Movatterモバイル変換


[0]ホーム

URL:


KR100461869B1 - Control method of conveying system - Google Patents

Control method of conveying system
Download PDF

Info

Publication number
KR100461869B1
KR100461869B1KR10-2002-0038751AKR20020038751AKR100461869B1KR 100461869 B1KR100461869 B1KR 100461869B1KR 20020038751 AKR20020038751 AKR 20020038751AKR 100461869 B1KR100461869 B1KR 100461869B1
Authority
KR
South Korea
Prior art keywords
unmanned
work
carrier
calculating
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2002-0038751A
Other languages
Korean (ko)
Other versions
KR20040003921A (en
Inventor
강연일
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사filedCritical삼성전자주식회사
Priority to KR10-2002-0038751ApriorityCriticalpatent/KR100461869B1/en
Priority to US10/281,962prioritypatent/US6904343B2/en
Priority to CNB021543933Aprioritypatent/CN1215425C/en
Priority to JP2002378526Aprioritypatent/JP2004038921A/en
Publication of KR20040003921ApublicationCriticalpatent/KR20040003921A/en
Application grantedgrantedCritical
Publication of KR100461869B1publicationCriticalpatent/KR100461869B1/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromKorean

본 발명은 다수의 무인반송차를 구비하고, 이를 효율적인 운용을 하기 위한 무인반송 시스템의 제어방법에 관한 것으로, 각 무인반송차의 각 작업 수행시 소요비용을 산출하는 단계와, 상기 각 무인반송차와 상기 각 작업간의 경우의 수를 산출하는 단계와, 상기 각 경우의 수의 각 무인반송차의 소요비용의 총 합을 각각 산출하는 단계와, 상기 각 경우의 수의 무인반송차의 소요비용의 총 합 중 큰 값을 각각 산출하고 그 중 가장 작은 값에 해당하는 경우의 수에 따라 상기 각 무인반송차의 작업경로를 산출하는 단계를 포함함으로써, 현재의 작업뿐만이 아니라 다음 진행될 작업을 고려하여 최적의 작업경로를 제어함으로써 작업시간을 절감할 수 있어 생산성을 향상시키는 효과가 있으며, 다양한 형태의 무인반송시스템에 적용할 수 있다.The present invention relates to a control method of an unmanned transport system having a plurality of unmanned transport vehicles, and for efficient operation thereof, the method comprising calculating a cost required to perform each task of each unmanned transport vehicle, and each unmanned transport vehicle. And calculating the number of cases between each operation, calculating the total sum of the costs of each unmanned carrier of the number of each case, and the costs of the number of unmanned carriers of each case. Computing a larger value of the total and calculating the working path of each unmanned vehicle according to the number of cases corresponding to the smallest value, thereby considering not only the current work but also the next work to be performed. By controlling the work path of the system, it is possible to reduce the working time and improve productivity. It can be applied to various types of unmanned transport systems.

Description

Translated fromKorean
무인반송 시스템의 제어방법{Control method of conveying system}Control method of unmanned conveying system

본 발명은 무인반송 시스템에 관한 것으로, 더욱 상세하게는 다수의 무인반송차를 구비하고, 이를 효율적인 운용을 하기 위한 무인반송 시스템의 제어방법에 관한 것이다.The present invention relates to an unmanned transport system, and more particularly, to a control method of an unmanned transport system having a plurality of unmanned transport vehicles, for efficient operation thereof.

일반적으로 무인반송 시스템은 물건의 적재, 운반을 자동화하기 위한 것으로 무인 반송차(Auto Guided Vehicle; AGV)를 이용한다. 통상 무인반송차는 바닥에 설치된 가이드 라인을 따라 적재물을 이동시키는 장치이다. 상기한 무인반송차는 이동하는 이동경로 상에 마그네트 테이프로된 연속적인 가이드라인을 설치하고, 마그네트 센서를 통하여 그 가이드라인을 검출함으로써 연속적인 가이드라인을 따라 무인반송차가 주행을 한다.In general, an unmanned transport system uses an Auto Guided Vehicle (AGV) to automate the loading and transport of goods. In general, an unmanned carrier is a device for moving a load along a guide line installed at the bottom. The unmanned carrier carries a continuous guideline made of magnet tape on a moving path and detects the guideline through a magnet sensor so that the unmanned carrier runs along the continuous guideline.

도 1은 종래의 무인반송 시스템의 동작을 설명하기 위한 설명도이다.1 is an explanatory diagram for explaining the operation of the conventional unmanned transfer system.

도 1을 참조하면, 종래의 무인반송시스템은 다수의 작업(J1, J2 및 J3)이 존재하는 이동경로(10) 상에서 하나의 무인반송차(20)가 상기 작업(J1, J2 및 J3)을수행한다. 이때 무인반송차(20)는 메인제어장치(30)로부터 전송되는 작업명령을 수신하고 이동경로(10)를 이동하면서 작업을 수행하는데 수신되는 작업명령의 순서에 따라 작업을 수행한다.Referring to FIG. 1, in the conventional unmanned transportation system, one unmanned vehicle 20 carries out the operations J1, J2, and J3 on a movement path 10 in which a plurality of operations J1, J2, and J3 exist. To perform. At this time, the unmanned vehicle 20 receives the work command transmitted from the main control device 30 and performs the work according to the order of the work command received to perform the work while moving the movement path 10.

도 2는 종래의 무인반송 시스템의 동작을 설명하기 위한 제어 흐름도이다.2 is a control flowchart for explaining the operation of the conventional unmanned transfer system.

도 2를 참조하면, 먼저 무인반송차(20)는 데이터를 초기화를 한다(S10). 데이터의 초기화가 완료되면 메인제어장치(30)로부터 작업명령을 받아 수행할 작업내용을 설정한다(S20). 이때 무인반송차(20)는 선입선출 룰에 따라 메인제어장치(30)로부터 전달받은 작업명령을 수신된 순서대로 작업내용을 설정한다.Referring to FIG. 2, first, the unmanned vehicle 20 initializes data (S10). When the initialization of the data is completed, and receives the work command from the main control device 30 to set the work content to be performed (S20). At this time, the unmanned vehicle 20 sets the work contents in the order in which the work commands received from the main control device 30 are received according to the first-in first-out rule.

무인반송차(20)는 작업을 실시할 준비가 완료되었는지를 판단한다(S30). 단계(S30)에서 작업준비가 완료되었다고 판단되면 단계(S20)에서 설정된 작업내용에 따라 무인반송차(20)는 이동경로(10)를 이동하면서 작업을 실시한다(S40). 이때 무인반송차(20)는 전술한 바와 같이 선입선출의 룰에 따라 먼저 받은 명령을 먼저 수행한다. 그리고 현재의 작업이 완료되었는지를 판단하다(S50). 단계(S50)에서 현재 작업이 완료되었다고 판단되면 명령받은 모든 작업이 종료되었는지를 판단한다(S60). 단계(S60)에서 모든 작업이 완료되었다고 판단되면 종료한다.The unmanned vehicle 20 determines whether it is ready to perform the operation (S30). When it is determined that the work preparation is completed in step S30, the unmanned vehicle 20 performs the work while moving the movement path 10 according to the work contents set in the step S20 (S40). At this time, the unmanned vehicle 20 performs the command received first according to the first-in, first-out rule as described above. And it is determined whether the current work is completed (S50). If it is determined in step S50 that the current job is completed, it is determined whether all of the commanded jobs are finished (S60). If it is determined in step S60 that all the work is completed, the process ends.

전술한 바와 같이 종래의 무인반송시스템은 이동경로상에 하나의 무인반송차를 구비하고 선입선출의 룰에 따라 먼저 입력된 작업명령을 먼저 수행한다. 즉, 작업순서가 작업 J1 - 작업 J3 - 작업 J2의 순서일 경우 무인반송차(20)는 작업 J1을 수행한 후 J2를 통과하여 작업 J3의 위치까지 이동한 후 작업 J3을 실시한다. 그리고 나서 무인반송차(20)는 다시 J2의 위치까지 이동한 후 작업 J2를 실시한다.As described above, the conventional unmanned transport system includes one unmanned transport vehicle on a movement path and first performs a work command inputted first according to a first-in first-out rule. That is, when the work order is the order of job J1-job J3-job J2, the unmanned vehicle 20 performs the job J1 and then moves through the J2 to the position of the job J3 and then performs the job J3. Then, the unmanned vehicle 20 moves to the position of J2 again, and performs the operation J2.

따라서 종래의 무인반송 시스템은 한 이동경로상에 하나의 무인반송차를 이용하고 거리에 관계없이 먼저 발생된 작업을 먼저 수행하기 때문에 이동거리가 불필요하게 길어지고, 이에 따라 상당한 작업시간이 소요되었기 때문에 작업의 효율성이 떨어지고 이로 인하여 생산성이 저하되는 문제점이 있었다.Therefore, the conventional unmanned transportation system unnecessarily lengthens the moving distance because it uses one unmanned vehicle on one movement path and performs the work that occurred first regardless of the distance. There is a problem that the efficiency of the work is reduced and thereby the productivity is lowered.

본 발명은 이와 같은 문제점을 해결하기 위한 것으로, 다수의 무인반송차를 구비하고, 이를 효율적인 운용을 하기 위한 무인반송 시스템의 제어방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a control method of an unmanned transport system for providing a plurality of unmanned transport vehicles and efficient operation thereof.

도 1a는 종래의 무인반송시스템을 설명하기 위한 설명도이다.1A is an explanatory diagram for explaining a conventional unmanned transfer system.

도 1b는 종래의 무인 반송시스템의 제어방법을 설명하기 위한 제어 흐름도이다.1B is a control flowchart for explaining a control method of a conventional unmanned carrier system.

도 2는 본 발명에 따른 무인반송차의 구성을 설명하기 위한 블록도이다.2 is a block diagram illustrating the configuration of an unmanned carrier vehicle according to the present invention.

도 3은 본 발명에 따른 무인반송차의 경로검출을 설명하기 위한 블록도이다.3 is a block diagram illustrating the path detection of the unmanned vehicle according to the present invention.

도 4는 본 발명에 따른 무인 반송시스템의 구성을 설명하기 위한 블록도이다.4 is a block diagram illustrating the configuration of an unmanned carrier system according to the present invention.

도 5는 본 발명에 따른 무인반송시스템의 제어방법을 설명하기 위한 흐름도이다.5 is a flowchart illustrating a control method of the unmanned transport system according to the present invention.

도 6은 본 발명에 따른 무인반송시스템의 제어방법 설명하기 위한 상세 흐름도이다.6 is a detailed flowchart illustrating a control method of the unmanned transport system according to the present invention.

도 7은 종래와 본 발명에 따른 무인반송시스템의 제어방법의 차이점을 설명하기 위한 설명도이다.7 is an explanatory diagram for explaining the difference between the conventional method and the control method of the unmanned transfer system according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100A:제 1 무인반송차 100B:제 2 무인반송차100A: 1st Unmanned Carrier 100B: 2nd Unmanned Carrier

110:입력부 120:자이로센서110: input unit 120: gyro sensor

131:제 1 트랙감지부 132:제 2 트랙감지부131: first track detection unit 132: second track detection unit

140:이동거리감지부 150:저장부140: moving distance detection unit 150: storage unit

160:제어부 170:주행부160: control unit 170: driving unit

180:로봇부 190:인터페이스부180: robot unit 190: interface unit

200:메인제어장치200: main controller

상기 목적을 달성하기 위한 본 발명에 따른 물류반송 시스템의 제어방법은,각 무인반송차의 작업소요시간에 따라 작업경로를 설정하는 설정단계, 상기 설정단계의 설정내용에 따라 상기 무인반송차를 제어하는 제어단계를 포함하는 것을 특징으로 한다.In the control method of the logistics transport system according to the present invention for achieving the above object, a setting step of setting the work path according to the work time of each unmanned carrier, control the unmanned carrier according to the setting contents of the setting step It characterized in that it comprises a control step.

이하에서는 본 발명에 따른 바람직한 실시 예를 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 무인반송차의 구성을 설명하기 위한 블록도이다.2 is a block diagram illustrating the configuration of an unmanned carrier vehicle according to the present invention.

도 2를 참조하면, 본 발명에 따른 무인반송차(100)는, 전체 동작을 제어하기 위한 제어부(160)를 구비하며, 무인반송차(!00)의 작동을 설정하기 위한 입력부(110)가 상기 제어부(160)와 접속된다. 상기 입력부(110)는 수동으로 정보를입력하기 위한 키입력부를 포함한다.Referring to FIG. 2, the unmanned vehicle 100 according to the present invention includes a controller 160 for controlling the overall operation, and the input unit 110 for setting the operation of the unmanned vehicle (! 00) is provided. It is connected to the control unit 160. The input unit 110 includes a key input unit for manually inputting information.

또한 본 발명에 따른 무인반송차(100)는, 무인반송차(100)의 이동 경로상에 마련된 가이드태그를 검출하며 무인반송차(100)의 전단에 마련되는 제 1 트랙감지부(131) 및 무인반송차(100)의 후단에 마련되는 제 2 트랙감지부(132)와, 무인반송차(100)의 이동거리를 검출하기 위한 이동거리 감지부(140)가 제어부(160)와 전기적으로 접속된다. 또한 본 발명에 따른 무인반송차(100)는 무인반송차(100)의 제어프로그램과 상기 입력부(110)를 통하여 입력된 정보 및 작동 중 발생하는 데이터를 저장하는 저장부(150)를 구비하며, 상기 저장부(150)는 제어부(160)와 전기적으로 접속된다. 또한 본 발명에 따른 무인반송차(100)는 제어부(160)의 제어에 따라 휠(미도시)을 구동하여 무인반송차(100)를 이동시키는 주행부(170)와, 제어부(160)의 제어에 따라 로봇을 구동하는 로봇구동부(180)를 포함한다. 또한 메인제어장치(200)와 무선접속할 수 있도록 인터페이스부(190)가 제어부(160)에 접속된다.In addition, the unmanned transport vehicle 100 according to the present invention detects a guide tag provided on a moving path of the unmanned transport vehicle 100 and is provided with a first track sensing unit 131 provided at the front end of the unmanned transport vehicle 100 and The second track detecting unit 132 provided at the rear end of the unmanned vehicle 100 and the moving distance detecting unit 140 for detecting the moving distance of the unmanned vehicle 100 are electrically connected to the control unit 160. do. In addition, the unmanned vehicle 100 according to the present invention includes a control program for the unmanned vehicle 100 and a storage unit 150 for storing information input during the operation and information input through the input unit 110, The storage unit 150 is electrically connected to the control unit 160. In addition, the unmanned vehicle 100 according to the present invention drives the wheel (not shown) under the control of the control unit 160, the driving unit 170 for moving the unmanned vehicle 100, and the control of the controller 160 In accordance with the robot driving unit 180 for driving. In addition, the interface unit 190 is connected to the controller 160 so as to wirelessly connect with the main controller 200.

전술한 제 1 트랙감지부(131) 및 제 2 트랙감지부(132)는 상기 가이드 태그를 검출하기 위한 것으로 자기장을 감지할 수 있는 센서로 구현이 가능하다. 또한 상기 이동거리 감지부(140)는 무인반송차의 주행을 위한 휠에 설치되는 엔코더로 구현이 가능하며, 제어부(160)는 엔코더의 출력 펄스를 카운트하여 주행거리를 산출한다.The first track detection unit 131 and the second track detection unit 132 described above are for detecting the guide tag and may be implemented as a sensor capable of sensing a magnetic field. In addition, the movement distance detecting unit 140 may be implemented as an encoder installed on the wheel for driving of the unmanned vehicle, the controller 160 calculates the driving distance by counting the output pulse of the encoder.

도 3은 본 발명에 따른 가이드 태그를 설명하기 위한 설명도이다.3 is an explanatory diagram for explaining a guide tag according to the present invention.

상기 가이드 태그(320)는 무인반송차(100)의 이동경로(310) 상에 소정거리간격으로 마련되며 소정의 길이를 갖는 마그네틱 태그이다. 상기 가이드 태그(320)는 제 1 및 제 2 트랙감지부(131 및 132) 사이의 거리만큼 이격된 간격으로 한 쌍이 마련된다.The guide tag 320 is a magnetic tag provided at a predetermined distance interval on the movement path 310 of the unmanned vehicle 100 and has a predetermined length. The guide tag 320 is provided in pairs at intervals spaced apart by the distance between the first and second track detection units 131 and 132.

도 4는 본 발명에 따른 무인반송시스템의 구성을 설명하기 위한 블록도이다. 도 4를 참조하면, 이동경로(310)상에는 다수의 작업 J1, J2 및 J3이 위치하며, 각 작업을 행하기 위한 제 1 무인반송차(100A)와 제 2 무인반송차(100B)가 마련된다. 상기 제 1 무인반송차(100A) 및 제 2 무인반송차(100B)는 도 2에 도시한 구성과 동일하다.4 is a block diagram illustrating the configuration of an unmanned transport system according to the present invention. Referring to FIG. 4, a plurality of jobs J1, J2, and J3 are located on the movement path 310, and a first unmanned carrier 100A and a second unmanned carrier 100B are provided to perform each job. . The first unmanned carrier 100A and the second unmanned carrier 100B have the same configuration as that shown in FIG.

이하에서는 본 발명에 따른 동작을 설명하도록 한다.Hereinafter will be described the operation according to the present invention.

도 5 및 도 6은 본 발명에 따른 제어방법을 설명하기 위한 제어 흐름도이다.5 and 6 are control flowcharts illustrating a control method according to the present invention.

먼저 작업설정을 한다(S100). 작업설정을 하기 위해서는 작업내용을 산출한다(S110). 이를 위해 경로상의 작업 및 무인반송차의 수를 설정한다. 그리고 산출된 작업내용에 따라 경우의 수를 산출하다(S120).First work setting (S100). In order to set the job, the job content is calculated (S110). To do this, set the number of tasks and unmanned carriages on the route. And the number of cases is calculated according to the calculated work content (S120).

단계(S120)에서 서로 다른 n개의 작업 을 r개(n≥r)의 무인반송차에 할당했을 경우 경우의 수는 nPr=n!/(n-r)!가 된다. 본 발명의 실시 예와 같이 J1, J2 및 J3의 작업이 있고, 무인반송차가 2대일 경우 3P2= 3!/(3-2)!=6이 된다. 즉, 6가지의 경우가 발생하게 되는데, 각각은 다음과 같다.In the case of assigning n different jobs to r unmanned carriers in step S120, the number becomes nPr = n! / (N-r) !. As in the embodiment of the present invention, when there are operations of J1, J2, and J3, and there are two unmanned carriages, 3P2 = 3! / (3-2)! = 6. That is, six cases occur, each as follows.

1) 작업 J1에 제 1 무인반송차, 작업 J2에 제 2 무인반송차가 할당된 경우1) A first unmanned carrier is assigned to job J1 and a second unmanned carrier is assigned to job J2.

2) 작업 J1에 제 2 무인반송차, 작업 J2에 제 1 무인반송차가 할당된 경우2) A second unmanned carrier is assigned to job J1 and a first unmanned carrier is assigned to job J2.

3) 작업 J2에 제 1 무인반송차, 작업 J2에 제 2 무인반송차가 할당된 경우3) The first unmanned carrier is assigned to job J2 and the second unmanned carrier is assigned to job J2.

4) 작업 J2에 제 2 무인반송차, 작업 J2에 제 1 무인반송차가 할당된 경우4) A second unmanned carrier is assigned to job J2 and a first unmanned carrier is assigned to job J2.

5) 작업 J3에 제 1 무인반송차, 작업 J2에 제 2 무인반송차가 할당된 경우5) The first unmanned carrier is assigned to job J3 and the second unmanned carrier is assigned to job J2.

6) 작업 J3에 제 2 무인반송차, 작업 J2에 제 1 무인반송차가 할당된 경우6) A second unmanned carrier is assigned to job J3 and a first unmanned carrier is assigned to job J2.

또한, 상기한 첫번째의 경우에 대하여 무인반송차가 할당되지 않은 작업, 즉 작업 J3에 대하여 제 1 무인반송차 혹은 제 2 무인반송차가 할당될 수 있다. 이는 상기한 경우 중 나머지 2) 내지 6)의 경우에도 동일하다.In addition, in the first case, the first unmanned carrier or the second unmanned carrier may be allocated to the job to which the unmanned carrier is not assigned, that is, the job J3. The same applies to the other cases 2) to 6).

즉, 본 발명의 실시 예와 같이 J1, J2 및 J3의 작업이 있고, 무인반송차가 2대일 경우, 모두 12가지의 경우의 수가 발생하게 된다.That is, when there are operations of J1, J2, and J3 as in the embodiment of the present invention, and there are two unmanned carriers, all 12 cases are generated.

상기한 12가지의 경우에 대하여 현재 작업에 소용되는 비용을 산출하면 [표 1]과 같이 나타낼 수 있다. 이때 비용은 소요되는 작업시간에 비례한다. 즉, 상기 [표 1]은 제 1 반송차 및 제 2 반송차가 작업 J1, J2 및 J3을 각각 수행하는데 소요되는 비용을 도시한 것이다.For the 12 cases described above, the cost used for the current work may be calculated as shown in [Table 1]. The cost is proportional to the work time required. That is, the above [Table 1] shows the cost for the first and second carriers to perform the operations J1, J2 and J3, respectively.

[표 1]TABLE 1

제 1 반송차First carrier제 2 반송차Second carrier작업 J1Job J1비용 C1Cost C1비용 C4Cost C4작업 J2Work J2비용 C2Cost C2비용 C5Cost C5작업 J3Operation J3비용 C3Cost C3비용 C6Cost C6

[표 1]에 따라서 각 무인반송차가 각각의 작업을 수행하는데 소요되는 비용산출이 완료되면, 상기한 12가지의 경우 각각에 대하여 제 1 무인반송차(100A)및 제 2 무인반송차(100B) 각각이 작업 J1, J2 혹은 J3을 수행하는데 소요되는 총 비용을 산출한다. 이에 따라 상기 12가지 경우마다 각각 제 1 무인반송차(100A) 및 제 2 무인반송차(100B)의 총 소요비용이 산출된다(S130).According to Table 1, when the cost calculation for each unmanned carrier is completed, the first unmanned carrier 100A and the second unmanned carrier 100B for each of the above 12 cases are completed. Estimate the total cost of each to perform job J1, J2 or J3. Accordingly, in each of the 12 cases, the total required cost of the first unmanned carrier 100A and the second unmanned carrier 100B is calculated (S130).

메인제어장치(200)는 12가지 경우의 각각 마다 제 1 무인반송차(100A)의 총 소요비용과 제 2 무인반송차(100B)의 총 소요비용 중 큰 값을 산출한다. 그리고 12가지 경우의 산출된 값 중 가장 작은 값을 가지는 경우를 선택한다(S140).The main controller 200 calculates a larger value of the total cost of the first unmanned vehicle 100A and the total cost of the second unmanned vehicle 100B in each of the 12 cases. Then, the case having the smallest value among the calculated values of 12 cases is selected (S140).

그리고 메인제어장치(200)는 상기 선택된 경우에 따라 제 1 무인반송차(100A) 및 제 2 무인반송차(100B)에 의한 작업 J1, J2 및 J3의 작업경로를 설정한다(S150).The main controller 200 sets the work paths of the jobs J1, J2, and J3 by the first unmanned vehicle 100A and the second unmanned vehicle 100B according to the selected case (S150).

메인제어장치(200)는 설정된 작업경로(310)에 따른 작업명령을 제 1 무인반송차(100A) 및 제 2 무인반송차(100B)로 전송한다(S160). 이에 따라 제 1 무인반송차(100A) 및 제 2 무인반송차(100B)는 메인제어장치(200)가 전송하는 작업명령에 따라 작업할 무인반송차를 설정(S200)하게 되고 작업을 실시한다(S300).The main control apparatus 200 transmits a work command according to the set work path 310 to the first unmanned carrier 100A and the second unmanned carrier 100B (S160). Accordingly, the first unmanned vehicle 100A and the second unmanned vehicle 100B set an unmanned carrier to work according to a work command transmitted from the main control apparatus 200 (S200) and perform work ( S300).

도 7은 종래와 본 발명에 따른 무인반송시스템의 제어방법의 차이점을 설명하기 위한 설명도이다. 도 7을 참조하면, 본 발명에 따른 무인반송시스템의 제어방법에 의하면 △T만큼의 시간이 절감됨으로써 전체 작업완료시간을 감소시킴을 알 수 있다.7 is an explanatory diagram for explaining the difference between the conventional method and the control method of the unmanned transfer system according to the present invention. Referring to Figure 7, according to the control method of the unmanned transfer system according to the present invention it can be seen that by reducing the time by ΔT to reduce the overall work completion time.

전술한 바와 같이 본 발명에 따른 무인반송시스템의 제어방법에 의하면, 현재의 작업뿐만이 아니라 다음 진행될 작업을 고려하여 최적의 작업경로를 제어함으로써 작업시간을 절감할 수 있어 생산성을 향상시키는 효과가 있으며, 다양한 형태의 무인반송시스템에 적용할 수 있다.As described above, according to the control method of the unmanned transfer system according to the present invention, it is possible to reduce the working time by controlling the optimum work path in consideration of the work to be carried out as well as the current work, thereby improving productivity. It can be applied to various types of unmanned transport systems.

Claims (3)

Translated fromKorean
다수의 무인반송차를 포함하는 무인반송시스템의 제어방법에 있어서,In a control method of an unmanned transport system including a plurality of unmanned transport,상기 각 무인반송차의 각 작업 수행시 소요비용을 산출하는 단계와,Calculating a cost required to perform each operation of each unmanned carrier;상기 각 무인반송차와 상기 각 작업간의 경우의 수를 산출하는 단계와,Calculating the number of cases between each unmanned carrier and each operation;각 경우의 수의 상기 각 무인반송차의 소요비용의 총 합을 각각 산출하는 단계와,Calculating the total sum of the costs of each unmanned carrier in each case, and각 경우의 수의 상기 무인반송차의 소요비용의 총 합 중 큰 값을 각각 산출하고, 그 중 가장 작은 값에 해당하는 경우의 수에 따라 상기 각 무인반송차의 작업경로를 산출하는 단계와,Calculating a large value of the total sum of the costs of the unmanned vehicle in each case, and calculating a working route of each unmanned vehicle according to the number of cases corresponding to the smallest value;상기 작업경로를 산출하는 단계의 산출내용에 따라 상기 무인반송차를 제어하는 제어단계를 포함하는 것을 특징으로 하는 무인반송시스템의 제어방법.And a control step of controlling the unmanned vehicle according to the calculation contents of the calculating of the work path.삭제delete제 1 항에 있어서,The method of claim 1,상기 소요비용은 상기 무인반송차가 상기 작업을 수행하는데 소요되는 시간인 것을 특징으로 하는 무인반송시스템의 제어방법.The required cost is a control method of the unmanned carrier system, characterized in that the time required for the unmanned carrier to perform the operation.
KR10-2002-0038751A2002-07-042002-07-04Control method of conveying systemExpired - Fee RelatedKR100461869B1 (en)

Priority Applications (4)

Application NumberPriority DateFiling DateTitle
KR10-2002-0038751AKR100461869B1 (en)2002-07-042002-07-04Control method of conveying system
US10/281,962US6904343B2 (en)2002-07-042002-10-29Method of controlling automatic guided vehicle system
CNB021543933ACN1215425C (en)2002-07-042002-12-04Method for controlling automatically led traffic tools system
JP2002378526AJP2004038921A (en)2002-07-042002-12-26 Control method of unmanned transfer system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
KR10-2002-0038751AKR100461869B1 (en)2002-07-042002-07-04Control method of conveying system

Publications (2)

Publication NumberPublication Date
KR20040003921A KR20040003921A (en)2004-01-13
KR100461869B1true KR100461869B1 (en)2004-12-14

Family

ID=29775011

Family Applications (1)

Application NumberTitlePriority DateFiling Date
KR10-2002-0038751AExpired - Fee RelatedKR100461869B1 (en)2002-07-042002-07-04Control method of conveying system

Country Status (4)

CountryLink
US (1)US6904343B2 (en)
JP (1)JP2004038921A (en)
KR (1)KR100461869B1 (en)
CN (1)CN1215425C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR100506926B1 (en)*2003-07-162005-08-09삼성전자주식회사working-system for one path and control method thereof

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR100478451B1 (en)*2002-07-052005-03-22삼성전자주식회사Control method of conveying system
US20060064212A1 (en)*2004-09-222006-03-23Cycle Time CorporationReactive automated guided vehicle vision guidance system
US8000837B2 (en)*2004-10-052011-08-16J&L Group International, LlcProgrammable load forming system, components thereof, and methods of use
US7991521B2 (en)*2006-02-012011-08-02Jervis B. Webb CompanyVariable path automated guided vehicle
US8220710B2 (en)2006-06-192012-07-17Kiva Systems, Inc.System and method for positioning a mobile drive unit
US7920962B2 (en)2006-06-192011-04-05Kiva Systems, Inc.System and method for coordinating movement of mobile drive units
US7912574B2 (en)2006-06-192011-03-22Kiva Systems, Inc.System and method for transporting inventory items
US8538692B2 (en)2006-06-192013-09-17Amazon Technologies, Inc.System and method for generating a path for a mobile drive unit
US20130302132A1 (en)2012-05-142013-11-14Kiva Systems, Inc.System and Method for Maneuvering a Mobile Drive Unit
US8769807B2 (en)2007-10-022014-07-08Android Industries LlcApparatus for processing a tire-wheel assembly including weight application and balancing sub-stations
US9453606B2 (en)2007-12-262016-09-27Smart Pipe Company, Inc.Movable factory for simultaneous mobile field manufacturing and installation of non-metallic pipe
US8275480B2 (en)*2009-11-172012-09-25Toyota Motor Engineering & Manufacturing North America, Inc.Methods and systems for transporting parts from a primary process to a secondary process in a first in, first out fashion
US8386399B2 (en)2010-09-132013-02-26Toyota Motor Engineering & Manufacturing North America, Inc.Methods for selecting transportation parameters for a manufacturing facility
JP5420510B2 (en)*2010-09-302014-02-19本田技研工業株式会社 Control device for autonomous vehicle
US8910733B2 (en)2011-02-142014-12-16Android Industries LlcChassis for a vehicle
JP5786941B2 (en)*2011-08-252015-09-30日産自動車株式会社 Autonomous driving control system for vehicles
CN102520724B (en)*2011-12-292013-07-24无锡普智联科高新技术有限公司Compact universal moving mechanism for automatic guided vehicle (AGV) and AGV transportation vehicle
EP2645196B1 (en)*2012-03-302018-12-12The Boeing CompanyNetwork of unmanned vehicles
WO2013167889A2 (en)2012-05-082013-11-14Smart Pipe Company Inc.Movable factory for simultaneous mobile field manufacturing and installation of non-metallic pipe
US9675374B2 (en)*2014-03-242017-06-13Ethicon LlcUltrasonic forceps
US9268334B1 (en)*2014-08-122016-02-23GM Global Technology Operations LLCAutomated guided cart system control
CN105204462B (en)*2015-08-172018-03-27国家电网公司The matching process of AGV quantity and task in AGV Production Scheduling Systems
KR101681465B1 (en)2016-06-132016-12-02서선자Direct fired baking pan
DE102016217330A1 (en)*2016-09-122018-03-15Volkswagen Aktiengesellschaft Method for operating a vehicle and control unit for carrying out the method
WO2018064639A1 (en)2016-09-302018-04-05Staples, Inc.Hybrid modular storage fetching system
US10589931B2 (en)2016-09-302020-03-17Staples, Inc.Hybrid modular storage fetching system
US10683171B2 (en)2016-09-302020-06-16Staples, Inc.Hybrid modular storage fetching system
CN106406264A (en)*2016-11-282017-02-15龙岩烟草工业有限责任公司Piler scheduling method and device
CN107067779A (en)*2016-11-302017-08-18英华达(上海)科技有限公司 Automated guided vehicle traffic control system and method
CN106743325B (en)*2017-01-162019-04-05上海浩亚机电股份有限公司A kind of control method and system of bootstrap trolley
CN109656243B (en)*2017-10-122022-04-05杭州海康机器人技术有限公司 An AGV control method, control system, electronic device and storage medium
CN110309993B (en)*2018-03-272022-04-05杭州海康机器人技术有限公司AGV task allocation method and device for automatic guided transport vehicle
CN108594813B (en)*2018-04-182021-04-09苏州大学张家港工业技术研究院Task allocation method for multiple cleaning robots in large-scale indoor environment
US11590997B1 (en)2018-08-072023-02-28Staples, Inc.Autonomous shopping cart
US11084410B1 (en)2018-08-072021-08-10Staples, Inc.Automated guided vehicle for transporting shelving units
US11630447B1 (en)2018-08-102023-04-18Staples, Inc.Automated guided vehicle for transporting objects
CN109711723B (en)*2018-12-262021-10-12广东嘉腾机器人自动化有限公司AGV task allocation method, storage device and scheduling system
US11119487B2 (en)2018-12-312021-09-14Staples, Inc.Automated preparation of deliveries in delivery vehicles using automated guided vehicles
US11180069B2 (en)2018-12-312021-11-23Staples, Inc.Automated loading of delivery vehicles using automated guided vehicles
US11124401B1 (en)2019-03-312021-09-21Staples, Inc.Automated loading of delivery vehicles
US12189401B2 (en)2019-10-212025-01-07Te Connectivity Solutions GmbhAutonomous mobile vehicle
CN111752302B (en)*2020-02-262021-09-10广州极飞科技股份有限公司Path planning method and device, electronic equipment and computer readable storage medium
CN112001590B (en)*2020-07-202024-05-10浙江华睿科技股份有限公司AGV rest task distribution method, AGV rest task distribution device, computer equipment and storage medium
CN112465192B (en)*2020-11-062024-05-17浙江华睿科技股份有限公司Task scheduling method, device, equipment and medium
CN114326608B (en)*2021-11-302024-05-31云南昆船智能装备有限公司AGV group system based on multiple agents
CN118034327B (en)*2024-04-122024-09-10西安航天动力试验技术研究所Commanding and dispatching system and method for engine test

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH01187607A (en)*1988-01-211989-07-27Komatsu Ltd Automatic guided vehicle operation program creation device
JPH0231210A (en)*1988-07-211990-02-01Nippon Sharyo Seizo Kaisha LtdUnmanned carrier guiding device
KR900005917A (en)*1988-10-051990-05-07앰바스츠 에밀리오 Expandable Bags
KR900005917B1 (en)*1987-11-251990-08-16삼성전자 주식회사 Parts supply system using a plurality of unmanned vehicle and control method
KR950017684A (en)*1993-12-101995-07-20스즈끼 아끼오 Operation management control device and method
WO2002033498A2 (en)*2000-10-162002-04-25Matsushita Electric Industrial Co., Ltd.Automated guided vehicle, operation control system and method for the same, and automotive vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6063617A (en)*1983-09-171985-04-12Tsubakimoto Chain Co How to control the driving of an unmanned vehicle
US4780817A (en)*1986-09-191988-10-25Ndc Technologies, Inc.Method and apparatus for providing destination and vehicle function information to an automatic guided vehicle
US5002145A (en)*1988-01-291991-03-26Nec CorporationMethod and apparatus for controlling automated guided vehicle
US5091855A (en)*1989-04-171992-02-25Kabushiki Kaisha Toyoda Jidoshokki SeisakushoOperation control system for automated guide vehicles
US5303154A (en)*1991-10-251994-04-12Luke Jr WalterContinuous on-line communications system for automatic guided vehicles
US5764014A (en)*1996-02-011998-06-09Mannesmann Dematic Rapistan Corp.Automated guided vehicle having ground track sensor
KR980010679A (en)*1996-03-291998-04-30헨리 D.G 웰레스 Vehicle control method and device
US5812267A (en)*1996-07-101998-09-22The United States Of America As Represented By The Secretary Of The NavyOptically based position location system for an autonomous guided vehicle
JPH10240343A (en)*1997-02-271998-09-11Minolta Co LtdAutonomously traveling vehicle
US6092010A (en)*1997-09-032000-07-18Jervis B. Webb CompanyMethod and system for describing, generating and checking non-wire guidepaths for automatic guided vehicles
JP3316842B2 (en)1998-08-062002-08-19村田機械株式会社 Automatic guided vehicle system and automatic guided vehicle guidance method
KR100648307B1 (en)*1999-11-042006-11-23삼성전자주식회사 Control Method of Unmanned Vehicle System
US6345217B1 (en)*2000-03-312002-02-05Rapistan Systems Advertising Corp.Automated guided vehicle (AGV) with bipolar magnet sensing
KR100381415B1 (en)*2000-07-142003-04-23삼성전자주식회사AGV and emergency stopping control method of AGV
US6445984B1 (en)*2001-05-252002-09-03The Raymond CorporationSteer control system for material handling vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR900005917B1 (en)*1987-11-251990-08-16삼성전자 주식회사 Parts supply system using a plurality of unmanned vehicle and control method
JPH01187607A (en)*1988-01-211989-07-27Komatsu Ltd Automatic guided vehicle operation program creation device
JPH0231210A (en)*1988-07-211990-02-01Nippon Sharyo Seizo Kaisha LtdUnmanned carrier guiding device
KR900005917A (en)*1988-10-051990-05-07앰바스츠 에밀리오 Expandable Bags
KR950017684A (en)*1993-12-101995-07-20스즈끼 아끼오 Operation management control device and method
WO2002033498A2 (en)*2000-10-162002-04-25Matsushita Electric Industrial Co., Ltd.Automated guided vehicle, operation control system and method for the same, and automotive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR100506926B1 (en)*2003-07-162005-08-09삼성전자주식회사working-system for one path and control method thereof

Also Published As

Publication numberPublication date
CN1466079A (en)2004-01-07
CN1215425C (en)2005-08-17
JP2004038921A (en)2004-02-05
US6904343B2 (en)2005-06-07
KR20040003921A (en)2004-01-13
US20040006415A1 (en)2004-01-08

Similar Documents

PublicationPublication DateTitle
KR100461869B1 (en)Control method of conveying system
KR100478451B1 (en)Control method of conveying system
CN111386505B (en)Unmanned conveying vehicle and unmanned conveying vehicle control system
CN112748730B (en) Travel control device, travel control method, travel control system, and computer program
JP7276595B2 (en) AUTOMATED WAREHOUSE SYSTEM AND AUTOMATED WAREHOUSE SYSTEM CONTROL METHOD
KR20230137976A (en) Cargo sorting systems, robots and cargo sorting methods
JP2023071149A (en)Conveyance system and conveyance control method
KR101933827B1 (en)The movable logistics transportation robot system having fork-type lifter and operation method thereof
JP2004227058A (en)Guided vehicle system
WO2020110502A1 (en)Conveyance information generation device, conveyance system, control method, program, and recording medium
KR102804919B1 (en)Autonomous mobile robot using omnidirectional waypoint and its control method
EP4383163A1 (en)Mobile unit management device, management method, and storage medium
KR20240088427A (en)Auto guided vehicle and method of loading and unloading of Auto guided vehicle
CN116639416A (en)Handling method and device, warehouse system and electronic equipment
JPH0966444A (en) Production line control device and method
KR102139127B1 (en)Method for controlling speed of RTV
JP2646035B2 (en) Evacuation of unmanned guided vehicles
US20250153752A1 (en)Method of departure management of automated guided vehicle and departure management system of automated guided vehicle for performing the same
US20250068180A1 (en)Moving object operation management device
JPS63300099A (en)Conveyance controller
JP3085157B2 (en) Automatic transfer equipment
KR20050020204A (en)Order Predictable System For Automatic Guided Vehicle
JP3744693B2 (en) Work transfer order rearrangement system
JP2024108580A (en) Automated Transport System
JPH0460707A (en)Carrier means control system

Legal Events

DateCodeTitleDescription
A201Request for examination
PA0109Patent application

St.27 status event code:A-0-1-A10-A12-nap-PA0109

PA0201Request for examination

St.27 status event code:A-1-2-D10-D11-exm-PA0201

R18-X000Changes to party contact information recorded

St.27 status event code:A-3-3-R10-R18-oth-X000

R18-X000Changes to party contact information recorded

St.27 status event code:A-3-3-R10-R18-oth-X000

R17-X000Change to representative recorded

St.27 status event code:A-3-3-R10-R17-oth-X000

R18-X000Changes to party contact information recorded

St.27 status event code:A-3-3-R10-R18-oth-X000

D13-X000Search requested

St.27 status event code:A-1-2-D10-D13-srh-X000

D14-X000Search report completed

St.27 status event code:A-1-2-D10-D14-srh-X000

PG1501Laying open of application

St.27 status event code:A-1-1-Q10-Q12-nap-PG1501

E902Notification of reason for refusal
PE0902Notice of grounds for rejection

St.27 status event code:A-1-2-D10-D21-exm-PE0902

E13-X000Pre-grant limitation requested

St.27 status event code:A-2-3-E10-E13-lim-X000

P11-X000Amendment of application requested

St.27 status event code:A-2-2-P10-P11-nap-X000

P13-X000Application amended

St.27 status event code:A-2-2-P10-P13-nap-X000

E701Decision to grant or registration of patent right
PE0701Decision of registration

St.27 status event code:A-1-2-D10-D22-exm-PE0701

GRNTWritten decision to grant
PR0701Registration of establishment

St.27 status event code:A-2-4-F10-F11-exm-PR0701

PR1002Payment of registration fee

St.27 status event code:A-2-2-U10-U11-oth-PR1002

Fee payment year number:1

PG1601Publication of registration

St.27 status event code:A-4-4-Q10-Q13-nap-PG1601

PN2301Change of applicant

St.27 status event code:A-5-5-R10-R13-asn-PN2301

St.27 status event code:A-5-5-R10-R11-asn-PN2301

PN2301Change of applicant

St.27 status event code:A-5-5-R10-R13-asn-PN2301

St.27 status event code:A-5-5-R10-R11-asn-PN2301

PR1001Payment of annual fee

St.27 status event code:A-4-4-U10-U11-oth-PR1001

Fee payment year number:4

PR1001Payment of annual fee

St.27 status event code:A-4-4-U10-U11-oth-PR1001

Fee payment year number:5

PR1001Payment of annual fee

St.27 status event code:A-4-4-U10-U11-oth-PR1001

Fee payment year number:6

R17-X000Change to representative recorded

St.27 status event code:A-5-5-R10-R17-oth-X000

PR1001Payment of annual fee

St.27 status event code:A-4-4-U10-U11-oth-PR1001

Fee payment year number:7

FPAYAnnual fee payment

Payment date:20111129

Year of fee payment:8

PR1001Payment of annual fee

St.27 status event code:A-4-4-U10-U11-oth-PR1001

Fee payment year number:8

R18-X000Changes to party contact information recorded

St.27 status event code:A-5-5-R10-R18-oth-X000

LAPSLapse due to unpaid annual fee
PC1903Unpaid annual fee

St.27 status event code:A-4-4-U10-U13-oth-PC1903

Not in force date:20121207

Payment event data comment text:Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903Unpaid annual fee

St.27 status event code:N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text:Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date:20121207

P22-X000Classification modified

St.27 status event code:A-4-4-P10-P22-nap-X000

P22-X000Classification modified

St.27 status event code:A-4-4-P10-P22-nap-X000


[8]ページ先頭

©2009-2025 Movatter.jp