【発明の詳細な説明】〔産業上の利用分野〕本発明は液晶表示装置用電極基板の製造方法に関し、特
に電極基板の平坦化に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an electrode substrate for a liquid crystal display device, and particularly to planarization of an electrode substrate.
従来、液晶表示装置用電極基板は第3図の断面図によっ
て示される工程にて作製される。まず透明基板1上にゲ
ート電極2を金属にて形成し、その上にゲート絶縁層3
、半導体層4を形成する。Conventionally, an electrode substrate for a liquid crystal display device is manufactured through the steps shown in the cross-sectional view of FIG. First, a gate electrode 2 is formed of metal on a transparent substrate 1, and a gate insulating layer 3 is formed on it.
, to form the semiconductor layer 4.
ゲート絶縁層3としては窒化シリコンを、半導体層4と
してはアモルファスシリコンをそれぞれプラズマCVD
法を用いて形成する。その後、ドレイン電極5、ソース
電極6を金属で形成し薄膜トランジスタが作製される(
第3図(a))。The gate insulating layer 3 is made of silicon nitride, and the semiconductor layer 4 is made of amorphous silicon by plasma CVD.
form using the law. Thereafter, a drain electrode 5 and a source electrode 6 are formed of metal to fabricate a thin film transistor (
Figure 3(a)).
次にソース電極と連なる表示電極7を透明電極膜で形成
し、パッシベーション層8を形成する(第3図(b))
。Next, a display electrode 7 connected to the source electrode is formed of a transparent electrode film, and a passivation layer 8 is formed (FIG. 3(b)).
.
この後、全面を配向膜10で被覆する。配向膜10はポ
リイミドを塗布焼成したものが用いられる(第3図(C
))。Thereafter, the entire surface is covered with an alignment film 10. The alignment film 10 is made of polyimide coated and fired (see Fig. 3 (C)).
)).
その後、この様に作製された電極基板に配向処理を施す
。これは、この電極基板を用いて液晶表示装置を構成す
る場合、電極基板上に接して設けられる液晶の分子を一
方向に配向せしめる為のものである。実際には第4図(
a)に示される様に、回転している綿布ローラー12で
配向膜10表面をこすり、配向膜10の表面に無数の微
細なキズ13を作る。第4図(b)は、電極基板の平面
図であるが、通常、液晶表示装置の視角依存性の点から
配向のキズ13は斜めにつけられる。Thereafter, the electrode substrate produced in this manner is subjected to an alignment treatment. This is for aligning liquid crystal molecules provided in contact with the electrode substrate in one direction when a liquid crystal display device is constructed using this electrode substrate. Actually, Figure 4 (
As shown in a), the rotating cotton cloth roller 12 rubs the surface of the alignment film 10 to create countless fine scratches 13 on the surface of the alignment film 10. FIG. 4(b) is a plan view of the electrode substrate, and the alignment scratches 13 are usually formed obliquely from the viewpoint of viewing angle dependence of a liquid crystal display device.
ここで、通常各層の厚さはゲート電極2がi、oo。Here, the thickness of each layer is usually i and oo for the gate electrode 2.
パッシベーション層8が2,0OOAであシ、また配向
膜は800Aである。よって第3図(c)よp明らかな
様に、ドレイン電極5及びソース電極6の上のパッシベ
ーション層8の表面と表示電極7の上のパッジベージ7
ン層8の表面との高低差は5,700る。この上に配向
膜10が被覆されるが、800八程度ではほとんど段差
の緩和に役立たない。The passivation layer 8 has a thickness of 2,000A, and the alignment film has a thickness of 800A. Therefore, as is clear from FIG. 3(c), the surface of the passivation layer 8 on the drain electrode 5 and the source electrode 6 and the padding layer 7 on the display electrode 7 are
The difference in height from the surface of the layer 8 is 5,700. An alignment film 10 is coated on this, but the thickness of about 8008 is hardly useful for alleviating the difference in level.
この為、ドレイン電極5及びソース電極6の近傍では、
表示電極7上に綿布ローラー12が落ち込まず、配向の
キズ13は第4図(b)の様になシ配向不良となる領域
14が存在し、表示電極7上全面に一様にはつかない。Therefore, near the drain electrode 5 and source electrode 6,
The cotton cloth roller 12 does not fall onto the display electrode 7, and the alignment scratches 13 are not evenly applied to the entire surface of the display electrode 7 because there are regions 14 where the alignment is poor as shown in FIG. 4(b). .
この様な配向処理を施された電極基板を用いて液晶表示
装置を構成した場合、表示電極7上のキズ13のない部
分が配向不良部となシ、目視上では表示ムラとして現わ
れる。When a liquid crystal display device is constructed using an electrode substrate subjected to such an alignment treatment, a portion without scratches 13 on the display electrode 7 becomes a defective alignment portion, which visually appears as display unevenness.
本発明の液晶表示装置用電極基板の製造方法においては
、薄膜トランジスタと表示電極とが形成された基板上に
パッシベーション層とレジスト層とを塗布し、プラズマ
エツチングによりレジスト層とパッシベーション層との
表面をエツチングして平坦なパッシベーション層を得る
ようにしている。In the method of manufacturing an electrode substrate for a liquid crystal display device of the present invention, a passivation layer and a resist layer are coated on a substrate on which a thin film transistor and a display electrode are formed, and the surfaces of the resist layer and the passivation layer are etched by plasma etching. to obtain a flat passivation layer.
以下、本発明について図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例の工程を示す断面図である。FIG. 1 is a sectional view showing the steps of an embodiment of the present invention.
第1図(a)に示される様に、透明基板1上にゲート電
極2とゲート絶縁層3とを積層し、その上に半導体層4
を設け、さらにソース電極・ドレイン電極5とソース電
極に連続する表示電極7を設けた後、全表面にパッシベ
ーション層8として窒化シリコンをプラズマCVDにて
6000A形成し、更にレジスト9を約1μ塗布した。As shown in FIG. 1(a), a gate electrode 2 and a gate insulating layer 3 are laminated on a transparent substrate 1, and a semiconductor layer 4 is placed thereon.
After providing a source electrode/drain electrode 5 and a display electrode 7 continuous to the source electrode, a passivation layer 8 of silicon nitride of 6000 Å was formed on the entire surface by plasma CVD, and a resist 9 of about 1 μm was applied. .
レジスト9は粘性によシ段差を緩和して平坦な形状とな
程度となった。Resist 9 softened the step difference due to its viscosity and became a flat shape.
その後CF、+02 ガス系による窒化シリコンのパ
ッシベーション層8とレジスト9とのエツチング速度が
同一となる条件でのプラズマエツチングをパッシベーシ
ョン層8の低い部分の表面まで行なう。この様なエッチ
バック法を採用することにより、レジスト9の表面プロ
ファイルがパッジベーン1フ層8のエツチング表面に再
現され高低差が1000X程度の平坦化が実現される(
第1 !1(b) )。Thereafter, plasma etching is performed using a CF, +02 gas system under conditions such that the etching rate of the silicon nitride passivation layer 8 and the resist 9 are the same, up to the surface of the lower portion of the passivation layer 8. By employing such an etchback method, the surface profile of the resist 9 is reproduced on the etched surface of the padding vane 1f layer 8, and flattening with a height difference of about 1000X is achieved.
First! 1(b)).
この窒化シリコン膜のエッチバック法に関しては、LS
Iの多層配線における層間絶縁膜の平坦化技術として確
立されており容易に行なえる技術である。(例えば電子
材料1985年6月p86〜p21真弓、弁上)。Regarding the etchback method of this silicon nitride film, please refer to LS
This is an established and easy-to-perform technique for planarizing interlayer insulating films in multilayer wiring. (For example, Electronic Materials, June 1985, p.86-p.21, Mayumi, Bengami).
次に、第1図(C)に示すように、パッシベーション層
8上に配向膜10を塗布した。電極基板の表面の段差は
高々1,0OOAであるが、800Aの配向膜10の塗
布でこの段差はさらに緩和されている。Next, as shown in FIG. 1(C), an alignment film 10 was applied on the passivation layer 8. Although the level difference on the surface of the electrode substrate is at most 1,000 A, this level difference is further reduced by coating the alignment film 10 with a thickness of 800 A.
この後配向膜10上を配向処理したところ表示電極7上
全面に均一な配向処理を施すことが出来た。After this, when the alignment film 10 was subjected to an alignment treatment, it was possible to uniformly align the entire surface of the display electrode 7.
第2図は本発明の他の実施例の断面図である。FIG. 2 is a sectional view of another embodiment of the invention.
第1図の実施例では表示電極7が、パッジページ璽ン層
8の下に位置している。この場合、パッシベーション層
8及び配向膜10は、液晶層(配向膜の上に位置する。In the embodiment of FIG. 1, the display electrode 7 is located below the padding page marking layer 8. In the embodiment of FIG. In this case, the passivation layer 8 and the alignment film 10 are located on the liquid crystal layer (on the alignment film).
)に対し電気的に直列に接続された容量となシ、液晶層
に印加されるべき電圧がこれらの層で分圧される為1.
駆動電圧が高くなる。第2図に示す実施例はこれを改善
するために、表示電極7をパッシベーション層8の上に
設けている。まず、第2図(a)に示すように、透明基
板1上にゲート電極2とゲート絶、禄膜3を設け、ゲー
ト電極2上のゲート絶縁膜3上に半導体層4を設i、ソ
ース電極およびドレイン電翫5を設はり後、パッシベー
ション層8とレジスト(図示せず)を設けて第1図の実
施例同様エッチバック法によシパッシペーション層8を
平坦にする。次にソース電極6上のパッシベーション層
にコンタクトホール11をあけた。), the voltage to be applied to the liquid crystal layer is divided by these layers, so 1.
Drive voltage increases. In the embodiment shown in FIG. 2, the display electrode 7 is provided on the passivation layer 8 in order to improve this problem. First, as shown in FIG. 2(a), a gate electrode 2 and a gate insulating film 3 are provided on a transparent substrate 1, and a semiconductor layer 4 is provided on the gate insulating film 3 on the gate electrode 2. After the electrodes and drain wires 5 are provided, a passivation layer 8 and a resist (not shown) are provided, and the passivation layer 8 is flattened by an etch-back method similar to the embodiment shown in FIG. Next, a contact hole 11 was made in the passivation layer above the source electrode 6.
次に、第2図(b)に示すように、一部分がコンタクト
ホール11を被覆する様に表示電極7を形成した。Next, as shown in FIG. 2(b), the display electrode 7 was formed so as to partially cover the contact hole 11.
最後に配向膜10を塗布しく第2図(c) ) 、綿布
ローラー12による配向処理を施した。かかる実施例に
おいては、表示電極7が配向膜10の下に位置し液晶へ
の1Fc圧印加に対しパッシベーション層8の影響を受
けずにすみ、かつ第1図の実施例同様、表面段差が少な
い為、均一な配向処理が冥現出来た。Finally, an alignment film 10 was applied (FIG. 2(c)), and an alignment treatment was performed using a cotton cloth roller 12. In this embodiment, the display electrode 7 is located under the alignment film 10, so that it is not affected by the passivation layer 8 when 1Fc pressure is applied to the liquid crystal, and as in the embodiment shown in FIG. 1, the surface level difference is small. Therefore, a uniform alignment process was achieved.
以上説明したように本発明はパッシベーション層をエッ
チバック法により平坦化することにより表示電極上の配
向処理を均一に出来、表示ムラをなくすことが可能とな
った。As explained above, in the present invention, by flattening the passivation layer by an etch-back method, the alignment process on the display electrodes can be made uniform, and display unevenness can be eliminated.
第1図(a)〜(C)は本発明の一実施例を工程順に示
した断面図、第2図(a)〜(C)は本発明の他の実施
例を工程順に示した断面図、第3図(a)〜(C)は従
来方法を工程順に示した断面図、第4図は従来方法の配
向処理方法を示したもので、同図(a)は配向処理工程
の断面図、同図(b)は配向処理後の基板の平面図であ
る。1・・・・・・透明基板、2・・・・・・ゲート電極、
3・・・・・・ゲート絶縁層、4・・・・・・半導体層
、5・・・・・・ドレイン電極、6・・・・・・ソース
電極、7・・・・・・表示電極、8・・・・・・パッシ
ベーション層、9・・・・・・レジスト層、10・・・
・・・配向膜、11・・・・・・コンタクトホール、1
2・・・・・・綿布ローラー、13・・・・・・キズ、
14・・・・・・配向不良となる領域。筋(図筋2目FIGS. 1(a) to (C) are cross-sectional views showing one embodiment of the present invention in the order of steps, and FIGS. 2(a) to (C) are cross-sectional views showing another embodiment of the present invention in the order of steps. , FIGS. 3(a) to (C) are cross-sectional views showing the conventional method in the order of steps, FIG. 4 is a cross-sectional view showing the conventional orientation treatment method, and FIG. 3(a) is a cross-sectional view of the orientation treatment step. , FIG. 2B is a plan view of the substrate after the alignment treatment. 1...Transparent substrate, 2...Gate electrode,
3... Gate insulating layer, 4... Semiconductor layer, 5... Drain electrode, 6... Source electrode, 7... Display electrode , 8... Passivation layer, 9... Resist layer, 10...
...Alignment film, 11...Contact hole, 1
2... Cotton cloth roller, 13... Scratches,
14...A region with poor orientation. Muscles (Figure 2nd muscle)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61251010AJPS63104026A (en) | 1986-10-21 | 1986-10-21 | Manufacture of liquid crystal display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61251010AJPS63104026A (en) | 1986-10-21 | 1986-10-21 | Manufacture of liquid crystal display device |
| Publication Number | Publication Date |
|---|---|
| JPS63104026Atrue JPS63104026A (en) | 1988-05-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61251010APendingJPS63104026A (en) | 1986-10-21 | 1986-10-21 | Manufacture of liquid crystal display device |
| Country | Link |
|---|---|
| JP (1) | JPS63104026A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6468726A (en)* | 1987-09-09 | 1989-03-14 | Casio Computer Co Ltd | Thin film transistor and its manufacture |
| JPH01292315A (en)* | 1988-05-19 | 1989-11-24 | Fujitsu Ltd | lcd display panel |
| JPH02211428A (en)* | 1989-02-13 | 1990-08-22 | Nec Corp | Active matrix substrate for liquid crystal display device |
| WO1990010248A1 (en)* | 1989-03-01 | 1990-09-07 | Mitsubishi Denki Kabushiki Kaisha | Thin-film transistor |
| JPH02234134A (en)* | 1989-03-07 | 1990-09-17 | Nec Corp | Active matrix substrate for liquid crystal display device |
| JPH10115824A (en)* | 1996-10-09 | 1998-05-06 | Matsushita Electric Ind Co Ltd | Liquid crystal display panel substrate and method of manufacturing the same |
| US6693301B2 (en) | 1991-10-16 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method of driving and manufacturing the same |
| US6833893B2 (en) | 1999-12-24 | 2004-12-21 | Nec Lcd Technologies, Ltd. | Optically compensated bend type liquid crystal display device |
| US7071910B1 (en) | 1991-10-16 | 2006-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Electrooptical device and method of driving and manufacturing the same |
| US7116302B2 (en) | 1991-10-16 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Process of operating active matrix display device having thin film transistors |
| US7253440B1 (en) | 1991-10-16 | 2007-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having at least first and second thin film transistors |
| JP2011043830A (en)* | 1999-03-02 | 2011-03-03 | Semiconductor Energy Lab Co Ltd | Semiconductor device and electronic equipment |
| JP2019109412A (en)* | 2017-12-20 | 2019-07-04 | セイコーエプソン株式会社 | Electro-optical device, manufacturing method for electro-optical device, and electronic apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6017480A (en)* | 1983-07-08 | 1985-01-29 | 松下電器産業株式会社 | Liquid crystal display panel and manufacture thereof |
| JPS61113259A (en)* | 1984-11-08 | 1986-05-31 | Matsushita Electric Ind Co Ltd | Manufacturing method of semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6017480A (en)* | 1983-07-08 | 1985-01-29 | 松下電器産業株式会社 | Liquid crystal display panel and manufacture thereof |
| JPS61113259A (en)* | 1984-11-08 | 1986-05-31 | Matsushita Electric Ind Co Ltd | Manufacturing method of semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6468726A (en)* | 1987-09-09 | 1989-03-14 | Casio Computer Co Ltd | Thin film transistor and its manufacture |
| JPH01292315A (en)* | 1988-05-19 | 1989-11-24 | Fujitsu Ltd | lcd display panel |
| JPH02211428A (en)* | 1989-02-13 | 1990-08-22 | Nec Corp | Active matrix substrate for liquid crystal display device |
| WO1990010248A1 (en)* | 1989-03-01 | 1990-09-07 | Mitsubishi Denki Kabushiki Kaisha | Thin-film transistor |
| DE4090273C1 (en)* | 1989-03-01 | 1996-09-26 | Mitsubishi Electric Corp | Thin-film transistor for planar liquid crystal display |
| JPH02234134A (en)* | 1989-03-07 | 1990-09-17 | Nec Corp | Active matrix substrate for liquid crystal display device |
| US6759680B1 (en) | 1991-10-16 | 2004-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Display device having thin film transistors |
| US6693301B2 (en) | 1991-10-16 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method of driving and manufacturing the same |
| US7071910B1 (en) | 1991-10-16 | 2006-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Electrooptical device and method of driving and manufacturing the same |
| US7116302B2 (en) | 1991-10-16 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Process of operating active matrix display device having thin film transistors |
| US7253440B1 (en) | 1991-10-16 | 2007-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having at least first and second thin film transistors |
| JPH10115824A (en)* | 1996-10-09 | 1998-05-06 | Matsushita Electric Ind Co Ltd | Liquid crystal display panel substrate and method of manufacturing the same |
| JP2011043830A (en)* | 1999-03-02 | 2011-03-03 | Semiconductor Energy Lab Co Ltd | Semiconductor device and electronic equipment |
| US9153604B2 (en) | 1999-03-02 | 2015-10-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
| US6833893B2 (en) | 1999-12-24 | 2004-12-21 | Nec Lcd Technologies, Ltd. | Optically compensated bend type liquid crystal display device |
| JP2019109412A (en)* | 2017-12-20 | 2019-07-04 | セイコーエプソン株式会社 | Electro-optical device, manufacturing method for electro-optical device, and electronic apparatus |
| Publication | Publication Date | Title |
|---|---|---|
| JPS63104026A (en) | Manufacture of liquid crystal display device | |
| JPS63114213A (en) | Flattening method | |
| JPH03295239A (en) | Manufacturing method of semiconductor device | |
| JPS61156025A (en) | Display device | |
| JPH02292826A (en) | Semiconductor device | |
| JPS63133551A (en) | Manufacture of semiconductor device | |
| JPS63133550A (en) | Manufacture of semiconductor device | |
| JPS63302537A (en) | Manufacture of integrated circuit | |
| JPH01207931A (en) | Manufacture of semiconductor device | |
| JPH0265256A (en) | Manufacture of semiconductor device | |
| JPS61232636A (en) | Manufacture of semiconductor device | |
| JPS61206242A (en) | Manufacture of semiconductor device | |
| JPH0387048A (en) | Formation of interlayer film | |
| JPS61260639A (en) | Manufacture of semiconductor device | |
| KR100693785B1 (en) | Method of forming interlayer insulating film of semiconductor memory device | |
| JPH02180052A (en) | Manufacture of semiconductor device | |
| JPH02174269A (en) | Manufacturing method of thin film transistor | |
| JPH0337857B2 (en) | ||
| JP2844641B2 (en) | Silicon planarization method | |
| JPH03257849A (en) | Manufacture of semiconductor device | |
| JP2877151B2 (en) | Method for manufacturing semiconductor device | |
| JPS6321850A (en) | Manufacturing method of semiconductor device | |
| JPH0636917Y2 (en) | Printing screen | |
| JPH06260504A (en) | Method of manufacturing thin film transistor | |
| JP2000147546A (en) | Method of manufacturing liquid crystal display integrated circuit device |