본 발명은 반도체 기판 상의 자연산화막 제거방법에 관한 것으로서, 특히 반응가스의 플라즈마를 사용하지 않기 때문에 기판의 손상을 줄일 수 있는 자연산화막 제거방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a native oxide film on a semiconductor substrate, and more particularly, to a method for removing a native oxide film because it does not use plasma of a reaction gas.
반도체 기판이 대구경화되고 소자들이 고밀도, 고집적화됨에 따라, 반도체 기판 상에 존재하는 미립자나 금속 불순물 등으로 대표되는 미세 오염(micro-contamination)이 제품의 수율과 신뢰성에 큰 영향을 미치게 되었다. 이 때문에 초 LSI공정에서는 청정화의 중요성이 한층 높아지고 있다. 따라서, 전공정에 걸쳐서 반도체 기판의 표면을 청정하게 보존하는 것이 수율 향상의 과제가 되고 있다.As semiconductor substrates have been large-sized and devices have been densified and highly integrated, micro-contamination represented by particulates and metal impurities present on semiconductor substrates has a great effect on product yield and reliability. For this reason, the importance of cleanliness is increasing in ultra LSI processes. Therefore, the preservation of the surface of a semiconductor substrate over the whole process becomes a subject of the yield improvement.
통상적으로 반도체 소자 제조 공정에서는, 반도체 기판 상에 잔류하는 미립자를 비롯한 금속 불순물, 유기 오염물 및 자연산화막과 같은 표면 피막 등을 제거하기 위하여 습식 세정 공정을 수행한 후, 반도체 기판을 건조시키게 된다. 그러나, 최종세정 후의 반도체 기판 상에는 통상 얇은 두께의 자연산화막이 남아 있게 마련이다.Typically, in the semiconductor device manufacturing process, the semiconductor substrate is dried after performing a wet cleaning process to remove metal impurities such as fine particles remaining on the semiconductor substrate, organic contaminants, and surface coating such as a natural oxide film. However, a thin natural oxide film usually remains on the semiconductor substrate after the final cleaning.
반도체 제조 공정에 있어서 반도체 기판의 초기 세정 후, 산화 공정 전의 세정 단계와 산화 공정 후, 폴리실리콘막의 증착 후,또는 고온 산화막의 형성 후 반도체 기판을 대기 중에 방치하면 시간이 경과함에 따라 자연산화막이 성장하게 된다. 이 자연산화막은 기 형성되어 있는 산화막의 두께를 변화시키거나 막들 사이의 접촉 면에서 저항을 증가시켜 전류의 흐름을 방해하는 등 완성될 소자의 성능에 바람직하지 못한 결과들을 유발한다. 또한, 자연산화막이 형성되어 있는 상태에서 산화막을 성장시키게 되면 막의 균일성이 저하되고 두께 제어가 어려워지는 문제가 있다.In the semiconductor manufacturing process, after the initial cleaning of the semiconductor substrate, the cleaning step before the oxidation process, after the oxidation process, after the deposition of the polysilicon film, or after the formation of the high temperature oxide film, and the semiconductor substrate is left in the air, the natural oxide film grows over time. Done. This natural oxide film has undesirable consequences on the performance of the device to be completed, such as changing the thickness of the pre-formed oxide film or increasing the resistance at the contact surface between the films, thereby disturbing the flow of current. In addition, when the oxide film is grown in a state where a natural oxide film is formed, there is a problem that the uniformity of the film is lowered and the thickness control becomes difficult.
따라서, 양산 공정에서는 자연산화막이 형성될 수 있는 단계에서 반도체 기판의 정체 시간을 수 시간으로 제한하여 자연산화막의 성장을 억제하는 방법을 사용한다. 즉, 자연산화막의 성장을 제어해야 하는 공정에서 전 공정의 진행 후 수 시간 이내에 다음 단계가 진행될 수 있도록 작업을 표준화하여 자연산화막의 성장을 제어하고 있다. 그러나, 이와 같이 정체시간의 관리를 통하여 자연산화막의 성장을 제어할 경우에는 양산 라인의 제공 관리가 어려워지는 단점이 있다. 즉, 다음 공정의 설비 상황을 확인한 후 현 공정의 진행 여부를 결정해야 하는 문제가 있다.Therefore, in the mass production process, a method of suppressing the growth of the natural oxide film is limited by limiting the retention time of the semiconductor substrate to several hours in the step where the natural oxide film can be formed. That is, in the process of controlling the growth of the natural oxide film, the growth of the natural oxide film is controlled by standardizing the work so that the next step can be performed within several hours after the progress of the entire process. However, when controlling the growth of the natural oxide film through the management of the stagnation time, there is a disadvantage in that it is difficult to provide a mass production line. That is, there is a problem to determine whether the current process proceeds after confirming the facility status of the next process.
따라서, 후 공정을 진행하기 전에 자연산화막을 제거하는 단계를 반드시 거치도록 하여 자연산화막의 영향을 배제하도록 하고 있다.Therefore, the step of removing the natural oxide film must be performed before proceeding to the subsequent process to exclude the influence of the natural oxide film.
이와 같은 자연산화막의 제거방법으로서, 종래에는 일반적으로 증류수에 의해 희석된 불산(HF) 용액을 사용한 습식식각을 적용하였으나, 이 경우에는 증류수를 사용함에 따라 반도체 기판을 건조한 후에도 다시 자연산화막이 발생하는 문제가 있었다.As a method of removing the natural oxide film, conventionally, wet etching using a hydrofluoric acid (HF) solution diluted with distilled water has been applied. However, in this case, the natural oxide film is generated again after drying the semiconductor substrate by using distilled water. There was a problem.
따라서, 플라즈마를 사용하는 반응기에서 공정을 진행하는 경우에는, 플라즈마 공정을 진행하기에 앞서서 할로겐 원소의 화합물 기체, 예컨대 SiCl4, Cl2, BCl3, CCl4, SF6, NF3등을 반응기 내에 흘리고 플라즈마 전력을 인가하여 반도체 기판의 표면에 형성되어 있는 자연산화막을 제거하였다. 그러나, 플라즈마에 포함된이온들의 충격에 의해 자연산화막이 제거되지만, 이에 의한 반도체 기판 표면의 손상을 피할 수 없었다. 이와 같은 이유 때문에 최근에 리모트 플라즈마 방식이 많이 사용되고 있다.Therefore, when the process is carried out in a reactor using a plasma, prior to the plasma process, a halogen-containing compound gas, such as SiCl4 , Cl2 , BCl3 , CCl4 , SF6 , NF3, etc. Then, plasma power was applied to remove the native oxide film formed on the surface of the semiconductor substrate. However, although the natural oxide film is removed by the impact of the ions included in the plasma, damage to the surface of the semiconductor substrate is inevitable. For this reason, the remote plasma method has been used a lot recently.
도 1은 리모트 플라즈마를 이용한 자연산화막 제거방법을 설명하기 위한 도면이다. 도 1을 참조하면, 반응기(100) 내의 서셉터(110) 위에 자연산화막 제거 대상인 실리콘 기판(120)이 놓여 있다. 수소 및 질소 가스들은 리모트 플라즈마 발생장치(130)를 통과하면서 원자형태의 수소와 질소로 변한 상태로 반응기(100) 내로 주입되고, 식각용 가스인 NF3는 리모트 플라즈마 발생장치(130)를 거치지 않고 직접 반응기 내로 주입된다. 반응기 내로 주입된 원자형태의 수소와 질소, 그리고 NF3는 실리콘 기판 상에 형성되어 있는 자연산화막인 SiO2와 반응하여 (NH3)x(SiF3)y등의 휘발성 부산물을 생성한다. 이어서, 서셉터(110)에 내장된 히터(미도시)로 실리콘 기판(120)을 가열하거나, 기판(120)에 대해 후속 열처리를 거치게 하면 휘발성 부산물이 기판(120)의 표면으로부터 탈착되어 자연산화막이 제거된다. 이와 같이 리모트 플라즈마를 이용한 자연산화막 제거방법은 반응기 내에 플라즈마를 직접 발생시켜서 자연산화막을 제거하는 방법에 비해 실리콘 기판을 덜 손상시키지만, 다음과 같은 점에서 여전히 문제점을 가지고 있다.1 is a view for explaining a method for removing a natural oxide film using a remote plasma. Referring to FIG. 1, a silicon substrate 120 to be removed of a natural oxide layer is placed on the susceptor 110 in the reactor 100. Hydrogen and nitrogen gases are injected into the reactor 100 while being changed into hydrogen and nitrogen in an atomic form while passing through the remote plasma generator 130, and the etching gas NF3 does not go through the remote plasma generator 130. Injected directly into the reactor. The atomic hydrogen and nitrogen injected into the reactor and NF3 react with SiO2 , a natural oxide film formed on the silicon substrate, to generate volatile byproducts such as (NH3 )x (SiF3 )y . Subsequently, when the silicon substrate 120 is heated with a heater (not shown) embedded in the susceptor 110, or subjected to subsequent heat treatment of the substrate 120, volatile by-products are desorbed from the surface of the substrate 120 to form a natural oxide film. Is removed. As described above, the method of removing the natural oxide film using the remote plasma damages the silicon substrate less than the method of removing the natural oxide film by directly generating a plasma in the reactor, but still has problems in the following points.
첫째, 리모트 플라즈마 발생장치(130) 내에서만 생성되어야 할 수소 및 질소의 플라즈마가 반응기(100) 내에까지 유출되어 실리콘 기판(120)의 표면에 충돌함으로써 기판 손상을 유발할 우려가 있다.First, plasma of hydrogen and nitrogen, which should be generated only in the remote plasma generator 130, may leak out into the reactor 100 and collide with the surface of the silicon substrate 120 to cause substrate damage.
둘째, 리모트 플라즈마 발생장치(130)가 고가이며 통상적으로 그 내부에 석영재질의 부품을 채용하고 있는데, NF3가스가 리모트 플라즈마 발생장치(130)로 확산되어 들어갈 경우, 불소이온이 형성되어 석영재질의 부품을 부식시킬 가능성이 있다.Second, the remote plasma generator 130 is expensive and typically employs quartz components therein. When NF3 gas diffuses into the remote plasma generator 130, fluorine ions are formed to form quartz material. May cause corrosion of parts.
셋째, 리모트 플라즈마 발생장치에 의해 원자화된 수소 및 질소, 그리고 NF3가스를 자연산화막 제거용 가스로 사용할 경우, 그 반응 메커니즘 상, 상온이나 그 이하의 온도에서 식각률이 높고, 온도가 올라갈수록 식각률이 낮아지는 문제가 있다. 따라서, 에피택셜층의 성장온도, 예컨대 550℃∼750℃에서도 균일한 식각률로 자연산화막을 제거할 수 있는 반응 메커니즘을 제공하는 식각 가스의 선택이 요구된다.Third, when hydrogen, nitrogen atomized by a remote plasma generator, and NF3 gas are used as a natural oxide film removing gas, the etching rate is high at room temperature or lower on the reaction mechanism, and the etching rate is increased as the temperature is increased. There is a problem of being lowered. Accordingly, there is a need for the selection of an etching gas that provides a reaction mechanism capable of removing the native oxide film at a uniform etching rate even at a growth temperature of the epitaxial layer, for example, 550 ° C to 750 ° C.
따라서, 본 발명의 기술적 과제는, 실리콘 기판의 손상을 줄일 수 있는 자연산화막 제거방법을 제공하는 것이다.Therefore, the technical problem of the present invention is to provide a natural oxide film removal method that can reduce damage to the silicon substrate.
본 발명의 다른 기술적 과제는, 에피택셜층의 성장온도에서도 균일한 식각률을 나타냄으로써 공정 마진(margin)을 확보할 수 있는 자연산화막 제거방법을 제공하는 것이다.Another technical problem of the present invention is to provide a method for removing a natural oxide film which can secure a process margin by exhibiting a uniform etching rate even at a growth temperature of an epitaxial layer.
도 1은 리모트 플라즈마를 이용한 자연산화막 제거방법을 설명하기 위한 도면; 및1 is a view for explaining a method for removing a natural oxide film using a remote plasma; And
도 2는 본 발명의 실시예에 따른 자연산화막 제거방법을 설명하기 위한 도면이다.2 is a view for explaining a natural oxide film removing method according to an embodiment of the present invention.
* 도면 중의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings
100 : 반응기100: reactor
110 : 서셉터110: susceptor
120 : 실리콘 기판120: silicon substrate
130 : 리모트 플라즈마 발생장치130: remote plasma generator
220 : 인라인 히터가 설치된 가스 공급라인220: gas supply line with in-line heater
222 : 인라인 히터가 설치되지 않은 가스 공급라인222 gas supply line without in-line heater
230 : 인라인 히터230: inline heater
상기한 기술적 과제를 해결하기 위한 본 발명의 자연산화막 제거방법은:Natural oxide removal method of the present invention for solving the above technical problem is:
적어도 2개의 가스 공급라인들을 갖되, 상기 가스 공급라인들 중의 어느 하나에 통과 가스를 가열하는 인라인 히터가 설치된 반응기에서 이루어지는 것으로서,In the reactor having at least two gas supply lines, an inline heater is installed in any one of the gas supply lines for heating the passing gas,
상기 반응기 내에 자연산화막이 그 표면에 형성된 실리콘 기판을 위치시키는 단계와;Positioning a silicon substrate having a natural oxide film formed on the surface thereof in the reactor;
상기 인라인 히터가 설치된 가스 공급라인을 통해 암모니아 가스를 통과시키면서 상기 인라인 히터의 온도를 700∼1300℃로 가열하여 상기 암모니아 가스를 해리시키는 단계와;Dissociating the ammonia gas by heating the temperature of the inline heater to 700 to 1300 ° C. while passing the ammonia gas through the gas supply line provided with the inline heater;
상기 인라인 히터가 설치되지 않은 가스 공급라인을 통해 NF3가스를 공급하는 단계;Supplying NF3 gas through a gas supply line in which the inline heater is not installed;
상기 암모니아 가스로부터 해리된 수소 및 질소, NF3가스와 상기 기판 상의 자연산화막이 서로 반응하여 휘발성 부산물을 형성하도록 하는 단계와;Allowing hydrogen and nitrogen, NF3 gas, dissociated from the ammonia gas, and the natural oxide film on the substrate to react with each other to form volatile byproducts;
상기 기판을 가열하는 단계를 구비하는 것을 특징으로 한다.And heating the substrate.
이 때, 상기 인라인 히터의 온도는 800℃∼1000℃ 범위 내로 조절되는 것이 바람직하며, 상기 암모니아 가스의 공급단계에서, 상기 인라인 히터가 설치된 가스 공급라인에 암모니아와 더불어 수소 및 질소 가스를 더 공급할 수도 있다.At this time, the temperature of the in-line heater is preferably adjusted within the range of 800 ℃ to 1000 ℃, in the supplying step of the ammonia gas, may further supply hydrogen and nitrogen gas together with ammonia to the gas supply line is installed the inline heater. have.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.
도면에서 동일 참조부호는 동일 구성요소를 나타내며, 중복을 피하기 위해 별도의 설명은 생략한다.Like reference numerals in the drawings denote like elements, and a separate description will be omitted to avoid duplication.
도 2는 본 발명의 실시예에 따른 자연산화막 제거방법을 설명하기 위한 도면이다. 도 2를 참조하면, 반응기(100) 내에 제1 및 제2 가스 인젝터들(220a, 222a)이 삽입되어 있고, 제1 및 제2 가스 인젝터들(220a, 222a)은 각각 가스 공급라인들(220, 222)에 연결되어 반응기(100) 내에 가스를 분사시킨다. 한편, 제1 가스 공급라인(220)의 중간에는 인라인 히터(230)가 설치되어 있으며, 제2 가스 공급라인(222)에는 인라인 히터가 설치되어 있지 않다. 이와 같은 구성을 가진 장비에서, 우선 제거하고자 하는 자연산화막이 자신의 표면에 형성된 실리콘 기판(120)을 반응기(100) 내의 서셉터(110) 위에 위치시킨다. 이어서, 인라인 히터(230)의 온도를 900℃로 올린 후, 제1 가스 공급라인(220)을 통해 암모니아, 질소 및 수소의 혼합가스를 공급하여, 암모니아 가스를 해리시키는 동시에 활성화된 질소 및 수소가스를 얻는다. 암모니아 가스는 질소 가스나 수소 가스에 비해 낮은 해리온도(cracking temperature)를 가지므로 쉽게 활성화된 질소, 수소 및 암모니아 가스를 얻을 수 있다. 이렇게 하면서, 제2 가스 공급라인(222)을 통해서는 NF3가스를 공급하며, 서셉터(110) 내에 내장된 히터(미도시)를 이용하여 기판(120)을 가열한다. 이와 같이 하면, NF3와 해리된 질소, 산소 종들이 기판(120) 상의 자연산화막과 반응하여 고온 휘발성이 강한 SiOwNxHyFz등의 부산물을 형성한 후에 탈착되어 자연 산화막이 제거된다.2 is a view for explaining a natural oxide film removing method according to an embodiment of the present invention. Referring to FIG. 2, first and second gas injectors 220a and 222a are inserted into the reactor 100, and the first and second gas injectors 220a and 222a are gas supply lines 220, respectively. 222 is injected to inject a gas into the reactor (100). Meanwhile, the inline heater 230 is installed in the middle of the first gas supply line 220, and the inline heater is not installed in the second gas supply line 222. In the equipment having such a configuration, first, the natural oxide film to be removed is placed on the susceptor 110 in the reactor 100 on the silicon substrate 120 formed on its surface. Subsequently, after raising the temperature of the inline heater 230 to 900 ° C., a mixed gas of ammonia, nitrogen and hydrogen is supplied through the first gas supply line 220 to dissociate the ammonia gas and simultaneously activate nitrogen and hydrogen gas. Get Since ammonia gas has a lower cracking temperature than nitrogen gas or hydrogen gas, it is possible to obtain easily activated nitrogen, hydrogen and ammonia gas. In doing so, the NF3 gas is supplied through the second gas supply line 222, and the substrate 120 is heated using a heater (not shown) embedded in the susceptor 110. In this way, the nitrogen and oxygen species dissociated with NF3 react with the natural oxide film on the substrate 120 to form by-products such as SiOw Nx Hy Fz having high temperature and volatility, and desorb and remove the natural oxide film. .
상기한 바와 같이, 가스 플라즈마 대신 열에너지에 의해 활성화된 가스를 자연산화막에 이용하면 이온 충돌에 의한 기판 손상 가능성을 원천적으로 배제할 수 있어서 반도체 소자의 성능을 향상시킬 수 있다. 또한, 반응가스로서 질소나 수소 외에 해리온도가 낮은 암모니아를 사용하기 때문에 종래기술과는 화학반응 메커니즘을 적용할 수 있어서 고온에서도 균일한 식각률을 나타내고 공정 마진을 확보할 수 있다. 또한, 플라즈마에 의한 불소이온 형성가능성이 없으므로 석영제 부품의 손상도 방지할 수 있다.As described above, if a gas activated by thermal energy instead of a gas plasma is used for the natural oxide film, the possibility of damage to the substrate due to ion collision can be essentially excluded, thereby improving performance of the semiconductor device. In addition, since ammonia having a low dissociation temperature other than nitrogen or hydrogen is used as the reaction gas, a chemical reaction mechanism can be applied, and thus a uniform etching rate can be obtained even at high temperatures, and process margins can be secured. In addition, since there is no possibility of forming fluorine ions by plasma, damage to quartz parts can be prevented.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2001-0085122AKR100442167B1 (en) | 2001-12-26 | 2001-12-26 | Method of removing native oxide film |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2001-0085122AKR100442167B1 (en) | 2001-12-26 | 2001-12-26 | Method of removing native oxide film |
| Publication Number | Publication Date |
|---|---|
| KR20030054726A KR20030054726A (en) | 2003-07-02 |
| KR100442167B1true KR100442167B1 (en) | 2004-07-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2001-0085122AExpired - Fee RelatedKR100442167B1 (en) | 2001-12-26 | 2001-12-26 | Method of removing native oxide film |
| Country | Link |
|---|---|
| KR (1) | KR100442167B1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101015695B1 (en) | 2002-10-18 | 2011-02-22 | 더 비오씨 그룹 인코포레이티드 | Thermal activation of fluorine for use in a semiconductor chamber |
| US8980758B1 (en) | 2013-09-17 | 2015-03-17 | Applied Materials, Inc. | Methods for etching an etching stop layer utilizing a cyclical etching process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100712529B1 (en)* | 2005-09-02 | 2007-04-30 | 삼성전자주식회사 | In-situ cleaning method of plasma applicator and plasma applicator employing the cleaning method |
| KR100752199B1 (en)* | 2006-09-18 | 2007-08-27 | 동부일렉트로닉스 주식회사 | Manufacturing Method of Semiconductor Device |
| JP2012519962A (en)* | 2009-03-05 | 2012-08-30 | アプライド マテリアルズ インコーポレイテッド | Method for depositing layers with reduced interface contamination |
| US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
| US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
| US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
| US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
| US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
| US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
| US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
| US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
| US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
| US9111877B2 (en)* | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
| US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
| US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
| US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
| US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
| US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
| US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
| US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
| US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
| US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
| US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
| US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
| US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
| US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
| US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
| US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
| US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
| US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
| US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
| US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
| US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
| US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
| US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
| US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
| US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
| US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
| US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
| US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
| US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
| US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
| US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
| US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
| US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
| US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
| US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
| US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
| US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
| US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
| US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
| US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
| US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
| US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
| US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
| US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
| US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
| US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
| US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
| US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
| US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
| US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
| US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
| US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
| US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
| US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
| US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
| US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
| US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
| US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
| US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
| US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
| US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
| US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
| US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
| US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
| US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
| US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
| JP7176860B6 (en) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | Semiconductor processing chamber to improve precursor flow |
| US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
| US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
| US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
| US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
| US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
| US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
| US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
| US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
| US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
| US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
| US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
| US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
| US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
| US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
| US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
| US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
| US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
| US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
| US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
| TWI766433B (en) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | Systems and methods to form airgaps |
| US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
| US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
| US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
| US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
| US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
| US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
| US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
| US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
| US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
| US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
| US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
| US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
| US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
| US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
| US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
| US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
| US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
| US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
| US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06318580A (en)* | 1993-05-07 | 1994-11-15 | Fuji Electric Co Ltd | Dry cleaning method |
| JPH07169747A (en)* | 1993-12-14 | 1995-07-04 | Tokyo Electron Ltd | Etching method |
| JPH1070105A (en)* | 1996-08-27 | 1998-03-10 | Hitachi Ltd | Semiconductor device manufacturing method and plasma processing apparatus used therefor |
| JPH1167737A (en)* | 1997-08-12 | 1999-03-09 | Tokyo Electron Yamanashi Kk | Plasma processing equipment |
| KR20010038404A (en)* | 1999-10-25 | 2001-05-15 | 윤종용 | Method for removing oxide layer and semiconductor manufacture apparatus for removing oxide layer |
| KR20010091519A (en)* | 2000-03-16 | 2001-10-23 | 황 철 주 | Method for forming a gate oxide layer of a semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06318580A (en)* | 1993-05-07 | 1994-11-15 | Fuji Electric Co Ltd | Dry cleaning method |
| JPH07169747A (en)* | 1993-12-14 | 1995-07-04 | Tokyo Electron Ltd | Etching method |
| JPH1070105A (en)* | 1996-08-27 | 1998-03-10 | Hitachi Ltd | Semiconductor device manufacturing method and plasma processing apparatus used therefor |
| JPH1167737A (en)* | 1997-08-12 | 1999-03-09 | Tokyo Electron Yamanashi Kk | Plasma processing equipment |
| KR20010038404A (en)* | 1999-10-25 | 2001-05-15 | 윤종용 | Method for removing oxide layer and semiconductor manufacture apparatus for removing oxide layer |
| KR20010091519A (en)* | 2000-03-16 | 2001-10-23 | 황 철 주 | Method for forming a gate oxide layer of a semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101015695B1 (en) | 2002-10-18 | 2011-02-22 | 더 비오씨 그룹 인코포레이티드 | Thermal activation of fluorine for use in a semiconductor chamber |
| US8980758B1 (en) | 2013-09-17 | 2015-03-17 | Applied Materials, Inc. | Methods for etching an etching stop layer utilizing a cyclical etching process |
| WO2015041747A1 (en)* | 2013-09-17 | 2015-03-26 | Applied Materials, Inc. | Methods for etching an etching stop layer utilizing a cyclical etching process |
| Publication number | Publication date |
|---|---|
| KR20030054726A (en) | 2003-07-02 |
| Publication | Publication Date | Title |
|---|---|---|
| KR100442167B1 (en) | Method of removing native oxide film | |
| KR101389801B1 (en) | Method and apparatus for cleaning a substrate surface | |
| KR102245729B1 (en) | Method and apparatus for precleaning a substrate surface prior to epitaxial growth | |
| US6013575A (en) | Method of selectively depositing a metal film | |
| KR102562226B1 (en) | Isotropic etching of films using atomic layer control | |
| JP2019515505A (en) | Plasma processing process to improve in-situ chamber cleaning efficiency in plasma processing chamber | |
| KR101321424B1 (en) | Method of surface treatment and thin film growth, and equipment for surface treatment and thin film growth | |
| JP7668292B2 (en) | Inert gas injection for improved hardmask selectivity | |
| KR100832944B1 (en) | Method for Manufacturing Anneal Wafer and Anneal Wafer | |
| CN109979829A (en) | Silicon carbide activates method for annealing | |
| KR101146118B1 (en) | Dry etch method for silicon oxide | |
| CN115784774A (en) | Method for improving interface characteristics of SiC Mos | |
| KR101134909B1 (en) | Dry etch method for silicon oxide | |
| TW202427608A (en) | Substrate processing with selective etching | |
| JPH10270434A (en) | Method for cleaning semiconductor wafer and method for forming oxide film | |
| US20130095665A1 (en) | Systems and methods for processing substrates | |
| KR100324822B1 (en) | A method for fabricating a gate oxide of a semiconductor device | |
| KR100329745B1 (en) | A method for forming gate dielectric layer using alumina | |
| JPH07235530A (en) | Method of forming insulating film | |
| US9653282B2 (en) | Silicon-containing substrate cleaning procedure | |
| KR100358572B1 (en) | A forming method for a oxide film of semiconductor device | |
| KR20080020753A (en) | How to prevent contamination of process gas injection nozzle | |
| KR20030078550A (en) | Method for cleaning of chamber |
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application | St.27 status event code:A-0-1-A10-A12-nap-PA0109 | |
| PA0201 | Request for examination | St.27 status event code:A-1-2-D10-D11-exm-PA0201 | |
| PN2301 | Change of applicant | St.27 status event code:A-3-3-R10-R13-asn-PN2301 St.27 status event code:A-3-3-R10-R11-asn-PN2301 | |
| D13-X000 | Search requested | St.27 status event code:A-1-2-D10-D13-srh-X000 | |
| PG1501 | Laying open of application | St.27 status event code:A-1-1-Q10-Q12-nap-PG1501 | |
| D14-X000 | Search report completed | St.27 status event code:A-1-2-D10-D14-srh-X000 | |
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection | St.27 status event code:A-1-2-D10-D21-exm-PE0902 | |
| P11-X000 | Amendment of application requested | St.27 status event code:A-2-2-P10-P11-nap-X000 | |
| P13-X000 | Application amended | St.27 status event code:A-2-2-P10-P13-nap-X000 | |
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration | St.27 status event code:A-1-2-D10-D22-exm-PE0701 | |
| PN2301 | Change of applicant | St.27 status event code:A-3-3-R10-R13-asn-PN2301 St.27 status event code:A-3-3-R10-R11-asn-PN2301 | |
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment | St.27 status event code:A-2-4-F10-F11-exm-PR0701 | |
| PR1002 | Payment of registration fee | St.27 status event code:A-2-2-U10-U11-oth-PR1002 Fee payment year number:1 | |
| PG1601 | Publication of registration | St.27 status event code:A-4-4-Q10-Q13-nap-PG1601 | |
| PR1001 | Payment of annual fee | St.27 status event code:A-4-4-U10-U11-oth-PR1001 Fee payment year number:4 | |
| PR1001 | Payment of annual fee | St.27 status event code:A-4-4-U10-U11-oth-PR1001 Fee payment year number:5 | |
| PR1001 | Payment of annual fee | St.27 status event code:A-4-4-U10-U11-oth-PR1001 Fee payment year number:6 | |
| R18-X000 | Changes to party contact information recorded | St.27 status event code:A-5-5-R10-R18-oth-X000 | |
| PR1001 | Payment of annual fee | St.27 status event code:A-4-4-U10-U11-oth-PR1001 Fee payment year number:7 | |
| R18-X000 | Changes to party contact information recorded | St.27 status event code:A-5-5-R10-R18-oth-X000 | |
| PR1001 | Payment of annual fee | St.27 status event code:A-4-4-U10-U11-oth-PR1001 Fee payment year number:8 | |
| FPAY | Annual fee payment | Payment date:20120710 Year of fee payment:9 | |
| PR1001 | Payment of annual fee | St.27 status event code:A-4-4-U10-U11-oth-PR1001 Fee payment year number:9 | |
| PN2301 | Change of applicant | St.27 status event code:A-5-5-R10-R13-asn-PN2301 St.27 status event code:A-5-5-R10-R11-asn-PN2301 | |
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee | St.27 status event code:A-4-4-U10-U13-oth-PC1903 Not in force date:20130721 Payment event data comment text:Termination Category : DEFAULT_OF_REGISTRATION_FEE | |
| PC1903 | Unpaid annual fee | St.27 status event code:N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text:Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date:20130721 | |
| P22-X000 | Classification modified | St.27 status event code:A-4-4-P10-P22-nap-X000 | |
| R18-X000 | Changes to party contact information recorded | St.27 status event code:A-5-5-R10-R18-oth-X000 | |
| R18-X000 | Changes to party contact information recorded | St.27 status event code:A-5-5-R10-R18-oth-X000 |