Movatterモバイル変換


[0]ホーム

URL:


SU887717A1 - Device for checking soil consolidation quality - Google Patents

Device for checking soil consolidation quality
Download PDF

Info

Publication number
SU887717A1
SU887717A1SU792820700ASU2820700ASU887717A1SU 887717 A1SU887717 A1SU 887717A1SU 792820700 ASU792820700 ASU 792820700ASU 2820700 ASU2820700 ASU 2820700ASU 887717 A1SU887717 A1SU 887717A1
Authority
SU
USSR - Soviet Union
Prior art keywords
punch
stamp
central
ring
load
Prior art date
Application number
SU792820700A
Other languages
Russian (ru)
Inventor
Борис Анатольевич Басс
Original Assignee
Новосибирский филиал Всесоюзного научно-исследовательского института транспортного строительства
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Новосибирский филиал Всесоюзного научно-исследовательского института транспортного строительстваfiledCriticalНовосибирский филиал Всесоюзного научно-исследовательского института транспортного строительства
Priority to SU792820700ApriorityCriticalpatent/SU887717A1/en
Application grantedgrantedCritical
Publication of SU887717A1publicationCriticalpatent/SU887717A1/en

Links

Landscapes

Description

Translated fromRussian

иа фиг. 2 - то же, но при выполнении устройства с акселерометром и соединением корпуса с базовой машиной; на фиг. 3 - электрическа  схема замера ускорени  штампа.FIG. 2 - the same, but when the device is executed with an accelerometer and case connection with the base machine; in fig. 3 is an electrical circuit for measuring acceleration of a stamp.

Устройство включает полый корпус 1 с внутренним выступом 2 и соосно установленный с ним кольцевой штамп 3, центральный штамп 4 с выступом 5 и расположенными между ним и кольцевым штампом 3 упругими элементами 6 и 7, установленный в центральном штампе 4 датчик силы 8, обмотки 9 и 10, датчик перемещени  11. Электрическа  схема устройства включает источник питани  12, выключатель 13, дифференциальный трансформатор 14 с обмотками 15 и 16. Полый корпус установлен на раме 17 базовоймашины , например, катка.The device includes a hollow body 1 with an internal protrusion 2 and an annular stamp 3 coaxially mounted with it, a central stamp 4 with a protrusion 5 and elastic elements 6 and 7 located between it and the ring stamp 3, a force sensor 8 installed in the central stamp 4, a winding 9 and 10, displacement sensor 11. The electrical circuit of the device includes a power source 12, a switch 13, a differential transformer 14 with windings 15 and 16. The hollow body is mounted on the frame 17 of the base machine, for example, a roller.

Устройство работает следующим образом .The device works as follows.

Полый корпус устанавливают на уплотненный грунт, и под действием мерной нагрузки Р центральный штамп 4 деформирует грунт на величину /. Упругие элементы 6 и 7 имеют первоначальное сжатие, уравновешивающее массу штампа 4 и заданную жесткость, а площадь опорной поверхности кольцевого штампа 3 значительно превосходит площадь опорной поверхности центрального штампа 4. Поэтому при действни нагрузки Р, многократно превосход щей нагрузку от массы штампа 4, кольцевой штамп 3 практически не деформирует грунт, и шток датчика перемещени  (прогибомера) И перемещаетс  также на величину /, при этом вырабатываетс  пропорциональный перемещению электрический сигнал, который подаетс  к регистрирующему прибору (не Показан). Соответственно датчик силы 8 вырабатывает сигнал, пропорциональный действующей силе Р, также «подаваемый к прибору. Зна  величину Р и /, а также диаметр щтампа4, по известным зависимост м определ ют модуль деформации грунта, а лри наличии соответствующих тарировочных графиков или номограмм - плотность скелета грунта.The hollow body is mounted on a compacted soil, and under the action of dimensional load P, the central stamp 4 deforms the soil by the value of /. The elastic elements 6 and 7 have an initial compression, balancing the mass of the stamp 4 and a given stiffness, and the area of the bearing surface of the ring stamp 3 significantly exceeds the area of the supporting surface of the central stamp 4. Therefore, when the load P, many times surpassing the load from the mass of the stamp 4, the ring stamp 3 practically does not deform the soil, and the displacement sensor shaft (deflection gauge) also travels by an amount of /, and an electrical signal is produced that is proportional to the displacement and is supplied a recording device (not shown). Accordingly, the force sensor 8 generates a signal proportional to the acting force P, also “supplied to the device. Knowing the magnitude of P and /, as well as the diameter of the cartridge4, the modulus of the soil deformation is determined by known dependencies, and if there are corresponding calibration charts or nomograms, the density of the soil skeleton.

После сн ти  нагрузки штамп 4 автоматически возвращаетс  в исходное положепие и готов к следующему нагружению. При устаиовке корпуса 1 на базовой машине , например на раме 17 уплотн ющего катка, при воздействии нагрузки Р центральный штамп 4 посредством упругого элемента 6 увлекает кольцевой штамп 3 до соприкосновени  с грунтом, и далее процесс происходит аналогично описанному выше. После сн ти  нагрузки кольцевой штамп 3 и центральный штамп 4 под воздействием силы сжати  упругих элементов 6 и 7 возвращаетс  в исходноеAfter removal of the load, the stamp 4 automatically returns to the initial position and is ready for the next loading. When mounting case 1 on the base machine, for example, on frame 17 of the compacting roller, under the influence of load P, the central stamp 4 by means of the elastic element 6 draws the ring stamp 3 before contact with the ground, and then the process proceeds as described above. After removal of the load, the ring stamp 3 and the central stamp 4 under the influence of the compressive force of the elastic elements 6 and 7 return to the original

положение. Усилие предварительного сжати  упругого элемента 7 уравновешивает массы штампов 3 и 4. При этом нагрузка к штампу 4 может прикладыватьс  статически или динамически.position. The pre-compression force of the elastic element 7 balances the weights of the dies 3 and 4. In this case, the load on the die 4 can be applied statically or dynamically.

При динамическом приложении нагрузки скорость перемещени  штампа 4 при деформировании грунта переменна. Поэтому при установке на штамп 4 обмотки 9,With dynamic load application, the speed of movement of the punch 4 when the soil is deformed is variable. Therefore, when installed on the stamp 4 winding 9,

соедин емой иа момент удара с источником питани  12, в обмотке 10 будет индуцироватьс  переменна  ЭДС, пропорциональна  скорости перемещени  штампа 4, а во вторичной обмотке 16 днфференциального трансформатора 14 будет возникать ток, пропорциональный ускорению перемещени  штампа 4. РГспользу  известное из второго закона Ньютона соотношение между ускорением, массой штампа и действующей на него силой, можно протарировать показание прибора, соединенного с обмоткой 16, непосредственно в единицах действующей на центральный штамп 4 датчика силы. Преимущество такого способа замера - больша  величина снимаемого с обмотки 16 сигнала, позвол ющего обходитьс  без усилител . Замыкание контактов выключател  13 на врем  удара может производитьс  инерционным устройствомat the moment of impact with the power source 12, in the winding 10 a variable emf will be induced, proportional to the speed of movement of the stamp 4, and in the secondary winding 16 of the differential transformer 14 there will be a current proportional to the acceleration of the movement of the stamp 4. The ratio between the acceleration, the mass of the punch and the force acting on it can be traded over the reading of the device connected to the winding 16 directly in units acting on the central punch 4 of the sensor b s. The advantage of this method of measurement is the large amount of signal taken from the winding 16, allowing it to be bypassed without an amplifier. The closure of the contacts of the switch 13 at the time of impact can be made inertial device

(не показано). Устройство обеспечивает увеличение производительности труда и точности контрол  уплотненного грунта и может быть использовапо в транспортном, автодорожном, аэродромном и гидротехническом строительстве при возведении земл ных сооружений.(not shown). The device provides an increase in labor productivity and precision control of compacted soil and can be used in transport, road, airfield and hydraulic engineering during the erection of land structures.

Claims (5)

Translated fromRussian
1.Устройство дл  контрол  качества уплотнени  грунта путем замера осадки штампа .под нагрузкой, включающее полый корпус и соосно установленный с ним кольцевой штамл, центральный штамп, установленный концентрично в кольцевом штампе, датчики нагрузки и перемешепи  центрального штампа и силовое приспособление, отличающеес  тем, что, с целью повышени  производительности труда и точности измерений, кольцевой щтамп выполнен отдельно от полого корпуса и установлен концентрично с ним, а центральный штамп имеет в верхней части выступ с расположенным между ним и кольцевым штампом упругим элементом.1. A device for controlling the quality of soil compaction by measuring the precipitation of a punch under load, including a hollow body and a ring punch coaxially attached to it, a central punch mounted concentrically in a punch, load sensors and a central punch and power tool, characterized in that , in order to increase labor productivity and measurement accuracy, the ring chip is made separately from the hollow body and is installed concentrically with it, and the central stamp has a protrusion in the upper part with between the ring die and the elastic element.2.Устройство по п. 1, отличающеес  тем, что полый корпус выполнен с внутренним выступом, на который через упругий элемент оперт кольцевой штамп посредством образованного на нем выступа.2. A device according to claim 1, characterized in that the hollow body is made with an internal protrusion onto which a ring stamp is supported through an elastic element by means of a projection formed thereon.3.Устройство по п. 1, отличающеес  тем, что датчик нагрузки выполнен в виде датчика силы и установлен в центральном3. The device according to claim 1, characterized in that the load sensor is made in the form of a force sensor and is installed in the centralштампе.stamped.4.Устройство по п. 1, отличающеес   тем, что датчик нагрузки выполнен в виде акселерометра.4. The device according to claim 1, characterized in that the load sensor is configured as an accelerometer.5.Устройство по п. 4, отличающеес  тем, что акселерометр выполнен в виде индуктивного датчика скорости, соединенного с обмоткой дифференциального трансформатора .5. The device according to claim 4, characterized in that the accelerometer is made in the form of an inductive speed sensor connected to the winding of the differential transformer.Источники информации, прин тые во внимание при экспертизеSources of information taken into account in the examination1.Авторское свидетельство СССР № 352194, кл. G 01 N 9/36, 1970.1. USSR Author's Certificate No. 352194, cl. G 01 N 9/36, 1970.2.Трофименков Ю. Г. и др. Полевые методы исследовани  строительных свойств грунтов. М., «Стройиздат, 1974, с. 27 (прототип ).2. Trofimenkov Yu. G. and others. Field methods for studying the construction properties of soils. M., “stroiizdat, 1974, p. 27 (prototype).////г.7g7
SU792820700A1979-09-181979-09-18Device for checking soil consolidation qualitySU887717A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
SU792820700ASU887717A1 (en)1979-09-181979-09-18Device for checking soil consolidation quality

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
SU792820700ASU887717A1 (en)1979-09-181979-09-18Device for checking soil consolidation quality

Publications (1)

Publication NumberPublication Date
SU887717A1true SU887717A1 (en)1981-12-07

Family

ID=20851034

Family Applications (1)

Application NumberTitlePriority DateFiling Date
SU792820700ASU887717A1 (en)1979-09-181979-09-18Device for checking soil consolidation quality

Country Status (1)

CountryLink
SU (1)SU887717A1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11079725B2 (en)2019-04-102021-08-03Deere & CompanyMachine control using real-time model
US11178818B2 (en)2018-10-262021-11-23Deere & CompanyHarvesting machine control system with fill level processing based on yield data
US11234366B2 (en)2019-04-102022-02-01Deere & CompanyImage selection for machine control
US11240961B2 (en)2018-10-262022-02-08Deere & CompanyControlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en)2020-10-092022-04-14Deere & CompanyCrop moisture map generation and control system
US11467605B2 (en)2019-04-102022-10-11Deere & CompanyZonal machine control
US11474523B2 (en)2020-10-092022-10-18Deere & CompanyMachine control using a predictive speed map
US11477940B2 (en)2020-03-262022-10-25Deere & CompanyMobile work machine control based on zone parameter modification
US11589509B2 (en)2018-10-262023-02-28Deere & CompanyPredictive machine characteristic map generation and control system
US11592822B2 (en)2020-10-092023-02-28Deere & CompanyMachine control using a predictive map
US11635765B2 (en)2020-10-092023-04-25Deere & CompanyCrop state map generation and control system
US11641800B2 (en)2020-02-062023-05-09Deere & CompanyAgricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en)2020-10-092023-05-16Deere & CompanyPredictive power map generation and control system
US11653588B2 (en)2018-10-262023-05-23Deere & CompanyYield map generation and control system
US11672203B2 (en)2018-10-262023-06-13Deere & CompanyPredictive map generation and control
US11675354B2 (en)2020-10-092023-06-13Deere & CompanyMachine control using a predictive map
US11711995B2 (en)2020-10-092023-08-01Deere & CompanyMachine control using a predictive map
US11727680B2 (en)2020-10-092023-08-15Deere & CompanyPredictive map generation based on seeding characteristics and control
US11778945B2 (en)2019-04-102023-10-10Deere & CompanyMachine control using real-time model
US11825768B2 (en)2020-10-092023-11-28Deere & CompanyMachine control using a predictive map
US11845449B2 (en)2020-10-092023-12-19Deere & CompanyMap generation and control system
US11844311B2 (en)2020-10-092023-12-19Deere & CompanyMachine control using a predictive map
US11849672B2 (en)2020-10-092023-12-26Deere & CompanyMachine control using a predictive map
US11849671B2 (en)2020-10-092023-12-26Deere & CompanyCrop state map generation and control system
US11864483B2 (en)2020-10-092024-01-09Deere & CompanyPredictive map generation and control system
US11874669B2 (en)2020-10-092024-01-16Deere & CompanyMap generation and control system
US11889788B2 (en)2020-10-092024-02-06Deere & CompanyPredictive biomass map generation and control
US11889787B2 (en)2020-10-092024-02-06Deere & CompanyPredictive speed map generation and control system
US11895948B2 (en)2020-10-092024-02-13Deere & CompanyPredictive map generation and control based on soil properties
US11927459B2 (en)2020-10-092024-03-12Deere & CompanyMachine control using a predictive map
US11946747B2 (en)2020-10-092024-04-02Deere & CompanyCrop constituent map generation and control system
US11957072B2 (en)2020-02-062024-04-16Deere & CompanyPre-emergence weed detection and mitigation system
US11983009B2 (en)2020-10-092024-05-14Deere & CompanyMap generation and control system
US12013245B2 (en)2020-10-092024-06-18Deere & CompanyPredictive map generation and control system
US12035648B2 (en)2020-02-062024-07-16Deere & CompanyPredictive weed map generation and control system
US12058951B2 (en)2022-04-082024-08-13Deere & CompanyPredictive nutrient map and control
US12069978B2 (en)2018-10-262024-08-27Deere & CompanyPredictive environmental characteristic map generation and control system
US12069986B2 (en)2020-10-092024-08-27Deere & CompanyMap generation and control system
US12082531B2 (en)2022-01-262024-09-10Deere & CompanySystems and methods for predicting material dynamics
US12127500B2 (en)2021-01-272024-10-29Deere & CompanyMachine control using a map with regime zones
US12178158B2 (en)2020-10-092024-12-31Deere & CompanyPredictive map generation and control system for an agricultural work machine
US12229886B2 (en)2021-10-012025-02-18Deere & CompanyHistorical crop state model, predictive crop state map generation and control system
US12225846B2 (en)2020-02-062025-02-18Deere & CompanyMachine control using a predictive map
US12245549B2 (en)2022-01-112025-03-11Deere & CompanyPredictive response map generation and control system
US12250905B2 (en)2020-10-092025-03-18Deere & CompanyMachine control using a predictive map
US12284934B2 (en)2022-04-082025-04-29Deere & CompanySystems and methods for predictive tractive characteristics and control
US12295288B2 (en)2022-04-052025-05-13Deere &CompanyPredictive machine setting map generation and control system
US12298767B2 (en)2022-04-082025-05-13Deere & CompanyPredictive material consumption map and control
US12302791B2 (en)2021-12-202025-05-20Deere & CompanyCrop constituents, predictive mapping, and agricultural harvester control
US12310286B2 (en)2021-12-142025-05-27Deere & CompanyCrop constituent sensing
US12329148B2 (en)2020-02-062025-06-17Deere & CompanyPredictive weed map and material application machine control
US12329050B2 (en)2020-10-092025-06-17Deere & CompanyMachine control using a predictive map
US12358493B2 (en)2022-04-082025-07-15Deere & CompanySystems and methods for predictive power requirements and control
US12386354B2 (en)2020-10-092025-08-12Deere & CompanyPredictive power map generation and control system
US12419220B2 (en)2020-10-092025-09-23Deere & CompanyPredictive map generation and control system
US12422847B2 (en)2020-10-092025-09-23Deere & CompanyPredictive agricultural model and map generation

Cited By (68)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11672203B2 (en)2018-10-262023-06-13Deere & CompanyPredictive map generation and control
US11178818B2 (en)2018-10-262021-11-23Deere & CompanyHarvesting machine control system with fill level processing based on yield data
US11653588B2 (en)2018-10-262023-05-23Deere & CompanyYield map generation and control system
US11240961B2 (en)2018-10-262022-02-08Deere & CompanyControlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US12069978B2 (en)2018-10-262024-08-27Deere & CompanyPredictive environmental characteristic map generation and control system
US12171153B2 (en)2018-10-262024-12-24Deere & CompanyYield map generation and control system
US12178156B2 (en)2018-10-262024-12-31Deere & CompanyPredictive map generation and control
US12010947B2 (en)2018-10-262024-06-18Deere & CompanyPredictive machine characteristic map generation and control system
US11589509B2 (en)2018-10-262023-02-28Deere & CompanyPredictive machine characteristic map generation and control system
US11778945B2 (en)2019-04-102023-10-10Deere & CompanyMachine control using real-time model
US11829112B2 (en)2019-04-102023-11-28Deere & CompanyMachine control using real-time model
US11650553B2 (en)2019-04-102023-05-16Deere & CompanyMachine control using real-time model
US11467605B2 (en)2019-04-102022-10-11Deere & CompanyZonal machine control
US11079725B2 (en)2019-04-102021-08-03Deere & CompanyMachine control using real-time model
US11234366B2 (en)2019-04-102022-02-01Deere & CompanyImage selection for machine control
US11641800B2 (en)2020-02-062023-05-09Deere & CompanyAgricultural harvesting machine with pre-emergence weed detection and mitigation system
US12035648B2 (en)2020-02-062024-07-16Deere & CompanyPredictive weed map generation and control system
US11957072B2 (en)2020-02-062024-04-16Deere & CompanyPre-emergence weed detection and mitigation system
US12225846B2 (en)2020-02-062025-02-18Deere & CompanyMachine control using a predictive map
US12329148B2 (en)2020-02-062025-06-17Deere & CompanyPredictive weed map and material application machine control
US11477940B2 (en)2020-03-262022-10-25Deere & CompanyMobile work machine control based on zone parameter modification
US11946747B2 (en)2020-10-092024-04-02Deere & CompanyCrop constituent map generation and control system
US12080062B2 (en)2020-10-092024-09-03Deere & CompanyPredictive map generation based on seeding characteristics and control
US11844311B2 (en)2020-10-092023-12-19Deere & CompanyMachine control using a predictive map
US11849672B2 (en)2020-10-092023-12-26Deere & CompanyMachine control using a predictive map
US11849671B2 (en)2020-10-092023-12-26Deere & CompanyCrop state map generation and control system
US11864483B2 (en)2020-10-092024-01-09Deere & CompanyPredictive map generation and control system
US11874669B2 (en)2020-10-092024-01-16Deere & CompanyMap generation and control system
US11871697B2 (en)2020-10-092024-01-16Deere & CompanyCrop moisture map generation and control system
US11889788B2 (en)2020-10-092024-02-06Deere & CompanyPredictive biomass map generation and control
US11889787B2 (en)2020-10-092024-02-06Deere & CompanyPredictive speed map generation and control system
US11895948B2 (en)2020-10-092024-02-13Deere & CompanyPredictive map generation and control based on soil properties
US11927459B2 (en)2020-10-092024-03-12Deere & CompanyMachine control using a predictive map
US11825768B2 (en)2020-10-092023-11-28Deere & CompanyMachine control using a predictive map
US11727680B2 (en)2020-10-092023-08-15Deere & CompanyPredictive map generation based on seeding characteristics and control
US11983009B2 (en)2020-10-092024-05-14Deere & CompanyMap generation and control system
US11711995B2 (en)2020-10-092023-08-01Deere & CompanyMachine control using a predictive map
US12013245B2 (en)2020-10-092024-06-18Deere & CompanyPredictive map generation and control system
US12013698B2 (en)2020-10-092024-06-18Deere & CompanyMachine control using a predictive map
US11675354B2 (en)2020-10-092023-06-13Deere & CompanyMachine control using a predictive map
US12048271B2 (en)2020-10-092024-07-30Deere &CompanyCrop moisture map generation and control system
US12422847B2 (en)2020-10-092025-09-23Deere & CompanyPredictive agricultural model and map generation
US11650587B2 (en)2020-10-092023-05-16Deere & CompanyPredictive power map generation and control system
US12069986B2 (en)2020-10-092024-08-27Deere & CompanyMap generation and control system
US11845449B2 (en)2020-10-092023-12-19Deere & CompanyMap generation and control system
US12419220B2 (en)2020-10-092025-09-23Deere & CompanyPredictive map generation and control system
US12386354B2 (en)2020-10-092025-08-12Deere & CompanyPredictive power map generation and control system
US11635765B2 (en)2020-10-092023-04-25Deere & CompanyCrop state map generation and control system
US11592822B2 (en)2020-10-092023-02-28Deere & CompanyMachine control using a predictive map
US12178158B2 (en)2020-10-092024-12-31Deere & CompanyPredictive map generation and control system for an agricultural work machine
US12193350B2 (en)2020-10-092025-01-14Deere & CompanyMachine control using a predictive map
US12216472B2 (en)2020-10-092025-02-04Deere & CompanyMap generation and control system
US12329050B2 (en)2020-10-092025-06-17Deere & CompanyMachine control using a predictive map
US11474523B2 (en)2020-10-092022-10-18Deere & CompanyMachine control using a predictive speed map
US20220110251A1 (en)2020-10-092022-04-14Deere & CompanyCrop moisture map generation and control system
US12250905B2 (en)2020-10-092025-03-18Deere & CompanyMachine control using a predictive map
US12271196B2 (en)2020-10-092025-04-08Deere &CompanyMachine control using a predictive map
US12127500B2 (en)2021-01-272024-10-29Deere & CompanyMachine control using a map with regime zones
US12229886B2 (en)2021-10-012025-02-18Deere & CompanyHistorical crop state model, predictive crop state map generation and control system
US12310286B2 (en)2021-12-142025-05-27Deere & CompanyCrop constituent sensing
US12302791B2 (en)2021-12-202025-05-20Deere & CompanyCrop constituents, predictive mapping, and agricultural harvester control
US12245549B2 (en)2022-01-112025-03-11Deere & CompanyPredictive response map generation and control system
US12082531B2 (en)2022-01-262024-09-10Deere & CompanySystems and methods for predicting material dynamics
US12295288B2 (en)2022-04-052025-05-13Deere &CompanyPredictive machine setting map generation and control system
US12284934B2 (en)2022-04-082025-04-29Deere & CompanySystems and methods for predictive tractive characteristics and control
US12298767B2 (en)2022-04-082025-05-13Deere & CompanyPredictive material consumption map and control
US12358493B2 (en)2022-04-082025-07-15Deere & CompanySystems and methods for predictive power requirements and control
US12058951B2 (en)2022-04-082024-08-13Deere & CompanyPredictive nutrient map and control

Similar Documents

PublicationPublication DateTitle
SU887717A1 (en)Device for checking soil consolidation quality
MiwaEvaluation methods for vibration effect Part 1. Measurements of threshold and equal sensation contours of whole body for vertical and horizontal vibrations
EP0542719A3 (en)A method for establishing a value for the sensitivity of an acceleration sensor
US3822588A (en)Apparatus for measuring the hardness of material
FR2354553A1 (en) DEVICE FOR MEASURING THE DAMPING OF A MOTOR VEHICLE SUSPENSION
CN109916490A (en)A kind of road vehicle dynamic weigher and method
EP3376184A2 (en)Apparatus and method for calibrating a weigh-in-motion sensor
US4090393A (en)Method for the calibration or checking of dynamometers and apparatus embodying same
US3201983A (en)Dynamically compensated force measuring apparatus
SE463117B (en) PROVIDED TO MEET CUTTING POWER AND LIMIT OVERLOAD IN A STANDPRESS WITH A DEVICE FOR IMPLEMENTATION OF THE SET
Tschan et al.Characterization and modelling of silicon piezoresistive accelerometers fabricated by a bipolar-compatible process
US3902373A (en)Dynamic balancing machine
CN1049976C (en)Measuring system for indoor dynamic and static triaxial for shearing wave velocity
Scanlan et al.Dynamic Prediction of Pile Static Bearing Capacity
TandonDevelopment of an absolute calibration system for nondestructive testing devices
SU690115A1 (en)Apparatus for investigating dynamic characteristics of soils
JPS5934602Y2 (en) portable cone penetrometer
JPS63284451A (en)Measuring instrument for elasticity
Dupas et al.A 300-mm-diameter triaxial cell with a double measuring device
SU735960A1 (en)Device for measuring dynamic elasticity modulus of material specimen
SU651222A1 (en)Haritonov's method of creating force and standard force-measuring machine for effecting same
SU619864A1 (en)Device for picking up diagram of impact acceleration piezoconverter directivity
SU1008354A1 (en)Conmpression tester
SU678367A1 (en)Standard force-measuring machine
CA1075032A (en)Method for the calibration or checking of dynamometers and apparatus embodying same

[8]ページ先頭

©2009-2025 Movatter.jp