【発明の詳細な説明】コンピュータゲーテッド陽圧呼気システム背 景 技 術通常に呼吸する場合、人の横隔膜は下降して人の胸腔を拡張し、かくして胸腔内に大気圧に比較して陽圧が生ずる。[Detailed description of the invention]Computer gated positive pressure exhalation system background technologyWhen breathing normally, a person's diaphragm descends and expands the person's thoracic cavity, thusA positive pressure is created compared to atmospheric pressure.
空気は大気圧により陽圧の胸腔内に送り込まれる。多くの患者、例えばショック、損傷または心臓機能不全を被っている事故の被害者は、呼吸を補助するための人工呼吸器または換気器を必要とする場合がある。従来の人工呼吸器は間欠的陽圧呼気を用いて肺内に充満するまで患者の肺内の圧力を増大する。空気は肺の自然の堅さにより受動的に追出される。Atmospheric pressure forces air into the positive pressure thoracic cavity. Many patients, e.g. shockAccident victims who have sustained injuries or heart failure may receiveMay require respirator or ventilator. Conventional ventilators require intermittent positivePressure exhalation is used to increase the pressure within the patient's lungs until the lungs fill. air is in the lungsPassively driven out by natural hardness.
かかる人工呼吸器は既に大気圧下にある肺に陽圧呼気を送り込む。肺内の圧力は通常の場合と対照的に大気圧以上に増大し、これが心臓の血液送出能力を阻害する。通常の呼吸中においては、陰肺圧が空気を吸気すると生じ、これが心臓に血液が充満することを補助する。生じた圧力勾配(周囲の比較的陽圧および胸郭の陽圧)は心臓の圧縮または送出運動に続いて心臓が開くときに心臓に充満するのを補助する。しかし、人工呼吸器を用いる如く肺房内の圧力が増大する場合には、心臓に流入または流出する血液量は減少する。また、心臓は高い圧力に抗して圧出しなければならない。少ない心臓血液搏出量が生ずる。Such ventilators deliver positive air pressure to the lungs, which are already at atmospheric pressure. The pressure inside the lungs isIn contrast to the normal case, the pressure increases above atmospheric pressure, which inhibits the heart's ability to pump blood.Ru. During normal breathing, negative pulmonary pressure occurs when you breathe in air, which causes blood to flow to the heart.Assists in filling with liquid. The resulting pressure gradient (relatively positive surrounding pressure and thoracicPositive pressure is the pressure that fills the heart as it opens following the compression or pumping motion of the heart.to assist. However, when the pressure inside the lung chambers increases, such as when using a ventilator,, the amount of blood flowing into or out of the heart decreases. Also, the heart resists high pressureIt has to be squeezed out. Less cardiac blood output occurs.
動脈の酸素圧を改善する通常の技術にはポジティブーエンドーイクスピラトリプレッシャ(Positive−End−ExpiratoryPressure) (P E E P )が用いられ、この場合低い水準の陽圧が陽圧呼気の間気道に維持される。PEEPには標準スイッチが用いられる。弁に用いられる圧力信号は弁の高または低圧状態を制御する。弁が十分に用いている場合は低いPEEP状態が生ずる。弁の部分的閉鎖により呼吸の間に高い肺内圧が生じ、この理由は、チダル(teda 1 )容積から若干の空気が漏出してはならないからである。しかし、PEEPの10cmの水圧においては、心臓血液搏出量は著しく減少する。静脈内流体はこの心臓血液搏出量の減少を最小限にする作用において脈管容積を増大するのに用いられる。患者は既に心臓機能を害されている場合があり、脈管内容積増大の利点を最小にするかまたは打消してしまう。更に、人工呼吸器を必要とする患者には代表的に適当な腎臓機能が欠如しており投与した流体を処理することができない。患者の静脈内流体を処理する能力(補助または補助なし)に比較して著しく多量の静脈内流体を用いる場合には、該流体が患者の肺に入ることがある。Common techniques for improving arterial oxygen tension include positive-endospiratriple.Ressha (Positive-End-Expiratory Pressure) (P E E P ) is used, in which a low level of positive pressure isRemained in the respiratory tract. A standard switch is used for PEEP. pressure used in valveThe force signal controls the high or low pressure state of the valve. Low P if valve is fully utilizedAn EEP condition occurs. Partial closure of the valve creates high intrapulmonary pressure during breathing;The reason is that some air should not leak out from the teda 1 volume.It is et al. However, at a water pressure of 10 cm in PEEP, the cardiac blood pumping volume is significantly reduced.decreases. Intravenous fluids are used to minimize this decrease in cardiac blood output.It is used to increase vascular volume. If the patient already has impaired heart function,may minimize or negate the benefits of intravascular volume expansion. Furthermore,Patients requiring mechanical ventilation typically lack adequate renal function and should not be administered.It is not possible to handle fluids that are Ability to handle the patient's intravenous fluids (auxiliary orIf a significantly larger volume of intravenous fluid is used compared toIt can enter human lungs.
正の変力剤を多量の血液を送出するため心臓の圧縮を増大するのに用いる。心臓が通常より強く働きこの結果心臓機能不全または不整脈を生ずることは明らかである。しばしば、医者は増大した静脈内流体および正の変力剤とPEEPの組合せを指示する。Positive inotropes are used to increase the compression of the heart to pump more blood. heartIt is clear that the heart functions more strongly than normal, resulting in cardiac dysfunction or arrhythmiasbe. Often, physicians combine PEEP with increased intravenous fluids and positive inotropes.instruct the person to
若干の研究者は心臓血液搏出量に対する心臓周期−肺圧の特定の増大の作用を評価した。これらの研究者は高頻度ジエyト換気(high frequency jet ventilation)をR−R間隔の種々の相に同調させた。カールソン(Carlson)とピンスキー(Pinsky)は、陽圧搏動が心拡張と同調してしする場合には陽圧換気の心機能抑制剤の効果が最小になることを見出した。しかし、オツトー(Otto)とタイソン(Tyson)は、陽゛圧搏動を心臓周期の種々の部分に同調させる間心臓血液搏出量の有意な変化を見出さなかった。Some researchers have evaluated the effect of specific increases in cardiac cycle-pulmonary pressure on cardiac blood output.I valued it. These researchers are using high frequency ventilation (high frequency ventilation).jet ventilation) were tuned to various phases of the R-R interval. mosquitoCarlson and Pinsky found that positive pressure beating increases heart dilatation.The effect of cardiac depressants during positive pressure ventilation is minimized whenI found it. However, Otto and TysonWe found significant changes in cardiac blood output while synchronizing the heartbeat to different parts of the cardiac cycle.I didn't.
ピンチャツク(Pinchak)は高頻度ジエツト換気の最もよい頻度を記載した。また、彼は肺動脈圧(PAP)の律動的振動および全身血圧の律動的変化にも注目した。これら振動に対する可能な説明は、ジェット搏動が公簿度数と同調しまた同調せずに行われることである。彼のデータを評価すると、ジェット気道圧ピークが初期収縮中に生ずる場合、高い肺動脈圧および低い全身血圧が生ずることが明らかである。ピンチャツクはこのことについて意見を述べていないが、彼の記録したデータは肺動脈圧が血圧とまさに反対に漸増しまた漸減することを示している。肺動脈圧の増大の妥当な説明は、簡単には左心室充満の減少を引き起こし従って心臓血液搏出量の減少に次いで全身血圧の減少を引き起こす肺血管の抵抗の増大の反映である。全身血圧のわずかな振動が心臓血液搏出量の振動をもたらす場合には、この際ピンチャツクの研究がビンスキーとカールソンの研究を支持し、陽気適圧が心拡張の間にはほとんど有害でないことを示す。Pinchak describes the best frequency of high-frequency jet ventilation.Ta. He also observed rhythmic oscillations in pulmonary artery pressure (PAP) and rhythmic changes in systemic blood pressure.also noticed. A possible explanation for these oscillations is that the jet oscillations are synchronized with the official frequency.It is also done without synchronization. Evaluating his data, the jet airwayIf the pressure peak occurs during early systole, high pulmonary artery pressure and low systemic blood pressure result.That is clear. Pinchatsk did not express an opinion on this, butThe data he recorded showed that pulmonary artery pressure gradually increases and decreases in exactly the opposite way as blood pressure.It shows. A plausible explanation for the increase in pulmonary artery pressure is simply that it causes a decrease in left ventricular filling.pulmonary blood vessels, which causes a decrease in cardiac blood output and subsequently a decrease in systemic blood pressure.This is a reflection of the increased resistance of Slight fluctuations in systemic blood pressure cause fluctuations in cardiac blood pumping volume.In this case, Pinchack's research is similar to that of Binsky and Carlson.support and show that positive air pressure has little to no harm during cardiac diastole.
発明の要約本発明は、ポジティブエンドーイクスビラトリプレツシャ(PEEP)システムを補強するためのコンピュータゲーテッド陽圧呼気システムに関するものである。R波即ち電気的な心臓収縮の開始を決定するため、心電図装置の出力を増幅し二乗にするかまたは心電図装置のLEDを光学的に監視する。信号を乗算器に供給し、ここでR−R波の時間を示すR−R’波信号(時間)が医者により設定された可変間隔と掛算される。この結果により生じた積(R−R波掛ける可変間隔)をソレノイド作動する三方弁を作動させるのに用いる。通常、三方弁は閉じており普通に作用する標準PEEP弁に陽圧を通す。作動した場合、三方弁は開いてPEEP弁が患者に低圧を供給する如く比較的低し)圧力がPEEP弁に通るのを可能にする。Summary of the inventionThe present invention provides a Positive Endo External Pressure (PEEP) system.Concerning a computer-gated positive pressure exhalation system to augment. The output of the electrocardiogram machine is amplified to determine the R-wave, or the onset of electrical heart contractions.Squaring or optically monitoring the LED of the electrocardiogram machine. Feed the signal to the multiplierThe R-R' wave signal (time) indicating the R-R wave time is set by the doctor.multiplied by the specified variable interval. This results in the product (R-R wave times the variable interval) is used to operate a solenoid operated three-way valve. Normally, the three-way valve is closed.Pass positive pressure through a standard PEEP valve that functions normally. When activated, the three-way valve opens(relatively low pressure such that the PEEP valve provides low pressure to the patient) is passed through the PEEP valve.make it possible.
従って、PEEPは次の6搏の直前に可変時間の比のため除去される。PEEP弁を、三方弁をゲートするコンピュータにより制御して圧力降下を生ぜしめ、心臓が充満するのを可能にする。一度心臓が充満すると、PEEPはいかなる有害な作用もなくもとに戻る。患者の呼吸を患者の6搏と整合させて心臓血液搏出量を最大にする。更に、圧力は心臓が送出することを改善する努力が終わった直後に置換することができる。Therefore, PEEP is removed for a variable time ratio just before the next 6 beats. PEEPThe valve is controlled by a computer that gates the three-way valve to create a pressure drop andAllows the organs to fill up. Once the heart fills, PEEP will cause no harm.It returns to its original state without any effect. Cardiac blood pumping volume by matching the patient's breathing with the patient's 6 beatsMaximize. Furthermore, the pressure decreases immediately after efforts to improve the heart's pumpingcan be replaced with
図面の簡単な説明第1図は、本発明のゲーティングシステムの系統図、第2図は、三方弁に連結する第1図のマイクロコンピュータの構成要素の系4f!A図、第3図は、小樽間隔を検出する第2の例を示す系統図である。Brief description of the drawingFigure 1 is a system diagram of the gating system of the present invention, and Figure 2 is a diagram of the system connected to the three-way valve.System 4f of the components of the microcomputer shown in Figure 1! Figure A,FIG. 3 is a system diagram showing a second example of detecting the Otaru interval.
発明の詳細な説明PEEPシステムの如き治療装置に連結されるコンピュータゲーテッド陽圧呼気システムを、第1図に示す。標準呼気(PEEP)弁14を介して人工呼吸器または換気器12を使用する患者10を示す。PEEP弁14弁開4して低および高圧を患者10に供給する。本発明においては、患者10に心電図装置(EKG)16を接続する。連続する6搏をEKG16により検出し各6搏を示す信号はマイクロコンピュータ18への出力であり、マイクロコンピュータの詳細は第2図および第3図に示す。可変間隔をマイクロコンピュータ18への第2の入力として発生器20により発し、間隔の値は主治医により設定される。マイクロコンピュータ18は20により可変間隔信号とEKG16による連続公簿間の時間を示す値とを組合せ、制御した出力を三方弁24のソレノイド22に発する。三方弁24を第1端部により陽圧給源26に連結する。弁の第2端部を比較的低い圧力の給源2日に空気的に連結しくpneumaticallyconnect) 、一方第3端部をPEEP弁14弁開4し、患者はこの弁14を介して陽圧呼気を受け取る。Detailed description of the inventionComputer-gated positive pressure exhalation coupled to a therapy device such as a PEEP systemThe system is shown in FIG. Ventilator or ventilator via standard exhalation (PEEP) valve 14A patient 10 is shown using a ventilator 12. PEEP valve 14 valve open 4 and low andHigh pressure is supplied to the patient 10. In the present invention, the patient 10 is provided with an electrocardiogram device (EKG)16. The continuous 6 beats are detected by EKG16 and the signal indicating each 6 beats isThis is the output to the microcomputer 18, and the details of the microcomputer are shown in the second section.As shown in FIG. The variable interval is the second input to the microcomputer 18.and the interval value is set by the attending physician. MicrocontrollerThe computer 18 receives the time between the variable interval signal and the EKG 16 using the variable interval signal 20.A controlled output is generated to the solenoid 22 of the three-way valve 24. Three sidesValve 24 is connected to a positive pressure source 26 by a first end. The second end of the valve is placed at a relatively low pressure.(pneumatically connect)On the other hand, the PEEP valve 14 at the third end is opened 4, and the patient receives positive pressure breathing through this valve 14.Receive energy.
換気器12の通常の作動下では、PEEP弁14弁開4器12による交互の低および高陽圧呼気〔約0.28 kg/cm”(約4psi))を患者10に直接供給するように作動する。しかし、マイクロコンピュータ18の出力に応じて、ソレノイド22が付勢され比較的低い圧力の給源28からの陽圧を出力部30において発生させる。出力部30における陽圧によりPEEP弁14弁開4゜PEEP弁14弁開4に開くので、低圧が換気器12から患者10により受け取られる。本発明においては、この結果により生じた低圧が、予備検出した6搏の直前に生じて心臓を保証し、充満する場合は高圧に抗して作動しない。PEEPシステム自体は心臓が搏動する場合に非常にしばしば高圧を生じ、心臓の充満を阻害し心臓血液搏出量を減少させる。Under normal operation of the ventilator 12, the PEEP valve 14 is opened by alternating low and low voltages.and high positive pressure exhalation [approximately 0.28 kg/cm” (approximately 4 psi)) directly to the patient 10.It operates to supply. However, depending on the output of the microcomputer 18,Solenoid 22 is energized and applies positive pressure from relatively low pressure source 28 to output 30.Let it occur. PEEP valve 14 opens 4°PE due to positive pressure in output section 30EP valve 14 opens to 4 so that low pressure is received by patient 10 from ventilator 12.Ru. In the present invention, the low pressure generated as a result of this occurs immediately before the pre-detected 6th beat.This ensures that the heart does not work against high pressure if it becomes full. PEEP systemThe system itself very often creates high pressure when the heart beats, inhibiting the filling of the heart.and decreases cardiac blood pumping.
第2図においては、マイクロコンピュータ18の詳細が明らかである。EKG16の出力は演算増幅器32を介してタイマー34に伝達されタイマー34は増幅されたEKG信号を二乗して連続6搏に対応する一連の電気パルスを発生スる。In FIG. 2 the details of the microcomputer 18 are clear. EKG1The output of 6 is transmitted to the timer 34 via the operational amplifier 32, and the timer 34 amplifies it.The resulting EKG signal is squared to generate a series of electrical pulses corresponding to six consecutive beats.
タイマー34の電気パルスはメモリー/計算機36により受け取られメモリー/計算機36は連続心博聞の間隔を示す時間を決定する。この時間は次の6搏を予測するのに用いられ従って低圧をこの次の6搏の間および直前に患者に伝達する。可変間隔発生器20は、例えば代表的なアナログ制御によって主治医により15〜400マイクロセコンドに設定される。20による可変間隔信号および計算機36による時間信号を用いて乗算器38に積を生じさせる。この結果により生じた積を信号として用いてソレノイド32を付勢し、三方弁24を制御する。The electrical pulses of timer 34 are received by memory/calculator 36 and stored in memory/calculator 36.Calculator 36 determines the times that indicate the intervals between consecutive heartbeats. This time is used to plan the next 6 beats.used to measure and therefore transmit low pressure to the patient during and immediately before this next 6 beats.. The variable interval generator 20 can be set to 1 by the attending physician, for example by typical analog control.Set to 5-400 microseconds. Variable interval signals and calculations by 20The time signal from machine 36 is used to cause multiplier 38 to produce a product. With this result,The product is used as a signal to energize the solenoid 32 and control the three-way valve 24.
通常の状態においては、三方弁24は陽圧給源26を出力部30に連結させ、PEEP弁14弁開4的に閉じた状態にする。従って、換気器12は高、陽圧呼気を患者に発することができる。しかし、EKG16が秒毎に6搏を検出すると仮定する。EKG信号を32で増幅し、タイマー34により二乗して、1秒のこの時間をメモリー36で計算する。可変間隔発生器が主治医によって0.8秒に設定される場合には、乗算器38が時間と0.8秒に等しい可変間隔の積(1,OX 0.8 )を生ずる。かくして、次の予測した6搏の0.2秒前(直前の6搏から0.8秒)にソレノイド22が付勢される。直ちに三方弁24は出力部30を減圧給源28に開(。従って、生じた除圧がPEEP弁14弁士4に開き低圧が患者に到達する。6搏度数が変化する場合には、予測した6搏と実際の6搏との差を検出してパルスのタイミングを補正する。ソレノイドに対するパルスの時間の長さを第2タイマー(図示せず)により制御する。Under normal conditions, three-way valve 24 connects positive pressure source 26 to output 30 and PEEP valve 14 is opened and closed. Therefore, the ventilator 12 provides high, positive pressure exhalation.can be emitted to the patient. However, if EKG16 detects 6 beats every second, thenSet. The EKG signal is amplified by 32, squared by timer 34, and this time of 1 second isThe time is calculated in memory 36. A variable interval generator was set at 0.8 seconds by the attending physician.multiplier 38 multiplier 38 multiplier 38 multiplier 38 times the product of the time and the variable interval equal to 0.8 seconds (1,Ox 0.8). Thus, 0.2 seconds before the next predicted 6 beats (the previous 6 beats)The solenoid 22 is energized at 0.8 seconds from the start. The three-way valve 24 immediately switches to the output section 3.0 is opened to the reduced pressure supply source 28 (therefore, the generated pressure is opened to the PEEP valve 14 valve 4 and the lowpressure reaches the patient. If the 6th frequency changes, the predicted 6th and actual 6thThe pulse timing is corrected by detecting the difference between the Pulse to solenoidThe length of time is controlled by a second timer (not shown).
第3図は6搏を決定または感知するための第2の例を示す。光検出器40を代表的に心電図装置の一部分の明滅L E D (blinking L E D )を検出するのに用いる。LED42の光でオン・オフする光検出器40は、タイマーまたはウェーブスフエラー(wave 5quarer)を必要とせず翫従って第2図の例の方法においては連続処理をするための増幅器32に直接入力する。FIG. 3 shows a second example for determining or sensing six beats. Representing photodetector 40Blinking L E D of a part of the electrocardiogram device) is used to detect. The photodetector 40 is turned on and off by the light of the LED 42.No need for timer or wave 5quarerTherefore, in the method of the example shown in FIG.do.
本発明の範囲から逸脱しない他の変形は当業者には明らかであり、この範囲は請求の範囲により規定されている。Other variations that do not depart from the scope of the invention will be apparent to those skilled in the art;defined by the scope of the request.
例えば、マイクロコンピュータを使用せず、マイクロプロセッサ〔例えば、シロ4コマドアコンピユータ(例えばC64Commadore Computer) )を適合させ、ソフトウェアを開発して医者が使用するプログラム可能な可変間隔を用いて搏動時間を検出測定することができる。For example, instead of using a microcomputer, a microprocessor [e.g.4-command computer (e.g. C64Commadore Computer))) and develop software to make it programmable for use by doctors.Using variable intervals, the beating time can be detected and measured.
国際調査報告international search report
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US84594286A | 1986-03-31 | 1986-03-31 | |
| US845,942 | 1986-03-31 |
| Publication Number | Publication Date |
|---|---|
| JPS63503207Atrue JPS63503207A (en) | 1988-11-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62502279APendingJPS63503207A (en) | 1986-03-31 | 1987-03-27 | Computerized positive pressure exhalation system |
| JP1991066000UExpired - LifetimeJPH06125Y2 (en) | 1986-03-31 | 1991-07-26 | Computer gated pressure device for controlling patient exhalation |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1991066000UExpired - LifetimeJPH06125Y2 (en) | 1986-03-31 | 1991-07-26 | Computer gated pressure device for controlling patient exhalation |
| Country | Link |
|---|---|
| EP (1) | EP0273041A4 (en) |
| JP (2) | JPS63503207A (en) |
| AU (1) | AU598255B2 (en) |
| CA (1) | CA1302505C (en) |
| CH (1) | CH672991A5 (en) |
| DE (1) | DE3790137T1 (en) |
| DK (1) | DK162257C (en) |
| GB (1) | GB2194892B (en) |
| NL (1) | NL8720165A (en) |
| SE (1) | SE459214B (en) |
| WO (1) | WO1987006040A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2138004T3 (en)* | 1994-02-07 | 2000-01-01 | Azriel Prof Perel | PROCEDURE FOR THE DETERMINATION OF THE CARDIOVASCULAR FUNCTION. |
| DE9406407U1 (en)* | 1994-04-18 | 1995-08-17 | Schneider, Peter, 56759 Laubach | Oxygen therapy device |
| US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
| US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
| US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
| EP1397068A2 (en) | 2001-04-02 | 2004-03-17 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
| US7811231B2 (en) | 2002-12-31 | 2010-10-12 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
| US7587287B2 (en) | 2003-04-04 | 2009-09-08 | Abbott Diabetes Care Inc. | Method and system for transferring analyte test data |
| US8066639B2 (en) | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
| WO2005089103A2 (en) | 2004-02-17 | 2005-09-29 | Therasense, Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
| US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
| US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
| US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
| US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
| US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
| US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
| US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
| US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
| US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
| US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
| US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
| US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
| WO2010127050A1 (en) | 2009-04-28 | 2010-11-04 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
| WO2010138856A1 (en) | 2009-05-29 | 2010-12-02 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
| US9314195B2 (en) | 2009-08-31 | 2016-04-19 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
| US8993331B2 (en) | 2009-08-31 | 2015-03-31 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
| US9320461B2 (en) | 2009-09-29 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
| WO2013070794A2 (en) | 2011-11-07 | 2013-05-16 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
| US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5822221A (en)* | 1981-08-04 | 1983-02-09 | Sumitomo Heavy Ind Ltd | Retractor for counterweight supporting frame for continuous unloader |
| JPS59103663A (en)* | 1982-11-19 | 1984-06-15 | シ−メンス,アクチエンゲゼルシヤフト | Artificial breathing method and apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH571868A5 (en)* | 1973-11-21 | 1976-01-30 | Hoffmann La Roche | |
| US4182366A (en)* | 1976-01-08 | 1980-01-08 | Boehringer John R | Positive end expiratory pressure device |
| DE2746924C2 (en)* | 1977-10-19 | 1982-09-16 | Drägerwerk AG, 2400 Lübeck | Ventilator |
| SE425595B (en)* | 1978-11-29 | 1982-10-18 | Siemens Elema Ab | DEVICE OF A RESPIRATORY DEVICE |
| FR2483785A1 (en)* | 1980-06-10 | 1981-12-11 | Air Liquide | AUTOMATIC VENTILATION CORRECTION RESPIRATOR |
| FR2557253B1 (en)* | 1983-12-22 | 1986-04-11 | Cit Alcatel | VALVE WITH OPENING OPERATING AT DEPRESSION |
| DE3401841A1 (en)* | 1984-01-20 | 1985-07-25 | Drägerwerk AG, 2400 Lübeck | VENTILATION SYSTEM AND OPERATING METHOD THEREFOR |
| DE3422066A1 (en)* | 1984-06-14 | 1985-12-19 | Drägerwerk AG, 2400 Lübeck | VENTILATION SYSTEM AND CONTROLLABLE VALVE UNIT TO |
| JP5822221B2 (en) | 2011-03-15 | 2015-11-24 | 株式会社メタルクリエイション | Connected taper box forming equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5822221A (en)* | 1981-08-04 | 1983-02-09 | Sumitomo Heavy Ind Ltd | Retractor for counterweight supporting frame for continuous unloader |
| JPS59103663A (en)* | 1982-11-19 | 1984-06-15 | シ−メンス,アクチエンゲゼルシヤフト | Artificial breathing method and apparatus |
| Publication number | Publication date |
|---|---|
| JPH06125Y2 (en) | 1994-01-05 |
| SE8703727L (en) | 1987-10-01 |
| GB2194892A (en) | 1988-03-23 |
| CA1302505C (en) | 1992-06-02 |
| SE8703727D0 (en) | 1987-09-28 |
| EP0273041A4 (en) | 1990-01-11 |
| NL8720165A (en) | 1988-01-04 |
| WO1987006040A1 (en) | 1987-10-08 |
| DK162257B (en) | 1991-10-07 |
| DK162257C (en) | 1992-03-02 |
| CH672991A5 (en) | 1990-01-31 |
| GB8722069D0 (en) | 1987-10-28 |
| DK504687D0 (en) | 1987-09-25 |
| AU7231687A (en) | 1987-10-20 |
| DE3790137T1 (en) | 1988-03-31 |
| AU598255B2 (en) | 1990-06-21 |
| DK504687A (en) | 1987-09-25 |
| SE459214B (en) | 1989-06-12 |
| GB2194892B (en) | 1990-05-09 |
| EP0273041A1 (en) | 1988-07-06 |
| JPH0488952U (en) | 1992-08-03 |
| Publication | Publication Date | Title |
|---|---|---|
| JPS63503207A (en) | Computerized positive pressure exhalation system | |
| US5413110A (en) | Computer gated positive expiratory pressure method | |
| US20250073410A1 (en) | System for pulse cycle harmonized ventilation and the method thereof | |
| US5020516A (en) | Circulatory assist method and apparatus | |
| TWI244914B (en) | High efficiency external counterpulsation apparatus and method for controlling same | |
| US5377671A (en) | Cardiac synchronous ventilation | |
| EP1103217B1 (en) | Method and apparatus for determining cardiac output or total peripheral resistance | |
| US6736789B1 (en) | Method and device for extracorporeal blood treatment with a means for continuous monitoring of the extracorporeal blood treatment | |
| CN103282009B (en) | Non-Invasive Devices for CPR | |
| US5188098A (en) | Method and apparatus for ECG gated ventilation | |
| US20060167390A1 (en) | External counterpulsation system and method for minimizing end diastolic pressure | |
| US5279283A (en) | Method for promoting circulation of blood | |
| US10201474B2 (en) | Method and apparatus for improved ventilation and cardio-pulmonary resuscitation | |
| EP3559950B1 (en) | Facilitating pulmonary and systemic hemodynamics cross-reference to related applications | |
| Bavin et al. | Weaning from intra-aortic balloon pump support | |
| AU776098B2 (en) | Method and apparatus for determining cardiac output or total peripheral resistance | |
| den Dunnen et al. | Pneumatic controlled circulation | |
| CN118402947A (en) | Limb intermittent inflation pressurization device synchronous with auxiliary ventilation and cardiac cycle | |
| JP2025013282A (en) | Real-time detection of R waves and method thereof | |
| Boucher | Intraaortic Balloon Counterpulsation: Current Practice | |
| CN120132213A (en) | An intelligent adjustable intra-aortic balloon pump |