【発明の詳細な説明】&発明の詳細な説明〔産業上の利用分野〕本発明は繊維強化金属(F RM )などの複合材料に
用いる繊維体とその製造方法に関するものである。[Detailed Description of the Invention] &Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fibrous body used in composite materials such as fiber reinforced metal (F RM ) and a method for manufacturing the same.
近年、各種機械部品や構造材などにおいて、種々の複合
材料例えば金属を繊維や該繊維で作製された織物で強化
したFRMなどが使用されている。FRMなどに用いら
れる強化繊維はマトリックス金属、特にアルミニウム合
金やマグネシウム合金などは濡れにくい反面、一旦濡n
ると反応して繊維が劣化する。このため、一般には強化
繊維に表面処理が行われる。処理法としては例えばCV
D法、めっき法が挙げらnる。これらの方法では強化繊
維の表面に金属やセラミックスを均一に膜状に被覆する
が、強化繊維との間の熱膨張係数の差による剥離が生じ
て表面処理の効果が減少したシ、又、被膜を厚くすると
強化繊維のしなやかさが失われたシ、硬く脆くなるため
繊維が損傷し易くなるなど問題が多い。BACKGROUND ART In recent years, various composite materials, such as FRMs made of metal reinforced with fibers or fabrics made from the fibers, have been used in various mechanical parts, structural materials, and the like. The reinforcing fibers used in FRM etc. are difficult to get wet with matrix metals, especially aluminum alloys and magnesium alloys, but once they get wet,
The fibers will react and deteriorate. For this reason, reinforcing fibers are generally subjected to surface treatment. For example, CV
Examples include D method and plating method. In these methods, the surface of the reinforcing fibers is uniformly coated with metal or ceramics in the form of a film, but peeling occurs due to the difference in thermal expansion coefficient between the reinforcing fibers and the surface treatment effect is reduced, and the coating If the reinforcing fibers are made thicker, there are many problems such as the reinforcing fibers lose their flexibility and become hard and brittle, making the fibers more likely to be damaged.
更に、繊維の一本々々に表面処理を行うためには複雑な
装置を必要とし、コスト的にも不利である。又、こ几ら
の強化繊維を使用して高圧凝固鋳造法によってFRMt
−製造すると、繊維が片寄シ繊維の分布が粗な部分と密
な部分が生じ易い。このため、FRM中の繊維体積率(
Vf)の制御が困難であシ、特にVfが小さい場合に強
化繊維が均一に分散したFRMは得難く、FRM本来の
特色である設計の自由度が損われていた。Furthermore, in order to perform surface treatment on each fiber, a complicated device is required, which is disadvantageous in terms of cost. In addition, FRMt was made by high-pressure coagulation casting method using the reinforcing fibers of this company.
- During manufacturing, the fibers tend to be unevenly distributed, and the fibers tend to have coarse distribution in some areas and dense areas in others. For this reason, the fiber volume fraction in FRM (
Vf) is difficult to control, and especially when Vf is small, it is difficult to obtain an FRM in which reinforcing fibers are uniformly dispersed, and the degree of freedom in design, which is an original feature of FRM, is impaired.
従来より複合材料に用いる強化繊維として連続繊維又は
長繊維と短繊維又はウィスカとを組合せて使用する方法
等が提案されている。例えば、FRM部材の内側には長
繊維を使用し、外側には短繊維を使用する方法、又は長
繊維と短繊維とを混在せしめて加圧成形することにより
FRM用のプリプレグ(前駆体)を製造する方法がある
。Conventionally, methods have been proposed in which continuous fibers or long fibers and short fibers or whiskers are used in combination as reinforcing fibers for composite materials. For example, a prepreg (precursor) for FRM can be produced by using long fibers on the inside of the FRM member and short fibers on the outside, or by press-molding a mixture of long fibers and short fibers. There is a way to manufacture it.
しかしながら、前記従来例においても例えば長繊維と短
繊維とを部材の内側で使い分ける方法は製造工程が煩雑
となる。また強度も充分でない。さらにプリプレグ製造
時に長繊維と短繊維とを混在せしめる方法は、長繊維束
中の表面に短繊維を付着させることはできるが、内部の
長繊維の一本々々の表面に均一に付着させることは困難
であシ、繊維体の品質が不均一となる。However, even in the conventional example, the method of using long fibers and short fibers separately inside the member, for example, requires a complicated manufacturing process. Also, the strength is not sufficient. Furthermore, the method of mixing long fibers and short fibers during prepreg production allows the short fibers to be attached to the surface of the long fiber bundle, but it is not possible to uniformly attach the short fibers to the surface of each long fiber inside. This is difficult and results in uneven quality of the fibers.
本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは、FRM等に使用
した場合に金属マトリックスとの濡n性を改善し、複合
材中に連続繊維を均一に分散させて繊維体積率を制御で
き、又、互いに特性の異なる連続繊維を組合せることに
ょシ例えば連続繊維とマトリックス間の熱応カ睡減等の
複合材の機械特性を向上きせることができる複合材料用
繊維体とその製造方法を提供することにある。The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to improve the wettability with a metal matrix when used in FRM etc., and to incorporate continuous fibers into composite materials. It is possible to control the fiber volume fraction by uniformly dispersing the fibers, and by combining continuous fibers with different properties, it is possible to improve the mechanical properties of the composite material, such as reducing heat response between the continuous fibers and the matrix. An object of the present invention is to provide a fiber body for a composite material that can be used as a composite material and a method for manufacturing the same.
すなわち本発明の複合材料用繊維体は、炭化ケイ素、窒
化ケイ素、アルミナなどのセラミックス、炭素、金属等
の耐熱性物質より選択された少なくとも1種よりなる繊
維で作製された織物の各々の繊維の表面に、炭化ケイ素
、9化ケイ素、アルミナなどのセラミックス、炭素、金
属等の耐熱性物質より選択された少なくとも1種よりな
る短繊維、ウィスカ又は粉末を付着式せた織物よりなる
ことを特徴とする。That is, the fiber body for a composite material of the present invention is a fabric made of fibers made of at least one type of ceramics such as silicon carbide, silicon nitride, and alumina, and heat-resistant substances such as carbon and metals. It is characterized by being made of a woven fabric having short fibers, whiskers or powder made of at least one selected from heat-resistant substances such as ceramics such as silicon carbide, silicon 9ide and alumina, carbon and metals adhered to the surface thereof. do.
織物用繊維としてはセラミックス例えば炭化ケイ素、窒
化ケイ素、窒化ホウ素、窒化アルミニウム、アルミナ、
シリカ、又は耐熱性非金属元素例えば炭素、ホウ素、あ
るいは耐熱性金属若しくは合金例えば鋼、ステンレス鋼
、タングステン等の材料よりなる繊維を単独又は組合せ
て用いることができる。繊維の太てや断面形状等の性状
は用途に応じて選択する。Examples of textile fibers include ceramics such as silicon carbide, silicon nitride, boron nitride, aluminum nitride, alumina,
Fibers made of silica, heat-resistant non-metallic elements such as carbon, boron, or heat-resistant metals or alloys such as steel, stainless steel, tungsten, etc. can be used alone or in combination. Properties such as fiber thickness and cross-sectional shape are selected depending on the application.
短繊維、ウィスカ又は粉末としては前記織物に使用した
ものと同一の材料を用いて製造したものを用いることが
できる。短繊維、ウィスカ又は粉末はいずnか1種を用
いてもよいし、2種以上を組合せて用いてもよい。短繊
維やウィスカの長で、太さ及び断面形状及び粉末の平均
粒径等の性状は織物用繊維との組合せや要求特性を考慮
して選択するとよい。The short fibers, whiskers, or powder may be those manufactured using the same materials as those used for the fabric. Any one type of short fibers, whiskers, or powder may be used, or two or more types may be used in combination. Properties such as the length, thickness and cross-sectional shape of the short fibers and whiskers, and the average particle size of the powder are preferably selected in consideration of the combination with textile fibers and the required properties.
織物の各繊維に付着させる短繊維、ウィスカ又は粉末の
量は両者の性状や製造した繊維体の用途などによっても
異なるが、FRMに用いる場合には短繊維、ウィスカ又
は粉末の織物に対する体積率は0.5チル500チ程度
とするのが好ましい、本発明の繊維体が使用できるマド1ツクスとしてはアル
ミニウム、マグネシウムなどの金属、あるいは各糧セラ
ミック、プラスチック等が挙げらnる。The amount of short fibers, whiskers, or powder attached to each fiber of the fabric varies depending on the properties of the two and the purpose of the manufactured fiber body, but when used for FRM, the volume ratio of the short fibers, whiskers, or powder to the fabric is It is preferable to use about 0.5 chill and 500 inch. Examples of materials that can be used with the fibrous body of the present invention include metals such as aluminum and magnesium, various ceramics, and plastics.
本発明の繊維体を製造する方法は特に限定さ1ないが例
えば電着法、流動床を用いる方法、吹付は法、懸濁液浸
漬法が挙げらnる。簡便さ及び適用範囲の広でなどの点
で懸濁液浸漬法が好ましい。懸濁液浸漬法の一例として
は、例えばボビンなどに巻き付けた織物又は適当数の該
織物を重ねた織物を巻戻して、短繊維、ウィスカ又は粉
末のうちの少なくとも1種以上を懸濁した液体中に浸漬
し、該織物の各々の繊維の表面に該短繊維、ウィスカ又
は粉末を付着させて再びボビンに巻取る方法が挙げらn
る。The method for producing the fibrous body of the present invention is not particularly limited, but examples thereof include an electrodeposition method, a method using a fluidized bed, a spraying method, and a suspension dipping method. The suspension immersion method is preferred in terms of simplicity and wide range of application. An example of a suspension dipping method is to unwind a fabric wound around a bobbin or a suitable number of stacked fabrics, and then soak in a liquid in which at least one of short fibers, whiskers, or powder is suspended. The short fibers, whiskers or powder are immersed in the woven fabric, the short fibers, whiskers or powder are attached to the surface of each fiber of the woven fabric, and the woven fabric is then wound onto a bobbin again.
Ru.
織物としては平織、繻子織、綾織等の平面織物の他に三
軸織、袋織、三次元織物等の複雑織物などが挙げられる
。これらの織物の製造に用いる織機は通常使用されてい
るものを用いることができる。前°記各種織物は単独で
用いても、組合せて用いてもよい。Examples of woven fabrics include plane woven fabrics such as plain weave, satin weave, and twill weave, as well as complex woven fabrics such as triaxial weave, bag weave, and three-dimensional fabric. A commonly used loom can be used to manufacture these textiles. The aforementioned various textiles may be used alone or in combination.
織シ方の形態は特に限定されないが荒い織物の方が各繊
維1本々々に均一に短繊維などを付着させることができ
てよい。又、密な織物の場合には浸漬する液体には超音
波により振動を与える と各繊維に均一に繊維束内部の
繊維まで付着を行うことができる。超音波は液体を入n
た容器の外側に設けた超音波付加器によって与えてもよ
いし、又は適当数の超音波振動子例えばセラミック振動
子を液体中に適切に配置して与えてもよい。超音波の照
射パターンは連続的であってもパルス状であってもよい
。その強度や振動数及び照射時間は慮シ方の種類や織物
に付着させる短繊維、ウィスカ又は粉末の種類、あるい
は前記付着物の液中濃度、7織物の浸漬時間などの処理
条件によって選択するが、例えば振動数は10億h〜2
000KHz程度が使用し易い。The form of the weave is not particularly limited, but a rougher woven fabric may allow the short fibers to be evenly attached to each fiber. In addition, in the case of a dense fabric, if the liquid to be immersed is vibrated by ultrasonic waves, each fiber can be uniformly adhered to the fibers inside the fiber bundle. Ultrasonic waves enter liquid
It may be provided by an ultrasonic applicator placed outside the container, or by a suitable number of ultrasonic transducers, such as ceramic transducers, suitably placed within the liquid. The ultrasonic irradiation pattern may be continuous or pulsed. The intensity, vibration frequency, and irradiation time are selected depending on the type of fiber, whisker, or powder to be attached to the fabric, the concentration of the adhered substances in the liquid, the soaking time of the fabric, and other processing conditions. , for example, the frequency is 1 billion h~2
000 KHz is easy to use.
付着させるべき物を懸濁させる処理液は水でもよいが、
有機溶剤例えばエタノール、メタノール、アセトン特に
エタノールが好ましい。とシわけ、繊維の表面にサイジ
ング剤が塗布されている場合には、サイジング剤の溶解
により短繊維などの付着が容易となシ、又、揮発性が水
に比べて高いので乾燥が早く、生産性が向上する利点が
ある。又、前記有機溶剤と水との混合物を使用してもよ
い。The treatment liquid for suspending the object to be attached may be water, but
Organic solvents such as ethanol, methanol, acetone and especially ethanol are preferred. In addition, when a sizing agent is applied to the surface of the fibers, the sizing agent dissolves, making it easier for short fibers to adhere to the fibers, and because the sizing agent is more volatile than water, it dries quickly. This has the advantage of improving productivity. Alternatively, a mixture of the organic solvent and water may be used.
処理液中の付着物濃度は特に限定さnないが、あまり小
さいと繊維上に均一な付着がみられず効果が少なくなシ
、又逆に大きすぎると付着量が必要以上に多くなるため
、例えば付着物として炭化ケイ素ウィスカを用い、繊維
数500本/ヤーンの連続繊維束を用いた目付量300
f/rrlの平織物を処理する場合、炭化ケイ素ウィ
スカ濃度はo、sg/l〜sog7を程度が好ましい。The concentration of deposits in the treatment solution is not particularly limited, but if it is too small, uniform deposition will not be seen on the fibers and the effect will be low, and if it is too high, the amount of deposits will be larger than necessary. For example, using silicon carbide whiskers as the deposit and using a continuous fiber bundle of 500 fibers/yarn, the fabric weight is 300.
When treating f/rrl plain woven fabric, the silicon carbide whisker concentration is preferably in the range of o, sg/l to sog7.
又、処理液中に浸漬する場合には浸漬前に繊維束にブロ
ワを当てて開繊することが望ましい。In addition, when immersing the fiber bundle in a treatment liquid, it is desirable to spread the fiber bundle by applying a blower to the fiber bundle before immersion.
繊維数や処理液への超音波振動の有無によってブロワの
吐出流量を調整するとよい。繊維数が少ないか、又は処
理液に充分に超音波振動を付与する場合にはプロワはか
ならずしも必要ではない。The discharge flow rate of the blower may be adjusted depending on the number of fibers and whether or not ultrasonic vibration is applied to the processing liquid. A blower is not necessarily necessary when the number of fibers is small or when sufficient ultrasonic vibration is applied to the processing liquid.
−処理液を入れた処理槽の数は1基でもよいが、複数の
付着物を用いる場合などには、各々の付着物を懸濁した
複数の処理槽を用いてもよい。- The number of processing tanks containing the processing liquid may be one, but in the case where a plurality of deposits are used, a plurality of processing tanks in which the respective deposits are suspended may be used.
浸漬時間の調整は可動ロールなどの通常の方法により行
うことができる。又、必要ならば処理し、た織物をボビ
ンに巻取る前に乾燥炉や赤外線乾燥機、熱風乾燥機等を
用いて乾燥きせる。The immersion time can be adjusted by a conventional method such as using a movable roll. If necessary, the fabric is treated and dried using a drying oven, an infrared dryer, a hot air dryer, etc. before winding it onto a bobbin.
本発明に用いる織物やその繊維の表面に付着させる短繊
維、ウィスカ又は粉末は市販品をそのまま使用すること
ができる。Commercially available products can be used as they are as short fibers, whiskers, or powders to be attached to the surface of the textiles used in the present invention and the fibers thereof.
以下の実施例において本発明を更に詳細に説明する。な
お、本発明は下記実施例に限定ざするものではない。The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.
実施例1:第1図は本発明に用いる製造装置の一例を示す。炭化ケ
イ素粒子(平均直径約0.28μm)50gをエチルア
ルコール10000Cの入った処理槽1中に投入後、超
音波付加器2により超音波振動を与えて懸濁させ、処理
液3を調整した。炭化ケイ素繊維束(線維直径約15μ
鴇、繊維数500本、サイジング削材)からなる平織物
である被処理織物4をボビン5から巻戻し、浸漬時間が
40秒となるよう可動ローラ6及び7によって調節して
処理液3中に浸漬しながら通し、次いで圧力ローラ8及
び9によって押圧した後再びボビン10に巻取シ、室温
・大気中で乾燥させた。Example 1: FIG. 1 shows an example of a manufacturing apparatus used in the present invention. After putting 50 g of silicon carbide particles (average diameter about 0.28 μm) into a treatment tank 1 containing 10,000 C of ethyl alcohol, ultrasonic vibration was applied using an ultrasonic adder 2 to suspend the particles, thereby preparing a treatment liquid 3. Silicon carbide fiber bundle (fiber diameter approximately 15μ
The fabric to be treated 4, which is a plain weave fabric consisting of 100% fibers, 500 fibers, and sizing material), is unwound from the bobbin 5, adjusted by movable rollers 6 and 7 so that the immersion time is 40 seconds, and immersed in the treatment liquid 3. The material was passed through while being immersed, then pressed by pressure rollers 8 and 9, wound up again on a bobbin 10, and dried at room temperature in the atmosphere.
図中、11はブロワ、12は乾燥炉を示し、必要に応じ
て使用する。In the figure, 11 is a blower and 12 is a drying oven, which are used as necessary.
処理前黒色であった織物は処理後茶褐色を帯び、電子原
微*(SEM)観察の結果、第2図に示すように粒子1
3が繊維14上に付着しているのが認めらnた。又、処
理後秤量の結果、平織物1−当り40gの粒子が付着し
ているのが判った。The fabric, which was black before treatment, turned brown after treatment, and as a result of electron microscopy* (SEM) observation, particles 1 were observed as shown in Figure 2.
3 was observed to be attached to the fibers 14. In addition, as a result of weighing after treatment, it was found that 40 g of particles were attached per 1 inch of plain fabric.
なお、本実施例で用いた平織物は幅1倶の連続反物であ
る。The plain woven fabric used in this example is a continuous fabric with a width of 1 mm.
炭化ケイ素繊維を用−た平織物を体積率で35チ含むア
ルミニウム複合材を作成した場合、縦糸方向の引張シ強
さは付着処理を野なわない物は35t/■でらったが、
炭化ケイ素粒子を付着させる処理を行なった同一織物で
同様にFRMを炸裂した場合、平織物の体積率が30チ
で縦糸方向の引張シ強さは45に4/lK2となシ大幅
に改善された。When an aluminum composite material containing a plain woven fabric made of silicon carbide fibers with a volume ratio of 35 cm was created, the tensile strength in the warp direction was 35 t/cm without adhesion treatment.
When FRM was similarly exploded on the same fabric that had been treated with silicon carbide particles, the tensile strength in the warp direction was 45/4/lK2 at a plain fabric volume ratio of 30 inches, which was significantly improved. Ta.
実施例2:実施例1における炭化ケイ素粒子を炭化ケイ素ウィスカ
(平均直径約0.1μ惟、平均長さ約30μ鴨)に替え
九九はすべて実施例1と同一の条件で処理した。Example 2: All multiplication tables were treated under the same conditions as in Example 1 except that the silicon carbide particles in Example 1 were replaced with silicon carbide whiskers (average diameter of about 0.1 μm, average length of about 30 μm).
処理前黒色であった織物は処理後うぐいす色を帯び、8
EM観察の結果第3図に示すようにウィスカ15が繊維
14上に付着しているのが認めらルた。又、処理後秤量
の結果、平織物1ff!s当り5gのウィスカが付着し
ているのが判った。The fabric, which was black before treatment, took on a dark gray color after treatment, and
As a result of EM observation, whiskers 15 were observed to be attached to the fibers 14, as shown in FIG. Also, as a result of weighing after processing, the plain woven fabric was 1ff! It was found that 5g of whiskers were attached per s.
上述のように本発明の複合材料用繊維体は、繊維の各々
の表面に短繊維、ウィスカ又は粉末のうちの少なくとも
1種を付着させた織物よ)なるものであるため、複合材
中に各々の*!を均一に分散させることができ、繊維体
積率を非常に広範囲に制御することが可能であシ、更に
繊維と付着物の種々の組合せが可能であるため広範囲に
わたる要求特性を満たすことができる。As mentioned above, the fibrous body for a composite material of the present invention is a woven fabric in which at least one of short fibers, whiskers, and powder is adhered to the surface of each fiber. of*! can be uniformly dispersed, the fiber volume fraction can be controlled over a very wide range, and furthermore, various combinations of fibers and deposits are possible, so a wide range of required properties can be met.
又、繊維同士の接触が減少し、且つ複合材を形成した場
合その組成が均一となるため圧縮剪断強さなどの機械特
性も改善された。In addition, mechanical properties such as compressive shear strength were also improved because the contact between fibers was reduced and when a composite material was formed, the composition became uniform.
又、本発明の製造方法は前記の付着させるべ効率が高い
。更に処理液に超音波を付加したり、処理液として有機
溶剤を使用するなどの各種変法が可能であシ、これによ
り付着量を制御できるため同−設備で各種の複合材用繊
維体を製造することができる。Further, the manufacturing method of the present invention has a high efficiency of the above-mentioned deposition. Furthermore, various modifications such as adding ultrasonic waves to the treatment liquid or using organic solvents as the treatment liquid are possible, and as this allows the amount of adhesion to be controlled, the same equipment can be used to process fibers for various composite materials. can be manufactured.
第1図は本発明に用いる製造装置の一例の概略図、第2図及び第3図は本発明の繊維体における織物の表面
の繊維の形状を示す電子顕微鏡写真である。図中、1 ・・・・・・処理槽2 ・・・・・・超音波付加器3 ・・・・・・処理液4 ・・・・・・被処理織物s、io−・・ボビン6、)7・・・可動ローラ8.9 ・・・圧力ローラ11・・・・・・プロワ12・・・・・・乾燥炉13・・・・・・粒子14・・・・・・繊維15・・・・・・ウィスカ特許出願人 株式会社 豊田中央研究所代理人 弁理士
嬰 優 美(ほか2名)■Int、CI、’
識別記号 庁内整理番号@発明者 石川
敏弘 宇部市炸tJ望所内[相]発明者 波谷 昌樹 宇部重力pJ州所内ゴFIG. 1 is a schematic diagram of an example of a manufacturing apparatus used in the present invention, and FIGS. 2 and 3 are electron micrographs showing the shape of fibers on the surface of the woven fabric in the fibrous body of the present invention. In the figure, 1... Processing tank 2... Ultrasonic adder 3... Processing liquid 4... Textile to be treated s, io-... Bobbin 6 ,)7...Movable roller 8.9...Pressure roller 11...Prower 12...Drying oven 13...Particle 14...Fiber 15 ...Whisker patent applicant Toyota Central Research Institute Co., Ltd. Agent Patent attorney Yumi Ying (and 2 others) ■Int, CI,'
Identification symbol Internal reference number @ Inventor Ishikawa
Toshihiro Ube City PJ State Inventor Masaki Hatani Ube Gravity pJ State Inventor
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61143876AJPS62299569A (en) | 1986-06-19 | 1986-06-19 | Fiber body for composite material and its production |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61143876AJPS62299569A (en) | 1986-06-19 | 1986-06-19 | Fiber body for composite material and its production |
| Publication Number | Publication Date |
|---|---|
| JPS62299569Atrue JPS62299569A (en) | 1987-12-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61143876APendingJPS62299569A (en) | 1986-06-19 | 1986-06-19 | Fiber body for composite material and its production |
| Country | Link |
|---|---|
| JP (1) | JPS62299569A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0314650A (en)* | 1989-06-08 | 1991-01-23 | Kanebo Ltd | Alumina filament woven fabric with high purity |
| JP2007528451A (en)* | 2004-02-02 | 2007-10-11 | ナノシス・インク. | Porous substrates, articles, systems and compositions containing nanofibers and methods for their use and production |
| JP2016060969A (en)* | 2014-09-12 | 2016-04-25 | イビデン株式会社 | Carbon particle embedded inorganic fiber, method for producing carbon particle embedded inorganic fiber, carbon particle embedded inorganic fiber aggregate, and exhaust gas purification device |
| US10279341B2 (en) | 2004-02-02 | 2019-05-07 | Oned Material Llc | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
| JPWO2020203821A1 (en)* | 2019-03-29 | 2020-10-08 | ||
| WO2020203925A1 (en)* | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Method for manufacturing an opened carbon fiber bundle, and fiber reinforced composite material |
| JP2021143442A (en)* | 2020-03-12 | 2021-09-24 | 株式会社豊田中央研究所 | Composite body and method for producing composite body |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0314650A (en)* | 1989-06-08 | 1991-01-23 | Kanebo Ltd | Alumina filament woven fabric with high purity |
| JP2007528451A (en)* | 2004-02-02 | 2007-10-11 | ナノシス・インク. | Porous substrates, articles, systems and compositions containing nanofibers and methods for their use and production |
| JP2012187929A (en)* | 2004-02-02 | 2012-10-04 | Nanosys Inc | Substrates, and articles including silicon nanofibers |
| US10279341B2 (en) | 2004-02-02 | 2019-05-07 | Oned Material Llc | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
| JP2016060969A (en)* | 2014-09-12 | 2016-04-25 | イビデン株式会社 | Carbon particle embedded inorganic fiber, method for producing carbon particle embedded inorganic fiber, carbon particle embedded inorganic fiber aggregate, and exhaust gas purification device |
| JPWO2020203821A1 (en)* | 2019-03-29 | 2020-10-08 | ||
| WO2020203821A1 (en)* | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Open carbon fiber bundle, fiber-reinforced composite material, and method for manufacturing open carbon fiber bundle |
| WO2020203925A1 (en)* | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Method for manufacturing an opened carbon fiber bundle, and fiber reinforced composite material |
| JPWO2020203925A1 (en)* | 2019-03-29 | 2021-10-14 | 積水化学工業株式会社 | Manufacturing method of spread carbon fiber bundle and fiber reinforced composite material |
| JP2021143442A (en)* | 2020-03-12 | 2021-09-24 | 株式会社豊田中央研究所 | Composite body and method for producing composite body |
| Publication | Publication Date | Title |
|---|---|---|
| CA1285831C (en) | Fibrous material for composite materials, fiber- reinforced metal produced therefrom, and process for producing same | |
| US4961990A (en) | Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and process for producing same | |
| JPS5991054A (en) | Cloth coated with metal | |
| JPH0288475A (en) | Ceramic foam and its manufacturing method | |
| Sharma et al. | Comparative study of the effect of fiber surface treatments on the flexural and interlaminar shear strength of carbon fiber-reinforced composites | |
| KR20120101406A (en) | Cnt-infused metal fiber materials and process therefor | |
| US5690997A (en) | Catalytic carbon--carbon deposition process | |
| JPS62299569A (en) | Fiber body for composite material and its production | |
| CN102639771A (en) | CNT-infused ceramic fiber materials and process therefor | |
| US3953647A (en) | Graphite fiber reinforced metal matrix composite | |
| JPH0524266B2 (en) | ||
| JPH0257135B2 (en) | ||
| JPH07502965A (en) | Composite material manufacturing method | |
| JPS63265871A (en) | Inorganic fiber reinforced ceramic composite and its manufacturing method | |
| JPH01132876A (en) | Fiber body for composite material | |
| US20230295870A1 (en) | Method for making a conductive coating containing graphene on natural or synthetic leather, and natural or synthetic leather thus obtained | |
| US3775170A (en) | Plastic duplicate of cellulosic or proteinaceous material, article or object | |
| EP0613454B1 (en) | Method of manufacturing a composite material | |
| JPH0257648A (en) | fiber reinforced metal | |
| EP0097700A4 (en) | A method of preparing silicon carbide whisker sheet composites. | |
| JP7449043B2 (en) | Alumina-based continuous fiber for inorganic composite materials and its manufacturing method | |
| AU1150483A (en) | Silicon carbide whisker sheet composites | |
| JPS63277730A (en) | Fiber body for composite material and its production | |
| JPS63324A (en) | Fiber-reinforced plastic composite and its manufacturing method | |
| JPH086250B2 (en) | Hybrid fiber manufacturing method |