區塊來實施。 . 主可以實施前向式錯誤修正(FEC),以便還原該移轉期間所· 逍失的任何區塊。減低移轉期間會遺失内容的可能性便可 成…縫式移轉」。此項架構假設從點對點(PTP)移轉至 點對多點(PTM)傳輪眭不w v ^ )得輸打正從母個資料源傳輸同一個外部區 95689.doc -72- 200522579 區塊持續時間相對於移轉持續時 塊,其通常係發生在外部 間為已知的條件下。 10中的記憶體數量會 及跨越相鄰細胞的PTM傳輸 的呀間對齊精確度。放寬使 f w又備(UE)10中的記憶體需 求,便可提高PTMUTRAN2(H|輸的時間精確度。In other words, normal layer 2 retransmissions can be used to retransmit any packets that were detected to be corrupted in the original transmission. Therefore, as shown in Fig. 7, co-located blocks are not required in ρτρ transmission. However, if an error occurs in these payloads during point-to-point (PTP) transmission, the external block will still be decoded because the radio link connection (RLC) layer will request any further errors to be transmitted. Block. In other words, when S makes an error during PTP transmission, the mobile station may request re-transmission (re-TX); or when all the blocks are correct, no re-transmission is required and can be used. Transmission Format Zero (TFG). The outer encoding is better done in layer 2 of the Λ & Θ association & heap, which causes each of the internal blocks 97 to be reliably placed in the transmission time interval (ΤΤΙ), because of this, the monthly encoding effectiveness. The code is stacked in the protocol. Regardless of the transmission architecture, if it is completed in the external coding layer (such as the application layer) of forward error correction (FEC), then 95689.doc -70- 200522579 (PTP) Or point-to-multipoint (PTM)), will send parity blocks. Therefore, parity blocks are also appended to point-to-point (PTP) transmissions. As mentioned above, in PTP transmission, it is not necessary to use parity blocks, because a more efficient retransmission architecture can be used instead of forward error correction. Because it is advisable not to transmit co-located blocks during ρτρ transmission, if it is assumed that the bit rate in the air is the same, then transmitting a complete external block will on average be faster than PTM. In this way, the UE can compensate for the interruption caused by the point-to-multipoint (PTM) migration to the point-to-point (PTP), because the PTP transmission may lead the PTM transmission. The user equipment (UE) can correctly restore the external block by the following information ... (1) The internal block received in the point-to-point (PTP) transmission is 'in a new cell or after the transfer' Internal blocks received, (2) Internal blocks received in point-to-multipoint (PTM) transmission, internal blocks received in old cells or before transfer. The user equipment (UE) can combine the internal blocks received before the transfer and the internal blocks received after the transfer, which belong to the same external block. For example, the user equipment (UE) 丨 〇 may combine the internal multimedia broadcast and multicast service (MBMS) payload block in the external block n + 2 received via point-to-point (PTP) transmission and the point-to-point The internal multimedia broadcast and multicast service (MBMS) payload block and parity block in the external block n + 2 received by the multipoint (PTM) transmission. The UMTS Terrestrial Radio Access Network (UTRAN) 20 can assist this method with external block transmissions that are intended to be sent to all users who receive MBMS content from the ρτρ link, which are slightly "leading" on the ττM link. Because this UTRAN can lead PTM transmission for external block transmission, it can achieve the "seamless" transfer result from PTP to PTM. Therefore, transmitting _i ^ MBMS content across 95689.doc -71-200522579 across cell boundaries and / or between different transmission architectures (such as PTM and PTP) can be "seamless." This "r time lead" can be expressed as the number of internal blocks. When the user equipment (UE) 10 is transferred to PTM transmission, the user equipment (UE) 10 may lose up to r time lead even if no communication link exists during the transfer. Block, but it does not harm the QOS received by the MBMS. If the UE starts MBMS reception directly in PTP, the UTRAIS ^ £ can immediately apply the "time lead" when ρτρ transmission is started, because UTRAN 20 can avoid the Spring Sky internal block (TF 〇 ) Slowly lead the transfer operation of the external block until it reaches the necessary number of internal blocks of "time lead". From this point on, UTRAN can maintain a constant “time lead”. In point-to-multipoint (PTM), it is not possible to rely on radio link control (RLc) to make available UE-specific feedback information. In point-to-point (ρτρ) transmission, the cent may inform the RNC so that it knows the number of the last external block that was correctly received before the transfer. This should be applied to any transfer that becomes PTP (from TM or 疋 PTP to ρτρ). If this feedback is deemed to be unacceptable, then the predicate 20 can predict the last external block that is most likely to be received by the user (UE) 10 before the state transition. This prediction operation can be implemented based on the maximum time inaccuracy that can be predicted between different fines and the external block where the target cell is being transmitted or will be transmitted. The master can implement forward error correction (FEC) to restore any blocks lost during the migration. Reducing the possibility of losing content during the migration can make it ... sew migration. " This architecture assumes that the transfer from point-to-point (PTP) to point-to-multipoint (PTM) transmission wheels (not wv ^) has to be transmitted from the parent source to the same external zone Time is relative to the duration of the block, which usually occurs under conditions known to the outside world. The amount of memory in 10 will match the accuracy of PTM transmission across neighboring cells. Relaxing the memory requirements in f w (UE) 10 can improve the time accuracy of PTMUTRAN2 (H |
圖18為當某一行動台於源自無線電網路控制器(RNC)A 之點對卿)傳輸及源自無線電網路控制器(RNC)B之點 對點(PTP)傳輸間移轉或重新定位時所接收到之外部碼區 塊間的時間關係圖。RNC 一詞可與「基地台控制器(BSC)」 互^於「重新定位」期間,使用者設備(卿〇會從受控 於弟-RNC A 124之區域中某一内容串的點對點(ρτρ)傳輸 移轉至受控於第二RNC Β 224之區域中同—内容串的點對 點(ΡΤΡ)傳輸。可利用再傳輸(re-Tx)來補償任何已遺失之 MBMS酬載區塊。細胞間從點對點(ρτρ)傳輸直接移轉為點 對多點(ΡΤΜ)傳輸可利用和Release,99軟交遞或硬交遞雷 同的方式來實施。即使該等兩個RNC a、B之間沒有任何 協調,目標RNCA124還是應該能夠計算出被UE10收到的 最後一個完整的外部區塊。此項預測可依據於Iu介面25上 被RNC 24收到之MBMS内容的時序來實施。當利用ρτρ傳 輸時’該RNC 24便可組成初始延遲,而且即使不需要無遺 失的SRNS重新定位亦不會遺失任何部份的MBMS内容。 熟習本技術的人士將會發現到,雖然為方便理解,圖中 所示的流程圖都係依序繪製,不過,在真實的實現方式中, 卻可同時執行特定的步驟。另外,除非以別的方式指示, 95689.doc -73- 200522579 否則可錢方法步驟而不會脫離本發明範嘴。 ―熟悉技術人士應瞭解’可使隸何不同科技及技術代表 資λ及仏纟你j如’以上說明中可能提及的資料、指令、 命令、貧訊、信號、位(、符號及晶片可由電壓、電流、 電磁波、磁場或磁粒子、光場或光粒子或任何其組合表示。 熟悉技術人士應進-步結合本文揭示的具體實施例所說 明的各種邏輯區塊、模組、電路及演算法之步驟可實施為 電子硬體'電腦軟體或兩者之組合。& 了清楚說明硬體及 軟體之該互通性,以上已就其功能性總體說明各種說明性 組件、區塊、模組、電路及步驟。此類功能究竟該實現為 硬體或軟體係取決於施加於整體系統上的特殊應用及設計 限制。熟悉技術人士可採用各種方法實施各特定應用之該 說明功能性,但此類實施決定不應解釋為會引起背離本發 明之範疇。 結合在此揭示的具體實施例所說明的各種說明性邏輯組 塊、模組及電路,可採用通用處理器、一數位信號處理器 (DSP)、一特定應用積體電路(ASIC)、一場可程式化閘極陣 列(FPGA)或其他可程式化邏輯元件、離散閘極或電晶體邏 輯、離散硬體組件或設計用以執行在此說明的功能之任何 組合來實施或執行。一通用處理器可以為一微處理器,但 在另外的範例中’ 3亥處理器可以為任何常規處理器、控制 器、微處理器或狀態機。一處理器亦可實現為複數部電腦 裝置之組合,例如,一DSP及一微處理器之組合、複數個 微處理器、搭配一 DSP核心之一個以上微處理器、或任何 95689.doc -74- 200522579 其它此類配置。 結合在此揭示的該等具體實施例所說明的一方法或演算 法之步驟可以直接採用硬體、由一處理器執行的一軟體模 組或採用二者之一組合而具體化。軟體模組可駐存於RAM 記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、 EEPROM記憶體、暫存器、硬碟、抽取式磁碟、CD-ROM、或本技術所熟知的任何其它儲存媒體之中。在另外 的範例中,該儲存媒體可與該處理器整合。該處理器及該 儲存媒體可駐存於一 ASIC中。該ASIC可置於一用戶終端 機之内。在替代的範例中,該處理器及該儲存媒體可以離 散組件的形式置於一使用者終端機内。 先前提供之所揭示具體實施例說明使得任何熟悉本技術 之人士可製造或使用本發明。熟悉本技術人士應明白此等 具體實施例可進行各種修改,而且此處所定義的通用原理 可應用於其他具體實施例而不背離本發明之精神或範疇。 舉例來說,雖然說明中規定可利用通用陸地無線電存取網 路(UTRAN)空中介面來實現無線電存取網路20,但是於 GSM/GPRS系統中,無線電存取網路20可能係一 GSM/EDGE無線電存取網路(GERAN),甚至於系統間的情 況中,其可能會包括UTRAN空中介面的細胞以及 GSM/EDGE空中介面的細胞。因此,本發明並不希望受限 於本文所示的具體實施例,更確切地說,其希望符合與本 文所揭示之原理及新穎特徵一致的最廣範疇。 本發明文件所發表的一部份包括受到著作權保護的物 95689.doc -75- 200522579 料。著作權擁有人不 利檔案或記錄中發表 著作權的所有權限。 反對任何人傳真再製專利暨商標局專 的專利文件或本發明,但是絕對保留 【圖式簡單說明】 圖1為一通信系統的示意圖。 圖2為UMTS信令協定堆疊的方塊圖。 圖3為UMTS協定堆疊之封包切換使用者平面的方塊圖。Figure 18 shows the relocation or relocation of a mobile station between point-to-point transmissions from Radio Network Controller (RNC) A and point-to-point (PTP) transmissions from Radio Network Controller (RNC) B. The time relationship diagram between the received external code blocks. The term RNC can interact with the "base station controller (BSC)". During the "relocation", the user equipment (Qingdao will start from a point-to-point (ρτρ) of a content string in the area controlled by the brother-RNC A 124. ) Transfer to point-to-point (PTP) transmission of the same-content string in the area controlled by the second RNC B 224. Re-Tx can be used to compensate for any lost MBMS payload blocks. Inter-cell Direct transfer from point-to-point (ρτρ) transmission to point-to-multipoint (PTM) transmission can be implemented in the same way as Release, 99 soft delivery or hard delivery. Even if there is not any between the two RNCs a and B Coordination, the target RNCA124 should still be able to calculate the last complete external block received by the UE10. This prediction can be implemented based on the timing of the MBMS content received by the RNC 24 on the Iu interface 25. When using ρτρ transmission 'The RNC 24 can constitute the initial delay, and even if no missing SRNS relocation is needed, no part of the MBMS content will be lost. Those skilled in the art will find that although for the sake of understanding, the figure shows The flowcharts are all Sequential drawing, but in the real implementation, specific steps can be performed at the same time. In addition, unless otherwise indicated, 95689.doc -73- 200522579, the method steps can be used without departing from the scope of the present invention ―Persons familiar with technology should understand the information, instructions, commands, signals, signals, bits (symbols and chips It can be represented by voltage, current, electromagnetic wave, magnetic field or magnetic particle, light field or light particle, or any combination thereof. Those skilled in the art should further combine various logical blocks, modules, circuits and circuits described in conjunction with the specific embodiments disclosed herein. The steps of the algorithm can be implemented as electronic hardware 'computer software or a combination of both. &Amp; Clearly explained the interoperability of hardware and software, the above has explained a variety of illustrative components, blocks, modules, Groups, circuits, and steps. Whether such functions are implemented as hardware or software depends on the particular application and design constraints imposed on the overall system. Those skilled in the art can adopt The described functionality of each particular application is implemented in various ways, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. Various illustrative logical blocks, modules described in connection with the specific embodiments disclosed herein And circuits, which can use general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable gate array (FPGA) or other programmable logic components, discrete gates or Any combination of transistor logic, discrete hardware components, or designs designed to perform the functions described herein may be implemented or performed. A general-purpose processor may be a microprocessor, but in other examples, a '30 processor may be Any conventional processor, controller, microprocessor, or state machine. A processor can also be implemented as a combination of multiple computer devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, more than one microprocessor with a DSP core, or any 95689.doc -74 -200522579 Other such configurations. The steps of a method or algorithm described in connection with the specific embodiments disclosed herein can be embodied directly using hardware, a software module executed by a processor, or a combination of the two. The software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable disk, CD-ROM, or other devices known in the art Any other storage media. In another example, the storage medium may be integrated with the processor. The processor and the storage medium may reside in an ASIC. The ASIC can be placed in a user terminal. In the alternative, the processor and the storage medium may reside in a user terminal in the form of discrete components. The specific embodiments disclosed previously provided are provided to enable any person skilled in the art to make or use the present invention. Those skilled in the art should understand that these specific embodiments can be modified in various ways, and the general principles defined herein can be applied to other specific embodiments without departing from the spirit or scope of the present invention. For example, although the description specifies that the radio access network 20 may be implemented using the Universal Terrestrial Radio Access Network (UTRAN) air interface, in a GSM / GPRS system, the radio access network 20 may be a GSM / EDGE Radio Access Network (GERAN), even in the case of systems, may include cells of the UTRAN air interface and cells of the GSM / EDGE air interface. Therefore, the invention is not intended to be limited to the specific embodiments shown herein, but rather, it is intended to conform to the broadest category consistent with the principles and novel features disclosed herein. The published part of this document includes copyrighted material 95689.doc -75- 200522579. The copyright owner has no right to publish the copyright in the archive or record. It is against anyone's facsimile reproduction of the patent document or the invention of the Patent and Trademark Office, but it is absolutely reserved. [Schematic description] Figure 1 is a schematic diagram of a communication system. Figure 2 is a block diagram of a UMTS signaling protocol stack. FIG. 3 is a block diagram of a user plane for packet switching in a UMTS protocol stack.
圖4為UMTS信令協定堆疊的存取階層部份的方塊圖。 圖5八為UMTS信令協定堆疊之無線電連結控制(rlc)層 中所使用的資料傳輸模式方塊圖以及每層中所使用的各種 頻道。 圖5B為含有各種RLC資料傳輸模式的無線電連結控制 (RLC)層的架構方塊圖。 圖5C為用於實現無線電連結控制(RLC)已確認模式(AM) 之實體的方塊圖。 圖6為具有前向式錯誤修正層之簡化UMTS協定堆疊的示 意圖。 圖7A為含有一前向式錯誤修正(FEC)層之存取階層的協 定結構的具體實施例。 圖7B為含有一前向式錯誤修正(FEC)層之存取階層的協 定結構的另一具體實施例。 圖8為一資訊區塊及對應該資訊區塊之外部碼區塊的示 意圖。 圖9A為可套用至多媒體廣播及多播服務(mbMS)資料的 95689.doc -76- 200522579 外部碼區塊結構的不意圖。 圖9B為圖9A之外部碼區塊結構的示意圖,其中會有多 重列於每個傳輸時間區間(TTI)中被發送。 圖9C為圖9A之外部區塊結構的示意圖,其令每一列會 於多個TTI中被發送。 曰 生之外部碼區 圖10A與10B為該前向式錯誤修正層所產 塊的不意圖。FIG. 4 is a block diagram of an access hierarchy portion of a UMTS signaling protocol stack. Figure 58 is a block diagram of the data transmission mode used in the Radio Link Control (rlc) layer of the UMTS signaling protocol stack and the various channels used in each layer. FIG. 5B is a block diagram of an architecture of a radio link control (RLC) layer including various RLC data transmission modes. 5C is a block diagram of an entity for implementing a radio link control (RLC) acknowledged mode (AM). Figure 6 is a schematic diagram of a simplified UMTS protocol stack with a forward error correction layer. Fig. 7A is a specific embodiment of the structure of an access hierarchy including a forward error correction (FEC) layer. Fig. 7B shows another specific embodiment of the structure of the access hierarchy including a forward error correction (FEC) layer. FIG. 8 is a schematic diagram of an information block and an external code block corresponding to the information block. FIG. 9A is a schematic diagram of an external code block structure of 95689.doc -76- 200522579 that can be applied to multimedia broadcast and multicast service (mbMS) data. Fig. 9B is a schematic diagram of the outer code block structure of Fig. 9A, in which multiple columns are transmitted in each transmission time interval (TTI). Figure 9C is a schematic diagram of the external block structure of Figure 9A, which allows each column to be sent in multiple TTIs. Figure 10A and 10B show the intention of the block produced by the forward error correction layer.
圖11為RLC UM+實體中所使用之前向式錯誤修正㈣ 層的具體實施例。 圖12A為用以從複數個資料單元中姦 貝丁寸早疋τ屋生一外部碼區塊的 編碼過程,其中該外部碼區塊的列大小為固定的。 圖12Β為圖12Α中於空中被傳輸的資訊範例。 圖13為用以產生一具有可繆石丨士 f 八,j交列大小的外部碼區塊的編碼 過程。 圖14為-前向式錯誤修正(FEC)標頭格式的#體實施例FIG. 11 is a specific embodiment of a forward error correction layer used in the RLC UM + entity. FIG. 12A is an encoding process for generating an external code block from a plurality of data units, and the row size of the external code block is fixed. FIG. 12B is an example of information transmitted in the air in FIG. 12A. FIG. 13 is a coding process for generating an outer code block having a cross-section size of fame, f, and j. FIG. 14 is a #body embodiment of a forward error correction (FEC) header format
示意圖。 圖15為讓行動台利用不同邏輯串間的時間補償來延遲解 碼的示意圖。 圖16為當某一行動台於從細胞A接收一點對多點(PTM) 傳輸及從細胞B接收—點對多點(pTM)傳輸間移轉時被該 行動台接收到之外部碼區塊間的時間關係圖。 圖17為當某一行動台於點對多點(PTM)傳輸及點對點 (P T P)傳輸間移轉時所接收到之外部碼區塊間的時間關係 圖0 95689.doc -77- 200522579 圖1 8為當某一行動台於源自無線電網路控制器(RNC)A 之點對點(PTP)傳輸及源自無線電網路控制器(RNC)B之點 對點(PTP)傳輸間移轉或重新定位時所接收到之外部碼區 塊間的時間關係圖。 【主要元件符號說明】 10 使用者設備 12 行動設備 14 通用用戶識別模組 20 存取網路 22 基地台 23 Iub介面 24 無線電網路控制器 25 Iu介面 26 Uu介面 30 核心網路 32 家用位置登錄器 34 行動切換服務中心/訪客位置登錄器 36 閘道行動切換中心 38 服務通用封包無線電服務支援節點 39 下層封包協定 40 閘道GPRS支援節點 42(圖 1) PSTN/ISDN 42(圖 3) 遠端使用者 44 網際網路schematic diagram. FIG. 15 is a schematic diagram for a mobile station to delay decoding by using time compensation between different logical strings. Figure 16 shows the external code blocks received by a mobile station when it is transferred between a point-to-multipoint (PTM) transmission from cell A and a point-to-multipoint (pTM) transmission from cell B. Time diagram. Figure 17 is the time relationship between external code blocks received when a mobile station is transferred between point-to-multipoint (PTM) transmission and point-to-point (PTP) transmission. 0 95689.doc -77- 200522579 Figure 1 8 is when a mobile station moves or relocates between point-to-point (PTP) transmissions originating from Radio Network Controller (RNC) A and point-to-point (PTP) transmissions originating from Radio Network Controller (RNC) B The time relationship between the received external code blocks. [Description of main component symbols] 10 User equipment 12 Mobile equipment 14 Universal subscriber identity module 20 Access network 22 Base station 23 Iub interface 24 Radio network controller 25 Iu interface 26 Uu interface 30 Core network 32 Home location registration Device 34 Mobile Switching Service Center / Visitor Location Register 36 Gateway Mobile Switching Center 38 Service General Packet Radio Service Support Node 39 Lower Packet Protocol 40 Gateway GPRS Support Node 42 (Figure 1) PSTN / ISDN 42 (Figure 3) Remote User 44 Internet
95689.doc -78- 200522579 80 應用層 90 封包資料協定層 91 貧訊區塊 93 同位區塊 94 標頭 95 外部碼區塊 96 移轉 97 移轉 98 細胞A 99 細胞B 110 UMTS信令協定堆疊 120 實體層 124 無線電網路控制器A 130 層2 140 媒體存取控制層 150 無線電連結控制層 152 無線電連結控制單元 152A 傳輸TM實體 152B 接收TM實體 152C 傳輸UM實體 152D 接收UM實體 152E AM實體 156 封包資料收斂協定層 157 前向式錯誤修正(FEC)層 95689.doc •79- 200522579 158 160 161 163 170 172 174 176 177 178 180 182 183 184 201 202 203 204 205 206 208 210 212 213 廣播/多播控制層 無線電資源控制層 控制平面信令 使用者平面資訊 電路切換部份 連接管理層 呼叫控制子層 增補服務子層 短訊服務子層 行動能力管理層 封包切換部份 交談管理子層 短訊服務區段 GPRS行動能力管理子層 資料單元 資料單元 資料單元 資料單元 編碼器封包矩陣 長度指示符號 填補資料 最後資料 同位資訊 外部碼區塊 95689.doc -80- 200522579 214 224 305 310 312 313 314 400 401 402 404 406 410 412 414 416 418 420 422 430 432 434 436 438 外部同位區塊 無線電網路控制器B 編碼器封包矩陣 最後資料 同位資訊 外部碼區塊 同位附加資料 前向式錯誤修正層 前向式錯誤修正標頭大小 無線電承載 編碼器封包部份 編碼器封包 傳輸前向式錯誤修正實體 服務資料單元緩衝器 分割與串接單元 外部編碼器 序號產生器 傳輸緩衝器 排程單元 接收前向式錯誤修正實體 重組單元/服務資料單元傳輸緩衝器 外部解碼器 序號移除單元 接收緩衝器/再排序/副本偵測單元 95689.doc -81- 200522579 440 無線電承載 510 傳輸端 520 傳輸緩衝器 530 接收端 538 接收緩衝器 95689.doc 82-95689.doc -78- 200522579 80 Application layer 90 Packet data protocol layer 91 Poor block 93 Parity block 94 Header 95 External code block 96 Transfer 97 Transfer 98 Cell A 99 Cell B 110 UMTS signaling protocol stack 120 physical layer 124 radio network controller A 130 layer 2 140 media access control layer 150 radio link control layer 152 radio link control unit 152A transmitting TM entity 152B receiving TM entity 152C transmitting UM entity 152D receiving UM entity 152E AM entity 156 packets Data Convergence Protocol Layer 157 Forward Error Correction (FEC) Layer 95689.doc • 79- 200522579 158 160 161 163 170 172 174 176 177 177 180 182 183 184 201 202 203 204 205 206 208 210 212 213 Broadcast / Multicast Control Layer radio resource control layer control plane signaling user plane information circuit switching part connection management layer call control sublayer supplementary service sublayer short message service sublayer mobile capability management layer packet switching part conversation management sublayer short message service section GPRS mobile capability management sub-layer data unit data unit data unit data unit encoder packet moment Array length indicator fill data last data parity information external code block 95689.doc -80- 200522579 214 224 305 310 312 313 314 400 401 402 404 406 410 412 414 416 418 420 420 422 430 432 434 436 438 Network controller B encoder packet matrix last data parity information outer code block parity additional data forward error correction layer forward error correction header size radio bearer encoder packet part encoder packet transmission forward error correction Physical service data unit buffer division and concatenation unit External encoder serial number generator Transmission buffer scheduling unit Receive forward error correction Physical reorganization unit / Service data unit transmission buffer External decoder serial number removal unit Receive buffer / Reordering / copy detection unit 95689.doc -81- 200522579 440 radio bearer 510 transmitting end 520 transmitting buffer 530 receiving end 538 receiving buffer 95689.doc 82-
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US49745703P | 2003-08-21 | 2003-08-21 | |
| US49745603P | 2003-08-21 | 2003-08-21 |
| Publication Number | Publication Date |
|---|---|
| TW200522579Atrue TW200522579A (en) | 2005-07-01 |
| TWI392266B TWI392266B (en) | 2013-04-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW93125259ATWI392266B (en) | 2003-08-21 | 2004-08-20 | Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus |
| TW93125250ATWI407793B (en) | 2003-08-21 | 2004-08-20 | Outer coding methods ,outercoding entity,and origination station for broadcast/multicast content |
| TW93125263ATWI358921B (en) | 2003-08-21 | 2004-08-20 | Methods for forward error correction coding above |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW93125250ATWI407793B (en) | 2003-08-21 | 2004-08-20 | Outer coding methods ,outercoding entity,and origination station for broadcast/multicast content |
| TW93125263ATWI358921B (en) | 2003-08-21 | 2004-08-20 | Methods for forward error correction coding above |
| Country | Link |
|---|---|
| TW (3) | TWI392266B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8068473B2 (en) | 2006-02-07 | 2011-11-29 | Lg Electronics Inc. | Method for operating enhanced RLC entity and RNC entity for WCDMA and system thereof |
| US8072938B2 (en) | 2006-01-05 | 2011-12-06 | Lg Electronics, Inc. | Method for handover in mobile communication system |
| US8090382B2 (en) | 2006-01-05 | 2012-01-03 | Lg Electronics Inc. | Allocating radio resources in mobile communication system |
| US8112091B2 (en) | 2006-01-05 | 2012-02-07 | Lg Electronics Inc. | Allocating radio resources in mobile communications system |
| US8135420B2 (en) | 2006-01-05 | 2012-03-13 | Lg Electronics Inc. | Method of transmitting/receiving a paging message in a wireless communication system |
| US8165596B2 (en) | 2006-01-05 | 2012-04-24 | Lg Electronics Inc. | Data transmission method and data re-transmission method |
| US8175052B2 (en) | 2006-02-07 | 2012-05-08 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8189537B2 (en) | 2006-06-21 | 2012-05-29 | Lg Electronics Inc. | Method for reconfiguring radio link in wireless communication system |
| US8234534B2 (en) | 2006-06-21 | 2012-07-31 | Lg Electronics Inc. | Method of supporting data retransmission in a mobile communication system |
| US8243665B2 (en) | 2006-02-07 | 2012-08-14 | Lg Electronics Inc. | Method for selection and signaling of downlink and uplink bandwidth in wireless networks |
| US8248924B2 (en) | 2006-06-21 | 2012-08-21 | Lg Electronics Inc. | Uplink access method of mobile communication system |
| US8340026B2 (en) | 2006-01-05 | 2012-12-25 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| US8396020B2 (en) | 2006-01-05 | 2013-03-12 | Lg Electronics Inc. | Point-to-multipoint service communication |
| US8428086B2 (en) | 2006-01-05 | 2013-04-23 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| US8570956B2 (en) | 2006-06-21 | 2013-10-29 | Lg Electronics Inc. | Method of communicating data in a wireless mobile communications system using message separation and mobile terminal for use with the same |
| TWI420872B (en)* | 2006-04-21 | 2013-12-21 | Lucent Technologies Inc | Method for providing access information to an access terminal |
| US8638707B2 (en) | 2006-06-21 | 2014-01-28 | Lg Electronics Inc. | Method for supporting quality of multimedia broadcast multicast service (MBMS) in mobile communications system and terminal thereof |
| US8644250B2 (en) | 2006-01-05 | 2014-02-04 | Lg Electronics Inc. | Maintaining communication between mobile terminal and network in mobile communication system |
| US8750217B2 (en) | 2006-01-05 | 2014-06-10 | Lg Electronics Inc. | Method for scheduling radio resources in mobile communication system |
| US8971288B2 (en) | 2006-03-22 | 2015-03-03 | Lg Electronics Inc. | Method of supporting handover in a wireless communication system |
| TWI501569B (en)* | 2007-12-21 | 2015-09-21 | Ericsson Telefon Ab L M | Mbsfn dob cell search and generation of synchronization codes |
| US9456455B2 (en) | 2006-01-05 | 2016-09-27 | Lg Electronics Inc. | Method of transmitting feedback information in a wireless communication system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9386557B2 (en) | 2007-08-13 | 2016-07-05 | Qualcomm Incorporated | Method and apparatus for supporting broadcast and multicast services in a wireless communication system |
| CA2808472C (en) | 2010-09-23 | 2016-10-11 | Research In Motion Limited | System and method for dynamic coordination of radio resources usage in a wireless network environment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5883888A (en)* | 1996-12-03 | 1999-03-16 | Telefonaktiebolaget Lm Ericsson | Seamless soft handoff in a CDMA cellular communications system |
| US6778558B2 (en)* | 1998-02-23 | 2004-08-17 | Lucent Technologies Inc. | System and method for incremental redundancy transmission in a communication system |
| US6484283B2 (en)* | 1998-12-30 | 2002-11-19 | International Business Machines Corporation | Method and apparatus for encoding and decoding a turbo code in an integrated modem system |
| FI107000B (en)* | 1999-02-17 | 2001-05-15 | Nokia Mobile Phones Ltd | Compression of the heading for real-time services |
| US6963540B2 (en)* | 1999-11-29 | 2005-11-08 | Samsung Electronics Co., Ltd. | Apparatus and method for assigning a common packet channel in a CDMA communication system |
| CA2394263C (en)* | 1999-12-20 | 2006-06-06 | Research In Motion Limited | Hybrid automatic repeat request system and method |
| JP4945044B2 (en)* | 2000-02-22 | 2012-06-06 | ノーテル・ネットワークス・リミテッド | System and method for controlling wireless packet switched voice calls |
| EP1156617B1 (en)* | 2000-05-17 | 2003-09-10 | Matsushita Electric Industrial Co., Ltd. | Hybrid ARQ method for packet data transmission |
| EP1334580A1 (en)* | 2000-11-13 | 2003-08-13 | TELEFONAKTIEBOLAGET LM ERICSSON (publ) | Data compression of request sequences in arq protocols |
| US7787389B2 (en)* | 2001-08-20 | 2010-08-31 | Qualcomm Incorporated | Method and system for utilization of an outer decoder in a broadcast services communication system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9253801B2 (en) | 2006-01-05 | 2016-02-02 | Lg Electronics Inc. | Maintaining communication between mobile terminal and network in mobile communication system |
| US8750217B2 (en) | 2006-01-05 | 2014-06-10 | Lg Electronics Inc. | Method for scheduling radio resources in mobile communication system |
| US9397791B2 (en) | 2006-01-05 | 2016-07-19 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| US8090382B2 (en) | 2006-01-05 | 2012-01-03 | Lg Electronics Inc. | Allocating radio resources in mobile communication system |
| US8112091B2 (en) | 2006-01-05 | 2012-02-07 | Lg Electronics Inc. | Allocating radio resources in mobile communications system |
| US8135420B2 (en) | 2006-01-05 | 2012-03-13 | Lg Electronics Inc. | Method of transmitting/receiving a paging message in a wireless communication system |
| US8165596B2 (en) | 2006-01-05 | 2012-04-24 | Lg Electronics Inc. | Data transmission method and data re-transmission method |
| US9036596B2 (en) | 2006-01-05 | 2015-05-19 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| US8072938B2 (en) | 2006-01-05 | 2011-12-06 | Lg Electronics, Inc. | Method for handover in mobile communication system |
| US8428086B2 (en) | 2006-01-05 | 2013-04-23 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| US8867449B2 (en) | 2006-01-05 | 2014-10-21 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| US8644250B2 (en) | 2006-01-05 | 2014-02-04 | Lg Electronics Inc. | Maintaining communication between mobile terminal and network in mobile communication system |
| US9456455B2 (en) | 2006-01-05 | 2016-09-27 | Lg Electronics Inc. | Method of transmitting feedback information in a wireless communication system |
| US9955507B2 (en) | 2006-01-05 | 2018-04-24 | Lg Electronics Inc. | Maintaining communication between mobile terminal and network in mobile communication system |
| US8340026B2 (en) | 2006-01-05 | 2012-12-25 | Lg Electronics Inc. | Transmitting data in a mobile communication system |
| USRE43949E1 (en) | 2006-01-05 | 2013-01-29 | Lg Electronics Inc. | Allocating radio resources in mobile communications system |
| US8369865B2 (en) | 2006-01-05 | 2013-02-05 | Lg Electronics Inc. | Data transmission method and data re-transmission method |
| US8396020B2 (en) | 2006-01-05 | 2013-03-12 | Lg Electronics Inc. | Point-to-multipoint service communication |
| US10045381B2 (en) | 2006-02-07 | 2018-08-07 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8243665B2 (en) | 2006-02-07 | 2012-08-14 | Lg Electronics Inc. | Method for selection and signaling of downlink and uplink bandwidth in wireless networks |
| US9706580B2 (en) | 2006-02-07 | 2017-07-11 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8437335B2 (en) | 2006-02-07 | 2013-05-07 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8451821B2 (en) | 2006-02-07 | 2013-05-28 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US9462576B2 (en) | 2006-02-07 | 2016-10-04 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8085738B2 (en) | 2006-02-07 | 2011-12-27 | Lg Electronics Inc. | Preamble retransmission method in mobile communications system |
| US8406190B2 (en) | 2006-02-07 | 2013-03-26 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8238371B2 (en) | 2006-02-07 | 2012-08-07 | Lg Electronics Inc. | Method for operating enhanced RLC entity and RNC entity for WCDMA and system thereof |
| US8068473B2 (en) | 2006-02-07 | 2011-11-29 | Lg Electronics Inc. | Method for operating enhanced RLC entity and RNC entity for WCDMA and system thereof |
| US8223713B2 (en) | 2006-02-07 | 2012-07-17 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8175052B2 (en) | 2006-02-07 | 2012-05-08 | Lg Electronics Inc. | Method for transmitting response information in mobile communications system |
| US8971288B2 (en) | 2006-03-22 | 2015-03-03 | Lg Electronics Inc. | Method of supporting handover in a wireless communication system |
| TWI420872B (en)* | 2006-04-21 | 2013-12-21 | Lucent Technologies Inc | Method for providing access information to an access terminal |
| US8234534B2 (en) | 2006-06-21 | 2012-07-31 | Lg Electronics Inc. | Method of supporting data retransmission in a mobile communication system |
| US9220093B2 (en) | 2006-06-21 | 2015-12-22 | Lg Electronics Inc. | Method of supporting data retransmission in a mobile communication system |
| US8638707B2 (en) | 2006-06-21 | 2014-01-28 | Lg Electronics Inc. | Method for supporting quality of multimedia broadcast multicast service (MBMS) in mobile communications system and terminal thereof |
| US8570956B2 (en) | 2006-06-21 | 2013-10-29 | Lg Electronics Inc. | Method of communicating data in a wireless mobile communications system using message separation and mobile terminal for use with the same |
| US8429478B2 (en) | 2006-06-21 | 2013-04-23 | Lg Electronics Inc. | Method of supporting data retransmission in a mobile communication system |
| US8248924B2 (en) | 2006-06-21 | 2012-08-21 | Lg Electronics Inc. | Uplink access method of mobile communication system |
| US8189537B2 (en) | 2006-06-21 | 2012-05-29 | Lg Electronics Inc. | Method for reconfiguring radio link in wireless communication system |
| TWI501569B (en)* | 2007-12-21 | 2015-09-21 | Ericsson Telefon Ab L M | Mbsfn dob cell search and generation of synchronization codes |
| Publication number | Publication date |
|---|---|
| TW200520440A (en) | 2005-06-16 |
| TWI358921B (en) | 2012-02-21 |
| TW200522578A (en) | 2005-07-01 |
| TWI392266B (en) | 2013-04-01 |
| TWI407793B (en) | 2013-09-01 |
| Publication | Publication Date | Title |
|---|---|---|
| KR101102794B1 (en) | Method and related apparatus for forward error correction coding on radio link control layer | |
| KR101112433B1 (en) | Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus | |
| US8175090B2 (en) | Outer coding methods for broadcast/multicast content and related apparatus | |
| CN1871804B (en) | Method for outer coding of broadcast/multicast content and related apparatus | |
| TWI392266B (en) | Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus | |
| HK1094114B (en) | Outer coding methods for broadcast/multicast content and related apparatus |
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |