【発明の詳細な説明】る集光装置に関する。[Detailed description of the invention]This invention relates to a light condensing device.
従来の集光装置は集光反射面構造とそれを支持するトラ
ス構造物、集光部から成る剛構造物として構成されてい
た。Conventional light condensing devices have been constructed as rigid structures consisting of a light condensing reflective surface structure, a truss structure supporting it, and a light condensing section.
従来の太ね光装置は宇宙への輸送、宇宙での展開・組立
・撤収に時間がかかり、コスト高であった。Conventional thick optical devices require time to be transported to space, deployed in space, assembled, and taken down, resulting in high costs.
さら罠敷笥すれば、宇宙用の場合には、特に省人省力化
が要求されるにも拘らず、集光曲面構造、トラス構造が
複雑で建造費および建造期間が大である。特に大型の構
造方式になった場合には輸送手段の能力(重量と容積、
スペースシャトルの場合4mφ×18m)により制約を
受け、打上げコストが太きい。また、宇宙の無重力環境
特性を利用したものが少ない。さらに、従来の集光曲面
構造は剛構造であるため、集光曲面の形状を制御できな
い。したがって、例えば集光部分で材料溶融等に利用す
る場合、不使用時には太陽熱を遮るシャッターが必要と
なる。(形状制御が出来ればシャッターは不必要)〔問
題点を解決するための手段〕本発明は前記問題点を解決するために、可撓性の薄膜材
料により構成され一部に凹面を形成しかつ気体の注排口
を有する気密袋、同気密袋の凹面に向き合って設けられ
た集熱部、および上記凹面の形状と上記凹面に対する上
記集熱部の相対位置とを制御するアクチュエータ構造材
を具備したことを特徴とする太陽熱集光装置を提案する
ものである。In other words, in the case of space applications, the condensing curved surface structure and truss structure are complex, and the construction cost and construction period are long, although labor and labor savings are particularly required. Especially in the case of a large structure, the capacity of the transportation means (weight and volume,
In the case of the Space Shuttle, it is limited by 4mφ x 18m), and the launch cost is high. Furthermore, there are few examples that take advantage of the weightless environment characteristics of space. Furthermore, since the conventional condensing curved surface structure is a rigid structure, the shape of the condensing curved surface cannot be controlled. Therefore, for example, when the light condensing part is used for melting materials, etc., a shutter is required to block solar heat when not in use. (A shutter is not necessary if the shape can be controlled.) [Means for solving the problem] In order to solve the above-mentioned problem, the present invention is made of a flexible thin film material and has a concave surface formed in a part. An airtight bag having a gas inlet and outlet, a heat collecting part provided facing a concave surface of the airtight bag, and an actuator structure member for controlling the shape of the concave surface and the relative position of the heat collecting part with respect to the concave surface. This paper proposes a solar heat concentrator that is characterized by the following features.
本発明は、従来の剛構造方式に比し、伸縮展開可能な薄
膜構造と形状付与/制御にガス圧を利用しているので、
輸送時の重量/スペースが小、展開構築作業が極めて簡
単になる。Compared to conventional rigid structure systems, the present invention utilizes a thin film structure that can expand and contract and gas pressure for shaping/control.
The weight and space during transportation are small, making deployment and construction work extremely easy.
本発明の一実施例の斜視図を第1図に示す。A perspective view of an embodiment of the present invention is shown in FIG.
本実施例の集光装置は、可撓性の薄膜材料1゜2、両級
がこの薄膜材料1,2にピンジヨイントされた断面形状
保持材3、枠材10.11から構成される折り畳み可能
な気密集光面構造と所定の形状にする為のガス注排口1
3とを具えたブロック■、集光面全体形状を制御する伸
縮可能なアクチュエータ構造材4,5から成るブロック
■、および集熱部/熱交換器12とこれを集光面構造と
結ぶ伸縮可能なアクチュエータ構造材6,7,8.9か
ら成るブロックIによって構成される。なお上記薄膜材
料1の表面には太陽光反射コーティングが施されている
。The light condensing device of this embodiment is a foldable device composed of a flexible thin film material 1.2, a cross-sectional shape retaining material 3 in which both grades are pin-jointed to the thin film material 1 and 2, and a frame material 10.11. Air-dense optical surface structure and gas inlet/outlet 1 for forming the specified shape
3, a block ■ consisting of extensible actuator structural members 4 and 5 that control the overall shape of the light collection surface, and a stretchable block ■ that connects the heat collection section/heat exchanger 12 and this with the light collection surface structure. It is constituted by a block I consisting of actuator structural members 6, 7, 8.9. Note that the surface of the thin film material 1 is coated with a sunlight reflective coating.
輸送時には上記ブロックは別々に分割することが可能で
あり、気密集光面構造は柔構造で折り畳み可能である。During transportation, the blocks can be separated into separate parts, and the airtight optical surface structure is flexible and foldable.
組立展開時にはガス注排口13よりガスを注排出するこ
とにより簡単に所定の形状にすることができる。During assembly and deployment, gas can be injected and discharged from the gas inlet and outlet port 13 to easily form a predetermined shape.
集光面形状は第2図に示すように伸縮可能なアクチュエ
ータ構造材4,5の長さを変えることにより制御できる
。またガス圧力の調整することKよりても集光面形状を
制御することができる。この集光面形状の変化に伴い、
アクチュエータ構造材6,7,8.9の長さを変えるこ
とによって、集光面に対する集熱部/熱交換器12の位
置を制御する。The shape of the light condensing surface can be controlled by changing the lengths of the actuator structural members 4 and 5, which can be expanded and contracted, as shown in FIG. Further, the shape of the light condensing surface can be controlled by adjusting the gas pressure. With this change in the shape of the light-condensing surface,
By varying the lengths of the actuator structures 6, 7, 8.9, the position of the heat collector/heat exchanger 12 relative to the light collection surface is controlled.
第3図は本考案の他の実施例を示すものである。前記第
1図により説明した実施例では、円筒状の集光面と円柱
状の集熱部を具えていたが、第3図は本発明を球形方式
の集光面装置に適用した実施例を示す。図中21.22
は可撓性の薄膜材料で、材料21の表面には太陽光反射
コーティングが施され【いる。23は保持材、24は伸
縮可能なアクチュエータ構造材、25は集熱部、26は
ガス注排口である。FIG. 3 shows another embodiment of the present invention. The embodiment described with reference to FIG. 1 has a cylindrical light collecting surface and a cylindrical heat collecting section, but FIG. 3 shows an embodiment in which the present invention is applied to a spherical light collecting surface device. show. 21.22 in the figure
is a flexible thin film material, and the surface of the material 21 is coated with a sunlight reflective coating. 23 is a holding material, 24 is an extensible actuator structural material, 25 is a heat collecting part, and 26 is a gas inlet/outlet.
本発明は次のような効果を奏することができる。The present invention can have the following effects.
1、展開組立前の容積が小さくなり、持ち運びが簡単、
輸送コストが安くできる。1. The volume before deployment and assembly is small, making it easy to carry.
Transportation costs can be reduced.
2、展開組立撤収が容易にできる。2. Easy to deploy, assemble and withdraw.
3、ガス圧制御、薄膜構造支持体アクチュエータにより
簡単に形状制御ができる。3. The shape can be easily controlled by gas pressure control and thin film structure support actuator.
4、構造物の大型化が容易にできる。4. Structures can be easily enlarged.
第1図は本発明の一実施例の斜視図、第2図は集光面形
状の変化を示す説明図、第3図は本発明の他の実施例の
斜視図である。1.2,21.22−可撓性の薄膜t3.23−保持材
廖4 、5 、6 、7 、8 、9 、24−・アク
チュエータ構造材膠10,11−枠材112゜25−集
熱部>13.26=ガス注排口。FIG. 1 is a perspective view of one embodiment of the present invention, FIG. 2 is an explanatory diagram showing changes in the shape of the condensing surface, and FIG. 3 is a perspective view of another embodiment of the present invention. 1.2, 21.22 - Flexible thin film t3.23 - Holding material 4, 5, 6, 7, 8, 9, 24 - Actuator structural material glue 10, 11 - Frame material 112° 25 - Collection Hot part > 13.26 = gas inlet and outlet.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62149220AJPS63315863A (en) | 1987-06-17 | 1987-06-17 | Solar heat light collecting device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62149220AJPS63315863A (en) | 1987-06-17 | 1987-06-17 | Solar heat light collecting device |
| Publication Number | Publication Date |
|---|---|
| JPS63315863Atrue JPS63315863A (en) | 1988-12-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62149220APendingJPS63315863A (en) | 1987-06-17 | 1987-06-17 | Solar heat light collecting device |
| Country | Link |
|---|---|
| JP (1) | JPS63315863A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5365920A (en)* | 1989-03-01 | 1994-11-22 | Bomin Solar Gmbh & Co. Kg | Solar concentrator system |
| CN111322769A (en)* | 2020-02-26 | 2020-06-23 | 华北电力大学 | Environment-sensitive flexible mirror automatic retractable condenser, control method and application thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS51138932A (en)* | 1975-05-27 | 1976-11-30 | Yukio Imamura | Solar heat collecting device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS51138932A (en)* | 1975-05-27 | 1976-11-30 | Yukio Imamura | Solar heat collecting device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5365920A (en)* | 1989-03-01 | 1994-11-22 | Bomin Solar Gmbh & Co. Kg | Solar concentrator system |
| CN111322769A (en)* | 2020-02-26 | 2020-06-23 | 华北电力大学 | Environment-sensitive flexible mirror automatic retractable condenser, control method and application thereof |
| CN111322769B (en)* | 2020-02-26 | 2021-03-19 | 华北电力大学 | Environment-sensitive flexible mirror automatic retractable condenser, control method and application thereof |
| Publication | Publication Date | Title |
|---|---|---|
| US5680145A (en) | Light-weight reflector for concentrating radiation | |
| US4578920A (en) | Synchronously deployable truss structure | |
| CN110861785B (en) | an optical imaging satellite | |
| US6689952B2 (en) | Large membrane space structure and method for its deployment and expansion | |
| US6920722B2 (en) | Elongated truss boom structures for space applications | |
| US6188012B1 (en) | Methods and systems for a solar cell concentrator | |
| US5296044A (en) | Lightweight stowable and deployable solar cell array | |
| Freeland et al. | Significance of the inflatable antenna experiment technology | |
| US4614319A (en) | Solar sail | |
| JPH02500100A (en) | Expandable folding structure and method for manufacturing folding structure | |
| US7782530B1 (en) | Deployable telescope having a thin-film mirror and metering structure | |
| Lin et al. | Shape memory rigidizable inflatable (RI) structures for large space systems applications | |
| JP2002507513A (en) | Shrinkable thin film solar concentrator for spacecraft | |
| US6229501B1 (en) | Reflector and reflector element for antennas for use in outer space and a method for deploying the reflectors | |
| CN110884690B (en) | Optical imaging satellite side face light shield unfolding system | |
| CN110884689B (en) | An optical imaging satellite bottom hood deployment system | |
| CN104627389A (en) | Controllably and orderly inflated self-supporting type solar sail structure | |
| US11542043B2 (en) | Collapsible tubular mast (CTM) with surface material between trusses | |
| JP2025500738A (en) | Lightweight, small packed volume, deployable solar concentrator for space applications | |
| CN103261813B (en) | Inflatable concentrator for concentrating radiation and method for its manufacture | |
| JPS63315863A (en) | Solar heat light collecting device | |
| CN103863580A (en) | Folding method applicable to sail surfaces of blocked square support rod type solar sails | |
| CN110749973A (en) | Conformal structure of optical imaging satellite | |
| JPH06104479B2 (en) | Deployable truss structure and hinge mechanism having deploying force | |
| JP3944571B2 (en) | Thin film unfolding structure, thin film unfolding method therefor, thin film unfolding unit and thin film unfolding system |