【発明の詳細な説明】(産業上の利用分野)本発明は、熱固定されたポリエステル延伸成形容器の製
法に関するもので、より詳細には、高度の結晶化と残留
歪の低減化とが同時に達成された熱固定ポリエステル延
伸成形容器の製法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a heat-set polyester stretch-molded container, and more specifically, a method for producing a heat-set polyester stretch-molded container. The present invention relates to a method for producing a heat-set polyester stretch-molded container.
(従来の技術)ポリエチレンテレフタレー)−(PUT)の如ぎ熱可塑
性ポリエステルの二軸延伸ブロー成形容器は、優れた透
明性や表面光沢を有すると共に、びんに必要な耐衝撃性
、剛性、ガスバリヤ−性をも有しており、各種液体のび
ん認容器として利用されている。(Prior Art) Biaxially stretched blow-molded containers made of thermoplastic polyester such as polyethylene terephthalate (PUT) have excellent transparency and surface gloss, as well as the impact resistance, rigidity, and gas barrier properties necessary for bottles. - It also has properties and is used as a container for various liquids.
しかしながら、ポリエステル容器は、耐熱性に劣るとい
う欠点があり、内容物を熱間充填する用途に対しては、
熱変形や容積の収縮変形を生じるため二軸延伸ブロー容
器を成形後に熱固定(ヒート・セット)すべく多くの提
案が既に行われている。However, polyester containers have the disadvantage of poor heat resistance, and are not suitable for hot filling applications.
 Many proposals have already been made to heat-set biaxially stretched blown containers after molding to avoid thermal deformation and volume shrinkage deformation.
熱固定の方法には、特公昭60−56606号公報にみ
られる通り、延伸ブロー成形により得られる成形品を成
形ブロー型から取出した後、熱固定用の金型内に保持し
て熱固定を行う方法や、特公昭59−6216号公報に
みられる通り、ブロー成形型中で延伸ブロー成形と同時
に熱固定を行う方法が知られている。また、特開昭57
−53326号公報には、−成金型中で延伸ブロー成形
と同時に熱処理を行い、成形品を取出してこれを冷却す
ることなく、二次処理金型中でブロー成形する方法が記
載されている。As shown in Japanese Patent Publication No. 60-56606, the heat setting method involves taking out the molded product obtained by stretch blow molding from the blow mold, and then holding it in a heat setting mold to heat set it. There are known methods of carrying out heat setting at the same time as stretch blow molding in a blow mold, as shown in Japanese Patent Publication No. 59-6216. In addition, JP-A-57
 Japanese Patent Publication No. 53326 describes a method in which heat treatment is performed simultaneously with stretch blow molding in a forming mold, and blow molding is carried out in a secondary treatment mold without taking out the molded product and cooling it.
(発明が解決しようとする問題点)これらの熱固定法の内、車−の金型内で延伸ブロー成形
と同時に熱固定を行う方法は、装置コストが低く、操作
も簡便であるという利点があるが、単一の金型内で高温
での熱固定と成形体の取出しのための冷却とを行う必要
がある。このため、従来ワン・モールド熱固定法では、
延伸ブロー成形体の熱固定を比較的低温、例えば130
℃前後の温度で行ない、熱固定後の成形体を充分に冷却
した後、成形容器の取出しを行っている。(Problems to be Solved by the Invention) Among these heat-setting methods, the method in which heat-setting is performed simultaneously with stretch blow molding in a car mold has the advantages of low equipment cost and easy operation. However, it is necessary to perform heat setting at a high temperature and cooling for taking out the molded body within a single mold. For this reason, in the conventional one-mold heat setting method,
 The stretch-blow molded body is heat-set at a relatively low temperature, e.g.
 The molding is carried out at a temperature around 0.degree. C., and after the heat-fixed molded product has been sufficiently cooled, the molded container is taken out.
しかしながら、従来のワン・モールド熱固定法では、取
出された成形容器の器壁に残留歪があり、また熱固定の
温度も比較的低いことから、熱固定の効果(結晶化度)
も概して低く、得られる熱固定延伸成形容器の耐熱性や
寸法安定性において未だ十分満足し得るものではなかっ
た。このため、この熱固定容器に内容物の熱間充填を行
うと、容器の最も重要な器壁胴部、特に容器の内容積変
化に追従するためのパネル部等に変形が生じるという外
観特性及び機能上の問題を生じる。However, in the conventional one-mold heat-setting method, there is residual strain on the wall of the molded container taken out, and the heat-setting temperature is relatively low, so the effect of heat-setting (crystallinity)
 is generally low, and the heat resistance and dimensional stability of the resulting heat-set, stretch-molded containers are still not fully satisfactory. For this reason, when this heat-fixed container is hot-filled with contents, the most important part of the container, the body, especially the panel part that follows the change in the container's internal volume, may be deformed due to its external appearance. Causes functional problems.
従って、本発明の目的は、高度の結晶化と残留歪の低減
化とが同時に達成された熱固定ポリエステル延伸成形容
器を、ワン・モールド熱固定法で製造する方法を提供す
るにある。Accordingly, an object of the present invention is to provide a method for producing a heat-set polyester stretch-molded container in which a high degree of crystallization and a reduction in residual strain are simultaneously achieved by a one-mold heat-setting method.
本発明の他の目的は、高温での熱間充填や低温充填後加
熱殺菌が可能である、耐熱性及び寸法安定性に優れた熱
固定ポリエステル延伸成形容器の製法を提供するにある
。Another object of the present invention is to provide a method for producing a heat-set polyester stretch-molded container that has excellent heat resistance and dimensional stability and is capable of hot filling at high temperatures and heat sterilization after filling at low temperatures.
(問題点を解決するための手段)本発明によれば、ポリエチレンテレフタレートから成る
有底プリフォームを、高温金型内で二軸延伸ブロー成形
すると共に、得られる成形体をこの金型内にて135℃
以上の高温で熱固定し、熱固定された成形体をその表面
温度がポリエチレンテレフタレートのガラス転移点より
も高温でしかも実質上保形可能な温度で金型より取出し
、取出した成形体を放冷雰囲気中でアニーリングして、
成形体を自由収縮させることを特徴とする熱固定された
ポリエステル延伸成形容器の製法が提供される。(Means for Solving the Problems) According to the present invention, a bottomed preform made of polyethylene terephthalate is biaxially stretch blow-molded in a high-temperature mold, and the resulting molded body is placed in the mold. 135℃
 The heat-set molded product is heat-set at a higher temperature than above, and the heat-set molded product is taken out from the mold when its surface temperature is higher than the glass transition point of polyethylene terephthalate, but at a temperature that can substantially retain its shape, and the taken-out molded product is left to cool. Annealing in the atmosphere,
 A method for producing a heat-set polyester stretch-molded container is provided, which is characterized in that the molded article is allowed to freely shrink.
(作 用)本発明では、高温の金型内でポリエステルの有底プリフ
ォームを二軸延伸ブロー成形すると共に、この高温金型
内にて成形体を135℃以上、特に140乃至230℃
の温度で熱固定する。本明細書において、熱固定温度と
は、二軸延伸ブロー成形体が金型キャビティ表面と接触
して熱固定が行われることから、金型キャビティの表面
温度を言う。(Function) In the present invention, a polyester bottomed preform is biaxially stretched blow-molded in a high-temperature mold, and the molded body is molded in the high-temperature mold at a temperature of 135°C or higher, particularly 140 to 230°C.
 Heat set at a temperature of In this specification, the heat setting temperature refers to the surface temperature of the mold cavity since the biaxially stretched blow-molded article is heat set in contact with the surface of the mold cavity.
熱固定によりもたらされる延伸成形容器壁(14部)の
結晶化度は、温度と時間の函数であり、高温では短時間
の内にポリエステルの結晶化度が向上し、比較的短時間
の内に熱固定の効果が発現される。本発明では、135
℃以上という高温で熱固定操作を行うことにより、二軸
延伸ブローにより最も高度に二軸分子配向された胴部壁
の結晶化度を34%以上に高めることができる。熱固定
の時間は、温度によっても相違するが、一般に2秒以上
、特に3乃至10秒の範囲内である。熱固定操作時には
、熱効率の点で、ブロー成形に用いた加圧流体を成形体
内部に閉じ込めておくのがよい。The crystallinity of the stretch-formed container wall (14 parts) produced by heat setting is a function of temperature and time; at high temperatures the crystallinity of polyester increases within a short time; The effect of heat fixation is expressed. In the present invention, 135
 By performing the heat setting operation at a high temperature of .degree. C. or higher, the degree of crystallinity of the body wall, where the biaxial molecules are most highly oriented by biaxial stretching blowing, can be increased to 34% or more. The heat setting time varies depending on the temperature, but is generally 2 seconds or more, particularly within the range of 3 to 10 seconds. During the heat setting operation, from the viewpoint of thermal efficiency, it is preferable to confine the pressurized fluid used for blow molding inside the molded body.
次いで、熱固定された成形体を、その表面温度(外表面
温度)がポリエチレンテレフタレート(PET)のガラ
ス転移点(Tg=69℃)よりも高温でしかも実質上保
形可能な温度、好適には75乃至120℃の温度、最も
好適には80乃至115℃の温度で金型より取出す。延
伸成形され且つ熱固定された成形体器壁には、内部歪が
残留しているが、本発明によれば、熱固定後の成形体を
、PETのガラス転移点(Tg)よりも高い温度で取出
すことにより、器壁中の(PET)分子鎖の運動が可能
となることから、後述するアニーリング処理により、内
部残留歪の除去乃至は低減化が可能となるものである。Next, the heat-set molded body is heated to a temperature at which its surface temperature (outer surface temperature) is higher than the glass transition point (Tg = 69°C) of polyethylene terephthalate (PET) and at which it can substantially retain its shape, preferably It is demolded at a temperature of 75-120°C, most preferably 80-115°C. Internal strain remains in the wall of the molded body that has been stretch-formed and heat-set, but according to the present invention, the molded body after heat-setting is heated to a temperature higher than the glass transition point (Tg) of PET. Since the (PET) molecular chains in the container wall can be moved by taking them out, the internal residual strain can be removed or reduced by the annealing treatment described below.
本明細書で、成形体を実質上保形可能な温度とは、成形
金型により与えられた成形体の外形が実質上保存される
温度と定義される。この保形可能温度の上限は、未熟固
定の成形体では低く且つ熱固定の程度が大きくなれば高
くなる。本発明では、二軸延伸成形体を135℃以上と
いう高温で熱固定するため、保形可能温度の上限値を1
20℃と高くすることが可能となり、従来のワン・モー
ルド熱固定法に比して高温での取出しが可能となるもの
である。In this specification, the temperature at which the molded article can substantially retain its shape is defined as the temperature at which the outer shape of the molded article given by the molding die is substantially preserved. The upper limit of this shape-retainable temperature is low for immaturely fixed molded products and increases as the degree of heat setting increases. In the present invention, since the biaxially stretched molded product is heat-set at a high temperature of 135°C or higher, the upper limit of the shape-retainable temperature is set to 1.
 This makes it possible to raise the temperature to as high as 20°C, making it possible to take out the product at a higher temperature than in the conventional one-mold heat-setting method.
本発明によれば、このように高温での熱固定と高温での
取出しとを組合せることにより、金型内における成形体
の占有時間を著しく短縮し得ることも当業者には自明で
あろう。According to the present invention, it will be obvious to those skilled in the art that by combining heat setting at high temperature and ejection at high temperature, the time occupied by the molded article in the mold can be significantly shortened. .
熱固定後の成形体を金型内から取出すための冷却は、高
温の金型キャビティ表面温度をあまり冷却しないように
、成形体内部に室温の流体或いは冷却された流体を循環
させることにより有利に行われる。一般に、この取出し
のための冷却は3乃至20秒程度の時間で行うことが望
ましい。Cooling for taking out the molded product from the mold after heat-setting is advantageous by circulating room temperature fluid or cooled fluid inside the molded product so as not to cool down the high-temperature mold cavity surface temperature too much. It will be done. Generally, it is desirable that this cooling for removal be carried out for about 3 to 20 seconds.
最後に、取出した成形体を室温雰囲気中でアニーリング
して成形体を自由収縮させる。このアニーリングによる
成形体の自由収縮により、成形体器壁中の残留歪が緩和
され、最終容器は寸法安定性と外観特性とに優れたもの
となり、内容物の熱間充填や、内容物充填容器の加熱殺
菌に際して、器壁の不斉変形(部分的な変形)が防止さ
れることになる。Finally, the molded body taken out is annealed in an atmosphere at room temperature to allow the molded body to freely shrink. Due to the free shrinkage of the molded product caused by this annealing, the residual strain in the wall of the molded product container is alleviated, and the final container has excellent dimensional stability and appearance characteristics. During heat sterilization, asymmetric deformation (partial deformation) of the container wall is prevented.
成形体の自由収縮は、金型内容積(vl)に対する容器
外形体積(v2)の減少率(α)、即ちが0゜3乃至3
.0%の範囲となるように行えば、残留率はほぼ緩和さ
れているということができる。The free shrinkage of the molded product is determined by the rate of decrease (α) of the external volume of the container (v2) relative to the internal volume of the mold (vl), that is, from 0°3 to 3
 .. It can be said that the residual rate is almost relaxed if it is within the range of 0%.
容器外形体積(v2)は、容器内容積をV3、容器目付
量をW、容器壁密度をρとすると、式%式%本発明において、熱可塑性ポリエステルとしては、エチ
レンテレフタレート単位を主体とする熱可塑性ポリエス
テル、例えばPETやグリコール成分としてヘキサヒド
ロキシリレングリコール等の他のグリコール類の少量を
含有せしめ或いは二塩基酸成分としてイソフタル酸やヘ
キサヒドロテレフタル酸等の他の二塩基酸成分の少量を
含有せしめた所謂改質PET等が使用される。これらの
ポリエステルは、単独でも或いはナイロン類、ポリカー
ボネート或いはボリアリレート等の他の樹脂とのブレン
ド物の形でも使用し得る。用いるポリエステルは、当然
のことながら、フィルムを形成するに足る分子量を有す
るべぎである。ポリエステルの固有粘度は0.70乃至
1.20dl/gの範囲内にあるのがよい。The external volume of the container (v2) is expressed by the formula %, where V3 is the internal volume of the container, W is the basis weight of the container, and ρ is the container wall density. Plastic polyesters, such as PET, containing small amounts of other glycols such as hexahydroxylylene glycol as the glycol component, or small amounts of other dibasic acid components such as isophthalic acid and hexahydroterephthalic acid as the dibasic acid component. So-called modified PET or the like is used. These polyesters can be used alone or in the form of blends with other resins such as nylons, polycarbonates or polyarylates. The polyester used should, of course, have a molecular weight sufficient to form a film. The intrinsic viscosity of the polyester is preferably within the range of 0.70 to 1.20 dl/g.
延伸ブロー成形に使用する有底プリフォームは、それ自
体公知の任意の手法、例えば射出成形法、パイプ押出成
形法等で製造される。前者の方法では、溶融ポリエステ
ルを射出し、最終容器に対応する口頚部を備えた有底プ
リフォームを非晶質の状態で製造する。後者の方法はエ
チレン−ビニルアルコール共重合体等のガスバリヤ−性
中間樹脂層を備えた有底プリフォームの製造に有利な方
法であり、押出された非晶質パイプを切断し、一端部に
圧縮成形で口頚部を形成させると共に、他端部を閉じて
有底プリフォームとする。高温下での蓋との係合、密封
状態を良好に維持するために、容器口頚部となる部分の
みを予め熱結晶化させておくことができる。勿論、この
熱結晶化は以後の任意の段階で行うこともできる。The bottomed preform used in stretch blow molding is manufactured by any method known per se, such as injection molding method, pipe extrusion molding method, etc. In the former method, molten polyester is injected to produce a bottomed preform in an amorphous state with a mouth and neck corresponding to the final container. The latter method is advantageous for manufacturing bottomed preforms with a gas barrier intermediate resin layer such as ethylene-vinyl alcohol copolymer, and involves cutting the extruded amorphous pipe and compressing it at one end. The mouth and neck are formed by molding, and the other end is closed to form a bottomed preform. In order to maintain good engagement with the lid and sealing under high temperatures, only the portion that will become the neck of the container can be thermally crystallized in advance. Of course, this thermal crystallization can also be performed at any subsequent step.
このプリフォームの二軸延伸ブロー成形は、割合型(キ
ャビティ型)及びコア金型を使用して、それ自体公知の
条件で行われ、例えば延伸温度、一般に90乃至130
℃、特に100乃至120℃の温度に予備加熱されたプ
リフォームに対して、延伸棒によりプリフォームを軸方
向に引張延伸すると共に、流体吹込みにより周方向に膨
張延伸される。軸方向の延伸倍率は1.5乃至3.5倍
、特に2乃至3倍とし、周方向の延伸倍率は胴部で2乃
至5倍、特に3乃至4.5倍とするのがよい。Biaxial stretch blow molding of this preform is carried out using a proportion mold (cavity mold) and a core mold under conditions known per se, e.g. the stretching temperature is generally between 90 and 130°C.
 C., particularly at a temperature of 100 to 120.degree. C., the preform is stretched in the axial direction by a stretching rod, and expanded and stretched in the circumferential direction by blowing fluid. The stretching ratio in the axial direction is preferably 1.5 to 3.5 times, especially 2 to 3 times, and the stretching ratio in the circumferential direction is preferably 2 to 5 times, especially 3 to 4.5 times in the body.
本発明による優れた効果を次の例で説明する。The excellent effects of the present invention will be explained in the following example.
(実施例)実施例1゜固有粘度rvが0.78dl/g、ガラス転移温度Tg
69℃(密度d 1.335g/cm’ )のポリエチ
レンテレフタレートを射出成形し、高さ162mm、胴
部径30mm、胴部平均肉厚4mm、そして首部肉厚1
.5mmの有底パリソン(プリフォーム)を成形し、口
部のみ熱風(240℃)により熱処理を行い結晶化させ
た。(Example) Example 1゜Intrinsic viscosity rv is 0.78 dl/g, glass transition temperature Tg
 Injection molded polyethylene terephthalate at 69°C (density d 1.335 g/cm'), height 162 mm, body diameter 30 mm, body average wall thickness 4 mm, and neck wall thickness 1.
 .. A 5 mm bottomed parison (preform) was molded, and only the mouth part was heat-treated with hot air (240°C) to crystallize it.
このプリフォームを延伸温度97℃〜98℃に加熱し、
このプリフォームをキャビティ表面温度が125℃、1
40℃及び160℃に加熱された内容積1550mpの
キャビティを有するブロー金型内で二軸延伸ブローして
ボトルを成形すると共に、該ブロー金型内に4秒間保持
して熱固定を行った後、ボトル表面温度が65℃、75
℃、95℃、110℃及び130℃になった時点で金型
よりボトルを取り出し、このボトルを室温雰囲気(約2
0℃)中でアニーリングして収縮させた。This preform is heated to a stretching temperature of 97°C to 98°C,
 This preform was heated to a cavity surface temperature of 125°C, 1
 After molding the bottle by biaxial stretching blowing in a blow mold having a cavity with an internal volume of 1550 mp heated to 40 ° C. and 160 ° C., and holding it in the blow mold for 4 seconds to perform heat setting. , bottle surface temperature is 65℃, 75
 ℃, 95℃, 110℃ and 130℃, remove the bottle from the mold and place the bottle in a room temperature atmosphere (approx.
 0° C.) for shrinkage.
ブロー金型のキャビティ表面温度とブロー金型内容積に
対するボトル外形体積の減少率及びボトル胴部の結晶化
度との関係を表1に示す。Table 1 shows the relationship between the cavity surface temperature of the blow mold, the reduction rate of the bottle external volume with respect to the blow mold internal volume, and the crystallinity of the bottle body.
表    1結晶化度X(%)は得られたボトルの胴部の密度を測定
し次式によって求めた。Table 1 Crystallinity X (%) was determined by measuring the density of the body of the obtained bottle and using the following formula.
ただし、dは25℃における密度、d、=1.335g
/cl!1’、d e = 1.455g/cm3得ら
れたボトルを高温での熱間充填法及び低温(室温)充填
後殺菌法にて評価し、その結果を表2に示す。However, d is the density at 25°C, d, = 1.335g
 /cl! 1', de = 1.455 g/cm3 The obtained bottle was evaluated by a hot filling method at a high temperature and a sterilization method after filling at a low temperature (room temperature), and the results are shown in Table 2.
表2の結果から、本発明によって成形されたボトル、即
ちNo、4.5.6及び9のボトルは、金型からの取出
し時の変形も少なく、且つ高温熱間充填法及び低温充填
後殺菌法により殺菌を施しても変形が少なく、良好な外
観を示したが、本発明の範囲外のものは変形を生じ良好
な外観を示さなかった。From the results in Table 2, the bottles molded according to the present invention, that is, bottles No. 4, 5, 6, and 9, have little deformation when taken out from the mold, and can be sterilized using the high-temperature hot filling method and the low-temperature post-filling method. Even when sterilized by the method, there was little deformation and a good appearance was exhibited, but those outside the scope of the present invention were deformed and did not have a good appearance.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP62016273AJPS63185620A (en) | 1987-01-28 | 1987-01-28 | Method for manufacturing heat-set polyester stretch-molded containers | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP62016273AJPS63185620A (en) | 1987-01-28 | 1987-01-28 | Method for manufacturing heat-set polyester stretch-molded containers | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP63267173ADivisionJPH01157828A (en) | 1988-10-25 | 1988-10-25 | Heat set polyester stretch molded container | 
| Publication Number | Publication Date | 
|---|---|
| JPS63185620Atrue JPS63185620A (en) | 1988-08-01 | 
| JPH054895B2 JPH054895B2 (en) | 1993-01-21 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP62016273AGrantedJPS63185620A (en) | 1987-01-28 | 1987-01-28 | Method for manufacturing heat-set polyester stretch-molded containers | 
| Country | Link | 
|---|---|
| JP (1) | JPS63185620A (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2007069403A (en)* | 2005-09-06 | 2007-03-22 | Nihon Yamamura Glass Co Ltd | Manufacturing method of heat-resistant polyester container | 
| JP2007276493A (en)* | 2007-06-25 | 2007-10-25 | Toyo Seikan Kaisha Ltd | Molding process of preform by compression molding | 
| JP2008140603A (en)* | 2006-11-30 | 2008-06-19 | Nec Lighting Ltd | Manufacturing device of fluorescent tube lamp, and manufacturing method of fluorescent tube lamp | 
| JP2012184034A (en)* | 2005-03-16 | 2012-09-27 | Krones Ag | Method and device for sterile filling with fluid | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2006247846A (en)* | 2005-03-08 | 2006-09-21 | Ishizuka Glass Co Ltd | Method and apparatus for molding polyester container | 
| WO2017146201A1 (en)* | 2016-02-24 | 2017-08-31 | 三井化学株式会社 | Production method for shaped film | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS5153566A (en)* | 1974-09-24 | 1976-05-12 | Haustrup Plastic As | |
| JPS5471A (en)* | 1977-05-04 | 1979-01-05 | Rhone Poulenc Ind | Improved manufacture of twoooriented hollow body and twoooriented hollow body | 
| JPS5753326A (en)* | 1980-09-17 | 1982-03-30 | Dainippon Printing Co Ltd | Manufacture of biaxially stretching blow molded vessel of saturated polyester | 
| JPS58162321A (en)* | 1982-03-03 | 1983-09-27 | オ−エンス イリノイ インコ−ポレ−テッド | Poly ( ethylene terephthalate ) article and its manufacture | 
| JPS5993330A (en)* | 1982-11-19 | 1984-05-29 | Dainippon Ink & Chem Inc | Molding method and blow unit for heat-resistant containers made of thermoplastic polyester | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS5153566A (en)* | 1974-09-24 | 1976-05-12 | Haustrup Plastic As | |
| JPS5471A (en)* | 1977-05-04 | 1979-01-05 | Rhone Poulenc Ind | Improved manufacture of twoooriented hollow body and twoooriented hollow body | 
| US4385089A (en)* | 1977-05-04 | 1983-05-24 | Rhone-Poulenc Industries | Process for preparing biaxially oriented hollow shaped articles from thermoplastic materials | 
| JPS5753326A (en)* | 1980-09-17 | 1982-03-30 | Dainippon Printing Co Ltd | Manufacture of biaxially stretching blow molded vessel of saturated polyester | 
| JPS58162321A (en)* | 1982-03-03 | 1983-09-27 | オ−エンス イリノイ インコ−ポレ−テッド | Poly ( ethylene terephthalate ) article and its manufacture | 
| JPS5993330A (en)* | 1982-11-19 | 1984-05-29 | Dainippon Ink & Chem Inc | Molding method and blow unit for heat-resistant containers made of thermoplastic polyester | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2012184034A (en)* | 2005-03-16 | 2012-09-27 | Krones Ag | Method and device for sterile filling with fluid | 
| JP2007069403A (en)* | 2005-09-06 | 2007-03-22 | Nihon Yamamura Glass Co Ltd | Manufacturing method of heat-resistant polyester container | 
| JP2008140603A (en)* | 2006-11-30 | 2008-06-19 | Nec Lighting Ltd | Manufacturing device of fluorescent tube lamp, and manufacturing method of fluorescent tube lamp | 
| JP2007276493A (en)* | 2007-06-25 | 2007-10-25 | Toyo Seikan Kaisha Ltd | Molding process of preform by compression molding | 
| Publication number | Publication date | 
|---|---|
| JPH054895B2 (en) | 1993-01-21 | 
| Publication | Publication Date | Title | 
|---|---|---|
| US4522779A (en) | Method for production of poly(ethylene terephthalate) articles | |
| US5562960A (en) | Double-blown PET bottle shaped container having essentially no residual stress and superior heat resistance | |
| EP0155763B1 (en) | Method of blow-moulding a biaxially oriented polyethylene terephthalate resin bottle-shaped container | |
| JP4840367B2 (en) | Method for producing biaxially stretched polyester bottle | |
| JP4599900B2 (en) | Preform and blow molded container comprising the preform | |
| JPS62193938A (en) | Vessel | |
| JPWO2003008178A1 (en) | Stretched heat-set molded article and method for producing the same | |
| JPS6359513A (en) | Manufacture of polyester hollow molded bodies | |
| US5510079A (en) | Method of blow-molding biaxially oriented polyethylene terephthalate resin bottle-shaped container | |
| JPS63185620A (en) | Method for manufacturing heat-set polyester stretch-molded containers | |
| JPS6356104B2 (en) | ||
| JPH01157828A (en) | Heat set polyester stretch molded container | |
| JPS5892536A (en) | Biaxially stretched plastic bottle | |
| JPH0443498B2 (en) | ||
| JP3794305B2 (en) | Manufacturing method of heat-resistant bottle | |
| JP2757732B2 (en) | Polyester container having a body part partially different in crystallinity and method for producing the same | |
| JPH0622860B2 (en) | Biaxial stretching blow molding method | |
| CN109415134B (en) | Polyester stretch blow molding container and production method thereof | |
| JPH09290457A (en) | Method for producing polyester bottle and polyester bottle | |
| JPH1086212A (en) | Stretchable blow bottle | |
| JP2005112440A (en) | Container | |
| JPS63202425A (en) | Manufacture of biaxially stretched polyester bottle | |
| JPH0615643A (en) | Method for manufacturing preform | |
| JP2016210089A (en) | Production method for thin-walled heat resistant polyester bottle | |
| KR20010065787A (en) | Method of heat-set stretched molding polyester container | 
| Date | Code | Title | Description | 
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |