본 발명은 고순도 불소(F2)의 제조방법에 관한 것으로, 본 발명에 따라 제조된 불소는 순도 99.999% 이상의 고순도이므로 고순도 삼불화질소(NF3) 제조 등에 유용하게 이용할 수 있다.The present invention relates to a method for producing high purity fluorine (F2 ), and the fluorine prepared according to the present invention can be usefully used for the production of high purity nitrogen trifluoride (NF3 ) since it has high purity of 99.999% or more.
불소는 여러 가지 산업 분야에 많이 이용되고 있으며, 특히 CVD 장치 클리닝제 및 반도체의 에칭제로서 공업적으로 널리 사용되고 있는 삼불화질소 제조 원료로서 점점 그 중요성이 증가하고 있다. 최근 클리닝제 및 에칭제로 사용되는 삼불화질소는 점점 고순도를 요구하고 있다. 특히 삼불화질소 중의 사불화탄소(CF4) 함량의 저감이 중요하고 그 목표치는 10ppm 이하 정도이다.Fluorine is widely used in various industrial fields, and its importance is increasingly increasing as a raw material for producing nitrogen trifluoride, which is widely used industrially as an CVD apparatus cleaning agent and an etching agent for semiconductors. Nitrogen trifluorides, which have recently been used as cleaning and etching agents, increasingly require high purity. In particular, it is important to reduce the carbon tetrafluoride (CF4 ) content in nitrogen trifluoride and the target value is about 10 ppm or less.
삼불화질소의 공업적인 생산 방법은, 양극의 전극재료로서 탄소를 사용하여 불산(HF)을 전기분해해서 불소를 제조하고 이 제조된 불소와 암모니아(NH3) 또는 불화암모늄 등의 암모늄염을 반응시켜서 삼불화질소를 제조하는 방법이 일반적이다(한국 특허공개 제 2003-21661 호 참조).The industrial production method of nitrogen trifluoride is produced by electrolyzing hydrofluoric acid (HF) using carbon as the electrode material of the anode to produce fluorine, and reacting the produced fluorine with an ammonium salt such as ammonia (NH3 ) or ammonium fluoride. A method for producing nitrogen fluoride is common (see Korean Patent Publication No. 2003-21661).
그러나 상기 방법으로 제조된 삼불화질소(NF3)에는 불소의 제조과정에서 생성된 사불화탄소(CF4)가 소량, 보통 20 내지 1,000 ppm 정도 혼입되어 있어 고순도를 요구하는 삼불화질소의 제조에는 문제가 있다는 것이 인식되었다.However, nitrogen trifluoride (NF3 ) prepared by the above method contains a small amount of carbon tetrafluoride (CF4 ) produced during the production of fluorine, usually about 20 to 1,000 ppm, so there is a problem in the production of nitrogen trifluoride requiring high purity. It was recognized.
이 삼불화질소(NF3) 가스 중의 사불화탄소(CF4)의 저감방법으로서 분자체(molecular sieve)에 의한 분리 제거 방법이 제안되고 있지만(일본 특허공개 평3-208806 및 미국 특허 제5,069,690호 참조), 삼불화질소와 사불화탄소는 분자의 크기가 거의 같을 뿐만 아니라 극성도 거의 비슷하기 때문에, 흡착제에 의한 흡착법이나 흡수제와의 접촉에 의한 분리제거 및 냉동증류에 의한 분리제거와 같은 통상의 방법으로 경제적으로 서로 분리하는 것은 매우 어려우며, 사불화탄소를 10ppm 이하로 분리하는 것은 대단히 어렵다.As a method for reducing carbon tetrafluoride (CF4 ) in the nitrogen trifluoride (NF3 ) gas, a separation and removal method using molecular sieves has been proposed (see Japanese Patent Application Laid-Open No. 3-208806 and US Pat. No. 5,069,690). Since nitrogen trifluoride and carbon tetrafluoride have almost the same size and similar polarity, nitrogen trifluoride and carbon tetrafluoride have almost the same polarity. Thus, by conventional methods such as adsorption by an adsorbent, separation by contact with an absorbent and separation by freezing distillation, It is very difficult to separate from each other economically, and it is very difficult to separate carbon tetrafluoride below 10 ppm.
따라서 사불화탄소(CF4)가 적은 고순도 삼불화질소 제조용 고순도 불소의 경제적인 제조 방법의 확립이 절실히 요구된다.Therefore, there is an urgent need to establish an economical method for producing high-purity fluorine for the production of high-purity nitrogen trifluoride containing less carbon tetrafluoride (CF4 ).
따라서, 본 발명자들은 불산(HF)의 전기분해에 의해 불소를 제조하는 방법에 있어서 사용되는 양극재료에 대하여 예의 연구한 결과, 양극 재료용으로서 탄소함량 0.01% 이하 및 순도 99.8% 이상의 니켈을 사용함으로써 사불화탄소(CF4)가 적은 불소 제조가 가능하다는 것을 밝혀내고 본 발명을 완성하게 되었다.Therefore, the present inventors have diligently studied the positive electrode material used in the method for producing fluorine by electrolysis of hydrofluoric acid (HF). As a result, by using nickel having a carbon content of 0.01% or less and a purity of 99.8% or more, It was found that fluorine production with less carbon tetrafluoride (CF4 ) is possible, and the present invention has been completed.
상기 기술적 과제를 이루기 위하여, 본 발명에서는, 불산(HF)을 전기분해하여 불소를 제조하는 방법에 있어서 탄소 함량 0.01% 이하 및 순도 99.8%이상의 니켈을 양극 재료로 사용함을 특징으로 하는, 고순도 불소 제조 방법을 제공한다.In order to achieve the above technical problem, in the present invention, in the method for producing fluorine by electrolytic hydrofluoric acid (HF), a high-purity fluorine production, characterized in that the nickel material of 0.01% or less carbon and 99.8% or more purity as the cathode material Provide a method.
본 발명에서는 또한, 상기 방법에 의해 제조된 불소를 암모니아(NH3) 또는 불화암모늄(NH4FㆍHF)과 반응시켜 삼불화질소(NF3)를 제조하는 방법을 제공한다.The present invention also provides a method for producing nitrogen trifluoride (NF3 ) by reacting fluorine produced by the above method with ammonia (NH3 ) or ammonium fluoride (NH4 FHF).
이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 불산(HF)을 함유하는 용융염을 전기분해하여 불소를 제조하는 방법에 있어서 탄소 함량 0.01% 이하 및 순도 99.8%이상의 니켈을 양극 재료로 사용함을 특징으로 한다.The present invention is characterized in that in the method for producing fluorine by electrolyzing molten salt containing hydrofluoric acid (HF), nickel having a carbon content of 0.01% or less and a purity of 99.8% or more is used as a cathode material.
본 발명에서 출발물질로 사용되는 불산(HF)은 순도 99.8%이상의 고순도의 것이 바람직하다. 순도가 낮으면 사불화탄소(CF4)의 생성량이 증가하여 생성되는 불소의 순도가 저하된다.Hydrofluoric acid (HF) used as a starting material in the present invention is preferably a high purity of 99.8% or more. If the purity is low, the production amount of carbon tetrafluoride (CF4 ) is increased to reduce the purity of the fluorine produced.
본 발명에서 사용되는 양극 전극 재료로서의 니켈은 탄소함유량 0.01%이하이고 동시에 순도 99.8% 이상의 고순도의 것이 사용된다. 니켈 전극 중의 불순물인 탄소 함유량이 높으면 사불화탄소의 생성량이 증가하여 10ppm이하로 하는 것이 불가능하다.Nickel as a positive electrode material used in the present invention is one having a carbon content of 0.01% or less and a high purity of 99.8% or more. If the carbon content, which is an impurity in the nickel electrode, is high, the amount of carbon tetrafluoride produced increases, making it impossible to set it to 10 ppm or less.
본 발명에 따른 불산 전기분해는, 불산과 그의 염, 예를 들면 알칼리금속염을 1.5 내지 3.0: 1 몰비로 함유하는(예를 들면 KF 60중량%, HF 40중량% 함유) 혼합 용융염의 전해액에 상기 조건을 만족하는 니켈 양극과 적절한 재료의 음극, 바람직하게는 니켈 또는 스테인레스강 재질의 음극을 넣고, 여기에 20 내지 1,500 A/m2범위의 전류를 100 내지 4,000 범위의 시간동안 인가함으로써 달성할 수 있다.The hydrofluoric acid electrolysis according to the present invention is carried out in the electrolytic solution of a mixed molten salt containing hydrofluoric acid and a salt thereof, for example an alkali metal salt, in a molar ratio of 1.5 to 3.0: 1 (for example, containing 60% by weight of KF and 40% by weight of HF). This can be achieved by placing a nickel anode satisfying the conditions and a cathode of a suitable material, preferably a nickel or stainless steel cathode, and applying a current in the range of 20 to 1,500 A / m2 for a time in the range of 100 to 4,000. have.
본 발명에 따르면 순도 99.999% 이상 및 사불화탄소 함량 10 ppm 이하의 고순도의 불소가 양극 가스로서 수득되며, 이어서 이를 통상의 삼불화질소 제법인 불소와 암모니아(NH3) 또는 암모늄염과의 반응에 의해 삼불화질소(NF3)를 제조하는데 유용하게 이용할 수 있다 (일본 특허공개 평1-191792, 평5-70982, 미국 특허 제 3,235,474 호 및 제 4,091,081 호 참조).According to the present invention, high purity fluorine having a purity of at least 99.999% and a carbon tetrafluoride content of 10 ppm or less is obtained as an anode gas, which is then reacted by reaction of fluorine with ammonia (NH3 ) or ammonium salt, which is a conventional nitrogen trifluoride recipe. It can be usefully used for producing nitrogen fluoride (NF3 ) (see Japanese Patent Laid-Open Nos. 1- 191792, 5-70982, US Pat. Nos. 3,235,474 and 4,091,081).
하기 실시예로서 본 발명을 설명하나, 본 발명이 이로써 국한되는 것은 아니다. The invention is illustrated by the following examples, but the invention is not so limited.
실시예Example
폭 100mm, 길이 500mm, 높이 400mm, 용적 20L의 전해조로 폭 5mm, 길이 80mm, 높이 300mm의 탄소 함유량 0.01%이하이고 순도 99.8%이상의 니켈 판 3장을 삽입하여, 중앙의 전극은 콜렉터(collector)를 붙여 양극으로 하고 나머지 2장은 음극으로 하였다. 여기에 KF 30Kg 및 HF 20Kg을 공급하고 전해조의 온도를 65~95℃로 유지한 후, 100A/M2의 전류 밀도로 전류를 통전하였다. 운전이 정상으로 된 후 양극에서 발생하는 가스(불소 가스)를 분석한 바 사불화탄소(CF4) 농도는 1.6ppm(부피 기준)이었다.The electrolytic cell of width 100mm, length 500mm, height 400mm, volume 20L is inserted into three nickel plates with a carbon content of less than 0.01% and a purity of 99.8% with a carbon content of 5mm in width, 80mm in length and 300mm in height. The remaining two sheets were the cathode. This was fed to a KF 30Kg and 20Kg, and HF power application and then maintaining the temperature of the electrolytic bath to 65 ~ 95 ℃, current at a current density of 100A / M2. After operation, the gas (fluorine gas) generated at the anode was analyzed and the concentration of carbon tetrafluoride (CF4 ) was 1.6 ppm (by volume).
이어서, 이 불소가스를 사용하여 통상의 방법으로 암모니아와 반응시켜 삼불화질소(NF3)를 포함한 생성 가스를 얻었다. 이 가스를 5% KOH 수용액으로 세정하고 다음으로 건조제를 통해 건조한 후 분자체 5A로 N2O를 제거하여 액체 질소를 냉매로 한 응축기에서 -130℃로 삼불화질소(NF3)를 응축시켰다. 이 응축액을 가스 크로마토그래피에 의해 함량 분석한 결과, 삼불화질소(NF3)안에 포함된 사불화탄소(CF4)의 농도는 8.7ppm이었다.Subsequently, this fluorine gas was used to react with ammonia in a conventional manner to obtain a product gas containing nitrogen trifluoride (NF3 ). The gas was washed with a 5% aqueous KOH solution and then dried through a desiccant, followed by removal of N2 O with molecular sieve 5A to condense nitrogen trifluoride (NF3 ) at -130 ° C in a condenser with liquid nitrogen. As a result of content analysis of the condensate by gas chromatography, the concentration of carbon tetrafluoride (CF4 ) contained in nitrogen trifluoride (NF3 ) was 8.7 ppm.
비교예 1Comparative Example 1
상기 실시예 1과 동일하되, 탄소 함량 0.05%이하 및 순도 98.7%이상의 니켈 판 3장을 사용하여 양극에서 사불화탄소 농도 5.6ppm으로 가스를 수득하였으며, 이 불소 가스를 사용하여 암모니아와 반응시킨 결과 생성된 삼불화질소(NF3)안에 포함된 사불화탄소(CF4)의 농도는 17.8ppm이었다.As in Example 1, using a nickel plate having a carbon content of 0.05% or less and a purity of 98.7% or more, three gases were obtained at a cathode having a carbon tetrafluoride concentration of 5.6 ppm, and the result was the reaction with ammonia using this fluorine gas. The concentration of carbon tetrafluoride (CF4 ) in nitrogen trifluoride (NF3 ) was 17.8 ppm.
비교예 2Comparative Example 2
상기 실시예 1과 동일하되, 전해조 안에 니켈판 대신에 양극으로 탄소판을 음극으로 철판을 삽입하여 사불화탄소 농도 9.2ppm으로 양극 가스를 얻었으며, 이 불소가스를 사용하여 암모니아와 반응시킨 결과 삼불화질소(NF3)안에 포함된 사불화탄소(CF4)의 농도는 38.1ppm이었다.In the same manner as in Example 1, instead of the nickel plate in the electrolytic cell, a carbon plate was inserted into the anode and the iron plate was used as the cathode to obtain a cathode gas at a concentration of 9.2 ppm of carbon tetrafluoride. The concentration of carbon tetrafluoride (CF4 ) contained in (NF3 ) was 38.1 ppm.
본 발명에 따르면, 불산(HF)의 전기분해에 의해 불소를 제조하는 방법에 있어서 종래에 사용되던 탄소 전극을 탄소함량 0.01% 이하 및 순도 99.8% 이상의 니켈 전극으로 변경함으로써 불순물인 사불화탄소(CF4)가 10ppm이하인 불소 가스를 공업적으로 값싸게 제조할 수 있으며, 이 불소 가스는 암모니아(NH3) 또는 불화 암모늄등의 암모늄염과 반응시 사불화탄소(CF4)가 10ppm 이하인 고순도 삼불화질소(NF3)를 제공할 수 있다.According to the present invention, carbon tetrafluoride (CF4) , which is an impurity, is changed by changing a carbon electrode, which is conventionally used in the method of producing fluorine by electrolysis of hydrofluoric acid (HF), to a nickel electrode having a carbon content of 0.01% or less and a purity of 99.8% or more. Fluorine gas with 10 ppm or less) can be industrially produced at low cost, and the fluorine gas has high purity nitrogen trifluoride (NF) having 10 ppm or less carbon tetrafluoride (CF4 ) when reacted with an ammonium salt such as ammonia (NH3 ) or ammonium fluoride.3 ) can be provided.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020030061728AKR100641603B1 (en) | 2003-09-04 | 2003-09-04 | Manufacturing method of high purity fluorine |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020030061728AKR100641603B1 (en) | 2003-09-04 | 2003-09-04 | Manufacturing method of high purity fluorine |
| Publication Number | Publication Date |
|---|---|
| KR20050023950Atrue KR20050023950A (en) | 2005-03-10 |
| KR100641603B1 KR100641603B1 (en) | 2006-11-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020030061728AExpired - LifetimeKR100641603B1 (en) | 2003-09-04 | 2003-09-04 | Manufacturing method of high purity fluorine |
| Country | Link |
|---|---|
| KR (1) | KR100641603B1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
| US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
| US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
| US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
| US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
| US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
| US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
| USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
| US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
| US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
| US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
| US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
| US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
| US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
| US9635220B2 (en) | 2012-07-16 | 2017-04-25 | Flir Systems, Inc. | Methods and systems for suppressing noise in images |
| US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
| US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
| US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
| US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
| US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
| US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
| US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
| US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
| US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
| US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
| US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
| US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
| US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
| US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
| US9918023B2 (en) | 2010-04-23 | 2018-03-13 | Flir Systems, Inc. | Segmented focal plane array architecture |
| US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
| US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
| US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
| US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
| US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
| US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
| US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
| US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
| US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
| US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
| US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
| US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
| US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
| US10996542B2 (en) | 2012-12-31 | 2021-05-04 | Flir Systems, Inc. | Infrared imaging system shutter assembly with integrated thermister |
| US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4010961A1 (en)* | 1990-04-05 | 1991-10-10 | Bayer Ag | ANODES FOR ELECTROCHEMICAL FLUORATION AND FLUORINE PRODUCTION AND METHOD FOR THE PRODUCTION THEREOF |
| SG80671A1 (en)* | 1999-02-10 | 2001-05-22 | Mitsui Chemicals Inc | A process for producing high-purity nitrogen trifluoride gas |
| SG87196A1 (en)* | 1999-12-21 | 2002-03-19 | Mitsui Chemicals Inc | Electrode and electrolyte for use in preparation of nitrogen trifluoride gas, and preparation method of nitrogen trifluoride gas by use of them |
| WO2001077412A1 (en)* | 2000-04-07 | 2001-10-18 | Toyo Tanso Co., Ltd. | Apparatus for generating fluorine gas |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
| US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
| US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
| US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
| US10033944B2 (en) | 2009-03-02 | 2018-07-24 | Flir Systems, Inc. | Time spaced infrared image enhancement |
| US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
| US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
| US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
| US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
| US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
| US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
| US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
| US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
| US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
| US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
| US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
| US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
| US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
| US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
| US9843743B2 (en) | 2009-06-03 | 2017-12-12 | Flir Systems, Inc. | Infant monitoring systems and methods using thermal imaging |
| US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
| US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
| US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
| US9918023B2 (en) | 2010-04-23 | 2018-03-13 | Flir Systems, Inc. | Segmented focal plane array architecture |
| US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
| US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
| US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
| US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
| US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
| US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
| US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
| US9723228B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Infrared camera system architectures |
| US9538038B2 (en) | 2011-06-10 | 2017-01-03 | Flir Systems, Inc. | Flexible memory systems and methods |
| US9716844B2 (en) | 2011-06-10 | 2017-07-25 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
| US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
| US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
| US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
| US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
| US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
| US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
| US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
| US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
| US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
| US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
| US10230910B2 (en) | 2011-06-10 | 2019-03-12 | Flir Systems, Inc. | Infrared camera system architectures |
| US10250822B2 (en) | 2011-06-10 | 2019-04-02 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
| USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
| US9635220B2 (en) | 2012-07-16 | 2017-04-25 | Flir Systems, Inc. | Methods and systems for suppressing noise in images |
| US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
| US10996542B2 (en) | 2012-12-31 | 2021-05-04 | Flir Systems, Inc. | Infrared imaging system shutter assembly with integrated thermister |
| US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
| US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
| Publication number | Publication date |
|---|---|
| KR100641603B1 (en) | 2006-11-02 |
| Publication | Publication Date | Title |
|---|---|---|
| KR100641603B1 (en) | Manufacturing method of high purity fluorine | |
| CN103664712B (en) | A kind of method preparing fluorine sulfimide lithium | |
| CN111039749B (en) | Preparation system and method of electronic-grade carbon tetrafluoride | |
| TW201831729A (en) | Method of producing ammonium persulfate | |
| US4804447A (en) | Method of producing NF3 | |
| EP3680366A1 (en) | Electrode and production method therefor, and production method for regenerated electrode | |
| CN1260120C (en) | Preparation of nitrogen trifluoride | |
| US6361679B1 (en) | Process for producing high-purity nitrogen trifluoride gas | |
| JP3162588B2 (en) | Method for producing high-purity nitrogen trifluoride gas | |
| CN114230549A (en) | A kind of synthetic method of fluorinated vinylene carbonate | |
| US20030017098A1 (en) | Process for producing nitrogen trifluoride and use thereof | |
| CN110980669A (en) | Preparation method of bis (fluorosulfonyl) imide alkali metal salt | |
| CN112744788B (en) | Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF (hydrogen fluoride) produced by fluosilicic acid method | |
| JPH0986909A (en) | Method for producing high-purity nitrogen trifluoride gas | |
| US3345277A (en) | Electrochemical production of sulfur hexafluoride | |
| JPH11189888A (en) | Method for producing sodium persulfate | |
| JPH11293484A (en) | Method for producing ammonium persulfate | |
| KR101462752B1 (en) | Method for recovering nitrogen trifluoride from exhaust gas | |
| KR101411733B1 (en) | Method for the production of nitrogentrifluoride | |
| US5411726A (en) | Process for purifying hydrogen fluoride | |
| RU2355634C1 (en) | Method of high-purity silica preparation | |
| JPH08134675A (en) | Method for producing high-purity nitrogen trifluoride gas | |
| KR100553592B1 (en) | Method for producing high purity nitrogen trifluoride | |
| KR100553987B1 (en) | Method for Purifying Nitrogen Trifluoride Gas | |
| KR101411662B1 (en) | Nickel based electrode and production of nitrogen trifluoride using same |
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application | Patent event code:PA01091R01D Comment text:Patent Application Patent event date:20030904 | |
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection | Comment text:Notification of reason for refusal Patent event date:20050330 Patent event code:PE09021S01D | |
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection | Comment text:Notification of reason for refusal Patent event date:20050926 Patent event code:PE09021S01D | |
| E90F | Notification of reason for final refusal | ||
| PE0902 | Notice of grounds for rejection | Comment text:Final Notice of Reason for Refusal Patent event date:20060321 Patent event code:PE09021S02D | |
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration | Patent event code:PE07011S01D Comment text:Decision to Grant Registration Patent event date:20060918 | |
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment | Comment text:Registration of Establishment Patent event date:20061026 Patent event code:PR07011E01D | |
| PR1002 | Payment of registration fee | Payment date:20061026 End annual number:3 Start annual number:1 | |
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee | Payment date:20091026 Start annual number:4 End annual number:4 | |
| PR1001 | Payment of annual fee | Payment date:20101008 Start annual number:5 End annual number:5 | |
| PR1001 | Payment of annual fee | Payment date:20111014 Start annual number:6 End annual number:6 | |
| FPAY | Annual fee payment | Payment date:20121010 Year of fee payment:7 | |
| PR1001 | Payment of annual fee | Payment date:20121010 Start annual number:7 End annual number:7 | |
| FPAY | Annual fee payment | Payment date:20131001 Year of fee payment:8 | |
| PR1001 | Payment of annual fee | Payment date:20131001 Start annual number:8 End annual number:8 | |
| FPAY | Annual fee payment | Payment date:20141001 Year of fee payment:9 | |
| PR1001 | Payment of annual fee | Payment date:20141001 Start annual number:9 End annual number:9 | |
| FPAY | Annual fee payment | Payment date:20151013 Year of fee payment:10 | |
| PR1001 | Payment of annual fee | Payment date:20151013 Start annual number:10 End annual number:10 | |
| FPAY | Annual fee payment | Payment date:20161006 Year of fee payment:11 | |
| PR1001 | Payment of annual fee | Payment date:20161006 Start annual number:11 End annual number:11 | |
| FPAY | Annual fee payment | Payment date:20171012 Year of fee payment:12 | |
| PR1001 | Payment of annual fee | Payment date:20171012 Start annual number:12 End annual number:12 | |
| FPAY | Annual fee payment | Payment date:20191014 Year of fee payment:14 | |
| PR1001 | Payment of annual fee | Payment date:20191014 Start annual number:14 End annual number:14 | |
| PR1001 | Payment of annual fee | Payment date:20201014 Start annual number:15 End annual number:15 | |
| PR1001 | Payment of annual fee | Payment date:20211012 Start annual number:16 End annual number:16 | |
| PR1001 | Payment of annual fee | Payment date:20221026 Start annual number:17 End annual number:17 | |
| PC1801 | Expiration of term | Termination date:20240304 Termination category:Expiration of duration |