【発明の詳細な説明】[産業上の利用分野1本発明は紫外線硬化樹脂被覆光ファイバに紫外線を照射
して該紫外線硬化樹脂の硬化を行わせる光ファイバ用紫
外線照射装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an ultraviolet irradiation device for optical fibers that irradiates ultraviolet rays onto an optical fiber coated with an ultraviolet curable resin to cure the ultraviolet curable resin.
[従来技術]紫外i硬化樹脂としてアクリル系のモノマー、プレポリ
マーが光ファイバの被覆材として用いられている。これ
らの紫外線硬化樹脂は、ラジカル重合で進行し、このと
ぎ大気中の酸素ガスがラジカルと反応し易いので、紫外
線を照射する区間をN2 、Ar等の不活性ガス雰囲気
に保って紫外線の照射を行うことが一般に行われている
。紫外線照射区間の紫外線硬化樹脂被覆光ファイバの周
囲を不活性ガス雰囲気に保つため、従来の光ファイバ用
紫外線照射装置は石英系ガラス管を用い、その中に不活
性ガスを流し、該石英系ガラス管の外の紫外線ランプか
ら紫外線の照射を行っていた。[Prior Art] Acrylic monomers and prepolymers are used as ultraviolet i-curable resins as coating materials for optical fibers. These UV-curable resins proceed through radical polymerization, and since oxygen gas in the atmosphere easily reacts with radicals during this process, the area to be irradiated with UV rays is kept in an inert gas atmosphere such as N2 or Ar before irradiation with UV rays. It is commonly done. In order to maintain an inert gas atmosphere around the ultraviolet curable resin-coated optical fiber in the ultraviolet irradiation section, conventional ultraviolet irradiation equipment for optical fibers uses a quartz-based glass tube, and inert gas is flowed through the tube. Ultraviolet light was irradiated from an ultraviolet lamp outside the tube.
この場合、光ファイバの線引速度は、通常数77L/秒
であり、有効な照射時間が極めて短く、紫外線硬化樹脂
の良好な硬化状態を得るには、重合の律速である開始剤
の分解が速やかに生起する必要がある。In this case, the drawing speed of the optical fiber is usually several 77 L/sec, and the effective irradiation time is extremely short, and in order to obtain a good cured state of the ultraviolet curable resin, the decomposition of the initiator, which is the rate-limiting factor for polymerization, is required. It needs to happen quickly.
[発明が解決しようとする問題点]しかしながら、従来の光ファイバ用紫外線照射装置では
、石英系ガラス管で紫外線の透過が阻害され、紫外線硬
化樹脂の硬化不足が常時、タック(べとつき)の原因と
なる問題点があった。このため、光ファイバの線引速度
を上げ、生産性を゛向上させることができない問題点が
あった。[Problems to be solved by the invention] However, in conventional ultraviolet irradiation equipment for optical fibers, the transmission of ultraviolet rays is obstructed by the quartz-based glass tube, and insufficient curing of the ultraviolet curable resin always causes tack. There was a problem. For this reason, there is a problem in that it is not possible to increase the drawing speed of the optical fiber and improve productivity.
本発明の目的は、石英系ガラス管内で紫外l1lVI化
樹脂の硬化を十分に行わせることができる光ファイバ用
紫外線照射装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an ultraviolet irradiation device for optical fibers that can sufficiently cure an ultraviolet 111VI resin in a quartz-based glass tube.
[問題点を解決するための手段1上記の目的を達成するための本発明の構成を、実施例に
対応する第1図を参照して説明すると、本発明は内部を
不活性ガス雰囲気にした石英系ガラス管9内に、紫外線
硬化樹脂被覆光ファイバ7を通し、前記石英系ガラス管
9の外の紫外線ランプ10から該石英系ガラス管9を通
して照射する紫外線により前記光ファイバ7の表面の前
記紫外線硬化樹脂6を硬化させる光ファイバ用紫外線照
射装置において、前記石英系ガラス管9はその透過率が
25On1以上の波長について90%以上になっている
ことを特徴とする。[Means for Solving the Problems 1] The structure of the present invention for achieving the above object will be explained with reference to FIG. 1 corresponding to the embodiment. An optical fiber 7 coated with an ultraviolet curing resin is passed through a quartz glass tube 9, and the surface of the optical fiber 7 is irradiated with ultraviolet light from an ultraviolet lamp 10 outside the quartz glass tube 9. In the ultraviolet irradiation device for optical fibers for curing the ultraviolet curable resin 6, the quartz-based glass tube 9 is characterized in that its transmittance is 90% or more for wavelengths of 25On1 or more.
[作用]この発明における石英系ガラス管9は、25Onm以上
の波長について90%以上の透過率を有するので、該石
英系ガラス管9内の不活性ガス雰囲気中を通る紫外線硬
化樹脂被覆光ファイバ7に紫外線が十分に照射され、硬
化が速やかに行われる。[Function] Since the silica-based glass tube 9 of the present invention has a transmittance of 90% or more for wavelengths of 25 Onm or more, the ultraviolet curing resin-coated optical fiber 7 passing through the inert gas atmosphere inside the silica-based glass tube 9 is sufficiently irradiated with ultraviolet rays, resulting in rapid curing.
[実施例]以下、本発明の実施例を第1図を参照して詳細に説明す
る。ロッドキャッチャ1に支持された母U2の先端は加
熱炉3で約2000℃に加熱され、該加熱軟化された母
材2の先端が引き伸ばされて光ファイバ4が形成される
。光ファイバ4は樹脂塗重装N5に通され、保護層とし
て紫外線硬化樹脂6が塗布され、紫外線硬化樹脂被覆光
ファイバ7となり、本実施例の紫外線照)1装置8に送
り込まれる。[Example] Hereinafter, an example of the present invention will be described in detail with reference to FIG. The tip of the base material U2 supported by the rod catcher 1 is heated to about 2000° C. in a heating furnace 3, and the tip of the heated and softened base material 2 is stretched to form an optical fiber 4. The optical fiber 4 is passed through a resin coating N5, coated with an ultraviolet curing resin 6 as a protective layer, and turned into an ultraviolet curing resin coated optical fiber 7, which is sent to the ultraviolet irradiation device 8 of this embodiment.
該紫外線照射装置8は、紫外線硬化被覆光ファイバ7を
通す石英系ガラス管9と、該石英系ガラス管9の外に隣
接して配置された紫外線ランプ10と、該紫外線ランプ
10が存在する側とは反対側で石英系ガラス管9に隣接
した位置で紫外線を反射させて石英系ガラス管9側に戻
すミラー11と、石英系ガラス管9内にN2ガスの如き
不活性ガスを流す不活性・ガス供給管12とで構成され
ている。石英系ガラス管9はその透過率が25On−以
上の波長について90%以上になっている。この紫外線
ランプF?8で紫外線硬化樹脂6が硬化された紫外線硬
化樹脂被覆光ファイバ7は、キャプスタン13を経て図
示しない巻取機で巻取られるようになっている。The ultraviolet irradiation device 8 includes a quartz-based glass tube 9 through which the ultraviolet curable coated optical fiber 7 passes, an ultraviolet lamp 10 arranged adjacent to the outside of the quartz-based glass tube 9, and a side where the ultraviolet lamp 10 is present. A mirror 11 that reflects ultraviolet light and returns it to the silica glass tube 9 side at a position opposite to the quartz glass tube 9 and an inert mirror 11 that flows an inert gas such as N2 gas into the silica glass tube 9. - Consists of a gas supply pipe 12. The quartz glass tube 9 has a transmittance of 90% or more for wavelengths of 25 On- or more. Is this ultraviolet lamp F? The ultraviolet curable resin-coated optical fiber 7 with the ultraviolet curable resin 6 cured in step 8 passes through a capstan 13 and is wound up by a winder (not shown).
次に、紫外線を照射して開始剤を開裂させることにより
重合を開始する紫外線硬化樹脂を塗布した光ファイバに
紫外線を照射して硬化を行わせる場合について説明する
。Next, a case will be described in which an optical fiber coated with an ultraviolet curable resin that initiates polymerization by irradiating ultraviolet rays to cleave an initiator is cured by irradiating ultraviolet rays.
開裂剤の開裂は、紫外線の吸収により生起するが、波長
は材料によって異なり、20Onm〜400nm稈度ま
で任意に選択できる。また、樹脂そのものが紫外線を吸
収することがあり、これは樹脂中のC=C(二手結合)
に帰因し、250nll以下で急な吸収のピークを有し
、これ以下の波長の光は樹脂中に進行しない。The cleavage of the cleavage agent occurs by absorption of ultraviolet rays, and the wavelength varies depending on the material and can be arbitrarily selected from 20 Onm to 400 nm. In addition, the resin itself may absorb ultraviolet rays, and this is due to the C=C (two-handed bond) in the resin.
Due to this, it has a sharp absorption peak below 250 nll, and light with a wavelength below this does not travel into the resin.
石英系ガラス管9は、紫外線の透過率が高いことが知ら
れているが、紫外線領域の吸収の立上りは含有している
不純物や加工法により異なる。また、石英系ガラス管9
の厚みによっても透過光量は変化する。It is known that the quartz-based glass tube 9 has a high transmittance for ultraviolet rays, but the absorption rate in the ultraviolet region varies depending on the impurities contained therein and the processing method. In addition, the quartz glass tube 9
The amount of transmitted light also changes depending on the thickness.
石英系ガラス管9として外径20m+aφ、肉厚2゜0
ffiItで、第2図に示すような波長の透過特性をも
つ天然石英製のものを用い、紫外線硬化樹脂6としてア
クリル系樹脂を用い、紫外線ランプ10としてメタルハ
ライドランプを用いて実験を行った。石英系ガラス管9
内の紫外線硬化樹脂被覆光ファイバ7の表面に達する該
紫外線ランプ10の350 nmの光量は、70 s+
j/ ri/ sinであった。The quartz glass tube 9 has an outer diameter of 20 m + aφ and a wall thickness of 2°0.
An experiment was conducted using an ffiIt made of natural quartz having wavelength transmission characteristics as shown in FIG. 2, an acrylic resin as the ultraviolet curing resin 6, and a metal halide lamp as the ultraviolet lamp 10. Quartz glass tube 9
The amount of 350 nm light from the ultraviolet lamp 10 that reaches the surface of the ultraviolet curing resin-coated optical fiber 7 is 70 s+
j/ri/sin.
光ファイバ4の外径は125μmとし、塗(1i L/
た紫外線硬化樹脂6の層厚は90μmとした。The outer diameter of the optical fiber 4 is 125 μm, and the coating (1i L/
The layer thickness of the ultraviolet curing resin 6 was 90 μm.
この場合、紫外線硬化樹脂被覆光ファイバ7の線引速度
が150711/winを越えると、紫外線硬化樹脂6
の硬化が不十分となり、より強い紫外線ランプ10とす
るか、若しくは紫外線ランプ10を2灯にしないと°“
べとつき”が生じた。In this case, if the drawing speed of the ultraviolet curing resin coated optical fiber 7 exceeds 150,711/win, the ultraviolet curing resin coated optical fiber 7
curing becomes insufficient, and you need to use a stronger ultraviolet lamp 10 or use two ultraviolet lamps 10.
``stickiness'' occurred.
このとさ、石英系ガラス管9の肉厚を1.01(に変え
たところ、紫外線硬化樹脂60層の硬化状態が満足なも
のとなった。このときの石英系ガラ管9の紫外線の透過
率は約90%であった。In this case, when the wall thickness of the quartz-based glass tube 9 was changed to 1.01 mm, the curing state of the 60 layers of the ultraviolet curing resin became satisfactory. The rate was approximately 90%.
天然の石英を原料とする石英系ガラス管9では、不純物
による吸収があり、そのピークは230nm〜25On
m付近にあるので、この波長での吸収率に注意する必要
がある。In the quartz-based glass tube 9 made from natural quartz, there is absorption due to impurities, and the peak is 230 nm to 25 nm.
Since it is near m, it is necessary to pay attention to the absorption rate at this wavelength.
次に、合成石英系ガラス管9について調べたところ、第
3図に示すように紫外線の透過率は200n程度まで良
好であった。この時には、石英系ガラス管9の管厚の違
いに透過率が影響されず、石英系ガラス管9の管厚を変
えても紫外線硬化樹脂6を十分に硬化できた。Next, the synthetic silica glass tube 9 was examined, and as shown in FIG. 3, the transmittance of ultraviolet rays was good up to about 200 nm. At this time, the transmittance was not affected by the difference in the thickness of the quartz glass tube 9, and the ultraviolet curing resin 6 could be sufficiently cured even if the thickness of the quartz glass tube 9 was changed.
実験の結果、合成石英製の石英系ガラス管9の方が紫外
線の透過特性が優れていることが判明した。天然石英製
の石英系ガラス管9の場合には、合成石英製のものと同
等の透過率を得るため、管ηに注意して透過率が250
nm以上の波長について90%以上となるようにする必
要があった。As a result of experiments, it was found that the quartz-based glass tube 9 made of synthetic quartz has superior ultraviolet ray transmission characteristics. In the case of the quartz-based glass tube 9 made of natural quartz, in order to obtain the same transmittance as that of a synthetic quartz tube, the transmittance should be set to 250, paying careful attention to the tube η.
It was necessary to make it 90% or more for wavelengths of nm or more.
[発明の効果]以上説明したように本発明に係る光ファイバ用紫外線照
rA装置は、石英系ガラス管が250nm以」の波長に
ついて90%以上の透過率を有するので、該石英系ガラ
ス管内の不活性ガス雰囲気中を通る紫外線硬化樹脂被覆
光ファイバに紫外線を十分に照射できて紫外線硬化樹脂
の硬化を速やかに行わせることができ、光ファイバの線
引速度を上げて能率よく紫外線硬化樹脂被覆光ファイバ
の製造を行うことができる。また、本発明によれば、紫
外線ランプのパワルアツブを図らないでもよいので電力
コストの面でも右利であり、且つ多灯化を図らないでも
よいので設備コストや設置場所の確保の面でも含めて右
利である。[Effects of the Invention] As explained above, in the ultraviolet irradiation rA device for optical fibers according to the present invention, since the silica-based glass tube has a transmittance of 90% or more for wavelengths of 250 nm or less, The UV-curable resin-coated optical fiber passing through an inert gas atmosphere can be sufficiently irradiated with UV rays, allowing the UV-curable resin to harden quickly, increasing the drawing speed of the optical fiber and efficiently coating the UV-curable resin. It is possible to manufacture optical fibers. In addition, according to the present invention, there is no need to increase the power of the ultraviolet lamp, so it is advantageous in terms of electricity costs, and there is no need to increase the number of lights, so it is advantageous in terms of equipment costs and securing installation space. He is right-handed.
第1図は本発明に係る光ファイバ用紫外線照射装置を含
む光ファイバ製造装置の一実施例を示す縦断面図、第2
図及び第3図は石英系ガラス管の天然石英製のしのと合
成石英製のものと紫外線透過特性図である。4・・・光ファイバ、6・・・紫外線硬化樹脂、7・・
・紫外線硬化樹脂被覆光ファイバ、8・・・紫外線+1
134装置、9・・・石英系ガラス管、10・・・紫外
線ランプ。代理人 弁理士 松 本 英 俊゛第1図ZJ、(n第2FIG. 1 is a vertical sectional view showing an embodiment of an optical fiber manufacturing apparatus including an ultraviolet ray irradiation device for optical fiber according to the present invention, and FIG.
3 and 3 are diagrams showing ultraviolet transmission characteristics of quartz-based glass tubes, one made of natural quartz and one made of synthetic quartz. 4... Optical fiber, 6... Ultraviolet curing resin, 7...
・UV curing resin coated optical fiber, 8...UV +1
134 device, 9... quartz glass tube, 10... ultraviolet lamp. Agent Patent Attorney Hidetoshi Matsumoto (Figure 1 ZJ, (n 2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61300522AJPS63156042A (en) | 1986-12-17 | 1986-12-17 | Ultraviolet ray irradiation device for optical fiber |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61300522AJPS63156042A (en) | 1986-12-17 | 1986-12-17 | Ultraviolet ray irradiation device for optical fiber |
| Publication Number | Publication Date |
|---|---|
| JPS63156042Atrue JPS63156042A (en) | 1988-06-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61300522APendingJPS63156042A (en) | 1986-12-17 | 1986-12-17 | Ultraviolet ray irradiation device for optical fiber |
| Country | Link |
|---|---|
| JP (1) | JPS63156042A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001033275A1 (en)* | 1999-11-01 | 2001-05-10 | Alcatel | Method for manufacturing optical fiber ribbon |
| JP2012131665A (en)* | 2010-12-22 | 2012-07-12 | Furukawa Electric Co Ltd:The | Method for manufacturing coated optical fiber |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61212800A (en)* | 1985-03-16 | 1986-09-20 | ジェイエスアール株式会社 | Ultraviolet curing device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61212800A (en)* | 1985-03-16 | 1986-09-20 | ジェイエスアール株式会社 | Ultraviolet curing device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001033275A1 (en)* | 1999-11-01 | 2001-05-10 | Alcatel | Method for manufacturing optical fiber ribbon |
| US6321014B1 (en)* | 1999-11-01 | 2001-11-20 | Alcatel | Method for manufacturing optical fiber ribbon |
| JP2012131665A (en)* | 2010-12-22 | 2012-07-12 | Furukawa Electric Co Ltd:The | Method for manufacturing coated optical fiber |
| Publication | Publication Date | Title |
|---|---|---|
| JP3952620B2 (en) | Photoinitiator-adjustable optical fiber, optical fiber ribbon, and manufacturing method thereof | |
| US4770898A (en) | Method for producing optical fiber | |
| US7322122B2 (en) | Method and apparatus for curing a fiber having at least two fiber coating curing stages | |
| JPS62171947A (en) | Method and apparatus for hardening coating of fiber | |
| US20020106173A1 (en) | Ultraviolet curable coatings for optical fiber for wet-on-wet application | |
| JP7536670B2 (en) | Optical fiber core wire manufacturing method | |
| JPH10245245A (en) | Hardening of coated glass fiber | |
| JPS63156042A (en) | Ultraviolet ray irradiation device for optical fiber | |
| JPS62273072A (en) | Irradiator and coating device for linear substance and coating method thereof | |
| KR890006307A (en) | Curing method and apparatus of optical fiber coating | |
| JP2020117426A (en) | Production method of optical fiber | |
| JP6582815B2 (en) | Optical fiber manufacturing method | |
| JPH04240138A (en) | Production of optical fiber | |
| US12140813B2 (en) | Low-attenuation rollable optical fiber ribbon | |
| JPH02145460A (en) | Optical fiber coating method | |
| JPH04240137A (en) | Production of optical fiber | |
| JPH06211545A (en) | Optical fiber coating method and apparatus | |
| JPH04224140A (en) | Optical fiber manufacturing method | |
| JP2000005694A (en) | Method for coating a linear body with an ultraviolet curable resin | |
| JPH0437633A (en) | Optical fiber resin coating curing method and device | |
| JPH04243937A (en) | Optical fiber manufacturing method | |
| JPH04338139A (en) | Production of optical fiber raw wire | |
| JPH0651585B2 (en) | Manufacturing equipment for glass fiber for optical transmission | |
| JPH04240136A (en) | Production of optical fiber | |
| JPH01167264A (en) | Optical fiber coating method |