【発明の詳細な説明】(発明が属する技術分野)本発明は、締固め後若しくは締固め中の地盤の締固め程
度を測定する技術に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a technique for measuring the degree of compaction of ground after or during compaction.
(発明の課題とその特徴点)従来、土工における土の締固め程度の判定は、単位体積
重量試験により締固め土の乾燥密度を求めて行うのが一
般的であるが、単位体積重量試験は、時間とともに可な
りの労力を必要とするため、多地点での施行が困難であ
るのみならず、試験対象が締固め施工完了後の土に限ら
れるのが普通であり、本来の意味での土締固め工の品質
管理に役立ちにくい。また、単位体積重量試験は、通常
、試料採取のために地盤に孔をあけるので、破壊的試験
方法である。(Problem to be solved by the invention and its characteristics) Conventionally, the degree of compaction of soil in earthworks has generally been determined by determining the dry density of compacted soil using a unit volume weight test. Not only is it difficult to conduct tests at multiple locations because it requires a considerable amount of labor over time, but the test target is usually limited to soil after compaction has been completed, and it is difficult to conduct tests in the original sense. Not useful for quality control of soil compaction work. Additionally, unit volume weight testing is a destructive testing method because it typically involves drilling holes in the ground to collect samples.
なお、重錘を所定高さから地盤上に落下・衝突させ、衝
突時の最大加速度を検出し、これより地盤の密度を推定
する方法も知られているが(特開昭51−117402
号参照)、加速度の波形は地盤の粒子構造の影響を受け
、必ずしも正しく地盤の密度や強さを反映するものでは
ないし、また、この従来例では、肢大加速度のほぼ一定
値が得られるまで重錘の落下を反復する(通常8回位)
ようになっており、測定の即時性と連続性に欠けている
。There is also a known method of dropping a weight from a predetermined height and colliding with the ground, detecting the maximum acceleration at the time of collision, and estimating the density of the ground from this (Japanese Patent Laid-Open No. 51-117402).
(see issue), the acceleration waveform is affected by the particle structure of the ground and does not necessarily accurately reflect the density and strength of the ground. Repeat dropping the weight (usually about 8 times)
This results in a lack of immediacy and continuity in measurement.
本発明は、締固め後の土は勿論のこと、締固め中の土で
あっても、その締固め程度を即時的、非破壊的、がっ、
連続的に測定することができる簡便な方法を提供するこ
とを目的としているものであって、その構成上の特徴は
特許請求の範囲に記載したとおりである。The present invention can instantly, non-destructively, and quickly improve the degree of compaction of not only soil after compaction, but also soil that is currently being compacted.
The object of the present invention is to provide a simple method capable of continuous measurement, and its structural features are as described in the claims.
本発明における衝撃力Fの検出は、重錘に装備した荷重
計で行い、地盤の応答速度Vの検出は、重錘に装備した
加速度計の検出値を付属の演算装置で積分して行い、F
/ vの計算は同じく演算装置で行うのが一般的であ
る。In the present invention, the impact force F is detected by a load meter attached to the weight, and the response speed V of the ground is detected by integrating the detected value of the accelerometer attached to the weight using an attached calculation device. F
/v is generally calculated using an arithmetic unit.
(発明の詳細な説明)−iに、物体に加えた力をF、これに対する物体の応答
速度をv、FとVの比をZとしたとき、2は物体の動的
なこわさく剛度)を表す。(Detailed description of the invention) - When i is the force applied to an object, F is the response speed of the object to this, and the ratio of F and V is Z, 2 is the dynamic stiffness of the object) represents.
本発明は、物体が締固め土の場合に、前記Zが単位体積
重量試験で求める締固め土の乾燥密度や平板載荷試験で
求める地盤係数と良い相関を示すことに着目し、Zを指
標として土の締固め程度を測定するようにしたものであ
る。The present invention focuses on the fact that when the object is compacted soil, Z shows a good correlation with the dry density of compacted soil determined by a unit volume weight test and the ground coefficient determined by a flat plate loading test, and uses Z as an index. It is designed to measure the degree of compaction of soil.
2を求める場合の物体の加振方法には、調和振動による
もの、ランダム振動によるもの、インパクト加振による
ものの3通りがあるが、前述のような即時的測定という
要求に対してはインパクトによる加振が最適であり、装
置も簡単であるので、本発明では、重錘を適宜高さから
自由落下させ、測定しようとする地盤に衝突させて、イ
ンパクトによる加振をしている。2, there are three ways to excite an object: harmonic vibration, random vibration, and impact vibration. Since shaking is optimal and the device is simple, in the present invention, a weight is allowed to fall freely from an appropriate height and is caused to collide with the ground to be measured to generate vibration due to the impact.
一般に、ZO,Zlを有する2物体の衝突時に両者の接
点間に生じる力Fはここで、Zoを測定装置の重錘のZ値、Zlを締固め地
盤のZ値とすれば、一般にはZ。)Z+が成立し、(1
)式はで、Zl/zO嬌0よつ、Z 1= F / v −−−−−−−−
−−−(2)となり、衝突時の衝撃力Fと地盤の応答速
度Vを測定して、(2)式より締固め地盤のZ値を算定
することができる。In general, when two objects having ZO and Zl collide, the force F that occurs between the contact points of the two objects is: Here, if Zo is the Z value of the weight of the measuring device and Zl is the Z value of the compacted ground, then in general, Z . ) Z+ is established, and (1
) formula is Zl/zO嬌0yotsu, Z 1= F / v −−−−−−−−
--- (2) is obtained, and by measuring the impact force F at the time of collision and the response speed V of the ground, the Z value of the compacted ground can be calculated from equation (2).
そして、測定した締固め地盤の2値から地盤上の乾燥密
度や地盤係数を知るには、予め作成しておいた相関図を
利用すればよい。In order to know the dry density and soil coefficient of the ground from the binary values of the measured compacted ground, a correlation diagram created in advance may be used.
図面は本発明実施用装置(−例)の説明図であり、第1
図において、1は重錘、2は先端部、3は荷重計、4は
加速度計である。The drawing is an explanatory diagram of the apparatus for implementing the present invention (-example), and the first
In the figure, 1 is a weight, 2 is a tip, 3 is a load meter, and 4 is an accelerometer.
重錘1の重さは通常数誌であり、測定地盤の土質や層厚
等を考慮して適宜選定する。The weight of the weight 1 is usually several pounds, and is appropriately selected in consideration of the soil quality and layer thickness of the ground to be measured.
先端部2の下面(土との接触面)は平面にし、また、先
端部2の材質は堅固かつ軽量なジュラルミン等にするの
が好ましい。It is preferable that the lower surface of the tip part 2 (the surface in contact with the soil) be flat, and that the material of the tip part 2 be made of hard and lightweight duralumin or the like.
荷重計3と加速度計4は圧電型センサであり、荷重計3
は2〜3個、加速度計4は1個設ける。The load cell 3 and the accelerometer 4 are piezoelectric sensors, and the load cell 3
Two to three accelerometers are provided, and one accelerometer 4 is provided.
第2図において、5はデータ処理部、6は表示部、7は
記憶・再生部である。In FIG. 2, 5 is a data processing section, 6 is a display section, and 7 is a storage/reproduction section.
データ処理部5では、荷重計データの加算、加速度デー
タの積分による速度データへの変換、前記(2)式によ
るZlの計算を行う。The data processing section 5 adds load meter data, converts acceleration data into velocity data by integrating it, and calculates Zl using the above equation (2).
表示部6は液晶ディスプレイ等であり、オペレーターに
測定結果を知らせるようになっている。The display section 6 is a liquid crystal display or the like, and is designed to inform the operator of the measurement results.
記憶・再生部7は表示部6に接続され、記憶している各
データや計算結果を再生して表示部6に送れるようにな
っている。The storage/reproduction section 7 is connected to the display section 6 so that it can reproduce stored data and calculation results and send them to the display section 6.
以上のような装置を例えばロードローラで牽引される車
両上に設置し、ロードローラを進行させつつ、適宜機構
で重錘1の引上げ・落下を繰返し行うことにより、地盤
の締固め作業と並行して締固め程度の測定を連続的に行
うことができる。For example, by installing the above-mentioned device on a vehicle towed by a road roller, and repeatedly lifting and dropping the weight 1 using an appropriate mechanism while moving the road roller, it is possible to perform soil compaction work in parallel with the ground compaction work. The degree of compaction can be measured continuously.
(発明の効果)本発明は以上のようなものであるから、下記のような諸
効果が期待できる。(Effects of the Invention) Since the present invention is as described above, the following effects can be expected.
即時的に土の締固め程度を判定することができ、測定結
果のフィードバックにより締固め地盤の的確な品質管理
が可能である。The degree of compaction of soil can be determined instantly, and accurate quality control of compacted ground is possible by feedback of measurement results.
非破壊測定であるので、測定地盤を乱すことがない。Since it is a non-destructive measurement, the measurement ground is not disturbed.
連続的測定が可能であり、従来の点的な管理と異なり、
面的な管理を行うことができ、締固め地盤の品質のバラ
ツキが小さくなり、均質な締固めを行うことができる。Continuous measurement is possible, unlike traditional point management,
Area management can be performed, variations in the quality of the compacted ground are reduced, and homogeneous compaction can be performed.
測定値Z1は、入力(加振力)と出力(速度応答)の比
であることから、重錘の落下高さの影響を受けず、装置
的にも、また操作的にも簡便化が図れる。Since the measured value Z1 is the ratio of the input (excitation force) to the output (velocity response), it is not affected by the falling height of the weight and can be simplified both in terms of equipment and operation. .
図面は本発明実施用装置の説明図であり、第1図は重錘
の側面図、第2図はデータ処理のブロック線図である。なお、図中、1は重錘、2は先端部、3は荷重計、4は
加速度計、5はデータ処理部、6は表示部、7は記憶・
再生部である。代理人弁理士 染 谷 廣 司第1図第2図The drawings are explanatory diagrams of an apparatus for implementing the present invention; FIG. 1 is a side view of a weight, and FIG. 2 is a block diagram of data processing. In the figure, 1 is a weight, 2 is a tip, 3 is a load cell, 4 is an accelerometer, 5 is a data processing section, 6 is a display section, and 7 is a memory/memory section.
This is the reproduction department. Representative Patent Attorney Hiroshi Sometani Figure 1 Figure 2
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62143906AJP2523324B2 (en) | 1987-06-09 | 1987-06-09 | How to measure the degree of compaction of the ground |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62143906AJP2523324B2 (en) | 1987-06-09 | 1987-06-09 | How to measure the degree of compaction of the ground |
| Publication Number | Publication Date |
|---|---|
| JPS63308110Atrue JPS63308110A (en) | 1988-12-15 |
| JP2523324B2 JP2523324B2 (en) | 1996-08-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62143906AExpired - LifetimeJP2523324B2 (en) | 1987-06-09 | 1987-06-09 | How to measure the degree of compaction of the ground |
| Country | Link |
|---|---|
| JP (1) | JP2523324B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0587657A (en)* | 1991-09-26 | 1993-04-06 | Atsushi Kasahara | Ground supporting force tester |
| JPH05505674A (en)* | 1990-03-08 | 1993-08-19 | ガス リサーチ インスティテュート | soil measurement |
| CN103255755A (en)* | 2013-04-28 | 2013-08-21 | 河海大学 | Lossless method for fast evaluating filling compaction quality of soil building stones in real time and evaluating device thereof |
| US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
| US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
| US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
| US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
| US20220110251A1 (en) | 2020-10-09 | 2022-04-14 | Deere & Company | Crop moisture map generation and control system |
| US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
| US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
| US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
| US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
| US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
| US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
| US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
| US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
| US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
| US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
| US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
| US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
| US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
| US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
| US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
| US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
| US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
| US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
| US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
| US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
| US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
| US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
| US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
| US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
| US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
| US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
| US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
| US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
| US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
| US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
| US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
| US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
| US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
| US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
| US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
| US12178158B2 (en) | 2020-10-09 | 2024-12-31 | Deere & Company | Predictive map generation and control system for an agricultural work machine |
| US12229886B2 (en) | 2021-10-01 | 2025-02-18 | Deere & Company | Historical crop state model, predictive crop state map generation and control system |
| US12225846B2 (en) | 2020-02-06 | 2025-02-18 | Deere & Company | Machine control using a predictive map |
| US12245549B2 (en) | 2022-01-11 | 2025-03-11 | Deere & Company | Predictive response map generation and control system |
| US12250905B2 (en) | 2020-10-09 | 2025-03-18 | Deere & Company | Machine control using a predictive map |
| US12284934B2 (en) | 2022-04-08 | 2025-04-29 | Deere & Company | Systems and methods for predictive tractive characteristics and control |
| US12298767B2 (en) | 2022-04-08 | 2025-05-13 | Deere & Company | Predictive material consumption map and control |
| US12295288B2 (en) | 2022-04-05 | 2025-05-13 | Deere &Company | Predictive machine setting map generation and control system |
| US12302791B2 (en) | 2021-12-20 | 2025-05-20 | Deere & Company | Crop constituents, predictive mapping, and agricultural harvester control |
| US12310286B2 (en) | 2021-12-14 | 2025-05-27 | Deere & Company | Crop constituent sensing |
| US12329050B2 (en) | 2020-10-09 | 2025-06-17 | Deere & Company | Machine control using a predictive map |
| US12329148B2 (en) | 2020-02-06 | 2025-06-17 | Deere & Company | Predictive weed map and material application machine control |
| US12358493B2 (en) | 2022-04-08 | 2025-07-15 | Deere & Company | Systems and methods for predictive power requirements and control |
| US12386354B2 (en) | 2020-10-09 | 2025-08-12 | Deere & Company | Predictive power map generation and control system |
| US12422847B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive agricultural model and map generation |
| US12419220B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive map generation and control system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05505674A (en)* | 1990-03-08 | 1993-08-19 | ガス リサーチ インスティテュート | soil measurement |
| JPH0587657A (en)* | 1991-09-26 | 1993-04-06 | Atsushi Kasahara | Ground supporting force tester |
| CN103255755A (en)* | 2013-04-28 | 2013-08-21 | 河海大学 | Lossless method for fast evaluating filling compaction quality of soil building stones in real time and evaluating device thereof |
| US12178156B2 (en) | 2018-10-26 | 2024-12-31 | Deere & Company | Predictive map generation and control |
| US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
| US12171153B2 (en) | 2018-10-26 | 2024-12-24 | Deere & Company | Yield map generation and control system |
| US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
| US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
| US12010947B2 (en) | 2018-10-26 | 2024-06-18 | Deere & Company | Predictive machine characteristic map generation and control system |
| US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
| US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
| US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
| US11650553B2 (en) | 2019-04-10 | 2023-05-16 | Deere & Company | Machine control using real-time model |
| US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
| US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
| US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
| US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
| US11829112B2 (en) | 2019-04-10 | 2023-11-28 | Deere & Company | Machine control using real-time model |
| US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
| US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
| US12329148B2 (en) | 2020-02-06 | 2025-06-17 | Deere & Company | Predictive weed map and material application machine control |
| US12225846B2 (en) | 2020-02-06 | 2025-02-18 | Deere & Company | Machine control using a predictive map |
| US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
| US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
| US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
| US12080062B2 (en) | 2020-10-09 | 2024-09-03 | Deere & Company | Predictive map generation based on seeding characteristics and control |
| US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
| US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
| US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
| US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
| US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
| US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
| US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
| US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
| US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
| US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
| US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
| US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
| US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
| US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
| US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
| US12013698B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Machine control using a predictive map |
| US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
| US12048271B2 (en) | 2020-10-09 | 2024-07-30 | Deere &Company | Crop moisture map generation and control system |
| US12419220B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive map generation and control system |
| US20220110251A1 (en) | 2020-10-09 | 2022-04-14 | Deere & Company | Crop moisture map generation and control system |
| US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
| US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
| US12422847B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive agricultural model and map generation |
| US12386354B2 (en) | 2020-10-09 | 2025-08-12 | Deere & Company | Predictive power map generation and control system |
| US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
| US12178158B2 (en) | 2020-10-09 | 2024-12-31 | Deere & Company | Predictive map generation and control system for an agricultural work machine |
| US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
| US12193350B2 (en) | 2020-10-09 | 2025-01-14 | Deere & Company | Machine control using a predictive map |
| US12216472B2 (en) | 2020-10-09 | 2025-02-04 | Deere & Company | Map generation and control system |
| US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
| US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
| US12329050B2 (en) | 2020-10-09 | 2025-06-17 | Deere & Company | Machine control using a predictive map |
| US12250905B2 (en) | 2020-10-09 | 2025-03-18 | Deere & Company | Machine control using a predictive map |
| US12271196B2 (en) | 2020-10-09 | 2025-04-08 | Deere &Company | Machine control using a predictive map |
| US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
| US12229886B2 (en) | 2021-10-01 | 2025-02-18 | Deere & Company | Historical crop state model, predictive crop state map generation and control system |
| US12310286B2 (en) | 2021-12-14 | 2025-05-27 | Deere & Company | Crop constituent sensing |
| US12302791B2 (en) | 2021-12-20 | 2025-05-20 | Deere & Company | Crop constituents, predictive mapping, and agricultural harvester control |
| US12245549B2 (en) | 2022-01-11 | 2025-03-11 | Deere & Company | Predictive response map generation and control system |
| US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
| US12295288B2 (en) | 2022-04-05 | 2025-05-13 | Deere &Company | Predictive machine setting map generation and control system |
| US12284934B2 (en) | 2022-04-08 | 2025-04-29 | Deere & Company | Systems and methods for predictive tractive characteristics and control |
| US12298767B2 (en) | 2022-04-08 | 2025-05-13 | Deere & Company | Predictive material consumption map and control |
| US12358493B2 (en) | 2022-04-08 | 2025-07-15 | Deere & Company | Systems and methods for predictive power requirements and control |
| US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
| Publication number | Publication date |
|---|---|
| JP2523324B2 (en) | 1996-08-07 |
| Publication | Publication Date | Title |
|---|---|---|
| JPS63308110A (en) | Measurement of degree of compacting ground | |
| Inci et al. | Experimental investigation of dynamic response of compacted clayey soils | |
| US4107981A (en) | Method of estimating ground pressure | |
| Banks et al. | An experimentally validated damage detection theory in smart structures | |
| US3946598A (en) | Method and apparatus for determining the dynamic parameters of soil in situ | |
| US5095465A (en) | In situ testing with surface seismic waves of materials having properties that change with time | |
| JP3340702B2 (en) | A method for measuring deterioration of a concrete structure and a measuring device therefor. | |
| CN108603345A (en) | The method of ballast body for being compacted track and make unit firm by ramming | |
| Zeng et al. | Application of Bender Elements in Measuring Gmax of Sand Under K Condition | |
| CN109946175A (en) | Experimental device and method for creep characteristics of water-saturated weak structural surface after blasting vibration | |
| US4231259A (en) | Method and apparatus for non-destructive evaluation utilizing the internal friction damping (IFD) technique | |
| US5179860A (en) | Defect detecting method and apparatus | |
| JP3491263B2 (en) | Measurement method of deformation characteristics of ground material by contact time | |
| US7590495B2 (en) | Inverse method to calculate material properties using a non-resonant technique | |
| JP2001208733A (en) | Device for measuring degradation of concrete structure | |
| JP2602052B2 (en) | Soil compaction degree detector | |
| CN210071546U (en) | Experimental device for creep characteristic of saturated water soft structural surface after blasting vibration action | |
| US6848311B1 (en) | Method for estimating the properties of a solid material subjected to compressional forces | |
| Lai et al. | Evaluating the compaction quality of backfills by stress wave velocities | |
| JPH1078333A (en) | Measuring monitoring system for driven pile | |
| JP2516020B2 (en) | How to measure the strength of the ground | |
| CN111458090A (en) | Model-based dynamic parameter testing system | |
| JP7590934B2 (en) | Methods for characterizing soil materials and for managing compaction | |
| Inci | Small-Strain Elastic Response Of Compacted Clayey Soils During Drying-An Empirical Approach | |
| Kim et al. | Development of VS tomography testing system for geotechnical centrifuge experiments |
| Date | Code | Title | Description |
|---|---|---|---|
| S631 | Written request for registration of reclamation of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313631 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313117 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| EXPY | Cancellation because of completion of term |