Movatterモバイル変換


[0]ホーム

URL:


JPS63308110A - Measurement of degree of compacting ground - Google Patents

Measurement of degree of compacting ground

Info

Publication number
JPS63308110A
JPS63308110AJP14390687AJP14390687AJPS63308110AJP S63308110 AJPS63308110 AJP S63308110AJP 14390687 AJP14390687 AJP 14390687AJP 14390687 AJP14390687 AJP 14390687AJP S63308110 AJPS63308110 AJP S63308110A
Authority
JP
Japan
Prior art keywords
ground
compaction
degree
weight
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14390687A
Other languages
Japanese (ja)
Other versions
JP2523324B2 (en
Inventor
Tomoaki Sakai
友昭 境
Hiroshi Izuhara
浩 出原
Kiyoshi Minami
見波 潔
Naomiki Suematsu
末松 直幹
Yasuhiro Kawase
川瀬 泰裕
Toru Tamura
徹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO DOBOKU KENKYU SHOCHO
Fudo Tetra Corp
Original Assignee
KENSETSUSHO DOBOKU KENKYU SHOCHO
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO DOBOKU KENKYU SHOCHO, Fudo Construction Co LtdfiledCriticalKENSETSUSHO DOBOKU KENKYU SHOCHO
Priority to JP62143906ApriorityCriticalpatent/JP2523324B2/en
Publication of JPS63308110ApublicationCriticalpatent/JPS63308110A/en
Application grantedgrantedCritical
Publication of JP2523324B2publicationCriticalpatent/JP2523324B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】(発明が属する技術分野)本発明は、締固め後若しくは締固め中の地盤の締固め程
度を測定する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a technique for measuring the degree of compaction of ground after or during compaction.

(発明の課題とその特徴点)従来、土工における土の締固め程度の判定は、単位体積
重量試験により締固め土の乾燥密度を求めて行うのが一
般的であるが、単位体積重量試験は、時間とともに可な
りの労力を必要とするため、多地点での施行が困難であ
るのみならず、試験対象が締固め施工完了後の土に限ら
れるのが普通であり、本来の意味での土締固め工の品質
管理に役立ちにくい。また、単位体積重量試験は、通常
、試料採取のために地盤に孔をあけるので、破壊的試験
方法である。
(Problem to be solved by the invention and its characteristics) Conventionally, the degree of compaction of soil in earthworks has generally been determined by determining the dry density of compacted soil using a unit volume weight test. Not only is it difficult to conduct tests at multiple locations because it requires a considerable amount of labor over time, but the test target is usually limited to soil after compaction has been completed, and it is difficult to conduct tests in the original sense. Not useful for quality control of soil compaction work. Additionally, unit volume weight testing is a destructive testing method because it typically involves drilling holes in the ground to collect samples.

なお、重錘を所定高さから地盤上に落下・衝突させ、衝
突時の最大加速度を検出し、これより地盤の密度を推定
する方法も知られているが(特開昭51−117402
号参照)、加速度の波形は地盤の粒子構造の影響を受け
、必ずしも正しく地盤の密度や強さを反映するものでは
ないし、また、この従来例では、肢大加速度のほぼ一定
値が得られるまで重錘の落下を反復する(通常8回位)
ようになっており、測定の即時性と連続性に欠けている
There is also a known method of dropping a weight from a predetermined height and colliding with the ground, detecting the maximum acceleration at the time of collision, and estimating the density of the ground from this (Japanese Patent Laid-Open No. 51-117402).
(see issue), the acceleration waveform is affected by the particle structure of the ground and does not necessarily accurately reflect the density and strength of the ground. Repeat dropping the weight (usually about 8 times)
This results in a lack of immediacy and continuity in measurement.

本発明は、締固め後の土は勿論のこと、締固め中の土で
あっても、その締固め程度を即時的、非破壊的、がっ、
連続的に測定することができる簡便な方法を提供するこ
とを目的としているものであって、その構成上の特徴は
特許請求の範囲に記載したとおりである。
The present invention can instantly, non-destructively, and quickly improve the degree of compaction of not only soil after compaction, but also soil that is currently being compacted.
The object of the present invention is to provide a simple method capable of continuous measurement, and its structural features are as described in the claims.

本発明における衝撃力Fの検出は、重錘に装備した荷重
計で行い、地盤の応答速度Vの検出は、重錘に装備した
加速度計の検出値を付属の演算装置で積分して行い、F
 / vの計算は同じく演算装置で行うのが一般的であ
る。
In the present invention, the impact force F is detected by a load meter attached to the weight, and the response speed V of the ground is detected by integrating the detected value of the accelerometer attached to the weight using an attached calculation device. F
/v is generally calculated using an arithmetic unit.

(発明の詳細な説明)−iに、物体に加えた力をF、これに対する物体の応答
速度をv、FとVの比をZとしたとき、2は物体の動的
なこわさく剛度)を表す。
(Detailed description of the invention) - When i is the force applied to an object, F is the response speed of the object to this, and the ratio of F and V is Z, 2 is the dynamic stiffness of the object) represents.

本発明は、物体が締固め土の場合に、前記Zが単位体積
重量試験で求める締固め土の乾燥密度や平板載荷試験で
求める地盤係数と良い相関を示すことに着目し、Zを指
標として土の締固め程度を測定するようにしたものであ
る。
The present invention focuses on the fact that when the object is compacted soil, Z shows a good correlation with the dry density of compacted soil determined by a unit volume weight test and the ground coefficient determined by a flat plate loading test, and uses Z as an index. It is designed to measure the degree of compaction of soil.

2を求める場合の物体の加振方法には、調和振動による
もの、ランダム振動によるもの、インパクト加振による
ものの3通りがあるが、前述のような即時的測定という
要求に対してはインパクトによる加振が最適であり、装
置も簡単であるので、本発明では、重錘を適宜高さから
自由落下させ、測定しようとする地盤に衝突させて、イ
ンパクトによる加振をしている。
2, there are three ways to excite an object: harmonic vibration, random vibration, and impact vibration. Since shaking is optimal and the device is simple, in the present invention, a weight is allowed to fall freely from an appropriate height and is caused to collide with the ground to be measured to generate vibration due to the impact.

一般に、ZO,Zlを有する2物体の衝突時に両者の接
点間に生じる力Fはここで、Zoを測定装置の重錘のZ値、Zlを締固め地
盤のZ値とすれば、一般にはZ。)Z+が成立し、(1
)式はで、Zl/zO嬌0よつ、Z 1=  F / v      −−−−−−−−
−−−(2)となり、衝突時の衝撃力Fと地盤の応答速
度Vを測定して、(2)式より締固め地盤のZ値を算定
することができる。
In general, when two objects having ZO and Zl collide, the force F that occurs between the contact points of the two objects is: Here, if Zo is the Z value of the weight of the measuring device and Zl is the Z value of the compacted ground, then in general, Z . ) Z+ is established, and (1
) formula is Zl/zO嬌0yotsu, Z 1= F / v −−−−−−−−
--- (2) is obtained, and by measuring the impact force F at the time of collision and the response speed V of the ground, the Z value of the compacted ground can be calculated from equation (2).

そして、測定した締固め地盤の2値から地盤上の乾燥密
度や地盤係数を知るには、予め作成しておいた相関図を
利用すればよい。
In order to know the dry density and soil coefficient of the ground from the binary values of the measured compacted ground, a correlation diagram created in advance may be used.

図面は本発明実施用装置(−例)の説明図であり、第1
図において、1は重錘、2は先端部、3は荷重計、4は
加速度計である。
The drawing is an explanatory diagram of the apparatus for implementing the present invention (-example), and the first
In the figure, 1 is a weight, 2 is a tip, 3 is a load meter, and 4 is an accelerometer.

重錘1の重さは通常数誌であり、測定地盤の土質や層厚
等を考慮して適宜選定する。
The weight of the weight 1 is usually several pounds, and is appropriately selected in consideration of the soil quality and layer thickness of the ground to be measured.

先端部2の下面(土との接触面)は平面にし、また、先
端部2の材質は堅固かつ軽量なジュラルミン等にするの
が好ましい。
It is preferable that the lower surface of the tip part 2 (the surface in contact with the soil) be flat, and that the material of the tip part 2 be made of hard and lightweight duralumin or the like.

荷重計3と加速度計4は圧電型センサであり、荷重計3
は2〜3個、加速度計4は1個設ける。
The load cell 3 and the accelerometer 4 are piezoelectric sensors, and the load cell 3
Two to three accelerometers are provided, and one accelerometer 4 is provided.

第2図において、5はデータ処理部、6は表示部、7は
記憶・再生部である。
In FIG. 2, 5 is a data processing section, 6 is a display section, and 7 is a storage/reproduction section.

データ処理部5では、荷重計データの加算、加速度デー
タの積分による速度データへの変換、前記(2)式によ
るZlの計算を行う。
The data processing section 5 adds load meter data, converts acceleration data into velocity data by integrating it, and calculates Zl using the above equation (2).

表示部6は液晶ディスプレイ等であり、オペレーターに
測定結果を知らせるようになっている。
The display section 6 is a liquid crystal display or the like, and is designed to inform the operator of the measurement results.

記憶・再生部7は表示部6に接続され、記憶している各
データや計算結果を再生して表示部6に送れるようにな
っている。
The storage/reproduction section 7 is connected to the display section 6 so that it can reproduce stored data and calculation results and send them to the display section 6.

以上のような装置を例えばロードローラで牽引される車
両上に設置し、ロードローラを進行させつつ、適宜機構
で重錘1の引上げ・落下を繰返し行うことにより、地盤
の締固め作業と並行して締固め程度の測定を連続的に行
うことができる。
For example, by installing the above-mentioned device on a vehicle towed by a road roller, and repeatedly lifting and dropping the weight 1 using an appropriate mechanism while moving the road roller, it is possible to perform soil compaction work in parallel with the ground compaction work. The degree of compaction can be measured continuously.

(発明の効果)本発明は以上のようなものであるから、下記のような諸
効果が期待できる。
(Effects of the Invention) Since the present invention is as described above, the following effects can be expected.

即時的に土の締固め程度を判定することができ、測定結
果のフィードバックにより締固め地盤の的確な品質管理
が可能である。
The degree of compaction of soil can be determined instantly, and accurate quality control of compacted ground is possible by feedback of measurement results.

非破壊測定であるので、測定地盤を乱すことがない。Since it is a non-destructive measurement, the measurement ground is not disturbed.

連続的測定が可能であり、従来の点的な管理と異なり、
面的な管理を行うことができ、締固め地盤の品質のバラ
ツキが小さくなり、均質な締固めを行うことができる。
Continuous measurement is possible, unlike traditional point management,
Area management can be performed, variations in the quality of the compacted ground are reduced, and homogeneous compaction can be performed.

測定値Z1は、入力(加振力)と出力(速度応答)の比
であることから、重錘の落下高さの影響を受けず、装置
的にも、また操作的にも簡便化が図れる。
Since the measured value Z1 is the ratio of the input (excitation force) to the output (velocity response), it is not affected by the falling height of the weight and can be simplified both in terms of equipment and operation. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明実施用装置の説明図であり、第1図は重錘
の側面図、第2図はデータ処理のブロック線図である。なお、図中、1は重錘、2は先端部、3は荷重計、4は
加速度計、5はデータ処理部、6は表示部、7は記憶・
再生部である。代理人弁理士    染 谷 廣 司第1図第2図
The drawings are explanatory diagrams of an apparatus for implementing the present invention; FIG. 1 is a side view of a weight, and FIG. 2 is a block diagram of data processing. In the figure, 1 is a weight, 2 is a tip, 3 is a load cell, 4 is an accelerometer, 5 is a data processing section, 6 is a display section, and 7 is a memory/memory section.
This is the reproduction department. Representative Patent Attorney Hiroshi Sometani Figure 1 Figure 2

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]締固め後若しくは締固め中の地盤に、適宜高さから自由
落下させた重錘を衝突させて、衝突時における衝撃力F
と地盤の応答速度vを検出し、両者の比(F/v)を指
標として地盤の締固め程度を測定することを特徴とする
地盤の締固め程度の測定方法。
A weight that is freely dropped from an appropriate height collides with the ground after compaction or during compaction, and the impact force F at the time of collision is calculated.
A method for measuring the degree of compaction of the ground, comprising: detecting the response speed v of the ground and the response speed v of the ground, and measuring the degree of compaction of the ground using the ratio of the two (F/v) as an index.
JP62143906A1987-06-091987-06-09 How to measure the degree of compaction of the groundExpired - LifetimeJP2523324B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP62143906AJP2523324B2 (en)1987-06-091987-06-09 How to measure the degree of compaction of the ground

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP62143906AJP2523324B2 (en)1987-06-091987-06-09 How to measure the degree of compaction of the ground

Publications (2)

Publication NumberPublication Date
JPS63308110Atrue JPS63308110A (en)1988-12-15
JP2523324B2 JP2523324B2 (en)1996-08-07

Family

ID=15349829

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP62143906AExpired - LifetimeJP2523324B2 (en)1987-06-091987-06-09 How to measure the degree of compaction of the ground

Country Status (1)

CountryLink
JP (1)JP2523324B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0587657A (en)*1991-09-261993-04-06Atsushi KasaharaGround supporting force tester
JPH05505674A (en)*1990-03-081993-08-19ガス リサーチ インスティテュート soil measurement
CN103255755A (en)*2013-04-282013-08-21河海大学Lossless method for fast evaluating filling compaction quality of soil building stones in real time and evaluating device thereof
US11079725B2 (en)2019-04-102021-08-03Deere & CompanyMachine control using real-time model
US11178818B2 (en)2018-10-262021-11-23Deere & CompanyHarvesting machine control system with fill level processing based on yield data
US11234366B2 (en)2019-04-102022-02-01Deere & CompanyImage selection for machine control
US11240961B2 (en)2018-10-262022-02-08Deere & CompanyControlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en)2020-10-092022-04-14Deere & CompanyCrop moisture map generation and control system
US11467605B2 (en)2019-04-102022-10-11Deere & CompanyZonal machine control
US11474523B2 (en)2020-10-092022-10-18Deere & CompanyMachine control using a predictive speed map
US11477940B2 (en)2020-03-262022-10-25Deere & CompanyMobile work machine control based on zone parameter modification
US11589509B2 (en)2018-10-262023-02-28Deere & CompanyPredictive machine characteristic map generation and control system
US11592822B2 (en)2020-10-092023-02-28Deere & CompanyMachine control using a predictive map
US11635765B2 (en)2020-10-092023-04-25Deere & CompanyCrop state map generation and control system
US11641800B2 (en)2020-02-062023-05-09Deere & CompanyAgricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en)2020-10-092023-05-16Deere & CompanyPredictive power map generation and control system
US11653588B2 (en)2018-10-262023-05-23Deere & CompanyYield map generation and control system
US11675354B2 (en)2020-10-092023-06-13Deere & CompanyMachine control using a predictive map
US11672203B2 (en)2018-10-262023-06-13Deere & CompanyPredictive map generation and control
US11711995B2 (en)2020-10-092023-08-01Deere & CompanyMachine control using a predictive map
US11727680B2 (en)2020-10-092023-08-15Deere & CompanyPredictive map generation based on seeding characteristics and control
US11778945B2 (en)2019-04-102023-10-10Deere & CompanyMachine control using real-time model
US11825768B2 (en)2020-10-092023-11-28Deere & CompanyMachine control using a predictive map
US11844311B2 (en)2020-10-092023-12-19Deere & CompanyMachine control using a predictive map
US11845449B2 (en)2020-10-092023-12-19Deere & CompanyMap generation and control system
US11849672B2 (en)2020-10-092023-12-26Deere & CompanyMachine control using a predictive map
US11849671B2 (en)2020-10-092023-12-26Deere & CompanyCrop state map generation and control system
US11864483B2 (en)2020-10-092024-01-09Deere & CompanyPredictive map generation and control system
US11874669B2 (en)2020-10-092024-01-16Deere & CompanyMap generation and control system
US11889788B2 (en)2020-10-092024-02-06Deere & CompanyPredictive biomass map generation and control
US11889787B2 (en)2020-10-092024-02-06Deere & CompanyPredictive speed map generation and control system
US11895948B2 (en)2020-10-092024-02-13Deere & CompanyPredictive map generation and control based on soil properties
US11927459B2 (en)2020-10-092024-03-12Deere & CompanyMachine control using a predictive map
US11946747B2 (en)2020-10-092024-04-02Deere & CompanyCrop constituent map generation and control system
US11957072B2 (en)2020-02-062024-04-16Deere & CompanyPre-emergence weed detection and mitigation system
US11983009B2 (en)2020-10-092024-05-14Deere & CompanyMap generation and control system
US12013245B2 (en)2020-10-092024-06-18Deere & CompanyPredictive map generation and control system
US12035648B2 (en)2020-02-062024-07-16Deere & CompanyPredictive weed map generation and control system
US12058951B2 (en)2022-04-082024-08-13Deere & CompanyPredictive nutrient map and control
US12069978B2 (en)2018-10-262024-08-27Deere & CompanyPredictive environmental characteristic map generation and control system
US12069986B2 (en)2020-10-092024-08-27Deere & CompanyMap generation and control system
US12082531B2 (en)2022-01-262024-09-10Deere & CompanySystems and methods for predicting material dynamics
US12127500B2 (en)2021-01-272024-10-29Deere & CompanyMachine control using a map with regime zones
US12178158B2 (en)2020-10-092024-12-31Deere & CompanyPredictive map generation and control system for an agricultural work machine
US12229886B2 (en)2021-10-012025-02-18Deere & CompanyHistorical crop state model, predictive crop state map generation and control system
US12225846B2 (en)2020-02-062025-02-18Deere & CompanyMachine control using a predictive map
US12245549B2 (en)2022-01-112025-03-11Deere & CompanyPredictive response map generation and control system
US12250905B2 (en)2020-10-092025-03-18Deere & CompanyMachine control using a predictive map
US12284934B2 (en)2022-04-082025-04-29Deere & CompanySystems and methods for predictive tractive characteristics and control
US12298767B2 (en)2022-04-082025-05-13Deere & CompanyPredictive material consumption map and control
US12295288B2 (en)2022-04-052025-05-13Deere &CompanyPredictive machine setting map generation and control system
US12302791B2 (en)2021-12-202025-05-20Deere & CompanyCrop constituents, predictive mapping, and agricultural harvester control
US12310286B2 (en)2021-12-142025-05-27Deere & CompanyCrop constituent sensing
US12329050B2 (en)2020-10-092025-06-17Deere & CompanyMachine control using a predictive map
US12329148B2 (en)2020-02-062025-06-17Deere & CompanyPredictive weed map and material application machine control
US12358493B2 (en)2022-04-082025-07-15Deere & CompanySystems and methods for predictive power requirements and control
US12386354B2 (en)2020-10-092025-08-12Deere & CompanyPredictive power map generation and control system
US12422847B2 (en)2020-10-092025-09-23Deere & CompanyPredictive agricultural model and map generation
US12419220B2 (en)2020-10-092025-09-23Deere & CompanyPredictive map generation and control system

Cited By (71)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH05505674A (en)*1990-03-081993-08-19ガス リサーチ インスティテュート soil measurement
JPH0587657A (en)*1991-09-261993-04-06Atsushi KasaharaGround supporting force tester
CN103255755A (en)*2013-04-282013-08-21河海大学Lossless method for fast evaluating filling compaction quality of soil building stones in real time and evaluating device thereof
US12178156B2 (en)2018-10-262024-12-31Deere & CompanyPredictive map generation and control
US11178818B2 (en)2018-10-262021-11-23Deere & CompanyHarvesting machine control system with fill level processing based on yield data
US12171153B2 (en)2018-10-262024-12-24Deere & CompanyYield map generation and control system
US11240961B2 (en)2018-10-262022-02-08Deere & CompanyControlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US12069978B2 (en)2018-10-262024-08-27Deere & CompanyPredictive environmental characteristic map generation and control system
US12010947B2 (en)2018-10-262024-06-18Deere & CompanyPredictive machine characteristic map generation and control system
US11672203B2 (en)2018-10-262023-06-13Deere & CompanyPredictive map generation and control
US11653588B2 (en)2018-10-262023-05-23Deere & CompanyYield map generation and control system
US11589509B2 (en)2018-10-262023-02-28Deere & CompanyPredictive machine characteristic map generation and control system
US11650553B2 (en)2019-04-102023-05-16Deere & CompanyMachine control using real-time model
US11079725B2 (en)2019-04-102021-08-03Deere & CompanyMachine control using real-time model
US11234366B2 (en)2019-04-102022-02-01Deere & CompanyImage selection for machine control
US11467605B2 (en)2019-04-102022-10-11Deere & CompanyZonal machine control
US11778945B2 (en)2019-04-102023-10-10Deere & CompanyMachine control using real-time model
US11829112B2 (en)2019-04-102023-11-28Deere & CompanyMachine control using real-time model
US11957072B2 (en)2020-02-062024-04-16Deere & CompanyPre-emergence weed detection and mitigation system
US11641800B2 (en)2020-02-062023-05-09Deere & CompanyAgricultural harvesting machine with pre-emergence weed detection and mitigation system
US12329148B2 (en)2020-02-062025-06-17Deere & CompanyPredictive weed map and material application machine control
US12225846B2 (en)2020-02-062025-02-18Deere & CompanyMachine control using a predictive map
US12035648B2 (en)2020-02-062024-07-16Deere & CompanyPredictive weed map generation and control system
US11477940B2 (en)2020-03-262022-10-25Deere & CompanyMobile work machine control based on zone parameter modification
US12013245B2 (en)2020-10-092024-06-18Deere & CompanyPredictive map generation and control system
US12080062B2 (en)2020-10-092024-09-03Deere & CompanyPredictive map generation based on seeding characteristics and control
US11845449B2 (en)2020-10-092023-12-19Deere & CompanyMap generation and control system
US11849672B2 (en)2020-10-092023-12-26Deere & CompanyMachine control using a predictive map
US11849671B2 (en)2020-10-092023-12-26Deere & CompanyCrop state map generation and control system
US11864483B2 (en)2020-10-092024-01-09Deere & CompanyPredictive map generation and control system
US11871697B2 (en)2020-10-092024-01-16Deere & CompanyCrop moisture map generation and control system
US11874669B2 (en)2020-10-092024-01-16Deere & CompanyMap generation and control system
US11889788B2 (en)2020-10-092024-02-06Deere & CompanyPredictive biomass map generation and control
US11889787B2 (en)2020-10-092024-02-06Deere & CompanyPredictive speed map generation and control system
US11895948B2 (en)2020-10-092024-02-13Deere & CompanyPredictive map generation and control based on soil properties
US11927459B2 (en)2020-10-092024-03-12Deere & CompanyMachine control using a predictive map
US11946747B2 (en)2020-10-092024-04-02Deere & CompanyCrop constituent map generation and control system
US11825768B2 (en)2020-10-092023-11-28Deere & CompanyMachine control using a predictive map
US11983009B2 (en)2020-10-092024-05-14Deere & CompanyMap generation and control system
US11727680B2 (en)2020-10-092023-08-15Deere & CompanyPredictive map generation based on seeding characteristics and control
US11635765B2 (en)2020-10-092023-04-25Deere & CompanyCrop state map generation and control system
US12013698B2 (en)2020-10-092024-06-18Deere & CompanyMachine control using a predictive map
US11711995B2 (en)2020-10-092023-08-01Deere & CompanyMachine control using a predictive map
US12048271B2 (en)2020-10-092024-07-30Deere &CompanyCrop moisture map generation and control system
US12419220B2 (en)2020-10-092025-09-23Deere & CompanyPredictive map generation and control system
US20220110251A1 (en)2020-10-092022-04-14Deere & CompanyCrop moisture map generation and control system
US12069986B2 (en)2020-10-092024-08-27Deere & CompanyMap generation and control system
US11844311B2 (en)2020-10-092023-12-19Deere & CompanyMachine control using a predictive map
US12422847B2 (en)2020-10-092025-09-23Deere & CompanyPredictive agricultural model and map generation
US12386354B2 (en)2020-10-092025-08-12Deere & CompanyPredictive power map generation and control system
US11474523B2 (en)2020-10-092022-10-18Deere & CompanyMachine control using a predictive speed map
US12178158B2 (en)2020-10-092024-12-31Deere & CompanyPredictive map generation and control system for an agricultural work machine
US11675354B2 (en)2020-10-092023-06-13Deere & CompanyMachine control using a predictive map
US12193350B2 (en)2020-10-092025-01-14Deere & CompanyMachine control using a predictive map
US12216472B2 (en)2020-10-092025-02-04Deere & CompanyMap generation and control system
US11650587B2 (en)2020-10-092023-05-16Deere & CompanyPredictive power map generation and control system
US11592822B2 (en)2020-10-092023-02-28Deere & CompanyMachine control using a predictive map
US12329050B2 (en)2020-10-092025-06-17Deere & CompanyMachine control using a predictive map
US12250905B2 (en)2020-10-092025-03-18Deere & CompanyMachine control using a predictive map
US12271196B2 (en)2020-10-092025-04-08Deere &CompanyMachine control using a predictive map
US12127500B2 (en)2021-01-272024-10-29Deere & CompanyMachine control using a map with regime zones
US12229886B2 (en)2021-10-012025-02-18Deere & CompanyHistorical crop state model, predictive crop state map generation and control system
US12310286B2 (en)2021-12-142025-05-27Deere & CompanyCrop constituent sensing
US12302791B2 (en)2021-12-202025-05-20Deere & CompanyCrop constituents, predictive mapping, and agricultural harvester control
US12245549B2 (en)2022-01-112025-03-11Deere & CompanyPredictive response map generation and control system
US12082531B2 (en)2022-01-262024-09-10Deere & CompanySystems and methods for predicting material dynamics
US12295288B2 (en)2022-04-052025-05-13Deere &CompanyPredictive machine setting map generation and control system
US12284934B2 (en)2022-04-082025-04-29Deere & CompanySystems and methods for predictive tractive characteristics and control
US12298767B2 (en)2022-04-082025-05-13Deere & CompanyPredictive material consumption map and control
US12358493B2 (en)2022-04-082025-07-15Deere & CompanySystems and methods for predictive power requirements and control
US12058951B2 (en)2022-04-082024-08-13Deere & CompanyPredictive nutrient map and control

Also Published As

Publication numberPublication date
JP2523324B2 (en)1996-08-07

Similar Documents

PublicationPublication DateTitle
JPS63308110A (en)Measurement of degree of compacting ground
Inci et al.Experimental investigation of dynamic response of compacted clayey soils
US4107981A (en)Method of estimating ground pressure
Banks et al.An experimentally validated damage detection theory in smart structures
US3946598A (en)Method and apparatus for determining the dynamic parameters of soil in situ
US5095465A (en)In situ testing with surface seismic waves of materials having properties that change with time
JP3340702B2 (en) A method for measuring deterioration of a concrete structure and a measuring device therefor.
CN108603345A (en)The method of ballast body for being compacted track and make unit firm by ramming
Zeng et al.Application of Bender Elements in Measuring Gmax of Sand Under K Condition
CN109946175A (en) Experimental device and method for creep characteristics of water-saturated weak structural surface after blasting vibration
US4231259A (en)Method and apparatus for non-destructive evaluation utilizing the internal friction damping (IFD) technique
US5179860A (en)Defect detecting method and apparatus
JP3491263B2 (en) Measurement method of deformation characteristics of ground material by contact time
US7590495B2 (en)Inverse method to calculate material properties using a non-resonant technique
JP2001208733A (en)Device for measuring degradation of concrete structure
JP2602052B2 (en) Soil compaction degree detector
CN210071546U (en)Experimental device for creep characteristic of saturated water soft structural surface after blasting vibration action
US6848311B1 (en)Method for estimating the properties of a solid material subjected to compressional forces
Lai et al.Evaluating the compaction quality of backfills by stress wave velocities
JPH1078333A (en)Measuring monitoring system for driven pile
JP2516020B2 (en) How to measure the strength of the ground
CN111458090A (en) Model-based dynamic parameter testing system
JP7590934B2 (en) Methods for characterizing soil materials and for managing compaction
InciSmall-Strain Elastic Response Of Compacted Clayey Soils During Drying-An Empirical Approach
Kim et al.Development of VS tomography testing system for geotechnical centrifuge experiments

Legal Events

DateCodeTitleDescription
S631Written request for registration of reclamation of domicile

Free format text:JAPANESE INTERMEDIATE CODE: R313631

S111Request for change of ownership or part of ownership

Free format text:JAPANESE INTERMEDIATE CODE: R313117

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp