【発明の詳細な説明】〔産業上の利用分野〕本発明はGaAs等化合物半導体を主に用いた絶縁ゲー
ト型トランジスタ等の半導体装直に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor devices such as insulated gate transistors mainly using compound semiconductors such as GaAs.
本発明は化合物半導体単結晶層をチャンネル領域に用い
た絶縁ゲート型トランジスタで、チャンネル領域とゲー
ト型絶縁膜の間に100原子層以下のシリコン単結晶薄
膜を挿入して化合物半導体チャンネル領域とゲート絶縁
膜の間の界面準位の低減を図ったものである。The present invention is an insulated gate transistor using a compound semiconductor single crystal layer as a channel region, and a silicon single crystal thin film of 100 atomic layers or less is inserted between the channel region and gate type insulating film to insulate the compound semiconductor channel region and gate. This is intended to reduce the interface level between the films.
GaAs等化合物半導体を用いたトランジスタは主にシ
ョットキーゲート型(MES)電界効果トランジスタ(
FET)であり、最近HEMT、HBT等が開発されて
いる。一方、Siでは絶縁ゲート型FET特にMOS
F ETが高集積回路に用いられている。化合物半導体
でMOS F ETを用いないのは主にSiにおけるS
iO□のように良質の絶縁膜が形成しにくいことと、化
合物半導体のMO3構造において界面準位が多いことに
起因する。また、半導体としてGeを用いた場合も同様
である。Transistors using compound semiconductors such as GaAs are mainly Schottky gate type (MES) field effect transistors (
FET), and recently HEMT, HBT, etc. have been developed. On the other hand, Si is used for insulated gate FETs, especially MOS
FETs are used in highly integrated circuits. Compound semiconductors that do not use MOS FETs are mainly S in Si.
This is due to the difficulty in forming a high-quality insulating film like iO□ and the fact that there are many interface states in the MO3 structure of a compound semiconductor. Further, the same applies when Ge is used as the semiconductor.
(発明が解決しようとする問題点〕本発明はGaAs等化合物半導体などSi以外の半導体
を用いた絶縁ゲート型トランジスタを提供し、高速・高
集積MO5ICの実現を可能ならしめるものである。(Problems to be Solved by the Invention) The present invention provides an insulated gate transistor using a semiconductor other than Si, such as a compound semiconductor such as GaAs, and makes it possible to realize a high-speed, highly integrated MO5IC.
本発明におけるMOSFETは、P型GaAsチャンネ
ル領域と該領域を挟んで互いに離間するN型ソースおよ
びドレイン領域とチャンネル領域上に設けられたゲート
絶縁膜と該絶縁膜上に設けられたゲート電極より成り、
前記チャンネル領域とデー4絶縁膜の間に100原子層
以下のシリコン単結晶薄膜を挿入したものである。 G
aAs以外には他のm−v化合物半導体やGoなど■族
半導体が用いられる。The MOSFET in the present invention consists of a P-type GaAs channel region, an N-type source and drain region spaced apart from each other with the region in between, a gate insulating film provided on the channel region, and a gate electrode provided on the insulating film. ,
A silicon single crystal thin film of 100 atomic layers or less is inserted between the channel region and the Day 4 insulating film. G
Other than aAs, other m-v compound semiconductors and group III semiconductors such as Go are used.
シリコン単結晶薄膜は非常に薄いので電子または正札の
多くはシリコン薄膜よりもGaAsチャネル領域を流れ
るため移動度が大きい。またチャンネル領域とゲート絶
縁膜の間の界面準位はSiとSing界面のため充分小
なくできる。さらに、シリコン薄膜は非常に薄いのでG
aAsとの格子定数の不整合があっても欠陥は発生しに
くい、チャンネル領域の表面電位即ち、しきい電圧vt
hはチャンネル領域の不純物密度および分布、ゲート絶
縁膜の種類や膜厚、ゲート電極の材料などでも制御され
るが、シリコン薄膜の原子層数(膜厚)、添加不純物の
導電型および添加密度によっても制御できる。Since the silicon single crystal thin film is very thin, most of the electrons or regular particles flow through the GaAs channel region than in the silicon thin film, so their mobility is higher. Further, the interface level between the channel region and the gate insulating film can be made sufficiently small due to the interface between Si and Sing. Furthermore, since the silicon thin film is very thin,
Even if there is a mismatch in lattice constant with aAs, defects are unlikely to occur.The surface potential of the channel region, that is, the threshold voltage vt
Although h is controlled by the impurity density and distribution in the channel region, the type and thickness of the gate insulating film, and the material of the gate electrode, h is also controlled by the number of atomic layers (thickness) of the silicon thin film, the conductivity type of the added impurity, and the doping density. can also be controlled.
以下に図面を用いて本発明を詳述する。The present invention will be explained in detail below using the drawings.
+11実施例1 (第1図)第1図には本発明によるMOS F ETの断面構造例
を示す、p型GaAs層1の表面をp型チャンネル4と
し、これを挟んでGaAsによるn型ソースおよびドレ
イン領域2.4が設けられ、pチャンネル頭載4上には
St単結晶薄11!JT、ゲート絶&!膜5が形成され
、さらにその上にはゲート電極6を設けている。GaA
s層lの表面結晶面は特に限定はないがSi単結晶が成
長しやすい面であることが望ましく、例えば(1001
面などが用いられる* Sin膜7の厚みは制御可能で
極力薄いことが望ましく単原子層〜100原子層である
。ゲート絶縁膜5にはSiO□をはじめSiNなどが使
用できる。 SiO□としては熱酸化膜やCVD酸化膜
が用いられる。ゲート絶縁膜5の厚みやチャンネル長さ
は任意の値を選択できる。pチャンネル領域4はGaA
s0外にInPなど他のm−v半導体、Geなどの■族
半導体も用いることができる。+11 Example 1 (Fig. 1) Fig. 1 shows an example of the cross-sectional structure of a MOS FET according to the present invention. and a drain region 2.4 are provided on the p-channel head 4, and an St single crystal thin layer 11! JT, Gate Zetsu &! A film 5 is formed, and a gate electrode 6 is further provided thereon. GaA
The surface crystal plane of the s-layer l is not particularly limited, but it is desirable that it be a plane on which Si single crystals can easily grow; for example, (1001
*The thickness of the Sin film 7 is controllable and desirably as thin as possible, ranging from a monoatomic layer to 100 atomic layers. For the gate insulating film 5, SiO□, SiN, etc. can be used. A thermal oxide film or a CVD oxide film is used as the SiO□. The thickness of the gate insulating film 5 and the channel length can be arbitrarily selected. p channel region 4 is GaA
In addition to s0, other m-v semiconductors such as InP and group II semiconductors such as Ge can also be used.
(2)実施例2(第2図)第2図は本発明のMOS F ETの他の断面構造例を
示す、この例ではp型Si領域10上にp型GaAsチ
ャンネル領域4を島状に設け、St薄@1.ゲー)Si
0□5.ゲート電極6をその上に形成したものである。(2) Example 2 (FIG. 2) FIG. 2 shows another example of the cross-sectional structure of the MOS FET of the present invention. In this example, a p-type GaAs channel region 4 is formed in an island shape on a p-type Si region 10. Provided, St thin@1. Game) Si
0□5. A gate electrode 6 is formed thereon.
フィールド絶縁膜16に設けたコンタクト開孔を通して
ソースおよびドレイン電極12.13を形成している。Source and drain electrodes 12 and 13 are formed through contact openings provided in field insulating film 16.
p型Si領域10の結晶面はGaAs単結晶が成長しや
すいことが望ましく、例えば[1001面から数度傾い
た面などが選ばれる。p型GaAsチャンネル領域4の
厚みは任意であるが典型的には0.1〜2μm程度に選
択される。It is desirable that the crystal plane of the p-type Si region 10 is such that a GaAs single crystal can grow easily, and for example, a plane tilted by several degrees from the [1001 plane is selected. Although the thickness of the p-type GaAs channel region 4 is arbitrary, it is typically selected to be about 0.1 to 2 μm.
(3)実施例3(第3図)第3図fal 〜(e)には本発明のMOS F ET
の模式的エネルギー・バンド図(ゲート電圧がOvのと
き)を示す6図中、Mはゲート電極、 OXはゲート絶
縁膜、 CBは伝導帯、 VBは価電子帯でPLはフェ
ルミ・レベルを表わす、SiとGaAsは電子親和力お
よび禁制帯幅が異なるのでバンド不連続ΔEc、 ΔE
vが生じる。伝導帯側にはΔEc−電子親和力の差=0
.06eV、価電子帯側にはΔEv−禁制帯幅の差−Δ
[IC#0.26eVができるといわれている。第3図
(a)はP型GaAs1i4上のSi薄膜7の不純物密
度が低いとき、第3図(blはSi薄膜7にはp型不純
物を比較的高密度で添加したときでエンハンスメント型
に近く、第3図(C1はSin膜7にn型不純物を添加
したときでデプレッション型に近くなる。即ち、このM
OSFETのしきい電圧vthはSi!膜7の添加不純
物の導電型、密度で制御可能なことを示す。実際には、
SiとGaAs0間でバンドの不連続性があるので、こ
の境界で空乏層または電位障壁が形成されバンドは曲が
るため、しきい電圧vthはSi薄膜7の厚みの関数で
もある。GaAsチャンネル領域4の速い電子伝導を有
効に利用するためには、Sin膜7の厚みはできるだけ
薄いことが望ましく、理想的には1原子層であり実質的
には数原子層〜100原子層である。Si薄膜7の厚み
が極度に薄いとSiのエネルギー準位が量子化するが、
本発明ではこれは重要ではない。(3) Example 3 (Fig. 3) Fig. 3 fal to (e) shows the MOS FET of the present invention.
In Figure 6 showing the schematic energy band diagram (when the gate voltage is Ov), M is the gate electrode, OX is the gate insulating film, CB is the conduction band, VB is the valence band, and PL is the Fermi level. , Si and GaAs have different electron affinities and forbidden band widths, so band discontinuities ΔEc, ΔE
v occurs. On the conduction band side, ΔEc - difference in electron affinity = 0
.. 06eV, ΔEv - difference in forbidden band width - Δ on the valence band side
[It is said that IC #0.26eV can be produced. Figure 3 (a) shows when the impurity density of the Si thin film 7 on P-type GaAs1i4 is low, and Figure 3 (bl) shows when the Si thin film 7 is doped with p-type impurities at a relatively high density, which is close to the enhancement type. , FIG. 3 (C1 becomes close to the depletion type when n-type impurities are added to the Sin film 7. That is, this M
The threshold voltage vth of OSFET is Si! This shows that it is possible to control the conductivity type and density of the impurity added to the film 7. in fact,
Since there is band discontinuity between Si and GaAs0, a depletion layer or potential barrier is formed at this boundary and the band is bent, so the threshold voltage vth is also a function of the thickness of the Si thin film 7. In order to effectively utilize the fast electron conduction of the GaAs channel region 4, it is desirable that the thickness of the Sin film 7 be as thin as possible, ideally one atomic layer, but substantially between several atomic layers and 100 atomic layers. be. If the thickness of the Si thin film 7 is extremely thin, the energy level of Si will be quantized.
This is not important for the present invention.
(4)実施例4(第4図および第5図)第4図には本発
明の他の断面構造例を、第5図には第4図の構造例の模
式的バンド図を示す。第4図のMOS F ETのチャ
ンネル領域4はp型Geで形成している。この構造では
、低抵抗p型Si領域10の内部にnソース・ドレイン
領域2.3を設け、ソース・ドレイン領域2.3に両端
が接する形でp型Si領域10上にGeチャンネル9I
域4を形成し、その上にSi薄膜7.ゲート絶縁膜5.
ゲート電極6が配されている。第5図はこの構造におい
てp−3i/ I) −Ge/ p−3iに対するバン
ド図を示す、バンド不連続はΔ[!c ’= 0.12
eV、 ΔEv #0.33eVと近位され、Geチャ
ンネル領域4は電子に対する移動になり、2次電子雲が
生じやすい構造となっている。Ge中の電子の高移動度
に加えて2次元電子雲の効果でこのFETは高速性に優
れる。チャンネル領域4としてGeの例を述べたが、他
の■族半導体例えば5iGe混晶、SiCなども用いら
れるし、m−v半導体やII−Vl半導体にも適用でき
る。(4) Embodiment 4 (FIGS. 4 and 5) FIG. 4 shows another example of the cross-sectional structure of the present invention, and FIG. 5 shows a schematic band diagram of the structure example of FIG. 4. The channel region 4 of the MOS FET shown in FIG. 4 is made of p-type Ge. In this structure, an n source/drain region 2.3 is provided inside a low resistance p-type Si region 10, and a Ge channel 9I is provided on the p-type Si region 10 with both ends in contact with the source/drain region 2.3.
area 4 and a Si thin film 7. Gate insulating film 5.
A gate electrode 6 is arranged. Figure 5 shows the band diagram for p-3i/I)-Ge/p-3i in this structure, where the band discontinuity is Δ[! c'=0.12
eV, ΔEv #0.33 eV, and the Ge channel region 4 has a structure in which electrons are moved and secondary electron clouds are likely to occur. This FET has excellent high-speed performance due to the effect of the two-dimensional electron cloud in addition to the high mobility of electrons in Ge. Although Ge has been described as an example for the channel region 4, other group III semiconductors such as 5iGe mixed crystal, SiC, etc. can also be used, and the present invention can also be applied to m-v semiconductors and II-Vl semiconductors.
(5)実施例5(第6図)第6図(a) 〜(e)により、本発明MO3FETの
製造工程例を説明する。第6図fa)は半絶縁性GaA
s基板1にCV D SiOx膜26等をマスクにp
型GaAsチャンネル領域4を選択的に形成した断面で
ある。(5) Example 5 (Fig. 6) An example of the manufacturing process of the MO3FET of the present invention will be explained with reference to Figs. 6(a) to (e). Figure 6fa) shows semi-insulating GaA
s onto the substrate 1 using a CVD SiOx film 26 etc. as a mask.
This is a cross section in which a type GaAs channel region 4 is selectively formed.
第6図世)はさらにCV D 5IOt膜36等をマ
スクにn型GaAsソース・ドレイン領域2.3を設け
た状態である。第6図(C1はチャンネル領域4を露出
後、5ift膜26等をマスクにSi単結晶薄膜7を選
択成長した断面である。この選択成長は公知のSi −
H−Cl系の常圧または減圧CVDが利用できるが、分
子層エピタキシー(MLE)の利用が有効である。FIG. 6) shows a state in which n-type GaAs source/drain regions 2.3 are further provided using a CVD 5IOt film 36 or the like as a mask. FIG. 6 (C1 is a cross-section of the Si single crystal thin film 7 selectively grown using the 5ift film 26 etc. as a mask after exposing the channel region 4. This selective growth is performed using the known Si-
Although H-Cl-based atmospheric or low pressure CVD can be used, molecular layer epitaxy (MLE) is effective.
分子線エビ(MBE)もを効ではあるが、選択成長が難
しい。第6(d)はSi薄膜7を熱酸化して、ゲート酸
化膜5を形成した状態である。勿論、ゲート酸化膜5と
してCVD酸化膜やCVD窒化膜も使用できる。第6図
+81はコンタクト開孔後、金属膜によりゲート電極6
.ソース・ドレイン電極12゜13を形成して完成した
断面図である。Molecular beam shrimp (MBE) is also effective, but selective growth is difficult. 6(d) shows a state in which the Si thin film 7 is thermally oxidized to form the gate oxide film 5. Of course, a CVD oxide film or a CVD nitride film can also be used as the gate oxide film 5. Figure 6+81 shows the gate electrode 6 formed by the metal film after the contact hole is opened.
.. It is a cross-sectional view of the completed structure after forming source/drain electrodes 12°13.
(6)実施例6(第7図)第7図fat 〜telにより、本発明MO3FETの
他の製造工程例を説明する。第6図+81はn型Si5
板11にpウェル10を設は選択S i OtWl、1
6で分離し、さらにp型GaAs層4.St薄l!!7
をMOCVD、MBE等で全面成長した状態を示す。p
ウェル10上のGaAs層、Sii膜7は単結晶となる
が他は多結晶となる。第7図世)はGaAs層4.Si
薄膜7の不嬰部を除去した後、ゲート酸化膜5をCVD
等で堆積した断面であり、第7図tc+はゲート電極6
をSi多結晶や金属またはシリサイドで形成した後、イ
オン注入でn型GaAsソース・ドレイン領域2,3を
設けた状態である。第7図fd+はフィールド絶縁膜2
6を堆積した断面である。その後、コンタクト開花を行
ない、各電極、配線を形成して第7図(elのように完
成する。pウェル10とGaAs層4の間にバッファ層
としてGeFI膜やm−v超格子を挿入することもでき
る。(6) Example 6 (FIG. 7) Another manufacturing process example of the MO3FET of the present invention will be explained with reference to FIG. 7. Figure 6 +81 is n-type Si5
Setting the p-well 10 on the plate 11 is selected S i OtWl, 1
6, and a p-type GaAs layer 4. St thin l! ! 7
This shows a state in which the entire surface has been grown by MOCVD, MBE, etc. p
The GaAs layer on the well 10 and the Sii film 7 are single crystal, but the others are polycrystalline. Figure 7) shows the GaAs layer 4. Si
After removing the unwanted portion of the thin film 7, the gate oxide film 5 is deposited by CVD.
FIG. 7 tc+ shows the gate electrode 6.
After forming Si polycrystal, metal, or silicide, n-type GaAs source/drain regions 2 and 3 are provided by ion implantation. Fig. 7 fd+ is field insulating film 2
This is a cross-section of 6 deposited. After that, contact blooming is performed, and each electrode and wiring are formed to complete the process as shown in FIG. You can also do that.
(7)実施例7 (第8図)第8図(al 〜+d)により、本発明MOS F E
Tの製造工程例を説明する。第8図il+1はp型Si
基板10の表面にn型Siソース・ドレイン領域2.3
を設けた後、5iO1膜16をマスクにソース・ドレイ
ン領域2.3の一部とその間の基板10を露出した状態
を示す。第8図(b)は5ift膜16をマスクにGa
As−?)Ge等のチャンネル領域4をMOCV[)や
MLE等で選択形成した後、続いて5iyt膜7を選択
成長した断面を示す、第8図fclはゲート絶縁膜5を
堆積した断面、第8図(diはゲート電極6などを設け
て完成した断面を示す。(7) Example 7 (Fig. 8) According to Fig. 8 (al to +d), the present invention MOS F E
An example of the manufacturing process of T will be explained. Figure 8 il+1 is p-type Si
N-type Si source/drain regions 2.3 are formed on the surface of the substrate 10.
After forming the 5iO1 film 16, a part of the source/drain region 2.3 and the substrate 10 therebetween are shown exposed. FIG. 8(b) shows Ga using the 5ift film 16 as a mask.
As-? )Ge etc. is selectively formed by MOCV[), MLE, etc., and then a 5iyt film 7 is selectively grown.FIG. (di indicates the completed cross section with the gate electrode 6 etc. provided.
以上のように本発明によれば、GaAsやGeなどの高
移動度材料をチャンネル領域にした絶縁ゲート型FET
がSi技術の応用で実現できる。GaAsやGeを主に
例として述べたが、InPなどの他の■−■半導体や5
iGeなどの他の■族混晶または化合物半導体さらに■
−■半導体にも応用できる。実施例はnチャンネルを説
明したが、勿論pチャンネルにも、またデプレッション
型にも適用される。そのため、本発明はCMO3にも有
効である。上記のように本発明は、高速・高集積密度・
多機能ICの実現に果たす役割は大きい。As described above, according to the present invention, an insulated gate FET with a channel region made of a high mobility material such as GaAs or Ge
can be realized by applying Si technology. Although GaAs and Ge were mainly used as examples, other ■-■ semiconductors such as InP and 5
Other Group ■ mixed crystals or compound semiconductors such as iGe, and ■
-■Can also be applied to semiconductors. Although the embodiment has been described for n-channel, it is of course applicable to p-channel and depletion type as well. Therefore, the present invention is also effective for CMO3. As mentioned above, the present invention provides high speed, high integration density,
It plays a major role in realizing multifunctional ICs.
第1図は本発明によるMOSFETの構造断面図、第2
図は本発明によるMOSFETの他の構造断面図、第3
図(a)〜(C)は本発明MOS F ETのバンド図
、第4図は本発明によるMOSFETの他の構造断面図
、第5図は第4図のMOS F ETのバンド構造側図
、第6図(al〜+81は本発明MO3FETの製造工
程順断面図、第7図(3)〜Telは本発明MO3FE
Tの他の製造工程順断面図、第8図(al〜fdlは本
発明MO3FETの他の製造工程順断面図である。2・・・ソース領域3・・・ドレイン領域4・・・チャンネル領域5・・・ゲート絶縁膜6・・・ゲート電極7・・・Si単結晶薄膜12・・・ソース電極13・・・ドレイン電極 以 上。−・4−・I代理人 弁理士 最 上 務(他1名)\ノ本y;e
eF1のMO5FETハ橋造ff1a図第1図2 4 7 3 10p−3i本発明のMO5FET/′1lell’l溝逍面面図¥
y2図本発明のMOSFETの榎代的バント′図乎3図本発明ハMC)SFETの構造断面図も4図M 5i02Si Ge Si本完BI
lllのMO5FETハ八ソト°構造列図第5図第6図第70Figure 1 is a cross-sectional view of the structure of the MOSFET according to the present invention, Figure 2
Figure 3 is another structural cross-sectional view of the MOSFET according to the present invention.
Figures (a) to (C) are band diagrams of the MOSFET of the present invention, Figure 4 is a cross-sectional view of another structure of the MOSFET of the present invention, Figure 5 is a side view of the band structure of the MOSFET of Figure 4, Figure 6 (al~+81 is a cross-sectional view of the MO3FET of the present invention in the order of manufacturing steps, Figure 7 (3)~Tel is a cross-sectional view of the MO3FE of the present invention
FIG. 8 is a cross-sectional view of another manufacturing process of T (al to fdl is a cross-sectional view of another manufacturing process of MO3FET of the present invention. 2... Source region 3... Drain region 4... Channel region 5...Gate insulating film 6...Gate electrode 7...Si single crystal thin film 12...Source electrode 13...Drain electrode That's all. -・4-・I Agent Patent attorney Top management ( 1 other person)\nomotoy;e
MO5FET of eF1 Hasashi structure ff1a Figure 1 2 4 7 3 10p-3i MO5FET of the present invention/'1lell'l Groove side view
Fig. y2 Fig. Enoki's bunt' diagram of the MOSFET of the present invention Fig. 3 Fig. 3 Structural cross-sectional view of the MOSFET of the present invention Fig. 4 M 5i02Si Ge Si book complete BI
Figure 5 Figure 6 Figure 70
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62087370AJPS63252478A (en) | 1987-04-09 | 1987-04-09 | Insulated gate type semiconductor device |
| DE3811821ADE3811821A1 (en) | 1987-04-09 | 1988-04-08 | SEMICONDUCTOR COMPONENT |
| US07/180,359US5036374A (en) | 1987-04-09 | 1988-04-11 | Insulated gate semiconductor device using compound semiconductor at the channel |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62087370AJPS63252478A (en) | 1987-04-09 | 1987-04-09 | Insulated gate type semiconductor device |
| Publication Number | Publication Date |
|---|---|
| JPS63252478Atrue JPS63252478A (en) | 1988-10-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62087370APendingJPS63252478A (en) | 1987-04-09 | 1987-04-09 | Insulated gate type semiconductor device |
| Country | Link |
|---|---|
| US (1) | US5036374A (en) |
| JP (1) | JPS63252478A (en) |
| DE (1) | DE3811821A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH033366A (en)* | 1989-05-15 | 1991-01-09 | Internatl Business Mach Corp <Ibm> | Field-effect transistor and forming method thereof |
| JPH0318062A (en)* | 1989-06-15 | 1991-01-25 | Toshiba Corp | Semiconductor device |
| US5086321A (en)* | 1988-06-15 | 1992-02-04 | International Business Machines Corporation | Unpinned oxide-compound semiconductor structures and method of forming same |
| US5168330A (en)* | 1990-12-03 | 1992-12-01 | Research Triangle Institute | Semiconductor device having a semiconductor substrate interfaced to a dissimilar material by means of a single crystal pseudomorphic interlayer |
| US5241197A (en)* | 1989-01-25 | 1993-08-31 | Hitachi, Ltd. | Transistor provided with strained germanium layer |
| JP2008112774A (en)* | 2006-10-30 | 2008-05-15 | Fuji Electric Device Technology Co Ltd | Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof |
| WO2010134334A1 (en)* | 2009-05-22 | 2010-11-25 | 住友化学株式会社 | Semiconductor substrate, electronic device, semiconductor substrate manufacturing method, and electronic device manufacturing method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4987095A (en)* | 1988-06-15 | 1991-01-22 | International Business Machines Corp. | Method of making unpinned oxide-compound semiconductor structures |
| EP0380077A3 (en)* | 1989-01-25 | 1990-09-12 | Hitachi, Ltd. | Transistor provided with strained germanium layer |
| US5272361A (en)* | 1989-06-30 | 1993-12-21 | Semiconductor Energy Laboratory Co., Ltd. | Field effect semiconductor device with immunity to hot carrier effects |
| US5272365A (en)* | 1990-03-29 | 1993-12-21 | Kabushiki Kaisha Toshiba | Silicon transistor device with silicon-germanium electron gas hetero structure channel |
| JPH03280437A (en)* | 1990-03-29 | 1991-12-11 | Toshiba Corp | Semiconductor device and its manufacturing method |
| US5196907A (en)* | 1990-08-20 | 1993-03-23 | Siemens Aktiengesellschaft | Metal insulator semiconductor field effect transistor |
| JP2947654B2 (en)* | 1990-10-31 | 1999-09-13 | キヤノン株式会社 | MIS type transistor |
| US5124762A (en)* | 1990-12-31 | 1992-06-23 | Honeywell Inc. | Gaas heterostructure metal-insulator-semiconductor integrated circuit technology |
| JPH0691249B2 (en)* | 1991-01-10 | 1994-11-14 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Modulation-doped MISFET and manufacturing method thereof |
| US6004137A (en)* | 1991-01-10 | 1999-12-21 | International Business Machines Corporation | Method of making graded channel effect transistor |
| US5268324A (en)* | 1992-05-27 | 1993-12-07 | International Business Machines Corporation | Modified silicon CMOS process having selectively deposited Si/SiGe FETS |
| US5561302A (en)* | 1994-09-26 | 1996-10-01 | Motorola, Inc. | Enhanced mobility MOSFET device and method |
| JP3461274B2 (en)* | 1996-10-16 | 2003-10-27 | 株式会社東芝 | Semiconductor device |
| US5872031A (en)* | 1996-11-27 | 1999-02-16 | The Regents Of The University Of California | Enhancement-depletion logic based on gaas mosfets |
| US6350993B1 (en) | 1999-03-12 | 2002-02-26 | International Business Machines Corporation | High speed composite p-channel Si/SiGe heterostructure for field effect devices |
| US6472695B1 (en) | 1999-06-18 | 2002-10-29 | The Regents Of The University Of California | Increased lateral oxidation rate of aluminum indium arsenide |
| AU2001263211A1 (en)* | 2000-05-26 | 2001-12-11 | Amberwave Systems Corporation | Buried channel strained silicon fet using an ion implanted doped layer |
| US6743680B1 (en)* | 2000-06-22 | 2004-06-01 | Advanced Micro Devices, Inc. | Process for manufacturing transistors having silicon/germanium channel regions |
| US6709935B1 (en) | 2001-03-26 | 2004-03-23 | Advanced Micro Devices, Inc. | Method of locally forming a silicon/geranium channel layer |
| US6861326B2 (en) | 2001-11-21 | 2005-03-01 | Micron Technology, Inc. | Methods of forming semiconductor circuitry |
| KR100625175B1 (en)* | 2004-05-25 | 2006-09-20 | 삼성전자주식회사 | Semiconductor device having channel layer and method of manufacturing same |
| JP5047486B2 (en)* | 2004-10-13 | 2012-10-10 | アイメック | Manufacturing method of semiconductor device |
| EP1936696A1 (en)* | 2006-12-22 | 2008-06-25 | INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) | A field effect transistor device and methods of production thereof |
| EP1936697B1 (en) | 2006-12-22 | 2016-03-09 | Imec | A field effect transistor device, and methods of production thereof |
| US8329541B2 (en)* | 2007-06-15 | 2012-12-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | InP-based transistor fabrication |
| US8610172B2 (en) | 2011-12-15 | 2013-12-17 | International Business Machines Corporation | FETs with hybrid channel materials |
| US9093264B2 (en)* | 2012-04-20 | 2015-07-28 | Applied Materials, Inc. | Methods and apparatus for forming silicon passivation layers on germanium or III-V semiconductor devices |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58188165A (en)* | 1982-04-28 | 1983-11-02 | Nec Corp | Semiconductor device |
| JPS59119869A (en)* | 1982-12-27 | 1984-07-11 | Fujitsu Ltd | Semiconductor device |
| JPS59232426A (en)* | 1983-06-16 | 1984-12-27 | Seiko Epson Corp | Manufacture of semiconductor device |
| JPS60211946A (en)* | 1984-04-06 | 1985-10-24 | Matsushita Electric Ind Co Ltd | Manufacturing method of semiconductor device |
| JPH0783107B2 (en)* | 1984-04-19 | 1995-09-06 | 日本電気株式会社 | Field effect transistor |
| JPS60239062A (en)* | 1984-05-11 | 1985-11-27 | Seiko Epson Corp | Inp semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5086321A (en)* | 1988-06-15 | 1992-02-04 | International Business Machines Corporation | Unpinned oxide-compound semiconductor structures and method of forming same |
| US5241197A (en)* | 1989-01-25 | 1993-08-31 | Hitachi, Ltd. | Transistor provided with strained germanium layer |
| JPH033366A (en)* | 1989-05-15 | 1991-01-09 | Internatl Business Mach Corp <Ibm> | Field-effect transistor and forming method thereof |
| JPH0318062A (en)* | 1989-06-15 | 1991-01-25 | Toshiba Corp | Semiconductor device |
| US5168330A (en)* | 1990-12-03 | 1992-12-01 | Research Triangle Institute | Semiconductor device having a semiconductor substrate interfaced to a dissimilar material by means of a single crystal pseudomorphic interlayer |
| JP2008112774A (en)* | 2006-10-30 | 2008-05-15 | Fuji Electric Device Technology Co Ltd | Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof |
| WO2010134334A1 (en)* | 2009-05-22 | 2010-11-25 | 住友化学株式会社 | Semiconductor substrate, electronic device, semiconductor substrate manufacturing method, and electronic device manufacturing method |
| JP2011009718A (en)* | 2009-05-22 | 2011-01-13 | Sumitomo Chemical Co Ltd | Semiconductor substrate, electronic device, method of manufacturing semiconductor substrate, and method of manufacturing electronic device |
| US8890213B2 (en) | 2009-05-22 | 2014-11-18 | Sumitomo Chemical Company, Limited | Semiconductor wafer, electronic device, a method of producing semiconductor wafer, and method of producing electronic device |
| Publication number | Publication date |
|---|---|
| DE3811821A1 (en) | 1988-10-27 |
| US5036374A (en) | 1991-07-30 |
| Publication | Publication Date | Title |
|---|---|---|
| JPS63252478A (en) | Insulated gate type semiconductor device | |
| US7435987B1 (en) | Forming a type I heterostructure in a group IV semiconductor | |
| US9991172B2 (en) | Forming arsenide-based complementary logic on a single substrate | |
| US20110180867A1 (en) | Metal transistor device | |
| JPH0371776B2 (en) | ||
| JPH07101739B2 (en) | Semiconductor device | |
| US7301180B2 (en) | Structure and method for a high-speed semiconductor device having a Ge channel layer | |
| JPH03775B2 (en) | ||
| EP0080714A2 (en) | Hetero-junction semiconductor device | |
| JPH02266569A (en) | field effect transistor | |
| JPS60134481A (en) | semiconductor equipment | |
| JPH03187269A (en) | Semiconductor device | |
| US8575595B2 (en) | P-type semiconductor devices | |
| JPS61147577A (en) | Complementary semiconductor device | |
| JP2710309B2 (en) | Heterojunction field effect transistor | |
| JPH01119065A (en) | Group 3-5 compound semiconductor field effect transistor | |
| JP2655594B2 (en) | Integrated semiconductor device | |
| JPS60136380A (en) | semiconductor equipment | |
| JPH02196436A (en) | semiconductor equipment | |
| JPH03159135A (en) | Semiconductor device and its manufacturing method | |
| JP3020578B2 (en) | Semiconductor device | |
| JPH01183164A (en) | High electron mobility field effect transistor | |
| JPS63219176A (en) | Method of manufacturing field effect transistor | |
| JP2680821B2 (en) | Heterostructure field effect transistor | |
| JPS609174A (en) | semiconductor equipment |