Movatterモバイル変換


[0]ホーム

URL:


JPS6252432B2 - - Google Patents

Info

Publication number
JPS6252432B2
JPS6252432B2JP54126841AJP12684179AJPS6252432B2JP S6252432 B2JPS6252432 B2JP S6252432B2JP 54126841 AJP54126841 AJP 54126841AJP 12684179 AJP12684179 AJP 12684179AJP S6252432 B2JPS6252432 B2JP S6252432B2
Authority
JP
Japan
Prior art keywords
alumina
conductivity
battery
present
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54126841A
Other languages
Japanese (ja)
Other versions
JPS5652879A (en
Inventor
Hidehito Oohayashi
Tatsu Nagai
Tetsuichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi LtdfiledCriticalHitachi Ltd
Priority to JP12684179ApriorityCriticalpatent/JPS5652879A/en
Publication of JPS5652879ApublicationCriticalpatent/JPS5652879A/en
Publication of JPS6252432B2publicationCriticalpatent/JPS6252432B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】 本発明はリチウム(Li)固体電解質電池に関す
るものである。Li固体電解質電池における問題点
の1つに放電電流値が他種電池に比較して非常に
小さいことがあげられる。これは電解質のイオン
電導度が小であることと、界面分極が大であるこ
とに主原因がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lithium (Li) solid electrolyte battery. One of the problems with Li solid electrolyte batteries is that the discharge current value is very small compared to other types of batteries. This is mainly due to the low ionic conductivity of the electrolyte and the high interfacial polarization.

本発明の目的は、このような固体電解質を用い
た電池における放電電流値を大にするため、新し
いタイプの電解質を用い、高い特性の全固体リチ
ウム電池を提供することである。
An object of the present invention is to provide an all-solid lithium battery with high characteristics using a new type of electrolyte in order to increase the discharge current value in a battery using such a solid electrolyte.

上記の目的を達成するため、本発明はAg―β
アルミナ、Tl―βアルミナを用い、Ag又はTlの
一部をイオン交換法によつてLiに置換して形成し
た、(Li,Ag)―βアルミナ又は((Li,Tl)―
βアルミナを固体電解質として用いるものであ
る。
In order to achieve the above object, the present invention provides Ag-β
(Li, Ag)-β alumina or ((Li, Tl)-
β-alumina is used as a solid electrolyte.

(Li,Na)―βアルミナ単結晶の室温におけ
る導電率は4.2×10-3(Ωcm)-1であるが、多結
晶の場合にはこれより1ケタ程度低下する。また
上記導電率は交流測定による値であるが、直流測
定によつて得られる値は、第1図に示すように極
端に小さくなる。これに対し本発明において用い
られる(Li,Ag)―βアルミナの場合には、電
池への応用において必要な、直流導電率がすぐれ
ている。そのため、この電解質を用いることによ
つて放電電流の大きな電池を得ることが可能にな
る。
The electrical conductivity of (Li, Na)-β alumina single crystal at room temperature is 4.2×10-3 (Ωcm)-1 , but in the case of polycrystal, it is about one order of magnitude lower than this. Further, although the above-mentioned conductivity is a value obtained by AC measurement, the value obtained by DC measurement is extremely small as shown in FIG. On the other hand, (Li,Ag)-β alumina used in the present invention has excellent DC conductivity, which is necessary for application to batteries. Therefore, by using this electrolyte, it becomes possible to obtain a battery with a large discharge current.

以下、実施例を用いて本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail using Examples.

実施例 1 固体電解質としては(Li,Ag)―βアルミナ
又は(Li,Tl)―βアルミナを用いたが、これ
らは、つぎのようにして作製した。
Example 1 (Li, Ag)-β alumina or (Li, Tl)-β alumina was used as the solid electrolyte, and these were produced as follows.

Na・βアルミナをホツトプレス法によつて合
成し、これを0.3mm〜1mm厚さに切削した。これ
を(J.T・Kummer,“Progress in Solid State
Chemistry”第7巻p.141.A.Reiss and J.O.
McCaldin編,1972年、パーガモン社)に記載さ
れている方法によつてイオン交換し、(Li,Ag)
―または(Li,Tl)―型のβアルミナを得た。
この電解質の導電率を第2図に示した。比較のた
めLi―βアルミナ、Na―βアルミナの値も示し
た。第2図において直線1,2,3はそれぞれ
(Li,Ag)―βアルミナ、Li―βアルミナおよび
Na―βアルミナの特性を示す。第2図から明ら
かなように、直線1はLi―βアルミナより大きい
導電率を示し、第1図に参考として示した
(Na,Li)βアルミナと同等以上の導電率を示し
ている。
Na/β alumina was synthesized by hot pressing and cut into a thickness of 0.3 mm to 1 mm. This (JT Kummer, “Progress in Solid State
Chemistry” Volume 7 p.141.A.Reiss and JO
McCaldin, ed., 1972, Pergamon).
- or (Li, Tl)- type beta alumina was obtained.
The conductivity of this electrolyte is shown in FIG. For comparison, values for Li-β alumina and Na-β alumina are also shown. In Figure 2, lines 1, 2, and 3 are (Li, Ag)-β alumina, Li-β alumina, and
Shows the characteristics of Na-β alumina. As is clear from FIG. 2, straight line 1 shows a higher conductivity than Li-β alumina, and shows a conductivity equal to or higher than that of (Na, Li)β alumina shown for reference in FIG.

第3図に(Li,Ag)―アルミナの導電率の周
波数依存性を示す。第1図に示した(Li,Na)
βアルミナの場合と同等以上の特性を示している
ことがわかる。
Figure 3 shows the frequency dependence of the conductivity of (Li, Ag)-alumina. (Li, Na) shown in Figure 1
It can be seen that the properties are equivalent to or better than those of β-alumina.

実施例 2 実施例1で得た(Li,Ag)―βアルミナを用
い、Li固体電解質電池を作成した。正極はPbI2
Pbの二元同時蒸着によつて形成し、負極はLi金
属を蒸着して形成した。この電池の特性は、室温
において開路電圧2.04V、短絡電流は100〜2000
μAであつた。この値は特開昭52−103635におい
て示されている(Li,Na)βアルミナを用いた
電池が数μA〜数+μAと比較すると非常に大き
く、本発明にかかる電池がすぐれていることがわ
かる。
Example 2 Using the (Li,Ag)-β alumina obtained in Example 1, a Li solid electrolyte battery was created. The positive electrode isPbI2 and
It was formed by dual simultaneous evaporation of Pb, and the negative electrode was formed by evaporation of Li metal. The characteristics of this battery are that the open circuit voltage is 2.04V at room temperature, and the short circuit current is 100~2000V.
It was μA. This value is very large compared to the battery using (Li, Na) β-alumina shown in JP-A-52-103635, which ranges from several μA to several + μA, and it can be seen that the battery according to the present invention is superior. .

実施例 3 実施例2で作成した電池の1μA、5μA、10
μAの定電流放電における放電特性をそれぞれ第
4図曲線11,12,13に示す。電池は正極容
量規制とし、膜厚から求めたPbI2量に対する利用
率を示した。第4図から明らかなように、本発明
にかかるリチウム電池は、10μA放電においても
70%以上の利用率を示し、この点においても、極
めてすぐれている。
Example 3 1μA, 5μA, 10 of the battery created in Example 2
The discharge characteristics in constant current discharge of μA are shown in curves 11, 12, and 13 in FIG. 4, respectively. The capacity of the positive electrode was regulated for the battery, and the utilization rate for the amount of PbI2 determined from the film thickness was shown. As is clear from FIG. 4, the lithium battery according to the present invention can be used even at a discharge of 10 μA.
It has a utilization rate of over 70%, and is extremely excellent in this respect as well.

上記のように、本発明は、正極と負極の間に介
在する固体電解質として(Li,Ag)―βアルミ
ナまたは(Li,Tl)―βアルミナを用いるので
あるが、これらは下記の一般式で表わすことがで
きる。
As mentioned above, the present invention uses (Li, Ag)-β alumina or (Li, Tl)-β alumina as the solid electrolyte interposed between the positive electrode and the negative electrode, which are expressed by the following general formula: can be expressed.

(LixM1-x2O・nAl2O3 (ただし、MはAgおよびまたはTl、x=0.01
〜0.95、n=5〜11) xが0.01より小さいとL+i導電性を示さず、
0.95より大きいと、L+i導電性が約1桁程度小さ
くなり、この結果、放電特性が悪くなり、1μA
放電でも放電電圧の平担性が得られない。
(Lix M1-x )2 O・nAl2 O3 (M is Ag and or Tl, x=0.01
~0.95, n=5~11) When x is smaller than 0.01, L+ i conductivity is not exhibited;
If it is larger than 0.95, the L+ i conductivity will decrease by about one order of magnitude, resulting in poor discharge characteristics and 1 μA
Even during discharge, flatness of the discharge voltage cannot be obtained.

また、nが5より小さいとAl2O3はβ″型と
LiAlO2の混合物となり、イオン導電性が低下す
る。nが11より大きいとα型とβ型の混合物とな
り、やはりイオン導電性が低下してしまう。
Also, when n is smaller than 5, Al2 O3 becomes β″ type.
It becomes a mixture of LiAlO2 and the ionic conductivity decreases. When n is larger than 11, it becomes a mixture of α-type and β-type, resulting in a decrease in ionic conductivity.

このような理由から、xおよびnは、それぞれ
0.01〜0.95および5〜11の範囲内にあることが好
ましい。
For this reason, x and n are each
It is preferably within the ranges of 0.01-0.95 and 5-11.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Li,Na)―βアルミナの比抵抗の
周波数依存性を示す曲線図、第2図乃至第4図は
本発明の効果を示す曲線図である。
FIG. 1 is a curve diagram showing the frequency dependence of resistivity of (Li, Na)-β alumina, and FIGS. 2 to 4 are curve diagrams showing the effects of the present invention.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 正極と負極の間に配置されてある電解質が
(Li,Ag)―βアルミナもしくは(Li,Tl)―β
アルミナであることを特徴とするリチウム電池。
1 The electrolyte placed between the positive electrode and the negative electrode is (Li, Ag)-β alumina or (Li, Tl)-β
A lithium battery characterized by being made of alumina.
JP12684179A1979-10-031979-10-03Lithium batteryGrantedJPS5652879A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP12684179AJPS5652879A (en)1979-10-031979-10-03Lithium battery

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP12684179AJPS5652879A (en)1979-10-031979-10-03Lithium battery

Publications (2)

Publication NumberPublication Date
JPS5652879A JPS5652879A (en)1981-05-12
JPS6252432B2true JPS6252432B2 (en)1987-11-05

Family

ID=14945202

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP12684179AGrantedJPS5652879A (en)1979-10-031979-10-03Lithium battery

Country Status (1)

CountryLink
JP (1)JPS5652879A (en)

Also Published As

Publication numberPublication date
JPS5652879A (en)1981-05-12

Similar Documents

PublicationPublication DateTitle
US4357215A (en)Fast ion conductors
Neudecker et al.Li9SiAlO8: A lithium ion electrolyte for voltages above 5.4 V
CN118125393A (en) A solid electrolyte material, preparation method thereof and lithium ion battery
Weppner et al.Consideration of lithium nitride halides as solid electrolytes in practical galvanic cell applications
Schoonman et al.Fluoride‐Conducting Solid Electrolytes in Galvanic Cells
JPS6252432B2 (en)
JPH0361286B2 (en)
TW565965B (en)Germanium nitride electrode material for high capacity rechargeable lithium battery cell
JPH0670905B2 (en) Solid electrolyte battery
Menetrier et al.New secondary batteries for room temperature applications using a vitreous electrolyte
JPH0458149B2 (en)
US4172882A (en)Lithium ion transport compositions
PoulsenThe effect of different internal surfaces in composite lithium electrolytes
US2930830A (en)Solid-state cell and battery
SekidoSolid state micro power sources
JPH0313706B2 (en)
JPS6012665A (en)Reversible copper electrode
GB1599793A (en)Cathodes for solid electrolyte cells
CN116315053A (en)Composite solid electrolyte and preparation method and application thereof
JPH0317348B2 (en)
TakahashiSolid copper (I) ion conductors
JPH0430151B2 (en)
JPS5861573A (en)Solid electrolyte cell and its production method
JPH11149820A (en)Lithium ion conductive solid electrolyte and electrochemical element
PeledLithium Single-Ion-Conductor Film.

[8]ページ先頭

©2009-2025 Movatter.jp