1 OPTICAL APPARATUS TECHNICAL FIELD This invention relates to an optical apparatus. In particular, although not exclusively, this invention has application to the field of flow cytometry. However, it is to be understood that several of the inventive aspects have application beyond flow cytometry and may have broad application in the field of optics generally. For example, several aspects of the invention may be used in photometry or optical particle detection apparatus. The reader should also refer to our divisional specification filed 28 May 2001 and our divisional specification filed 29 June 2001 for other aspects of the invention not claimed herein.
BACKGROUND ART Generally when illuminating a particle or an object for analysis, the light source is directed onto the particle from a single direction. An analysis may be made of light reflected or produced by the particle eg. fluorescence to reveal certain properties of the particle. The particular portion of the particle illuminated depends on the orientation of the particle with respect to the light source. Where the particle or object is asymmetrical, the light measurements will vary depending on which portion is illuminated, making it difficult to analyse the particle or object as a whole.
Such difficulties are encountered in flow cytometry since it is common for particles being analysed to be asymmetrical eg. mammalian spermatozoa.
Flow cytometers are often used to measure the properties of cells or particles which are carried in a stream of fluid. The stream is generally comprised of a sheath fluid into the centre of which is injected a narrow aqueous suspension of cells/particles. The sheath fluid focuses the sample cells/particles into single file. The stream containing the particles/cells passes through an inspection point which is the focus of an intense light beam. The particles/cells may have been stained with a light - sensitive stain which when illuminated, will absorb the incident light and fluoresce. Light scatters off the particles and/or alternatively causes fluorescence. This scattered or fluorescent light is then measured by a detector generally aligned with the incident beam. The characteristics of the detected signal(s) such as peak intensity, peak area or other characteristics of interest may then be used to derive properties of the particle, for example size. i. I.-TLLLCCTL'AL PROPERTY | OrFIC^ OF N Z.
I 2 0 jl-.M 2CG1 ' V H D 2 In a flow cytometer with sorting capability (as opposed to a purely analytical instrument) the detected signal(s) may be used to trigger sorting hardware which can be programmed to divert droplets from the stream of fluid. The sorting criteria will vary with the application, for example, the sorting may be conducted according to size or, in the case of spermatozoa, the DNA content of the cell.
One problem with conventional flow cytometers is that particle asymmetry often renders the optical characteristics of a particle difficult to measure. For example, a flat particle can pass through the inspection point with a random orientation. Thus, the intensity of the resultant scattered or fluorescent light may vary according to particle orientation and the detectors will measure different light intensities at different locations.
Thus, particle asymmetry can lead to a reduced resolution of measurement of the particles. It follows that, in cytometers with a sorting capability, this reduced resolution in measurement of the particles results in a decreased ability to accurately separate populations of cells with different optical properties. Such a problem is encountered in separation of male and female mammalian sperm.
In mammals, sperm carry the sex determining chromosomes and the total DNA content found in male and female sperm may differ. For example, in cattle the difference in the DNA content between male and female sperm is approximately 4%. This difference in DNA provides a means by which sperm may be separated in a sorting flow cytometer, making a predetermination of an offspring's sex possible when artificial breeding of animals is carried out. Utilising such a technique in artificial breeding would offer considerable economic advantages in livestock management, but is currently made difficult by the asymmetric geometry of the flat sperm head. As an example, bull sperm are flat cells with head dimensions of approximately 10 microns by 4 microns by 1 micron attached to a 40 micron flagellum. The asymmetric properties of the bull sperm head result in a high variation in both scattered light and fluorescent light emission with sperm orientation. In particular, fluorescent emission varies by a factor of two with sperm orientation (see DNA Contention Measurements of Mammalian Sperm. CYTOMETRY 3:1-9 [1982]), effectively masking the 4% variation in intensity due to the sex of the sperm.
A number of flow cytometric systems have been developed in an attempt to overcome the problems encountered when analysing asymmetric particles such as sperm cells.
Printed from Mimosa 08/20/1999 11:36:57 page -4- 3 One flow cytometric system that has been developed in an attempt to overcome this problem introduces asymmetric cells travelling in a slow moving stream into the middle of a fast flowing sheath stream. Hydrodynamics then tends to align the asymmetric cells with their long axis parallel to the direction of the fast flowing sheath stream.
While this approach tends to reduce the vertical variation of light intensity from asymmetric particles, the radial variation remains. This system has been further refined so as to further reduce the orientation-related variation in the detected light intensity of particles.
The system developed by Pinkel et al (see Flow Cytometry in Mammalian Sperm: Progress Morphology and DNA Measurement. THE JOURNAL OF HISTOCHEMISTRY AND CYTOCHEMISTRY 24:353-358 [1979]), showed that the orientation of bull sperm could be further aligned by bevelling the end of the tube which injected the sample stream (ie. that which contains the sperm) into the sheath flow.
The system which attempted to overcome the problems of flow cytometric analysis of asymmetric cells was that described by Johnson (see Sex Preselection by Flow Cytometric Separation of X AND Y Chromosome Bearing Sperm Based on DNA Difference: A review. REPRODUCTIVE FERTILITY DEVELOPMENTS 7:893-903 [1995]), in relation to separation of bull sperm by sex. Johnson's approach utilised two detectors; one in line with the illuminating laser beam (the 0 degree detector) and one at right angles to the beam (the 90 degree detector). Sperm emit fluorescence preferentially through their narrow edges. Johnson determined which sperm were aligned edge-on to the 90 degree detector by detecting the bright emission from their edges, and used the 0 degree detector for measuring the flat-face emission from only the aligned sperm.
However, this system still had a number of drawbacks. One drawback was that it was a requirement for this system that the sample flow be moving slowly with respect to the sheath flow, thereby reducing sample throughput. A further drawback was that it only produces good alignment at very low flow rates. At the optimal flow rate, which produced the greatest number of aligned cells per second, only 40% of cells were aligned. Thus, the number of aligned cells had been increased from 10% to 40%, but approximately 60% of the cells remained unaligned, and further, due to the requirement of a low flow rate, there was a reduction in system throughput.
Printed from Mimosa 08/20/1999 11:36:57 page -5- 4 It will be appreciated that the rejection of unaligned cells again reduces the processing rate of this system and unnecessarily wastes sperm cells.
One system which moved towards radial light collection was the Ellipsoidal Collector described by Skogen-Hagenson et al (see A High Efficiency Flow Cytometer, CYTOCHEMISTRY 25:784-789 [1977]), who developed a light collection system based on a hollow "egg shaped" brass reflector. The reflector surface was elliptical in cross-section and light from the inspection point at one focus was collected at the second focus. This system was demonstrated to have an ability to reduce the orientation dependence observed with bull sperm.
However, it still had orientation dependent illumination, (ie. Light source coming from a single direction). A further problem with this system is that it is unable to provide a particle sort function (ie. according to sperm sex).
A further system which implemented both symmetric illumination and symmetric light collection was the Epi-Illumination system described by Garner et al (see Quantification of the X and Y Chromosome Bearing Spermatozoa of Domestic Animals by Flow Cytometry, BIOLOGY OF REPRODUCTION 28:312-321 [1983]). In this system the sample stream travelled directly towards a high numerical index microscope objective lens and was diverted sideways after the stream had passed through the focal point of the lens. Illumination was delivered through the lens and light was collected back through the lens.
While this system also demonstrated a good ability to eliminate the orientation dependencies of bull sperm, it was also incapable of modification for high speed sorting. This was due to its sideways diversion of the sperm immediately after passing through the focal point.
Earlier systems have also relied on laser light, because of the intensity of laser light sources. Unfortunately, such laser systems can be quite expensive and only add to the cost of devices such as flow cytometers. Because lasers typically deliver a single wavelength of light, use of lasers also has made it difficult to utilise a single light source to provide a variety of wavelengths of light, e.g. in conjunction with filters that filter out all but the desired wavelengths.
Furthermore, previous systems have often required the precise alignment of optics in order to accomplish a proper delivery of electromagnetic radiation onto the cell under Printed from Mimosa 08/20/1999 11:36:57 page -6- analysation or collection of fluorescence emitted by a cell. This can be a tedious process that adds to the expense of the analysation instruments. Hence, there is a need for a system, e.g., in flow cytometry, in which the optics that focus and collect electromagnetic radiation for measurement purposes are quicly and easily established in their proper orientation.
It is an object of the present invention to overcome the afore mentioned shortcomings of known optical apparatus with particular application to flow cytometers. It is also an object of the invention to provide the public with a useful choice.
SUMMARY OF THE INVENTION Described in the specification (but not claimed) is the invention of an optical apparatus including: a prism having a conical portion with an apex at a forward end of the prism and a central axis extending through the apex of the prism; an optical arrangement including a source of electromagnetic radiation, the optical arrangement adapted to direct an incident beam of electromagnetic radiation onto the apex of the conical portion in a direction substantially aligned with the central axis of the conical portion; and a reflective surface provided behind the apex of the prism; such that the beam refracted by the prism will be reflected by the reflective surface back through the prism to project from the forward end of the prism as an annular beam of electromagnetic radiation.
The optical apparatus described above thereby serves to produce an annular beam of electromagnetic radiation from a single beam of electromagnetic radiation incident onto the apex of the conical portion. Preferably, the arrangement is such to provide the beam with a constant cross section to produce a cylindrical tube of light. The prism may also include a cylindrical base portion at a rear end thereof which has a circular cross section corresponding to the cross section of the base of the conical portion.
Described in the specification (but not claimed) is the invention of an optical apparatus including: a prism having a pyramidal portion with an even number of inclined faces meeting at an apex at a forward end of the prism and a central axis extending through the apex an optical arrangement including a source of electromagnetic radiation, the optical arrangement adapted to direct an incident beam of electromagnetic radiation onto the apex of the pyramidal portion in a direction substantially aligned with the central axis of the pyramidal portion; and a reflective surface provided behind the apex of the prism; such that the beam refracted by the prism will be reflected by the 6 prism will be reflected by the reflective surface back through the prism to project from the forward end of the prism as a number of parallel beams.
It is required that the pyramidal portion have an even number of inclined faces since the optical geometry is such that the beams cross the prism to reflect from the opposing face. Apart from this constraint, the number of the inclined faces is not limited. For example, there may be 4,6, 8 ... 12 inclined triangular faces converging towards the apex of the pyramidal portion. Preferably, the pyramidal portion also includes a base portion with a cross section corresponding to the base of the pyramidal portion. For example, where the pyramid has four inclined faces an appropriate base portion would be a rectangular prism or a cube.
In either of the first two aspects of the invention, the reflective surface may be provided at the rear end of the prism. However, the invention is not limited to this arrangement and may potentially be disposed within the prism itself. Another preferred arrangement is for the reflective surface to be spaced from the base portion. Another desirable feature is that this spacing be adjustable to provide a variable annular beam diameter. However, where the reflective surface is spaced from the prism the electromagnetic radiation may suffer losses from multiple interface reflection. However, as such a design would have a reduced length from the front to the rear end, the transmission losses would be less than for a longer prism with the reflective surface provided at the rear end.
Suitably the prisms are manufactured from optical glass such as BK7 optical glass. However, where the application is intended for use with UV electromagnetic radiation, it is preferred to manufacture the prism from UV-suitable material such as fused silica. In such an application, it is also desirable that the reflective surface be comprised of a UV-grade mirror to increase the transmission efficiency of the optical apparatus.
As mentioned above, the optical apparatus may be used with ultra-violet radiation, preferably produced from a laser source. The electromagnetic radiation may also include other wavelengths including those in the visible spectrum. Suitably, the incident electromagnetic radiation is in the form of a collimated beam.
The optical apparatus described above in connection with the first two aspects may desirably be used in combination with a paraboloidal reflector having an internal paraboloidal-shaped reflective surface and an optical axis. Such a reflector will be oriented to receive, on its reflective surface, the electromagnetic radiation projected Printed from Mimosa 08/20/1999 11:36:57 page -8- 7 from the forward end of the prism. It will be appreciated that such a paraboloidal-shaped reflective surface will have a focus at which all light parallel to the optical axis and incident onto the reflective surface will be directed. In other words, the parallel electromagnetic radiation projected from the prism will be received onto the paraboloidal reflector to converge at the focus. Such a concentration of electromagnetic radiation may have many useful and varied applications m the field of optics. In particular, the invention is capable of providing radially symmetric illumination to the focus of the paraboloidal reflector. The term "radially symmetric" means that for every beam of incident radiation to the focus, a substantially diametrically opposite beam will be incident to the focus. Each beam of the radially symmetric illumination may have the same angle to the optical axis of the paraboloidal reflector. Thus a convergent disc of electromagnetic radiation onto the focus will be included in the definition of "radially symmetric". Such a convergent disc can be achieved through the use of the first-described optical apparatus in combination with the paraboloidal reflector. Any object can be placed at the focus of the paraboloidal reflector for illumination and inspection. As will be discussed with following aspects of the invention, the apparatus has particular application to flow cytometry in that a flow source may be provided to direct particles through the focus of the paraboloidal reflector.
It will be understood that the source of electromagnetic radiation may not be directed directly at the apex of the prism and the invention allows for the use of mirrors and other reflectors as desired. In particular, a second reflector may be disposed between the prism and the paraboloidal reflector, the second reflector having reflective portions to reflect the incident beam from the source onto the apex of the prism and transmitting portions to transmit the beam(s) projected from the forward end of the prism.
However, the invention is not limited to the particular prisms described in the forgoing aspects of the invention. Other optical configurations are envisaged to produce the projected annular beam or parallel beams of electromagnetic radiation. Furthermore, other types of reflectors which focus incident radiation towards one or more foci could be adopted.
Described in the specification, but not claimed is the invention of an optical apparatus including: an optical configuration adapted to produce an annular beam of electromagnetic radiation having a central axis or plurality of beams of electromagnetic radiation wherein said plurality of beams are evenly spaced from a central axis; and a focussing reflector having an internal reflective surface having an optical axis and one -x> :.rtT o . — o.: N.Z. | 'I 2 9 Ju: 2CC1 i * 8 or more foci, the reflector being oriented to receive, onto its reflective surface, the annular beam or the plurality of beams of electromagnetic radiation.
For example, the optical element may comprise any known reflective axicons as well as the particular prisms described above which, in some cases are also axicons. For example, the axicon may comprise an inner conical mirror with forward reflective surfaces surrounded by an outer conical mirror with forward reflective surfaces wherein the optical axes of the two mirrors are aligned. The reflective surfaces form the letter "W", hence the name w-axicon or waxicon.
Preferably, the focussing reflector has an internal reflective surface which is paraboloidal in shape. The use of the term "paraboloidal reflector" used throughout the specification and the claims will be understood to mean "a reflector conforming to the shape of a paraboloid of revolution". The term is also to be understood to mean "a portion of a full paraboloid of revolution". Similarly, in regard to the optical axis of a paraboloid, such an axis may also be considered to be the parabolic or central axis of the paraboloid.
As mentioned in connection with the foregoing aspect of the invention, the apparatus may be incorporated into a flow cytometer including a flow source to produce a flow of particles to be analysed in which the flow source is adapted to direct the flow of particles substantially through one of the foci of the reflective surface. Suitably the flow source can be adapted to substantially align the flow with the optical axis of the reflective surface. Moreover, an aperture may be provided in the focussing reflector for passage of the flow therebeyond.
It is desirable that the present invention will be used in a flow cytometer accommodating a sorting function. Thus, the flow means may include a nozzle and the flow cytometer may incorporate electrostatic droplet deflection sorting apparatus below the aperture in the focussing reflector.
Described in the specification (but not claimed) is the invention of an optical method including: providing a prism having a conical portion with an apex at the forward end, a central axis extending through the apex and a reflective surface provided behind the apex of the prism; directing an incident beam of electromagnetic radiation onto the apex of the conical portion in a direction substantially aligned with the central axis of the conical portion to produce an annular beam of electromagnetic radiation projecting from the forward end of the prism. 9 Described in the specification (but not claimed) is the invention of an optical method including: providing a prism having a pyramidal portion with an even number of inclined faces meeting at an apex at a forward end of the prism, a central axis extending through the apex and a reflective surface provided behind the apex of the prism; directing an incident beam of electromagnetic radiation onto the apex of the pyramidal portion in a direction substantially aligned with the central axis of the pyramidal portion to produce parallel beams of electromagnetic radiation projecting from the forward end of the prism.
Described in the specification but not claimed is the invention of an analysation instrument including: a flow source to produce a flow of particles to be analysed, the flow source being adapted to direct the flow of particles through an inspection zone; an optical arrangement including a source of electromagnetic radiation, the optical arrangement adapted to converge substantially coplanar, substantially radially symmetric electromagnetic radiation towards the inspection zone.
Preferably, the electromagnetic radiation coverges in the form of a disc disposed symmetrically relative to the central axis.
Described in the specification but not claimed is the invention of a method of analysing including: providing a flow of particles to be analysed; directing the flow of particles to be analysed through an inspection zone; converging substantially coplanar, substantially radially symmetric electromagnetic radiation towards the inspection zone.
Described in this specification (but not claimed) is the invention of an analysation instrument including: a flow source to produce a flow of particles to be analysed; a source of electromagnetic radiation; a reflector adapted to reflect at least a portion of the electromagnetic radiation at the flow of particles to illuminate the flow of particles; an optical configuration including a sensor adapted to sense electromagnetic radiation; wherein the reflector is also adapted to reflect, to the optical configuration, any electromagnetic radiation produced as a result of the illumination of the flow of particles.
Thus the reflector described in accordance with this aspect serves the dual purpose of reflecting the electromagnetic radiation onto the flow of particles as well as collecting the electromagnetic radiation for transmission to the sensor. Such a configuration can be achieved with the use of a reflector having an internal reflective surface which is i INTELLECTUAL P20? ' OITICE OF N.Z paraboloidal in shape.
It will be understood that any use of the term "illumination" or "illuminate" is not restricted to merely visible illumination as non-visible wavelengths may also be used. As mentioned previously, in certain applications ultra violet radiation may be used. Furthermore, reference to electromagnetic radiation "produced" by the particle may include any florescence produced by the particles as a result of the incident illumination and/or any light scattered by the particles. It should also be understood that "irradiate" is intended to have the same meaning as "illuminate".
Described in the specification (but not claimed) is the invention of a method of analysing including providing: a flow of particles to be analysed; providing a source of electromagnetic radiation; reflecting with a reflector at least a portion of the electromagnetic radiation to illuminate the flow of particles; reflecting with the reflector at least a portion of any electromagnetic radiation produced from the illumination of the flow of particles; sensing a portion of the electromagnetic radiation produced from the illumination of the flow of particles.
In accordance with still a further aspect of the present invention there is provided a flow cytometer including: a flow source to produce a linear flow of particles to be analysed, the flow source being adapted to direct the flow of particles through an inspection zone; an optical arrangement adapted to converge electromagnetic radiation onto the flow at the inspection zone in a substantially radially symmetric manner about the inspection zone; a collector to collect electromagnetic radiation either produced or deflected from the particles in the flow; a processor to derive, from the collected electromagnetic radiation, predetermined information relating to each of at least some of the particles in the flow; a correlator to correlate the derived information with the associated particle downstream of the inspection zone; and a sorting apparatus to sort each of at least some of the particles based on the predetermined information relating to each of at least some of the particles in the flow.
As mentioned previously, the radially symmetric illumination may be provided in the form of a continuous disc convergent towards the inspection zone. Another preferred radially symmetric arrangement of the illumination is in the form of discreet beams converging towards the inspection zone. Either way, the particle is illuminated evenly from all sides. 11 Various embodiments of the focussing reflector have been envisaged. In one such embodiment the focussing reflector comprises a paraboloidal reflector having an internal reflective surface of paraboloidal-shape. The flow of particles will thus flow through the focus of the paraboloidal reflector at which the electromagnetic radiation is converged. In particularly preferred versions of this, the flow source is oriented so that the flow of particles is aligned with the optical axis of the reflective surface. Moreover, any forms of the focussing reflector may be provided with an aperture for the passage of flow beyond the focussing reflector. Such an embodiment is particularly adapted for use in a sorting flow cytometer which collects the electromagnetic radiation produced from the particles in the flow, processes the collected electromagnetic radiation to derive predetermined information relating to each of at least some of the particles in the flow and correlates the derived information with the associated particle downstream of the inspection zone. In this way, the sorting flow cytometer can not only analyse the particles in the flow but sort the particles according to predetermined sets of selection criteria. A preferred type of sorting flow cytometer is a jet-in-air flow cytometer.
Described in the specification (but not claimed) is the invention of: a flow cytometer including: a flow source to produce a flow of particles to be analysed, the flow source being adapted to direct the flow of particles through an inspection zone; an optical arrangement including a source of electromagnetic radiation, the optical arrangement adapted to direct electromagnetic radiation onto the flow of particles, at the inspection zone; a collector to collect electromagnetic radiation either produced or deflected from the particles, the collector having an internal reflective surface with an optical axis and one or more foci, wherein the collector is oriented such that the flow of particles is substantially aligned with the optical axis.
In yet another aspect of the present invention there is provided a flow cytometer including: a-flow source to produce a flow of particles to be analysed, the flow source being adapted to direct the flow of particles through an inspection zone; an optical arrangement including a source of electromagnetic radiation, the optical arrangement adapted to direct electromagnetic radiation onto the flow of particles, at the inspection zone in a substantially radially symmetric manner about the linear flow; a collector to collect electromagnetic radiation either produced or deflected from the particles, the collector having an internal reflective surface with an optical axis and one or more foci, wherein the collector is disposed such that one of the one or more foci is substantially coincident or located within the inspection zone; a processor to derive, from the collected electromagnetic radiation, predetermined information relating to each of at 12 7/ ,, / '' J. least some of the particles in the flow; and a correlator to correlate the derived information with the associated particle downstream of the inspection zone; and a sorting apparatus to sort each of at least some of the particles in the flow based on the predetermined information from each of at least some of the particles in the flow.
The collector may be of the same form as the focussing reflector as described in accordance with previous aspects of the invention. In fact, the collector may also comprise part of the optical arrangement adapted to direct electromagnetic radiation onto the flow of particles. In other words the collector may serve the dual function of collecting the produced electromagnetic radiation as well as reflecting the incident radiation onto the particles.
Described in the present specification (but not claimed) is the invention of an analysation instrument including: a first reflector having a partial ellipsoidal shape; a near focal point of the partial ellipsoidal shape of the first reflector; a distant focal point of the partial ellipsoidal shape of the first reflector; a central axis of the partial ellipsoidal shape defined by the near focal point and distant focal point of the partial ellipsoidal shape of the first reflector; a source of electromagnetic radiation disposed at the near focal point of the partial ellipsoidal shape capable of emitting electromagnetic radiation toward the first reflector; a second reflector having a partial ellipsoidal shape oriented relative to the first reflector so as to be capable of receiving electromagnetic radiation reflected by the first reflector; a near focal point of the partial ellipsoidal shape of the second reflector; a distant focal point of the partial ellipsoidal shape of the second reflector; a central axis of the partial ellipsoidal shape defined by the near focal point and distant focal point of the partial ellipsoidal shape of the second reflector; a flow source to produce a flow of particles to be analysed; and an inspection zone of the flow of particles located at the near focal point of the partial ellipsoidal shape of the second reflector.
In a preferred embodiment, the source of electromagnetic radiation may comprise an arc lamp. Further, a preferred relationship between the first reflector and the second reflector is that the distant focal point of the first reflector and the distant focal point of the second reflector overlap. The focal lengths of the first and second reflectors may be equivalent. Alternatively, the focal lengths of the two reflectors may be different in that the first reflector has a greater focal length than the second reflector.
The term "ellipsoidal reflector" as used m the above described aspect of the invention and in following aspects and m the following description of the invention, is understood il ^ to mean a reflector which conforms to the shape of an ellipsoid of revolution. Furthermore, the term is understood to mean a portion of a full ellipsoid of revolution such as one third of an ellipsoid of revolution with an opening at the vertex.
In referring to ellipsoids throughout this description where only a partial ellipsoid is used, the near focal point is intended to mean the focal point closest to the ellipsoidal portion being used.
Described in the present specification (but not claimed) is the invention of a method of analysing including: utilising a first reflector having a partial ellipsoidal surface with a near focal point and a distant focal point; emitting electromagnetic radiation from a source of electromagnetic radiation positioned at the near focal point of the first reflector; reflecting electromagnetic radiation emitted by the source of electromagnetic radiation from the first reflector; utilising a second reflector having a partial ellipsoidal surface with a near focal point and a distant focal point; providing a flow of particles to be analysed; directing the flow of particles through an inspection zone; positioning the second reflector so that the near focal point of the second reflector overlaps the inspection zone and so that the second reflector is capable of receiving electromagnetic radiation reflected by the first reflector.
Described in the present specification (but not claimed) is the invention of an analysation instrument including: a first reflector having a partial paraboloidal shape; a focal point, and a focal length of the partial paraboloidal shape of the first reflector; a parabolic axis of the partial paraboloidal shape of the first reflector; a source of electromagnetic radiation disposed at the focal point of the partial paraboloidal shape adapted to emit electromagnetic radiation toward the first reflector; a second reflector having a partial paraboloidal shape oriented relative to the first reflector so as to be capable of receiving electromagnetic radiation reflected by the first reflector; a focal point, and a focal length of the partial paraboloidal shape of the second reflector; a parabolic axis of the partial paraboloidal shape of the second reflector; a flow source to produce a flow of particles to be analysed; and an inspection zone of the flow of particles located at the focal point of the partial paraboloidal shape of the second reflector.
An arc lamp may be the source of electromagnetic radiation. It is preferred that the parabolic axes, i.e., optical axes, of the first and second paraboloidal-shapes are colmear. In one embodiment of the invention the focal lengths of the first and second reflectors may be equivalent. Alternatively the focal length of the first reflector may 14 A " ' / 1 . be greater than the focal length of the second reflector. A filter may be arranged between the focal points of the two reflectors.
Described in the present specification (but not claimed) is the invention of a method of analysing including: utilising a first reflector having a partial paraboloidal surface, an optical axis and a focal point; emitting electromagnetic radiation from a source of electromagnetic radiation positioned at the focal point of the first reflector; reflecting electromagnetic radiation emitted by the source of electromagnetic radiation from the first reflector; utilising a second reflector having a partial paraboloidal surface, an optical axis and a focal point; providing a flow of particles to be analysed; directing the flow of particles through an inspection zone; positioning the second reflector so that the focal point of the second reflector overlaps the inspection zone and so that the second reflector is capable of receiving electromagnetic radiation reflected by the first reflector.
The present invention also provides, in accordance with another aspect of the invention, a nozzle including an opening for a flow of particles to flow through; a reflector coupled to the nozzle and oriented to reflect electromagnetic radiation at the flow of particles.
The reflector may take on various forms such as an ellipsoidal reflective surface or a paraboloidal reflective surface, the reflector and the nozzle may even be integral. In a preferred embodiment of the invention, the flow of particles passes through an inspection zone and a source of electromagnetic radiation is provided to illuminate the inspection zone. Where the reflective surface is of the kind having a focal point, then it is preferred that the focal point of the reflective surface overlaps the inspection zone.
In preferred forms of the invention, the reflective surface may comprise a metal shape embedded in the nozzle. Alternatively, the reflective surface may comprise a reflective coating applied to the nozzle. Suitably, the focal point of the reflective surface can be external to the nozzle. The nozzle may be adapted to receive electromagnetic radiation through the opening in the nozzle to illuminate the reflector or through the nozzle material itself, e.g. via light transmission through a glass nozzle.
Described in the present specification (but not claimed) is the invention of a method of illuminating a flow of particles, the method including: providing a nozzle having a reflector coupled to the nozzle and oriented to reflect electromagnetic radiation; supplying a flow of particles; directing the flow of particles through the nozzle; reflecting electromagnetic radiation with the reflector toward the flow of particles.
Described in the present specification (but not claimed) is the invention of: a flow source to produce a flow of particles to be analysed, the flow source being adapted to direct the flow of particles through an inspection zone; an optical arrangement including a source of electromagnetic radiation, the optical arrangement adapted to direct electromagnetic radiation onto the flow of particles, at the inspection zone; a partial ellipsoidal collector to collect electromagnetic radiation either produced or deflected from the particles, the collector having an internal reflective surface of partial ellipsoidal shape with two foci and an optical axis oriented along a line between the two foci; the flow source being oriented such that the flow of particles is substantially aligned with the optical axis.
The preferred form of the flow cytometer may be a jet-in-air flow cytometer. Most preferably, the flow cytometer enables sorting through the use of electrostatic plates.
A corresponding aspect of the invention (not claimed) provides a method of flow cytometry including passing a flow of particles to be analysed through an inspection zone; providing a focussing reflector having one or more foci; converging electromagnetic radiation onto the flow of particles at the inspection zone by reflection from the focussing reflector and aligning the inspection zone with one of the one or more foci.
The foregoing unclaimed aspects may be claimed in either of our divisional specifications referred to above.
BRIEF DESCRIPTION OF DRAWINGS Further aspects of the present invention will become apparent from the following description which is given by way of example only and with reference to the accompanying drawings in which: Figure 1 (a) is a cross-sectional view of one embodiment of an optical apparatus capable of producing an annular beam of electromagnetic radiation; Figure 1 (b) is a section through the beam of Figure 1; Figure 1 (d) is a perspective view of one embodiment of a prism for use in the optical apparatus of Figure 1(a) ; Figure 1(e) is a perspective view of an alternative form of a prism for use in the WO 98/34094 PCT/NZ98/00009 16 optical apparatus of figure 1(a); Figure 1(f) is a perspective view of an alternative prism arrangement for use in the optical apparatus of Figure 1(a); Figure 1(g) is a perspective view of an alternative prism arrangement for use in the optical apparatus of Figure 1(a); Figure 2 is sectional view of a paraboloidal reflector; Figure 3 shows various views though a reflector which includes transmitting and reflecting surfaces; Figure 4 is a cross-sectional view of a possible embodiment for a reflector apparatus; Figure 5 is a cross-sectional view of a possible embodiment for a detector apparatus; Figure 6 is a cross-sectional view of one preferred embodiment of a flow cytometer in accordance with an aspect of the present invention; Figure 7 is a cross-sectional view of a second embodiment of a flow cytometer in accordance with an aspect of the present invention; Figure 8 is a cross-sectional view of a third embodiment of a flow cytometer in accordance with an aspect of the present invention; Figure 9 is a cross-sectional view of a fourth embodiment of a flow cytometer in accordance with an aspect of the present invention; Figure 10 is a cross-sectional view of a fifth embodiment of a flow cytometer in accordance with an aspect of the present invention; Figure 11 is a cross-sectional view of a sixth embodiment of a flow cytometer in accordance with an aspect of the present invention; Figure 12 is a cross-sectional view of a reflector incorporated into a flow nozzle design according to an aspect of the present invention; Printed from Mimosa 08/20/1999 11:36:57 page -18-