Movatterモバイル変換


[0]ホーム

URL:


JPS63292527A - Manufacture of ceramic superconductive wire - Google Patents

Manufacture of ceramic superconductive wire

Info

Publication number
JPS63292527A
JPS63292527AJP62127688AJP12768887AJPS63292527AJP S63292527 AJPS63292527 AJP S63292527AJP 62127688 AJP62127688 AJP 62127688AJP 12768887 AJP12768887 AJP 12768887AJP S63292527 AJPS63292527 AJP S63292527A
Authority
JP
Japan
Prior art keywords
metal tube
tubular body
gas flow
ceramic superconducting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127688A
Other languages
Japanese (ja)
Inventor
Kyoichi Nagano
永野 恭一
Hiroshi Kubo
紘 久保
Masaaki Sugiyama
昌章 杉山
Tatsuyuki Suyama
寿山 竜之
Yasushi Ishikawa
泰 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel CorpfiledCriticalNippon Steel Corp
Priority to JP62127688ApriorityCriticalpatent/JPS63292527A/en
Publication of JPS63292527ApublicationCriticalpatent/JPS63292527A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野)本発明はセラミックス;f−超電導線の製造方法に係り
、特に磁気浮上列車、医療診断用断層撮影装置(核磁気
共鳴−CT、π中間子照射治療装置)、核融合炉、電力
貯蔵、電気回転機(モーター、発電機)なとの超電導磁
石材料として最適な超電導線の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to ceramics; a method of manufacturing f-superconducting wire, and particularly relates to magnetic levitation trains, medical diagnostic tomography devices (nuclear magnetic resonance-CT, pi-meson irradiation The present invention relates to a method for producing superconducting wire, which is optimal as a superconducting magnet material for use in therapeutic devices, nuclear fusion reactors, power storage, electric rotating machines (motors, generators), etc.

(従来の技術)超電導材料を磁気浮上列車、医療診断用断層撮影装置、
核融合炉、電力貯蔵、電気回転機などの超電導磁石の巻
き線材料として使用するためには長尺線材を必要とし、
かつ強力な磁力を得るために大きな電流を流せることが
必要である。しかしながら、最近発見が相次いている高
温超電導材料はいずれもセラミックス系であり、セラミ
ックスは金属と異なり展延性を有せず線状に加工するこ
とか不可能てあり、現在のところ超電導特性、特に臨界
電流密度の高い線状セラミックスは見受りられない。ま
た、セラミックスは金属のように電気伝導度を損なわず
に接合することか出来ず、短い線を接合してこれらの用
途に使える長尺の線にすることも不可能であった。
(Prior technology) Superconducting materials are used in magnetic levitation trains, medical diagnostic tomography devices,
Long wire rods are required to be used as winding materials for superconducting magnets in nuclear fusion reactors, power storage, electric rotating machines, etc.
In addition, it is necessary to be able to flow a large current in order to obtain a strong magnetic force. However, all of the high-temperature superconducting materials that have been discovered one after another in recent years are ceramic-based, and unlike metals, ceramics are not malleable and cannot be processed into linear shapes. Linear ceramics with high current density are not observed. Furthermore, unlike metals, ceramics cannot be bonded together without impairing their electrical conductivity, and it has also been impossible to bond short wires into long wires that can be used for these purposes.

超電導セラミックスを線材や箔に加工する方法としては
、金属管にセラミックス系超電導物質を充填してこれを
線や箔に加工する方法が考えられる。しかしながら単純
にこのような方法で行なっても、超電導特性を示す線材
は得られないことが多く、また得られてもその臨界電流
密度は数百アンペア程度であり、強力な磁石を製作する
ことは困難であった。
A conceivable method for processing superconducting ceramics into wire or foil is to fill a metal tube with a ceramic superconducting material and process this into wire or foil. However, even if this method is simply used, it is often not possible to obtain a wire exhibiting superconducting properties, and even if it is obtained, the critical current density is only a few hundred amperes, making it difficult to produce a strong magnet. It was difficult.

(発明が解決しようとする問題点)本発明はこのような現状に鑑みてなされたもので、超電
導材料、特に大電流を流せるセラミックス系超電導線も
しくは箔に加工するための実用的な技術を提供せんとす
るものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the current situation, and provides a practical technique for processing superconducting materials, particularly ceramic superconducting wires or foils that can carry large currents. This is what I am trying to do.

(問題点を解決するための手段)本発明の超電導線の製造方法は、下記の構成を要旨とす
るものである。すなわち、気体流通路を有する金属管の内部にセラミックス系超電
導物質を充填し、その外側に金属管を設け、この複層金
属管の外径を縮小加工後、外側の金属管を除去してから
酸素を含む雰囲気中で加熱処理を行なうことを要旨とす
るものである。
(Means for Solving the Problems) The method for manufacturing a superconducting wire of the present invention has the following configuration. In other words, a ceramic superconducting material is filled inside a metal tube with a gas flow path, a metal tube is provided on the outside of the metal tube, the outer diameter of this multilayer metal tube is reduced, and the outer metal tube is removed. The gist of this method is to perform heat treatment in an atmosphere containing oxygen.

上記において、気体流通路を有する金属管と外側の金属
管との中間に高分子有機物質、非金属無機物質のいずれ
か一方または両方を設けること、金属帯板を管状体に連
続的に成型しつつ、内部にセラミックス系超電導物質を
充填した気体流通路を有する金属管を成型途中の管状体
内部に連続的に供給すること、気体流通路を有する金属
帯板を管状体に連続的に成型しつつ、セラミックス系超
電導物質の粉粒体を成型途中の管状体内部に連続的に供
給し、かつ、金属帯板を管状体に連続的に成型しつつ、
成型途中の管状体内部に前者の管状体を供給すること、
外径を縮小加工する前に気体流通路を有する金属管、最
外側の金属管のいずれか 力もしくは両方の長毛方向縁
部を接合すること、最外側の金属管の引張強度を30k
gf/mm2以上180kgf/mm2以下とすること
、複層金属管の外径を縮小加工する工程の途中で焼鈍に
よって最外側の金属管の引張強度を30kgf/mm2
以J=180kgf/mm2以下とする。
In the above, one or both of a polymeric organic substance and a nonmetallic inorganic substance is provided between the metal tube having the gas flow path and the outer metal tube, and the metal strip is continuously formed into a tubular body. At the same time, it is possible to continuously supply a metal tube with a gas flow passage filled with a ceramic superconducting material inside the tubular body during molding, and to continuously mold a metal strip having a gas flow passage into the tubular body. At the same time, while continuously supplying powder and granules of ceramic superconducting material into the inside of the tubular body that is being formed, and while continuously molding the metal strip into the tubular body,
supplying the former tubular body inside the tubular body during molding;
Before reducing the outer diameter, either the metal tube with the gas flow path or the outermost metal tube should be joined together, or the long edges of both should be joined together, and the tensile strength of the outermost metal tube should be reduced to 30K.
gf/mm2 or more and 180 kgf/mm2 or less, and during the process of reducing the outer diameter of the multilayer metal tube, the tensile strength of the outermost metal tube must be reduced to 30 kgf/mm2 by annealing.
Hereinafter, J = 180 kgf/mm2 or less.

金属管に気体流通路を設ける方法は金属管を網状金属で
構成したり、孔あけ加工を施した金属管、もしくは金属
帯板を管状に成型し長手方向に継ぎ目を有する金属管を
用いるようにする。また、気体流通路を有する金属管と
しては銅、ニッケル、銅−ニッケル合金、ステンレス鋼
などを用いる。
Methods of providing gas flow passages in metal tubes include constructing the metal tube with a mesh metal, using a metal tube with holes, or a metal tube formed from a metal strip into a tube shape and having seams in the longitudinal direction. do. Further, as the metal tube having the gas flow path, copper, nickel, copper-nickel alloy, stainless steel, etc. are used.

気体流通路を有する金属管と外側の金属管の中間に設け
る高分子有機物質、非金属無機物質の層は、気体流通路
を有する金属管の外面もしくは外側の金属管内面に高分
子有機物質として例えばポリエチレンのフィルムを取り
付けたり、あるいはクリセリンなどの液状の高分子有機
物質を塗布して行なう。また、非金属無機物質の層を設
ける場合には、例えばタルクなどの非金属無機物質の粉
末に水あるいは水ガラス、などのバインターを加えたも
のを気体流通路を有する金属管の外面もしくは外側の金
属管内面に塗布して行なう。また、タイス線引きに用い
られる石鹸などの有機物質と炭酸力ルシュウムなどの無
機物質の混合潤滑剤なともイf効である。
A layer of high-molecular organic material or non-metallic inorganic material provided between the metal tube having the gas flow path and the outer metal tube is a layer of high-molecular organic material or non-metallic inorganic material provided between the metal tube having the gas flow path or the inner surface of the outer metal tube as a high-molecular organic material. For example, this can be done by attaching a polyethylene film or by applying a liquid high-molecular organic substance such as chrycerin. In addition, when providing a layer of a non-metallic inorganic material, for example, a mixture of powder of a non-metallic inorganic material such as talc and a binder such as water or water glass is added to the outer surface of the metal pipe having the gas flow passage or the outer surface of the metal pipe. It is applied to the inner surface of metal pipes. A mixed lubricant of an organic substance such as soap and an inorganic substance such as rhusium carbonate, which is used for drawing Tice wire, is also effective.

外側の金属管としては炭素鋼、銅、ニッケル、スデンレ
ス、銅合金などを用いる。
Carbon steel, copper, nickel, stainless steel, copper alloy, etc. are used for the outer metal tube.

本発明の方法は気体流通路を有する金属管と外側の金属
管として、いずれも予め管状加工されたものを用いて行
なう。また気体流通路を有する金属管を帯状の金属板か
ら管状に成型しつつ超電導物質を内部に充填したものを
予め管状に成形された金属管の内部に挿入して製造する
か、もしくは気体流通路を有する金属管と外側の金属管
をそれぞれ帯状の金属板から管状に成型しつつ行なう方
法が、特に長尺の線材を製造する方法として有効である
The method of the present invention is carried out using a metal tube having a gas flow path and an outer metal tube that are both previously processed into tubular shapes. Alternatively, a metal tube having gas flow passages is manufactured by forming a metal tube into a tube shape from a band-shaped metal plate and filling the inside with a superconducting material and inserting it into the metal tube that has been previously formed into a tube shape, or by manufacturing a metal tube having gas flow passages. A method in which a metal tube having a .

予め管状に加工された金属管を用いる場合、あるいは帯
状の金属板から金属管に成形しつつ行なう場合、いずれ
の場合にも管の縁部を接合して行なうことも可能である
When using a metal tube that has been previously processed into a tubular shape, or when forming a metal tube from a strip-shaped metal plate, in either case, it is also possible to join the edges of the tube.

さらには、本発明の方法では、最外側の金属管の強度を
適正なものにすることによって、優れた超電導特性を示
す線材や箔を容易に製造できる方法を提供せんとするも
のである。
Furthermore, the method of the present invention aims to provide a method that can easily produce wires and foils that exhibit excellent superconducting properties by adjusting the strength of the outermost metal tube to an appropriate level.

さらには、本発明は線状に限らず超電導箔の製造方法、
縮小加工した線を箔状に圧延することもできる。
Furthermore, the present invention is not limited to linear superconducting foils, but also includes methods for manufacturing superconducting foils,
The reduced wire can also be rolled into a foil shape.

(作用)セラミックス系超電導物質を内部に包含した線材や箔は
、製造の最終工程においてセラミックスに超電導性を付
与する加熱処理が必要である。一方、製品ワイヤや箔に
優れた超電導特性を付与するためには、加熱中にセラミ
ックスを酸素を含む雰囲気に直接接触させることが必要
である。本発明の方法によれば、加熱中には金属外皮の
気体流通路から加熱雰囲気中の酸素かセラミ・ンクスに
対して供給されるので、優れた超電導特性の線材や箔が
得られる。
(Function) Wires and foils containing ceramic-based superconducting substances require heat treatment to impart superconductivity to the ceramics in the final manufacturing process. On the other hand, in order to impart excellent superconducting properties to product wires and foils, it is necessary to bring ceramics into direct contact with an oxygen-containing atmosphere during heating. According to the method of the present invention, since oxygen in the heating atmosphere is supplied to the ceramic nix from the gas flow path of the metal jacket during heating, wires and foils with excellent superconducting properties can be obtained.

しかしながら、気体流通路を有する金属管単層ては、外
径の縮小加工工程において管内のセラミックスを十分に
圧縮することが出来ず、超電導を示さないか、示しても
その臨界電流密度は極めて低いものしか得られない。本
発明の方法によれば、外径の縮小加工工程において外側
の金属管がセラミックスを圧縮する作用を発揮する。そ
の際に、金属の引張強度が30kgf/mm2未満では
、加工の外力は金属管の外径縮小と同時にその長さの延
伸にも作用する。そのため金属管内部の超電導物質に作
用する力が弱くなり、該物質の圧縮が不十分になり超電
導特性を示さなくなる場合が多くなる。
However, in single-layer metal tubes with gas flow passages, the ceramic inside the tube cannot be sufficiently compressed during the process of reducing the outer diameter, and the critical current density is either not superconducting, or even if it is, the critical current density is extremely low. You can only get things. According to the method of the present invention, the outer metal tube exerts the effect of compressing the ceramic in the step of reducing the outer diameter. At this time, if the tensile strength of the metal is less than 30 kgf/mm2, the external force of processing acts on the reduction of the outer diameter of the metal tube and also on the elongation of its length. Therefore, the force acting on the superconducting material inside the metal tube becomes weaker, and the material often becomes insufficiently compressed and does not exhibit superconducting properties.

金属の引張強度が180kgf/mm2超になると、外
径の縮小加工過程で金属管の切断や割れが起こり加工が
不可能になる。外径の縮小過程の加工硬化によって金属
の引張強度が180kgf/mm2超になる場合には、
中間焼鈍を行なうがその際にも、金属の引張強度が30
kgf/mm2未満にならないようにする。
If the tensile strength of the metal exceeds 180 kgf/mm2, the metal tube will break or crack during the process of reducing the outer diameter, making processing impossible. If the tensile strength of the metal exceeds 180 kgf/mm2 due to work hardening during the process of reducing the outer diameter,
Intermediate annealing is performed, but even at that time, the tensile strength of the metal is 30
Ensure that it does not fall below kgf/mm2.

気体流通路を有する金属管と外側の金属管の中間に、高
分子有機物質の層や非金属無機物質の層を設けることに
よって、縮小加工後に外側の金属管を除去する際に気体
流通路を有する金属管部の分離を容易にし、その形状を
損なわない望ましい効果がある。
By providing a layer of polymeric organic material or a layer of non-metallic inorganic material between the metal tube with gas flow passages and the outer metal tube, the gas flow passages can be removed when the outer metal tube is removed after reduction processing. This has the desirable effect of making it easy to separate the metal tube portion that has it, without damaging its shape.

予め管状に加工された金属管を用いる場合、あるいは帯
状の金属板から金属管に成形しつつ行なう場合、いずれ
の場合にも管の縁部な接合することによって外径の縮小
加工工程において、管の長手方向縁部が折れ込む現象が
起こることを防止し、形状の良好な線材が得られる効果
がある。
When using a metal tube that has been previously processed into a tubular shape, or when forming a metal tube from a band-shaped metal plate, in either case, the outer diameter of the tube is reduced by joining the edges of the tube. This has the effect of preventing the phenomenon in which the longitudinal edges of the wire are folded and producing a wire rod with a good shape.

以下図面に示す実施態様例によって本発明の詳細な説明
する。
The present invention will be described in detail below with reference to embodiments shown in the drawings.

第1図は本発明を説明するための製造工程の途中におけ
る製品の簡略化した態様を示すものである。図において
、1は気体流通路として全面に孔を設けた金属管であり
、2は該金属管に設けた気体流通孔を示す。3は外側の
金属管てあり、4は超電導物質を示す。気体流通孔2を
設けた金属管1に超電導物質4を充填し、これを金属管
3の内部に挿入し線材化加工を行なう。
FIG. 1 shows a simplified aspect of a product in the middle of a manufacturing process for explaining the present invention. In the figure, 1 is a metal tube provided with holes throughout its entire surface as a gas flow path, and 2 is a gas flow hole provided in the metal tube. 3 is the outer metal tube, and 4 is the superconducting material. A metal tube 1 provided with gas flow holes 2 is filled with a superconducting material 4, which is inserted into the metal tube 3 and processed into a wire.

第2図は本発明の別の実施態様例を示し、金属帯板を管
状に成形し、管の長平方向に気体流通路としての納き目
6を有する管5に超電導物質4を充填してから金属管3
内に挿入し線材化加工を行なう。図のAの部分の詳細を
第3図に示す。
FIG. 2 shows another embodiment of the present invention, in which a metal strip is formed into a tubular shape, and a superconducting material 4 is filled into a tube 5 having a slot 6 as a gas flow passage in the longitudinal direction of the tube. From metal tube 3
Insert it inside and process it into wire rod. Details of part A in the figure are shown in FIG.

第4図は連続的に製造する本発明の方法の実施態様例を
示し、7は巻き戻し機に巻かれた気体流通孔を有する金
属帯板、8は該帯板を断面UおよびO形状に成型するた
めの第1の成形装置、9は該成形装置の途中にて成形さ
れた対向縁部が閉じていない管状体内に、供給シュート
10を介して所望の超電導物質を供給するための粉粒体
供給装置、11は粉粒体を供給された管状体の長平方向
縁部を接合する接合装置、12は接合された管状体を所
望の径に圧延する第1の圧延装置、13は内部に超電導
物質が充填された気体流通孔を有する金属管状体、14
は巻き戻し機に巻かれた最外側になる金属帯板、15は
気体流通孔を有する金属管状体13を内包しつつ、該金
属帯板14を断面Uおよび0形1工状に成型するだめの第2の成形装置、16は管状体を所
望の径に圧延する第2の圧延装置を示す。これらの装置
は連続して配置され、各工程は中断することなく連続的
に実施される。また、内部に超電導物質が充填された気
体流通孔を有する金属管状体13を、一旦コイルに巻き
取って成形装置15に供給しても実施てきる。なお、第
1の圧延機12を省略することも可能である。
FIG. 4 shows an embodiment of the method of the present invention for continuous production, where 7 is a metal strip having gas flow holes wound on an unwinding machine, and 8 is a metal strip having a U- and O-shaped cross section. A first molding device 9 for molding supplies powder particles through a supply chute 10 into a tubular body whose opposing edges are not closed, which is molded in the middle of the molding device. 11 is a welding device that joins the longitudinal edges of the tubular bodies supplied with powder and granules; 12 is a first rolling device that rolls the joined tubular bodies to a desired diameter; 13 is an internal Metal tubular body having gas flow holes filled with superconducting material, 14
Reference numeral 15 indicates the outermost metal strip wound by the unwinding machine, and 15 includes the metal tubular body 13 having gas flow holes, and the metal strip 14 is formed into a shape with a cross section of U and 0. A second forming device 16 indicates a second rolling device for rolling the tubular body to a desired diameter. These devices are arranged in series and each step is carried out continuously without interruption. Alternatively, the metal tubular body 13 having gas flow holes filled with a superconducting substance may be wound up into a coil and then supplied to the molding device 15. Note that it is also possible to omit the first rolling mill 12.

接合方法としては、高周波誘導溶接のような溶接法の他
、ロウ付けなどを用いることも可能である。
As a joining method, in addition to a welding method such as high frequency induction welding, it is also possible to use brazing or the like.

前記第2図の態様の製品を製造する場合には、7の金属
帯板は気体流通孔を設けないものを用い、11の接合工
程を省略して実施する。
When manufacturing the product according to the embodiment shown in FIG. 2, the metal strip 7 is not provided with gas flow holes, and the bonding step 11 is omitted.

成形装置8および15は、金属帯板を断面円形に成形す
るために設ける公知の成形ロール群を備えた方式のもの
である。また、9の粉粒体供給装置は超電導物質の粉粒
体を収容するホッパーおよび供給シュート10へ所要量
供給するための供給量調整機構を備えたものとする。
The forming apparatuses 8 and 15 are of a type equipped with a group of known forming rolls provided for forming a metal strip into a circular cross section. Further, the powder supply device 9 is provided with a hopper that accommodates the superconducting material powder and a supply amount adjustment mechanism for supplying the required amount to the supply chute 10.

工 2圧延機12および16は管の外径を粒度よ〈縮小するた
めに複数段の圧延ロールを備えたもので、2〜40−ル
タイプの採用か望ましい。
Step 2 The rolling mills 12 and 16 are equipped with a plurality of rolling rolls in order to reduce the outer diameter of the tube according to the particle size, and are preferably of the 2 to 40 roll type.

なお、この圧延工程は冷間で行なうが、必要に応じて圧
延前に加熱装置を設けて、温間ないしは熱間て圧延を行
なうことも可能である。
Although this rolling step is performed cold, it is also possible to perform warm or hot rolling by providing a heating device before rolling, if necessary.

圧延された管状体は、所望の線径に応じて通常のダイス
線引きなどの方法によって、超電導線としての線径まで
線材加工を施す場合もある。その後、第1図あるいは第
2図の外側の金属外皮3を剥離、切削、あるいは酸溶解
などによって除去する。この際に、高分子有機物質や非
金属無機物質などの中間層を設けることによって外皮金
属の除去を容易にする効果がある。
Depending on the desired wire diameter, the rolled tubular body may be wire-processed to a wire diameter as a superconducting wire by a conventional method such as die drawing. Thereafter, the outer metal sheath 3 shown in FIG. 1 or 2 is removed by peeling, cutting, or acid dissolution. At this time, providing an intermediate layer such as a polymeric organic substance or a nonmetallic inorganic substance has the effect of facilitating the removal of the outer metal.

線材に加工した後、超電導特性を付与するだめの加熱処
理を行なう。この加熱処理は、線材をコイル状に巻き取
って、バッチ式加熱炉に挿入して行なっても、また巻き
取らないで連続した加熱設備に送給して行なうことも可
能である。その際の雰囲気は空気、純酸素、酸素を含む
混合ガスなどを用い、また、金属管の酸化防止も兼ねる
ために水蒸気を含ませたりすることもある。
After processing into a wire, it undergoes a heat treatment to impart superconducting properties. This heat treatment can be performed by winding the wire into a coil and inserting it into a batch-type heating furnace, or by feeding the wire into a continuous heating facility without winding it. The atmosphere used here is air, pure oxygen, or a mixed gas containing oxygen, and may also contain water vapor to prevent oxidation of the metal tube.

以上説明した本発明の超電導線の製造方法によれば、従
来優れた超電導特性を得ることが困難であった、超電導
磁石などの製作に必要な長尺のセラミックス系の超電導
線を容易に製造することが可能であり、超電導技術の向
上に大きく寄与しその産業上の価値は極めて高い。
According to the method for manufacturing a superconducting wire of the present invention described above, it is possible to easily manufacture a long ceramic superconducting wire necessary for manufacturing superconducting magnets, etc., which has conventionally been difficult to obtain excellent superconducting properties. This makes it possible to greatly contribute to the improvement of superconducting technology, and its industrial value is extremely high.

(実施例1)直径0.5mmの気体流通孔を5mm間隔で設けた外径
7mm 、肉厚1mmの鋼管に原子数比でY:Ba:C
u=1:2:3である酸化物系超電導焼結物質で最小粒
サイズが0.8mmの粉粒体を充填した。これを外径1
2mm、肉厚2mmの18−8ステンレス管に挿入し、
30一ル6段の圧延機で冷間でステンレス管の外径を6
mmφまで圧延し、さらにダイス線引きによって外径を
縮小加工し外径3n+mの線材とした。その後、ステン
レスの部分を切削によって取り除いて得られた外径1m
mの線材をコイル状に巻き取って、酸素雰囲気中て95
0℃で8時間加熱処理して超電導線材とし、その電気的
特性を通常の方法によって測定した結果、超電導の臨界
温度91℃、臨界電流密度(但し、770Kにおける値
) 3500八/cm2てあった。
(Example 1) A steel pipe with an outer diameter of 7 mm and a wall thickness of 1 mm, in which gas flow holes with a diameter of 0.5 mm were provided at 5 mm intervals, was coated with Y:Ba:C in the atomic ratio.
Powder was filled with an oxide-based superconducting sintered material having a ratio of u=1:2:3 and a minimum grain size of 0.8 mm. This is the outer diameter of 1
Insert into a 18-8 stainless steel tube with a diameter of 2 mm and a wall thickness of 2 mm.
The outer diameter of the stainless steel pipe is reduced to 6 in cold using a 6-high rolling mill.
The wire rod was rolled to mmφ and further reduced in outer diameter by die drawing to obtain a wire rod with an outer diameter of 3n+m. After that, the stainless steel part was removed by cutting to obtain an outer diameter of 1 m.
A wire rod of 1.5 m is wound into a coil and heated to 95 m in an oxygen atmosphere.
A superconducting wire was obtained by heat treatment at 0°C for 8 hours, and its electrical properties were measured using a conventional method. As a result, the critical temperature for superconductivity was 91°C, and the critical current density (value at 770K) was 35008/cm2. .

(実施例2)第4図に示す装置で線径0.3mmで目開き0.08m
mの幅16mmの帯状銅網かU字形に成形された位置で
上記実施例1と同一組成で最大粒サイズが0.5mmの
超電導物質を供給しつつ、外径5mmに成形しこれを幅
32mmで引張強度51kgf/mm2の炭素鋼帯を外
径10mmの管状に成形しつつ、その内部に挿入し同時
にポリエチレンフィルムを両者の間に挿入して外径31
T1mに圧延した。その後、ダイス線引きによって外径
1.8mmまで線材加工してから、炭素鋼を塩酸で溶解
除去した。これによって得られた銅網で超電導物質を被
覆した線材を空気雰囲気中で950℃で8時間加熱処理
して超電導線材とし、その電気的特性を通常の方法によ
って測定した結果、超電導の臨界温度92℃、臨界電流
密度(ただし、77°Kにおける値) 4700A/c
m2であった。
(Example 2) Using the device shown in Figure 4, the wire diameter is 0.3 mm and the opening is 0.08 m.
While supplying a superconducting material having the same composition as in Example 1 and having a maximum grain size of 0.5 mm at a position where a strip copper net having a width of 16 mm was formed into a U-shape, the wire was formed into an outer diameter of 5 mm, and this was formed into a width of 32 mm. A carbon steel strip with a tensile strength of 51 kgf/mm2 was formed into a tubular shape with an outer diameter of 10 mm, and a polyethylene film was simultaneously inserted between the two to form a tube with an outer diameter of 31 mm.
It was rolled to T1m. Thereafter, the wire was processed to an outer diameter of 1.8 mm by die drawing, and then the carbon steel was dissolved and removed with hydrochloric acid. The resulting wire coated with a superconducting substance using a copper net was heat-treated at 950°C for 8 hours in an air atmosphere to obtain a superconducting wire, and its electrical properties were measured using a conventional method. As a result, the critical temperature of superconductivity was 92. °C, critical current density (value at 77°K) 4700A/c
It was m2.

(発明の効果)本発明によれば、従来は実用材料化か困難であったセラ
ミックス系超電導物質を線材や箔として容易に人手する
ことが可能となり、超電導技術を利用した広範囲の実用
の道を開くもので、産業上益するところ多大である。
(Effects of the Invention) According to the present invention, it has become possible to easily produce ceramic superconducting materials into wire rods or foils, which was previously difficult to turn into practical materials, and has opened up a wide range of practical applications using superconducting technology. It opens the door and has great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造工程の途中における製品の簡略化
した態様を示す斜視図、第2図は第1図の別の態様を示
す斜視図、第3図は第2図のA部分の詳細図、第4図は
本発明方法の実施態様例を示す全体工程図である。1・・・金属管、2・・・気体流通孔、3・・・外側金
属管、4・・・超電導物質、7・・・金属帯板、8・・
・第1成形装置、9・・・粉粒体供給装置、IO・・・
供給シュート、11・・・接合装置、12・・・第1圧
延装置、13・・・金属管状体、14・・・金属帯板、
15・・・第2成形装置、16・・・第2圧延装置。
Fig. 1 is a perspective view showing a simplified aspect of the product in the middle of the manufacturing process of the present invention, Fig. 2 is a perspective view showing another aspect of Fig. 1, and Fig. 3 is a perspective view of part A in Fig. 2. Detailed drawings and FIG. 4 are overall process diagrams showing an embodiment of the method of the present invention. DESCRIPTION OF SYMBOLS 1... Metal tube, 2... Gas flow hole, 3... Outer metal tube, 4... Superconducting material, 7... Metal strip plate, 8...
・First molding device, 9...powder supply device, IO...
Supply chute, 11... Joining device, 12... First rolling device, 13... Metal tubular body, 14... Metal strip plate,
15... Second forming device, 16... Second rolling device.

Claims (7)

Translated fromJapanese
【特許請求の範囲】[Claims](1)気体流通路を有する金属管の内部にセラミックス
系超電導物質を充填し、その外側に金属管を設け、この
複層金属管の外径を縮小加工後、外側の金属管を除去し
てから酸素を含む雰囲気中で加熱処理を行なうことを特
徴とするセラミックス系超電導線の製造方法。
(1) Fill the inside of a metal tube with a gas flow path with a ceramic superconducting material, provide a metal tube on the outside, reduce the outer diameter of this multilayer metal tube, and then remove the outer metal tube. 1. A method for producing a ceramic superconducting wire, the method comprising performing heat treatment in an atmosphere containing oxygen.
(2)気体流通路を有する金属管と外側の金属管との中
間に高分子有機物、非金属無機物質の層のいずれか一方
または両方を設けることを特徴とする特許請求の範囲第
1項に記載のセラミックス系超電導線の製造方法。
(2) Claim 1 characterized in that either one or both of a layer of a polymeric organic material and a non-metallic inorganic material is provided between the metal tube having the gas flow path and the outer metal tube. The method for manufacturing the ceramic superconducting wire described above.
(3)金属帯板を管状体に連続的に成型しつつ、内部に
セラミックス系超電導物質を充填した気体流通路を有す
る金属管を成型途中の管状体内部に連続的に供給するこ
とを特徴とする特許請求の範囲第1項または第2項に記
載のセラミックス系超電導線の製造方法。
(3) A metal strip is continuously molded into a tubular body, and a metal tube having a gas flow path filled with a ceramic superconducting material is continuously supplied into the tubular body in the middle of being formed. A method for manufacturing a ceramic superconducting wire according to claim 1 or 2.
(4)気体流通路を有する金属帯板を管状体に連続的に
成型しつつ、セラミックス系超電導物質の粉粒体を成型
途中の管状体内部に連続的に供給し、かつ、金属帯板を
管状体に連続的に成型しつつ、成型途中の管状体内部に
前記管状体を供給することを特徴とする特許請求の範囲
第1項または第2項に記載のセラミックス系超電導線の
製造方法。
(4) While continuously molding a metal strip having gas flow passages into a tubular body, powder and granules of ceramic superconducting material are continuously supplied into the tubular body during molding, and the metal strip is The method for manufacturing a ceramic superconducting wire according to claim 1 or 2, characterized in that the tubular body is continuously molded into a tubular body and the tubular body is supplied inside the tubular body that is in the middle of being formed.
(5)外径を縮小加工する前に気体流通路を有する金属
管、最外側の金属管のいずれか一方もしくは両方の長手
方向縁部を接合することを特徴とする特許請求の範囲第
1〜4項のいずれか1項に記載のセラミックス系超電導
線の製造方法。
(5) Before reducing the outer diameter, the longitudinal edges of either or both of the metal tube having the gas flow path and the outermost metal tube are joined. 4. The method for producing a ceramic superconducting wire according to any one of Item 4.
(6)最外側の金属管の引張強度を30kgf/mm^
2以上180kgf/mm^2以下とすることを特徴と
する特許請求の範囲第1〜5項のいずれか1項に記載の
セラミックス系超電導線の製造方法。
(6) The tensile strength of the outermost metal tube is 30 kgf/mm^
2 or more and 180 kgf/mm^2 or less, the method for manufacturing a ceramic superconducting wire according to any one of claims 1 to 5.
(7)複層金属管の外径を縮小加工する工程の途中で焼
鈍によって最外側の金属管の引張強度を30kgf/m
m^2以上180kgf/mm^2以下とすることを特
徴とする特許請求の範囲第1〜5項のいずれか1項に記
載のセラミックス系超電導線の製造方法。
(7) During the process of reducing the outer diameter of the multilayer metal tube, the tensile strength of the outermost metal tube is reduced to 30 kgf/m by annealing.
6. The method for manufacturing a ceramic superconducting wire according to any one of claims 1 to 5, characterized in that the wire is not less than m^2 and not more than 180 kgf/mm^2.
JP62127688A1987-05-251987-05-25Manufacture of ceramic superconductive wirePendingJPS63292527A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP62127688AJPS63292527A (en)1987-05-251987-05-25Manufacture of ceramic superconductive wire

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP62127688AJPS63292527A (en)1987-05-251987-05-25Manufacture of ceramic superconductive wire

Publications (1)

Publication NumberPublication Date
JPS63292527Atrue JPS63292527A (en)1988-11-29

Family

ID=14966243

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP62127688APendingJPS63292527A (en)1987-05-251987-05-25Manufacture of ceramic superconductive wire

Country Status (1)

CountryLink
JP (1)JPS63292527A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO1989006040A1 (en)*1987-12-241989-06-29Mitsubishi Kinzoku Kabushiki KaishaSuperconductive composite wire and cable and method of producing them
WO1989008317A1 (en)*1988-02-261989-09-08Mitsubishi Kinzoku Kabushiki KaishaHigh-strength superconductive wire and cable having high current density, and method of producing them
JPH06139847A (en)*1992-09-111994-05-20Mitsubishi Electric CorpManufacture of superconducting wire
JPH09185914A (en)*1987-02-051997-07-15Sumitomo Electric Ind Ltd Method for manufacturing composite oxide ceramic superconducting wire
WO2022190579A1 (en)*2021-03-092022-09-15有限会社沖田工業技術開発Linear material manufacturing method and linear material manufacturing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH09185914A (en)*1987-02-051997-07-15Sumitomo Electric Ind Ltd Method for manufacturing composite oxide ceramic superconducting wire
WO1989006040A1 (en)*1987-12-241989-06-29Mitsubishi Kinzoku Kabushiki KaishaSuperconductive composite wire and cable and method of producing them
US4983576A (en)*1987-12-241991-01-08Mitsubishi Kinzoku Kabushiki KaishaSuperconducting composite wire and cable, processor for fabricating them
WO1989008317A1 (en)*1988-02-261989-09-08Mitsubishi Kinzoku Kabushiki KaishaHigh-strength superconductive wire and cable having high current density, and method of producing them
US5068219A (en)*1988-02-261991-11-26Mitsubishi Materials CorporationHigh strength superconducting wires and cables each having high current density, and a process for fabricating them
JPH06139847A (en)*1992-09-111994-05-20Mitsubishi Electric CorpManufacture of superconducting wire
WO2022190579A1 (en)*2021-03-092022-09-15有限会社沖田工業技術開発Linear material manufacturing method and linear material manufacturing device

Similar Documents

PublicationPublication DateTitle
DE69021449T2 (en) Oxide superconductor and method for its production.
JPH01211813A (en) Manufacturing method of superconducting wire
JPH01140520A (en) Method for manufacturing composite oxide ceramic superconducting wire
CN108682509B (en) A kind of method for preparing iron-based superconducting composite strip
KR100860960B1 (en) Method of manufacturing Mg2 superconducting wire
JPS63292527A (en)Manufacture of ceramic superconductive wire
JPS63264820A (en) Continuous manufacturing method of superconducting wire
JPS63308810A (en)Superconductor which can be taken up by winding and manufacture of the same
JPS63298918A (en) Manufacturing method of ceramic superconducting wire
JPH02276113A (en) Manufacturing method of ceramic superconducting wire
JP3015389B2 (en) Superconducting coil manufacturing method
JPS63285155A (en) Oxide-based superconducting material and its manufacturing method
JPS63271813A (en) Long superconducting material
JPH0251807A (en)Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
JPS63269417A (en) Manufacturing method of ceramic superconducting wire
JP2638601B2 (en) Superconducting wire manufacturing method
JP3014512B2 (en) Method for producing NbTi-based superconducting wire
JPH0668729A (en) Method for manufacturing multi-layer ceramics superconductor
JPS63252318A (en) Superconducting wire manufacturing method
JPH0215514A (en)Manufacture of oxide superconductor and superconductive magnet
JPH0343915A (en)Manufacture of multiple-cored superconductor
JPH03133010A (en) Manufacturing method of ceramic superconductor
JPS63318022A (en)Manufacture of oxide superconductive wire
JPH01195616A (en)Manufacture of long oxide superconductive material
JPS63269411A (en) Ceramic superconducting wire

[8]ページ先頭

©2009-2025 Movatter.jp