【発明の詳細な説明】[発明の技術分野]この発明は3次元位置検出装置に係り、特にコンピュー
タへの3次元データ入力に好適な3次元位置検出vig
!Lに関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a three-dimensional position detection device, and in particular to a three-dimensional position detection device suitable for inputting three-dimensional data into a computer.
! Regarding L.
[発明の背景とその問題点]従来コンピュータに3次元データを人力する際には、例
えばX+ y座標を与えるプロッタブレット上で行い、
3次座標を特定していた。このような人力法は手続が煩
雑であるばかりか、所望位置への位置設定は、容易でな
かった。[Background of the invention and its problems] Conventionally, when three-dimensional data is manually input to a computer, it is done on a plotter that gives, for example, X+y coordinates.
The tertiary coordinates were specified. Not only does this manual method require complicated procedures, but it is also difficult to set the desired location.
[発明の目的]この発明はこのような従来の問題点を解消すべく創案さ
れたもので、3次元座標を容易に特定し得る3次元位置
検出装置を提供することを目的とする。[Object of the Invention] The present invention was devised to solve these conventional problems, and an object of the present invention is to provide a three-dimensional position detection device that can easily specify three-dimensional coordinates.
[発明の概要]この発明に係る3次元位置検出装置は、交流磁界を発生
する複数の基準コイルを用い、可動コイルによりこれら
の磁界を検出するものであり、各基準コイルの交流磁界
の周波数を異なるものとし、可動コイルで検出した磁界
の弁別を可能とし、また検出された各磁界の強さを求め
ることにより、可動コイルの各基準コイルからの距離を
求め、これに基づいて可動コイルの3次元位置を特定す
るものである。[Summary of the Invention] A three-dimensional position detection device according to the present invention uses a plurality of reference coils that generate alternating magnetic fields, and detects these magnetic fields with a moving coil, and detects the frequency of the alternating magnetic field of each reference coil. By determining the strength of each detected magnetic field, the distance of the moving coil from each reference coil is determined, and based on this, the distance of the moving coil from each reference coil is determined. It specifies the dimensional position.
[発明の実施ηす]次にこの発明に係る3次元位置検出装置の一実施例を図
面に基づいて説明する。[Implementation of the Invention] Next, an embodiment of a three-dimensional position detection device according to the present invention will be described based on the drawings.
第1図において、3次元位置検出装置は3ケの基準コイ
ル1,2.3が内蔵されたタブレット4を備え、このタ
ブレット4にはり一ド線5を介してカーソル6が接続さ
れている。In FIG. 1, the three-dimensional position detection device includes a tablet 4 in which three reference coils 1, 2.3 are built-in, and a cursor 6 is connected to the tablet 4 via a lead wire 5.
カーソル6内にはコイル7が内蔵され、カーソル6がタ
ブレット4に対して自由に動き得るので、コイル7は基
準コイル1,2.3に対して可動となっている。さらに
タブレット4にはコンピュータ8が、接続されている。A coil 7 is built into the cursor 6, and since the cursor 6 can move freely relative to the tablet 4, the coil 7 is movable relative to the reference coils 1, 2.3. Further, a computer 8 is connected to the tablet 4.
基準コイル1,2.3にはそれぞれ異なる周波数の励磁
電圧が印加され、第2図(a)(1))、(C)に示す
ように、各基準コイル1.2.3は異なる周波数の磁界
を発生している。Excitation voltages of different frequencies are applied to the reference coils 1, 2.3, respectively, and as shown in FIG. Generates a magnetic field.
再び第1図に基づいて説明すると、カーソル6をタブレ
ッ!・4に対して移動すると、各基準コイル1,2.3
からカーソル6までの距離が変化し、各基準コイルによ
ってコイルに誘起される電流のレベルは変化する。この
電流は基準コイル1.2.3それぞれの励磁電流の周波
数と等しい周波数であり、コイル7の誘導電流または誘
導電圧を周波数分析すれば、各基準コイル1.2.3か
らカーソル6まての距離を求め得る。To explain again based on Figure 1, move the cursor 6 to the tablet!・When moving relative to 4, each reference coil 1, 2.3
The distance from to the cursor 6 changes, and the level of current induced in the coil by each reference coil changes. This current has a frequency equal to the frequency of the excitation current of each of the reference coils 1.2.3, and if the induced current or induced voltage of the coil 7 is frequency-analyzed, the frequency from each reference coil 1.2.3 to the cursor 6 can be found. You can find the distance.
第3図は同実施例のブロック図を示すものであり、コイ
ル7が並列なフィルタ9,10゜11に接続されている
ことが分る。フィルタ9.10.11は各基準コイル1
.2.3の周波数に等しい周波数成分をそれぞれ抽出し
抽出した成分はそれぞれA/D変換器】2゜13.14
でデジタル化される。デジタル化された各成分はそれぞ
れラッチ15.IO。FIG. 3 shows a block diagram of the same embodiment, and it can be seen that the coil 7 is connected to filters 9, 10.degree. 11 in parallel. Filters 9.10.11 each reference coil 1
.. 2. Extract frequency components equal to the frequency of 3, and convert the extracted components to A/D converters]2゜13.14
will be digitized. Each digitized component is latched 15. I.O.
17に保持された後にマルチプレクサ18で採込まれて
コンピュータ19に入力される。After being held at 17, it is taken in by multiplexer 18 and input to computer 19.
コンピュータ19は、採込まれた各周波数成分に基づい
て各基準コイルまでの距離を算出する。The computer 19 calculates the distance to each reference coil based on each frequency component taken.
ここで、例λば第4図に示すように、タブレット表面で
、左下の基準コイル3を原点とした座標を採り、コイル
1,2の座標を(X。Here, for example, as shown in FIG. 4, take the coordinates on the tablet surface with the lower left reference coil 3 as the origin, and set the coordinates of the coils 1 and 2 as (X).
Y)、(2X、0)とし、かつ、タブレット表面から上
方に向かってZ座標を採る。また各基準コイル1,2.
3からコイル7までの距離をrl、r2.r3とし、コ
イル7の座標を、(x、5’+ z)とする。このとき
、となりが得られる。Y), (2X, 0), and take the Z coordinate upward from the tablet surface. In addition, each reference coil 1, 2.
3 to the coil 7 as rl, r2. r3, and the coordinates of the coil 7 are (x, 5'+z). At this time, a neighbor is obtained.
このように、この実施例では3次元位置を極めて容易に
検出し得る。In this manner, the three-dimensional position can be detected very easily in this embodiment.
なお、基準コイル1,2.3の配置は非直線的であれば
よく、種々の態様を選択でき、また3個以上の基準コイ
ルを設けることも可能である。Note that the arrangement of the reference coils 1, 2.3 may be non-linear, and various arrangements can be selected, and it is also possible to provide three or more reference coils.
〔発明の効果]検出装置は、交流磁Wを発生する複数の基準コイルを用
い、可動コイルによりこれらの磁界を検出するものであ
り、各基準コイルの交流磁界の周波数を異なるものとし
、可動コイルで検出した磁界の弁別を可能とし、また検
出された各磁界の強さを求めることにより、可動コイル
の各基準コイルからの距離を求めこれに基ずいて可動コ
イルの3次元位置を特定するので、3次元座標を容易に
特定し得るという優れた効果を有する。[Effects of the Invention] The detection device uses a plurality of reference coils that generate alternating current magnetic fields W, and detects these magnetic fields with a moving coil.The frequency of the alternating magnetic field of each reference coil is made different, and the moving coil By determining the strength of each detected magnetic field, the distance of the moving coil from each reference coil can be determined, and based on this, the three-dimensional position of the moving coil can be specified. , has the excellent effect of easily specifying three-dimensional coordinates.
第一図はこの発明に係る3次元位置検出装置の一実施例
を示す斜視図、第2図(a)。(b)、(C)は同実施例における基準コイルの磁界を
示すグラフ、第3図は同実施例のブロック図、第4図は
同実施例における基準コイルの配置を示す平面図である
。1.2,3.、、基準コイル、4.、、タブレット、5
03.リード線、−6,、、カーソル、709.コイル
、800.コンピュータ、9,10,11.、、フィル
タ、12゜17、、、ラッチ、18.、、マルチプレク
サ、19.、、コンピュータ。才 2 図ヤ4図FIG. 1 is a perspective view showing an embodiment of the three-dimensional position detection device according to the present invention, and FIG. (b) and (C) are graphs showing the magnetic field of the reference coil in the same embodiment, FIG. 3 is a block diagram of the same embodiment, and FIG. 4 is a plan view showing the arrangement of the reference coil in the same embodiment. 1.2,3. , , reference coil, 4. ,,tablet,5
03. Lead line, -6,, cursor, 709. Coil, 800. Computer, 9, 10, 11. ,,filter,12°17,,,latch,18. , ,Multiplexer, 19. ,,Computer. Sai 2 Figure Ya 4 Figure
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60172960AJPS6232304A (en) | 1985-08-06 | 1985-08-06 | Three-dimensional position detecting device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60172960AJPS6232304A (en) | 1985-08-06 | 1985-08-06 | Three-dimensional position detecting device |
| Publication Number | Publication Date |
|---|---|
| JPS6232304Atrue JPS6232304A (en) | 1987-02-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60172960APendingJPS6232304A (en) | 1985-08-06 | 1985-08-06 | Three-dimensional position detecting device |
| Country | Link |
|---|---|
| JP (1) | JPS6232304A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003520062A (en)* | 1999-05-18 | 2003-07-02 | メディガイド リミテッド | Medical positioning system |
| JP2003225226A (en)* | 2001-12-21 | 2003-08-12 | Biosense Inc | Implantable and insertable passive tag |
| JP2003299634A (en)* | 2001-12-21 | 2003-10-21 | Biosense Inc | Wireless position sensor |
| JP2004213620A (en)* | 2002-12-18 | 2004-07-29 | Wacom Co Ltd | Three-dimensional information detecting system and device, and input device for three-dimensional information detection |
| JP2007278891A (en)* | 2006-04-07 | 2007-10-25 | Tamagawa Seiki Co Ltd | Resolver signal multiplex transmission method and apparatus |
| US8332013B2 (en) | 1999-05-18 | 2012-12-11 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
| US9833167B2 (en) | 1999-05-18 | 2017-12-05 | Mediguide Ltd. | Method and system for superimposing virtual anatomical landmarks on an image |
| US9956049B2 (en) | 1999-05-18 | 2018-05-01 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9956049B2 (en) | 1999-05-18 | 2018-05-01 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
| JP5005128B2 (en)* | 1999-05-18 | 2012-08-22 | メディガイド リミテッド | Medical positioning system |
| US8332013B2 (en) | 1999-05-18 | 2012-12-11 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
| US9833167B2 (en) | 1999-05-18 | 2017-12-05 | Mediguide Ltd. | Method and system for superimposing virtual anatomical landmarks on an image |
| JP2003520062A (en)* | 1999-05-18 | 2003-07-02 | メディガイド リミテッド | Medical positioning system |
| US10251712B2 (en) | 1999-05-18 | 2019-04-09 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
| US10856769B2 (en) | 1999-05-18 | 2020-12-08 | St. Jude Medical International Holding S.àr.l. | Method and system for superimposing virtual anatomical landmarks on an image |
| US10363017B2 (en) | 2001-09-07 | 2019-07-30 | St. Jude Medical International Holding S.À R.L. | System and method for delivering a stent to a selected position within a lumen |
| JP2003225226A (en)* | 2001-12-21 | 2003-08-12 | Biosense Inc | Implantable and insertable passive tag |
| JP2003299634A (en)* | 2001-12-21 | 2003-10-21 | Biosense Inc | Wireless position sensor |
| US7729742B2 (en) | 2001-12-21 | 2010-06-01 | Biosense, Inc. | Wireless position sensor |
| JP2004213620A (en)* | 2002-12-18 | 2004-07-29 | Wacom Co Ltd | Three-dimensional information detecting system and device, and input device for three-dimensional information detection |
| JP2007278891A (en)* | 2006-04-07 | 2007-10-25 | Tamagawa Seiki Co Ltd | Resolver signal multiplex transmission method and apparatus |
| Publication | Publication Date | Title |
|---|---|---|
| EP0607694B1 (en) | Cordless digitizer | |
| US4582955A (en) | Digitizing tablet system including a tablet having a grid structure made of two orthogonal sets of parallel uniformly sized and spaced U shaped loops of conductive material | |
| US4054746A (en) | Electronic coordinate position digitizing system | |
| Viana et al. | Moving least square reproducing kernel method for electromagnetic field computation | |
| WO2000037955A2 (en) | Magnetic resonance scanner with electromagnetic position and orientation tracking device | |
| Novak et al. | Difficulty in identification of Preisach hysteresis model weighting function using first order reversal curves method in soft magnetic materials | |
| Darrer et al. | Toward an automated setup for magnetic induction tomography | |
| JPS6232304A (en) | Three-dimensional position detecting device | |
| Hashizume et al. | Numerical and experimental analysis of eddy current testing for a tube with cracks | |
| JP4291454B2 (en) | Posture position measuring apparatus and measuring method | |
| RU2360268C1 (en) | Eddy current device | |
| Trujillo et al. | Analysis of the fluxgate response through a simple spice model | |
| JP2002277500A (en) | Electromagnetic source search method | |
| JP2016057225A (en) | Eddy current flaw detection sensor device | |
| CN114296144B (en) | Controllable Source Electromagnetic One-Dimensional Forward Modeling Method Considering the Effect of Three-Phase AC High Voltage Transmission Lines | |
| Wang et al. | Method for Measuring the Fractional Derivative of a Two-Dimensional Magnetic Field Based on Taylor–Riemann Series | |
| Ancelle et al. | Numerical solution of 3D magnetic field problems using boundary integral equations | |
| Zhang et al. | A boundary meshless method for transient eddy current problems | |
| RU2151405C1 (en) | Device determining position of object | |
| Ahmadi et al. | Design and construction of new small gradient coils for mouse MRI | |
| KR20220106132A (en) | External field response distribution visualization device and external field response distribution visualization method | |
| Peng et al. | A comparison of finite element and boundary element formulations for three-dimensional magnetostatic problems | |
| JP2984108B2 (en) | DC superposition inductance calculator | |
| Becker | Intmag: A program for the calculation of magnetic fields by integration | |
| JPH0447319A (en) | Height information calculating system in coordinate reading device |