【発明の詳細な説明】〔産業上の利用分野〕本会、明に半導体集積回路の製造方法に関し、特に浅い
P型拡散層を形成するだめのホウ素イオンの注入方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This Society specifically relates to a method for manufacturing semiconductor integrated circuits, and particularly to a method for implanting boron ions to form a shallow P-type diffusion layer.
半導体集積回路の集iJ#が向上し、また集積回路が0
MO8(相補型MO8)化されるにつれて。The total iJ# of semiconductor integrated circuits has improved, and the number of integrated circuits has decreased to 0.
As it becomes MO8 (complementary type MO8).
微小Pチャネルトランジスタの要望が強まっている。Demand for microscopic P-channel transistors is increasing.
一般的にPチャネルトランジスタのノース・ドレイン領
域の形成は、ホウ素イオン(B )のイオン注入で行な
われているが、トランジスタの微小化の際スケーリング
則に従って拡散層の深さくXj )を浅くする必要があ
る。しかしB rtN型不純物であるヒ素イオン(A
s)、リンイオン(P )に比べて投影飛程(Rp)
が大きいため、As、P等に比べて1/10程度の注入
エネルギーにしなければ0.2μm程度Oxjを有する
N型拡散層と同程度の浅いP型拡散層を形成できない。Generally, the north drain region of a P-channel transistor is formed by implanting boron ions (B), but when miniaturizing the transistor, the depth of the diffusion layer (Xj) must be made shallower according to the scaling law. There is. However, arsenic ions (A
s), projected range (Rp) compared to phosphorus ion (P)
Since this is large, a P-type diffusion layer as shallow as an N-type diffusion layer having Oxj of about 0.2 μm cannot be formed unless the implantation energy is about 1/10 of that of As, P, etc.
つ1リホウ素イオンのイオン注入法でxjが0.2μm
程度のP型拡散層を形成するには、10kev程度の注
入エネルギーでイオン注入を行なう必要がある。xj is 0.2 μm by ion implantation of boron ions.
In order to form a P-type diffusion layer of about 10 keV, it is necessary to perform ion implantation with an implantation energy of about 10 keV.
しかし、イオン注入機においてケ* 10 k e
y程度の注入エネルギーにおけるイオンのビーム11(
M。However, in an ion implanter, ke * 10 k e
A beam of ions 11 (
M.
値ri 1 m lk−以下と極めて小さく、そのため
ノース・ドレイン領域として必要なドーズ量である10
1s〜IQ”/crn”程度のイオン注入を行なうため
には2時間以上の作業時間が必要であり、実用的ではな
かった。The value ri is extremely small, less than 1 mlk-, and therefore the dose required for the north drain region is 10
In order to perform ion implantation of approximately 1 s to IQ"/crn", a working time of 2 hours or more is required, which is not practical.
そこで浅いP散拡散層を形成するイオン注入として、B
+に替えてニフッ化ホウ素イオン(B Fz+)を用い
る試みが行なわれている。BF2+はシリコン基板表面
直下でホウ素とフッ素に分解し、基板中を進行する。こ
のホウ素のRpは、BF−の加速エネルギー+7)11
/49 (BとHFzとのIi比)で加速したB+のR
pに等しく、IQkeyで注入したB+と同等のRpを
得るにげ約50keyでBFンのイオン注入を行なえば
良い。この注入エネルギーではイオン注入機のビーム電
流の低下は起きず、5 m A程度のビーム’ME流を
得ることが可能である。Therefore, as ion implantation to form a shallow P diffusion layer, B
Attempts have been made to use boron difluoride ions (B Fz+) in place of +. BF2+ decomposes into boron and fluorine just below the surface of the silicon substrate and proceeds through the substrate. The Rp of this boron is the acceleration energy of BF- + 7) 11
R of B+ accelerated at /49 (Ii ratio of B and HFz)
It is sufficient to perform ion implantation of BFn with approximately 50 keys to obtain Rp equal to p and equivalent to B+ implanted with IQkey. With this implantation energy, the beam current of the ion implanter does not decrease, and it is possible to obtain a beam'ME current of about 5 mA.
そのためP散拡散層のx j rs 0.2μm程度と
浅くでき、しかもイオン注入時間は注入エネルギー1Q
kev(DB+のものに比べて1/10〜t15程度と
なり、実用的なイオン注入法といえる。Therefore, the x j rs of the P diffusion layer can be made as shallow as approximately 0.2 μm, and the ion implantation time can be reduced to an implantation energy of 1Q.
kev (about 1/10 to t15 compared to DB+), and can be said to be a practical ion implantation method.
しかしながら、上述したBF、のイオン注入法を用いる
半導体集積回路では、第3図に示すように、必要なホウ
素以外に基板中にフッ素がホウ素102倍注入されるた
め、基板結晶中に転移等の結晶欠陥が高密度に発生する
。However, in a semiconductor integrated circuit using the BF ion implantation method described above, as shown in FIG. Crystal defects occur at high density.
また、このフッ素rt果檀回路製造中の熱工程で容易に
拡散移動し、MOS)ランジスタの閾値電圧(V?)を
変動させる要因となっている。この様にBF2のイオン
注入ri、半導体デバイス特性を劣化させるフッ素を基
板中に大量に含むという1犬な欠点を有しでいた。In addition, fluorine is easily diffused and moved during the thermal process during the manufacture of the fluorine rtwood circuit, and becomes a factor that fluctuates the threshold voltage (V?) of the MOS transistor. As described above, the ion implantation of BF2 has had one drawback in that the substrate contains a large amount of fluorine which deteriorates semiconductor device characteristics.
本発明の目的に上記欠点を除去し、不要なイオンを伴な
わずにホウ素イオンを実用的昭間内でイオン注入]7.
浅いP散拡散層を形成することのできる半導体集積回路
の!!!遣方法を提供することにある。The purpose of the present invention is to remove the above-mentioned drawbacks and implant boron ions in a practical manner without unnecessary ions] 7.
A semiconductor integrated circuit that can form a shallow P diffusion layer! ! ! The goal is to provide a way to send money.
本発明の半導体集積回路の製輩方法は、N型シリコン基
板中にP散拡散層を形成するためにホウ素イオンをイオ
ン注入する半導体集積回路の製造方法であって、前記ホ
ウ素イオンとしてジボランガス(B2H6)の気体放電
によって生起されたB。A method for manufacturing a semiconductor integrated circuit according to the present invention is a method for manufacturing a semiconductor integrated circuit in which boron ions are implanted in order to form a P diffusion layer in an N-type silicon substrate, and the boron ions are diborane gas (B2H6). ) caused by a gas discharge.
H1+イオン(0≦n≦5)を用いるものである。This uses H1+ ions (0≦n≦5).
次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の第1の実施例におけるシリコン基板中
のホウ素濃度力深さ方向のプロファイルである。FIG. 1 is a profile of boron concentration in the depth direction in a silicon substrate in a first embodiment of the present invention.
壕ず、(100)シリコン単結晶基板表面を熱酸化し、
厚さ250Aの酸化膜を形成した後、前段加速部のみを
有するイオン注入機でB、H,をアーク放電させたイオ
ン注入機からB、を分離し。Thermal oxidation of the (100) silicon single crystal substrate surface without trenches,
After forming an oxide film with a thickness of 250 A, B was separated from the ion implanter in which B and H were arc-discharged using an ion implanter having only a pre-stage acceleration section.
2Qkevの注入エネルギー、ドーズ量1.5X101
5/cm ’の条件でイオン注入した。この時のビーム
電流ri2.7 m Aと十分大きく、またイオン注入
時間1d13分であった。次で表面の酸化膜をバッフ、
アードフヴ酸で除去した後シリコン基板中の B濃
度を2次イオン質量分析法で測定した。Implantation energy of 2Qkev, dose amount 1.5X101
Ion implantation was performed under the condition of 5/cm'. At this time, the beam current ri was 2.7 mA, which was sufficiently large, and the ion implantation time was 1d13 minutes. Buff the oxide film on the surface with
After removal with ardofuvic acid, the B concentration in the silicon substrate was measured by secondary ion mass spectrometry.
このイオン注入でB、dシリコン基板表面値下で2つの
ホウ素イオンに分解しシリコン基板中を進行する。その
RI) Ii”110 k e vで注入したB のR
pにほぼ等しいものであった。また、第1図に示したプ
ロファイルからB#度がシリコン基板のN型不純物濃度
10 ”l/ crrt”となるのrtxjが約0.2
μmであることから、十分に浅いP散拡散層が形成され
ていることが判る。この第10′実施例では注入のドー
ズは1.5 X ]、 Q 15/ cm”としたが、
これはB、のドーズ量であって注入されたBL:D量は
その2倍の3×10シ(m”である。With this ion implantation, B and d are decomposed into two boron ions below the surface level of the silicon substrate and proceed through the silicon substrate. Its RI) Ii” R of B injected at 110 k e v
It was almost equal to p. Also, from the profile shown in Fig. 1, rtxj is approximately 0.2 when the B# degree becomes the N-type impurity concentration of the silicon substrate 10 "l/crrt".
.mu.m, it can be seen that a sufficiently shallow P diffusion layer is formed. In this 10th embodiment, the implantation dose was 1.5
This is the dose of B, and the amount of BL:D implanted is twice that amount, 3×10 m''.
また第1図中に、B を注入エネルギー20kevドー
ズ量3 X 10 ”7cm”の条件で本実施傍lと同
じ処理を行なったシリコン卑″板にイオン注入したプロ
ファイルを示したがsB2の2Qkevに比へてxjr
t深くなっており、B2を用いることによることによる
xjの低域の効果が判る。In addition, Fig. 1 shows the profile of B ion implanted into a silicon base plate subjected to the same treatment as in this example under conditions of an implantation energy of 20 kev and a dose of 3 x 10 "7 cm". comparison xjr
t is deeper, and the effect of the low frequency range of xj due to the use of B2 can be seen.
第2図は本発明の第2の実施例におけるシリコン基板中
のホウ素濃度の深さ方向のプロファイルである。FIG. 2 is a depth profile of boron concentration in a silicon substrate in a second embodiment of the present invention.
第1の実施例同様(100) > ’Jコン単結晶基板
を熱酸化し厚さ250Aの酸化摸を形成した後、シリコ
ンイオン(Si”)を注入エネルギー150key、ド
ーズt 5 X 10 ”7cm” (D条件ティオン
注入する。これrt S iをイオン注入することによ
りシリコン基板をアモルファス化し、チャネリング効果
を防ぐ目的で行なうものであり、比較的良く知られた千
ヤネリング防止法である。その後筒1の実施例と全く同
じ条件で8.をイオン注入する。Same as the first embodiment (100) >'After thermally oxidizing the J-con single crystal substrate to form an oxide sample with a thickness of 250A, silicon ions (Si") were implanted at an energy of 150key and a dose of t 5 x 10 "7cm". (D condition ion implantation is performed. This is done to make the silicon substrate amorphous by ion implanting rt Si and to prevent channeling effect, and is a relatively well-known method for preventing channeling. After that, cylinder 1 Ion implantation is performed under exactly the same conditions as in Example 8.
この第2の実施例においてはシリコン基板表面直下で8
2イオンが分離して生じたホウ素がチャネリングするこ
と無くシリコン基板中を進行する。In this second embodiment, 8
The boron produced by the separation of the two ions travels through the silicon substrate without channeling.
第2図中実線で示したプロファイルが木簡2の実施例に
よるホウ素のプロファイルであるが、チャネリングが抑
制されているためそのプロファイルrit、ss理論曲
線にかなり良く合った形となっている。またそのxjr
t極めて浅くはぼ0.1μmとなっていることが判る。The profile shown by the solid line in FIG. 2 is the boron profile according to the example of wooden tablet 2, and since channeling is suppressed, the profile rit, ss has a shape that closely matches the theoretical curve. Also that xjr
It can be seen that t is extremely shallow, approximately 0.1 μm.
尚第2図中にσ第2の実施例と同様にシリコン基板をア
そルファス化したのちB+を注入エネルギ−2Qkev
、ドーズf13 X 10 ”7cm” (D条件で
イオン注入したプロファイルも示した。しかしB+の場
合rt、チャネリングを防止してもその注入深さri第
2の実施例のB2に比べて深くなっており、B!+が実
効的に10k ey程度の低エネルギーで注入されてい
ることが判る。In addition, in FIG. 2, after the silicon substrate is made amorphous as in the second embodiment, B+ is implanted at an energy of -2Qkev.
, dose f13 x 10 "7cm" (A profile of ion implantation under D conditions is also shown. However, in the case of B+, rt, even if channeling is prevented, the implantation depth ri is deeper than B2 in the second embodiment. It can be seen that B!+ is effectively injected with a low energy of about 10 keys.
尚、上記実施例においてに、ホウ素イオンとしてB2を
用いた場合について欣、明したが、他のB2Hn”(n
=1〜5)を用いてもよいことは勿論である。In the above example, the case where B2 was used as the boron ion was explained, but other B2Hn''(n
=1 to 5) may of course be used.
以上説明したように本発明にB 2 H@ガスの気体放
電で生じるB雪Hn を用いて、イオン注入機のビー
ム電流値を下けること無くホウ素の実効凶注入エネルキ
ーを低下させ浅いP型拡散層を形成できるため、微細な
Pチャネルトランジスタを容易に形成できる。従って高
集積度CMO8集積回路が量産性良く製造できる。As explained above, in the present invention, the B snow Hn generated by the gas discharge of B 2 H@gas is used to reduce the effective implantation energy of boron without lowering the beam current value of the ion implanter, and to achieve shallow P-type diffusion. Since layers can be formed, fine P-channel transistors can be easily formed. Therefore, highly integrated CMO8 integrated circuits can be manufactured with good mass productivity.
第1図及び第2図は本発明の第1及び第20爽施例にお
けるシリコン基板中のホウ素濃度の深さ方向のプロファ
イルを従来法と比較して示した図。第3図は従来の半導体集積回路の製造方法においてHF
、イオンを注入した場合のホウ素とフッ素濃度の深さ方
向のプロファイル図である。代理人 弁理士 内 原 晋 “ 。Oo、7 o、2 o、3ンど14.
でΣ こ2ノパーク91・)S 1 図0 0.7 0.2 0.3深 ご
こ/A牝つ)2 図0 0.2 o、、<5にさく胛り第3図FIGS. 1 and 2 are diagrams showing profiles of boron concentration in the depth direction in silicon substrates in the first and 20th embodiments of the present invention in comparison with the conventional method. Figure 3 shows HF in the conventional manufacturing method of semiconductor integrated circuits.
, is a profile diagram of boron and fluorine concentrations in the depth direction when ions are implanted. Agent: Susumu Uchihara, patent attorney. Oo, 7 o, 2 o, 3 and 14.
In Σ Ko2 No Park 91・) S 1 Fig. 0 0.7 0.2 0.3 deep go ko/A female) 2 Fig. 0 0.2 o,,<5.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14462687AJPS63307724A (en) | 1987-06-09 | 1987-06-09 | Manufacture of semiconductor integrated circuit |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14462687AJPS63307724A (en) | 1987-06-09 | 1987-06-09 | Manufacture of semiconductor integrated circuit |
| Publication Number | Publication Date |
|---|---|
| JPS63307724Atrue JPS63307724A (en) | 1988-12-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14462687APendingJPS63307724A (en) | 1987-06-09 | 1987-06-09 | Manufacture of semiconductor integrated circuit |
| Country | Link |
|---|---|
| JP (1) | JPS63307724A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01225117A (en)* | 1988-03-04 | 1989-09-08 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device manufacturing method and its manufacturing device |
| KR19980053433A (en)* | 1996-12-26 | 1998-09-25 | 김영환 | Ion implantation method in semiconductor device manufacturing process |
| JP2003069014A (en)* | 2001-06-30 | 2003-03-07 | Hynix Semiconductor Inc | Method for manufacturing semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01225117A (en)* | 1988-03-04 | 1989-09-08 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device manufacturing method and its manufacturing device |
| KR19980053433A (en)* | 1996-12-26 | 1998-09-25 | 김영환 | Ion implantation method in semiconductor device manufacturing process |
| JP2003069014A (en)* | 2001-06-30 | 2003-03-07 | Hynix Semiconductor Inc | Method for manufacturing semiconductor device |
| Publication | Publication Date | Title |
|---|---|---|
| JP2663402B2 (en) | Method for manufacturing CMOS integrated circuit device | |
| EP0387999B1 (en) | Process for forming high-voltage and low-voltage CMOS transistors on a single integrated circuit chip | |
| JP2697392B2 (en) | Method of manufacturing complementary semiconductor device | |
| US6828185B2 (en) | CMOS of semiconductor device and method for manufacturing the same | |
| US6165825A (en) | Semiconductor device and method for producing the same | |
| US6358787B2 (en) | Method of forming CMOS integrated circuitry | |
| JPH01274475A (en) | Manufacture of semiconductor device | |
| US20020017640A1 (en) | Method of manufacturing semiconductor device | |
| US6268250B1 (en) | Efficient fabrication process for dual well type structures | |
| JPS63307724A (en) | Manufacture of semiconductor integrated circuit | |
| US8053305B2 (en) | Method for producing semiconductor device | |
| JPH1027854A (en) | Semiconductor device and manufacturing method thereof | |
| KR100821091B1 (en) | Manufacturing Method of Semiconductor Device | |
| JP3371600B2 (en) | Method for manufacturing MIS transistor | |
| JPH1027855A (en) | Manufacture of cmos transistor | |
| JP2748854B2 (en) | Method for manufacturing semiconductor device | |
| GB2320802A (en) | Method of fabricating a semiconductor device having triple wells | |
| JP3254868B2 (en) | Semiconductor device and manufacturing method thereof | |
| JP3253574B2 (en) | Semiconductor device and manufacturing method thereof | |
| JPH0479336A (en) | Production of semiconductor device | |
| JPH05251697A (en) | Mosfet and its manufacture | |
| JPS60105267A (en) | Manufacturing method of semiconductor device | |
| JP2541251B2 (en) | Method for manufacturing semiconductor device | |
| JPH02219237A (en) | Mis type semiconductor device | |
| JPH03155156A (en) | Manufacture of semiconductor device |