Изобретение относитс к области физико-химических исследований материалов , а именно определению склонности к избирательной коррозии, и I может быть использовано в заводских и научно-исследовательских лаборатори х .The invention relates to the field of physico-chemical research of materials, namely the determination of the propensity for selective corrosion, and I can be used in factory and research laboratories.
Цель изобретени - сокращение длительности испытаний.The purpose of the invention is to reduce the duration of the test.
Способ осуществл ют следующим образом.The method is carried out as follows.
Раствор содержит хлористый натрий, уксусную кислоту и ее натриевую соль при следующем соотношении компонентов , моль/л:The solution contains sodium chloride, acetic acid and its sodium salt in the following ratio of components, mol / l:
Хлористый натрий 0,01-0,125Sodium Chloride 0.01-0.125
Уксусна кислота 0,15-0,20Acetic acid 0.15-0.20
УК сусно-кислыйCriminal code is sour
натрий0,10-0,15sodium0.10-0.15
ВодаОстальноеWaterEverything
Предлагаемый раствор разработан на основе проведенных коррозионных исследований технически чистой меди марки МЗ в растворах на основе 0,16 М и 0,13 М СН3СООНа,The proposed solution was developed on the basis of the corrosion studies carried out on technically pure grade MZ copper in solutions based on 0.16 M and 0.13 M CH3COOHa,
рН 4,6,(именуемый ацетатный буфер}, содержащих 0,01; 0,05; 0,075; 0,10; 0,125; 0,15; 0,20 и 0,50 М а С1 в течение 1 сут.pH 4.6, (referred to as acetate buffer} containing 0.01; 0.05; 0.075; 0.10; 0.125; 0.15; 0.20 and 0.50 Ma and C1 for 1 day.
Исследовани провод т на цилиндрических образцах с общей поверхностью 5,5 см2. Образцы креп т на латунных шпильках с тефлоновыми втулками и развепивают в отдельные стаканы , объем раствора в которых составл ет 150 мл. Продукты коррозии снимают 3%-ньтм раствором НС1. Studies were carried out on cylindrical specimens with a total surface of 5.5 cm2. The samples are fastened on brass studs with Teflon sleeves and put into separate glasses, the solution volume of which is 150 ml. Corrosion products are removed with a 3% solution of HC1.
Определение скорости коррозии провод т гравиметрически и по химическому анализу на атомном асборб- ционном спектрофотометре. Отдельно анализу подвергают продукты коррозии, перешедшие в раствор и оставшиес в виде пленок на образце.The corrosion rate is determined gravimetrically and by chemical analysis on an atomic absorption spectrophotometer. Separately, the corrosion products are subjected to analysis, which have passed into the solution and remained in the form of films on the sample.
В отмеченном интервале концентраций в раствор переходит не менее 98% продуктов коррозии. Продукты коррозии медных сплавов в исследуемом растворе хорошо растворимы. НаIn the marked concentration range, at least 98% of corrosion products pass into the solution. The corrosion products of copper alloys in the test solution are well soluble. On
(Л(L
СлSl
со ооwith oo
образцах всех сплавов остаетс от дес тых долей до 1-2% продуктов коррозии от их общей массы. В 0,5 М aQl значительна часть продуктов коррозии (до 45%) находитс на по- в рхности образцов.samples of all alloys remain from tenths to 1-2% of corrosion products of their total mass. In 0.5 M aQl, a significant part of corrosion products (up to 45%) is on the order of samples.
Практически полный переход продуктов коррозии в раствор позвол ет изучать кинетику растворени отдельных составл ющих и сплава в целом путем отбора проб из рабочего раствора в различные времена выдержки, а также использовать этот раствор в качестве модельного при изучении коррозии медных сплавов в режиме днижени морской воды и кавитации, . в тех услови х, когда с поверхности изделий удал ютс продукты коррозии .The almost complete transition of corrosion products into solution allows one to study the kinetics of dissolution of individual components and the alloy as a whole by sampling from the working solution at different exposure times, and also to use this solution as a model for studying corrosion of copper alloys in the mode of seawater subsidence and cavitation , in those conditions when corrosion products are removed from the surface of the products.
Таким образом, предлагаемый раствор обеспечивает быстрое вы вление склонности сплавов к общей и избирательной коррозии, а также получение количественных характеристик растворени сплава и отдельных его сэставл ющих во времени, т.е. кинетику растворени . Кроме того, его ис- прльзование обеспечивает возможность моделировани поведени этих сплавов п(ои их эксплуатации в морской водеThus, the proposed solution provides rapid detection of the tendency of alloys to general and selective corrosion, as well as obtaining quantitative characteristics of the dissolution of the alloy and its individual components over time, i.e. dissolution kinetics. In addition, its use makes it possible to simulate the behavior of these alloys n (and their operation in seawater
5five
00
5five
00
при скорост х потока, превышающих критические, т.е. в режиме срыва поверхностных пленок. Это позвол в использовать предлагаемый раствор в качестве тестового дл ускоренных испытаний на склонность медных сплавов к избирательному растворению.at flow rates exceeding the critical ones, i.e. in the mode of breakdown of surface films. This allowed us to use the proposed solution as a test for accelerated tests for the tendency of copper alloys to selective dissolution.
Сравнительно высокие скорости коррозии при комнатной температуре позвол ют вы вить склонность к избирательной коррозии сплавов на медной основе за 1 сут в отличие от 1 Мее в 0,5 У NaCl.Comparatively high corrosion rates at room temperature make it possible to reveal the tendency to selective corrosion of copper-based alloys in 1 day, as opposed to 1 Me, 0.5 V NaCl.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SU874286115ASU1538101A1 (en) | 1987-07-20 | 1987-07-20 | Solution for corrosion tests of copper alloys for tendency to selective corrosion |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SU874286115ASU1538101A1 (en) | 1987-07-20 | 1987-07-20 | Solution for corrosion tests of copper alloys for tendency to selective corrosion |
| Publication Number | Publication Date |
|---|---|
| SU1538101A1true SU1538101A1 (en) | 1990-01-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SU874286115ASU1538101A1 (en) | 1987-07-20 | 1987-07-20 | Solution for corrosion tests of copper alloys for tendency to selective corrosion |
| Country | Link |
|---|---|
| SU (1) | SU1538101A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105407886A (en)* | 2013-03-15 | 2016-03-16 | Cda研究集团股份有限公司 | Topical copper ion treatments and methods of preparing topical copper ion treatments for use in various anatomical regions of the body |
| US10398733B2 (en) | 2013-03-15 | 2019-09-03 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the dermatological areas of the body |
| AU2019200641B2 (en)* | 2013-03-15 | 2020-01-30 | Cda Research Group, Inc. | Topical copper ion treatments |
| US10813948B2 (en) | 2013-03-15 | 2020-10-27 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
| US11000545B2 (en) | 2013-03-15 | 2021-05-11 | Cda Research Group, Inc. | Copper ion compositions and methods of treatment for conditions caused by coronavirus and influenza |
| US11193184B2 (en) | 2019-02-22 | 2021-12-07 | Cda Research Group, Inc. | System for use in producing a metal ion suspension and process of using same |
| US12318406B2 (en) | 2013-03-15 | 2025-06-03 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
| Title |
|---|
| Розенфельд И.Л., Жигалова К.А. Ускоренные методы коррозионных испытаний металлов. - М.: Металлурги , 1966, с. 20.* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2018247263C1 (en)* | 2013-03-15 | 2021-09-09 | Cda Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
| US11717535B2 (en) | 2013-03-15 | 2023-08-08 | Cda Research Group, Inc. | Copper ion compositions and methods of treatment for conditions caused by coronavirus and influenza |
| US10398733B2 (en) | 2013-03-15 | 2019-09-03 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the dermatological areas of the body |
| AU2019200641B2 (en)* | 2013-03-15 | 2020-01-30 | Cda Research Group, Inc. | Topical copper ion treatments |
| EP3679929A1 (en)* | 2013-03-15 | 2020-07-15 | CDA Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
| AU2018247263B2 (en)* | 2013-03-15 | 2020-10-08 | Cda Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
| US10813948B2 (en) | 2013-03-15 | 2020-10-27 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
| US11000545B2 (en) | 2013-03-15 | 2021-05-11 | Cda Research Group, Inc. | Copper ion compositions and methods of treatment for conditions caused by coronavirus and influenza |
| US11007143B2 (en) | 2013-03-15 | 2021-05-18 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the oral-respiratory-otic areas of the body |
| US11083750B2 (en) | 2013-03-15 | 2021-08-10 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
| AU2014235105B2 (en)* | 2013-03-15 | 2018-07-12 | Cda Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
| US12329779B2 (en) | 2013-03-15 | 2025-06-17 | Cda Research Group, Inc. | Copper ion compositions and methods of treatment for conditions caused by coronavirus and influenza |
| CN105407886A (en)* | 2013-03-15 | 2016-03-16 | Cda研究集团股份有限公司 | Topical copper ion treatments and methods of preparing topical copper ion treatments for use in various anatomical regions of the body |
| US11298316B2 (en) | 2013-03-15 | 2022-04-12 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the oral-respiratory-otic areas of the body |
| US11318089B2 (en) | 2013-03-15 | 2022-05-03 | Cda Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
| US12318406B2 (en) | 2013-03-15 | 2025-06-03 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
| US11253544B2 (en) | 2013-03-15 | 2022-02-22 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
| US11857514B2 (en) | 2013-03-15 | 2024-01-02 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the dermatological areas of the body |
| US12171867B2 (en) | 2013-03-15 | 2024-12-24 | Cda Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
| US11459638B2 (en) | 2019-02-22 | 2022-10-04 | Cda Research Group, Inc. | System for use in producing a metal ion suspension and process of using same |
| US11193184B2 (en) | 2019-02-22 | 2021-12-07 | Cda Research Group, Inc. | System for use in producing a metal ion suspension and process of using same |
| Publication | Publication Date | Title |
|---|---|---|
| Shaw et al. | The toxicity of some forms of copper to rainbow trout | |
| Cossa et al. | Sexual maturation as a source of variation in the relationship between cadmium concentration and body weight of Mytilus edulis L. | |
| Liberti et al. | Anion determination with ion selective electrodes using Gran's plots. Application to fluoride | |
| Zhang et al. | Simultaneous determination of cobalt and nickel in sea water by adsorptive cathodic stripping square-wave voltammetry | |
| Laumond et al. | Cadmium, copper and lead in the western Mediterranean Sea | |
| Kaczynski et al. | Hydrophobic C18 bound organic complexes of chromium and their potential impact on the geochemistry of Cr in natural waters | |
| Matsunaga et al. | Possible errors caused prior to measurement of mercury in natural waters with special reference to seawater | |
| SU1538101A1 (en) | Solution for corrosion tests of copper alloys for tendency to selective corrosion | |
| US4618587A (en) | Method for the quantitative determination of calcium in biological fluids through direct potentiometry | |
| Colombo et al. | A flow cell for on-line monitoring of metals in natural waters by voltammetry with a mercury drop electrode | |
| Huizenga et al. | The distribution of total and electrochemically available copper in the northwestern Atlantic Ocean | |
| Kalff et al. | A method for the analysis of total nitrogen in natural waters | |
| Chen et al. | Determination of total and inorganic mercury in whole blood by on-line digestion with flow injection | |
| Chanudet et al. | Application of a simple voltammetric method to the determination of refractory organic substances in freshwaters | |
| Amin | Application of a triacetylcellulose membrane with immobilizated of 5-(2′, 4′-dimethylphenylazo)-6-hydroxypyrimidine-2, 4-dione for mercury determination in real samples | |
| Bond et al. | The influence of ultra-violet irradiation on the determination of nickel and cobalt in natural waters by adsorption voltammetry | |
| Locatelli et al. | A new voltammetric method for the simultaneous monitoring of heavy metals in sea water, sediments, algae and clams: Application to the Goro Bay ecosystem | |
| Davies | The need to establish heavy metal standards on the basis of dissolved metals | |
| Serbst et al. | Precision of dialysis (peeper) sampling of cadmium in marine sediment interstitial water | |
| Kozarac et al. | Direct determination of nonionic and anionic detergents in effluents | |
| Van den Berg | Monitoring of labile copper and zinc in estuarine waters using cathodic stripping chronopotentiometry | |
| Fukushi et al. | Determination of magnesium and calcium ions in sea water by capillary type isotachophoresis | |
| Yilmaz et al. | Direct quantitative determination of total arsenic in natural hotwaters by anodic stripping voltammetry at the rotating lateral gold electrode | |
| Merchant | Miniaturization of a chloride ion assay for use in a microtiter format | |
| Jones et al. | Copper complexing capacity in fresh-waters using the catechol-cathodic stripping voltammetric method |