【発明の詳細な説明】3、発明の詳細な説明(産業上の利用分野)この発明は、不揮発性メモリ素子を使用した不揮発性カ
ウンタに関する。Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) This invention relates to a nonvolatile counter using a nonvolatile memory element.
(発明の概要)この発明は、クロックにより連続的に変化する例えばバ
イナリカウンタで順次カウントアツプあるいはカウント
ダウンされる様なデータを逐一、不揮発性メモリ(以下
EEPROMと略ず)に貯えるような場合、バイナリカ
ウンタの最下位ビットに割り当てられたEEPROMゼ
ル1,1、クロック入力ごとに必ずデータが書換わるこ
とになるのを、バイナリカウンタと[E P ROMの
ビット割り当てを定期的に変更することにより、寸ぺて
のEEPROMのセルに対し、データの変化回数が同じ
になるようにしたものである。(Summary of the Invention) This invention provides a method for storing data that changes continuously according to a clock, such as data that is sequentially counted up or down by a binary counter, in a non-volatile memory (hereinafter abbreviated as EEPROM). EEPROM cells 1 and 1 assigned to the least significant bit of the counter are always rewritten every time a clock is input. The number of data changes is made to be the same for all EEPROM cells.
(従来の技術)従来、第2図に示すように、バイナリカウンタの各bi
tに対応してE E P It OMがそのままfg
HAされている不揮発性カウンタが知られていた。(Prior Art) Conventionally, as shown in FIG.
Corresponding to t, E E P It OM is as it is fg
Nonvolatile counters that are HA are known.
(発明が解決しようとする問題点)しかし、従来の不揮発性カウンタでは、バイナリカウン
タの最下位ビット(LSB)に割り合てられてたEEP
ROMセルは、カウントの度EEPROMへデータを貯
えようとすると、必ずデータを書換えることになる。一
般に半導体不揮発性メモリは電気的書換えを行うとその
回数に比例して劣化がおこる。劣化現象は1状態とO状
態のしきい値の差の幅が漸次小さくなり、さらにそれに
比例してキャリアの移動度の低下または読み出しに必要
な相互コンダクタンスの低下となって現われる。最下位
に割合てられたビットの劣化は最ら甲く進行し最後には
W)1作不良を起こしてしまい、他のビットは正常に機
能していても、不揮発性カウンタ全体としては寿命がき
てしまったことになる。(Problem to be Solved by the Invention) However, in conventional non-volatile counters, the EEP is allocated to the least significant bit (LSB) of the binary counter.
When attempting to store data in the EEPROM every time a ROM cell is counted, the data must be rewritten. Generally, when a semiconductor nonvolatile memory is electrically rewritten, it deteriorates in proportion to the number of times the rewriting is performed. The deterioration phenomenon occurs as the width of the difference between the threshold values between the 1 state and the O state gradually decreases, and the carrier mobility decreases or the mutual conductance required for readout decreases in proportion to this. The deterioration of the bits allocated to the lowest order progresses most rapidly, and eventually one product is defective, and even though other bits are functioning normally, the non-volatile counter as a whole has reached the end of its lifespan. It means that it has happened.
そこで、この発明はEEPROMの書換えによる劣化を
ある特定ビットに集中させることなく、全EEPROM
が平等に劣化が進行するようにして、不揮発性カウンタ
としてのtiと信頼性を向上させることを[1的として
いる。Therefore, this invention prevents the deterioration caused by rewriting the EEPROM from concentrating on a certain bit, and improves the entire EEPROM.
The first objective is to improve ti and reliability as a non-volatile counter by ensuring that the deterioration progresses equally.
(問題点を解決するための手段)上記問題点を解決するために、この発明はバイナリカウ
ンタとEEPROMの間に、ローティト可能なレジスタ
を設け、バイナリカウンタでカウントされたデータを定
期的にE E P ROMへのビット割り合てを変更す
ることにより、EEPROMのある特定ビットへの劣化
集中が起こらないようにしたものである。(Means for Solving the Problems) In order to solve the above problems, the present invention provides a rotatable register between the binary counter and the EEPROM, and periodically records the data counted by the binary counter. By changing the bit allocation to the PROM, it is possible to prevent deterioration from concentrating on a particular bit of the EEPROM.
(作用)上記のように構成された不揮発性カウンタにおいては、
EEPROMの各々のビット・に対し、データの書換え
がほぼ平等に起こるため、不揮発性カウンタの全体とし
ての寿命がのびるのである。(Function) In the nonvolatile counter configured as above,
Since data is rewritten almost equally for each bit of the EEPROM, the overall life of the nonvolatile counter is extended.
(実施例)以下にこの発明の実施例を図面にもとづいて、詳細に説
明覆る。第1図においてクロック入力端子1に印加され
たパルスはバイナリカウンタ2によりカウントアツプさ
れる。この時ローティトカウンタ4はOビットローティ
トという状態にありローティトレジスタ5は、バイナリ
カウンタ2のデータをローティトVずにそのままEEP
ROM6に転送スル。E E P ROM 6 ハ、E
EPROMの書き込みと読み出しを制御する制御回路7
から書き込み信号を受けて、データを書込む。次いでク
ロック入力端子1に印加されたパルスはバイナリカウン
タ2をカウントアツプする。依然ローティトカウンタ4
はOであり、バイナリカウンタ2のデータはそのままE
EPROM6に書込まれる。(Example) Examples of the present invention will be described in detail below based on the drawings. In FIG. 1, a pulse applied to a clock input terminal 1 is counted up by a binary counter 2. At this time, the rotate counter 4 is in the O bit rotate state, and the rotate register 5 inputs the data of the binary counter 2 to EEP without rotating it.
Transfer to ROM6. E E P ROM 6 Ha, E
Control circuit 7 that controls writing and reading of EPROM
It receives a write signal from and writes data. The pulse applied to the clock input terminal 1 then causes the binary counter 2 to count up. Still rotating counter 4
is O, and the data of binary counter 2 is E as it is.
Written to EPROM6.
これを何回か繰り返すとキャリー出力端子3からキャリ
ーが出力され、ローティトカウンタ4をひとつインクリ
メントする。この状態ではバイナリカウンタ2のデータ
を1ビツトMSB方向にローティ1−シ、そのローテイ
トしたデータをEEPROM6は書込むことになる。よ
ってこれまでEEPROM6の最下位ビットが最も多く
潟換わっていたのが、これ以降、次のキャリーが出力さ
れるまでは最下位ビットの1ビツトに1J:位側に隣接
するビットが最も多く書換わることになる。この状態で
のEEPROM6の1−夕読み出しは、いったんローテ
ィトレジスタ5にEEPROM6のデータを転送した後
、占ぎ込んだ時とは逆の方向に1ビツトローテイトして
データを復元した上で、データ出力端子7に出力する。When this is repeated several times, a carry is output from the carry output terminal 3, and the rotate counter 4 is incremented by one. In this state, the data in the binary counter 2 is rotated one bit in the MSB direction, and the rotated data is written into the EEPROM 6. Therefore, up until now, the least significant bit of EEPROM 6 had been rewritten the most, but from now on, until the next carry is output, the bits adjacent to the least significant bit on the 1J: side will be rewritten the most. It turns out. To read the EEPROM 6 from 1 to 1 in this state, first transfer the data in the EEPROM 6 to the rotation register 5, then rotate the data by 1 bit in the opposite direction from when it was read, and then restore the data. Output to output terminal 7.
ごのように書き込む際にmピット左ローティトしたとす
れば、読み出し時にはmビット右ローティトしてデータ
を復元する。このようにしてキャリーが出力されるごと
にローティトカウンタ4はインクリメントされ、最も書
換の多いビットは移ってゆぎ、−順するとEEPROM
6のデータの書換え回数はすべてのビットで等しくなっ
ているようにすることが可能である。尚、簡単のため今
回はバイナリカウンタを用いて説明したが、バイナリカ
ウントしてゆく必要は全くなく、ローテイトカウンタが
インクリメントされる時期を適当に設定してやることに
より、どのようなタイプのカウンタにも適用できる。If m pits are rotated to the left when writing as shown in the figure, data is restored by rotating m bits to the right when reading. In this way, each time a carry is output, the rotate counter 4 is incremented, and the most frequently rewritten bit is shifted, and in order of -, the EEPROM is
It is possible to make the number of data rewrites of No. 6 equal for all bits. For simplicity, this explanation uses a binary counter, but there is no need to count in binary; it can be applied to any type of counter by appropriately setting the timing at which the rotate counter is incremented. can.
(発明の効果)この発明は、以上説明したように、カラン1−すべきビ
ット数に等しいローティトレジスタと、数ビットのロー
ティトカウンタを設けるだけで、EEPROMに加わる
ストレスをある特定ビットに集中さVることを防ぎ、す
べてのビットがほぼ同等のストレスを受けるようにする
ことにより、不揮発性カウンタの寿命を延ばし、信頼性
を向上させるという効果を有する。(Effects of the Invention) As explained above, the present invention concentrates the stress applied to the EEPROM on a specific bit by simply providing a rotation register equal to the number of bits to be processed and a rotation counter of several bits. This has the effect of extending the life of the non-volatile counter and improving its reliability by preventing the non-volatile counter from becoming damaged and by ensuring that all bits receive approximately the same stress.
第1図は、不揮発性カウンタの口路慴成図、第2図は、
従来の不揮発性カウンタの回路構成図である。1・・・クロック入力端子2・・・バイナリカウンタ3・・・キャリー出力端子4・・・ローテイトカウンタ5・・・ローティトレジスタ6 ・E E P ROM7・・・制御回路下糧発+i〃ウン7の回路構成図第1図従来のト坪発性かフシタの回路再バ′図第2図Figure 1 is a diagram of a non-volatile counter, and Figure 2 is a diagram of a non-volatile counter.
FIG. 2 is a circuit configuration diagram of a conventional nonvolatile counter. 1...Clock input terminal 2...Binary counter 3...Carry output terminal 4...Rotate counter 5...Rotate register 6 ・EEPROM 7...Control circuit supply +i〃 Figure 1: Circuit configuration diagram of U-7. Conventional circuit configuration diagram of conventional Totsubo or Fushita circuit diagram: Figure 2.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14223186AJPS62299116A (en) | 1986-06-18 | 1986-06-18 | Nonvolatile counter |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14223186AJPS62299116A (en) | 1986-06-18 | 1986-06-18 | Nonvolatile counter |
| Publication Number | Publication Date |
|---|---|
| JPS62299116Atrue JPS62299116A (en) | 1987-12-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14223186APendingJPS62299116A (en) | 1986-06-18 | 1986-06-18 | Nonvolatile counter |
| Country | Link |
|---|---|
| JP (1) | JPS62299116A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2668867A1 (en)* | 1990-11-02 | 1992-05-07 | Burger Jacques | BINARY ENCODING METHOD WITH TENSILE RATE OF SUBSTANTIALLY UNIFORM BINARY ELEMENTS, AND CORRESPONDING INCREMENTATION AND DECREMENTATION METHODS. |
| JPH0666612B2 (en)* | 1987-05-26 | 1994-08-24 | ザイコール・インコーポレーテッド | Reprogrammable Nonvolatile Nonlinear Electronic Potentiometer |
| US6331768B1 (en) | 2000-06-13 | 2001-12-18 | Xicor, Inc. | High-resolution, high-precision solid-state potentiometer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6196598A (en)* | 1984-10-17 | 1986-05-15 | Fuji Electric Co Ltd | Electrically erasable P-ROM count data storage method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6196598A (en)* | 1984-10-17 | 1986-05-15 | Fuji Electric Co Ltd | Electrically erasable P-ROM count data storage method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0666612B2 (en)* | 1987-05-26 | 1994-08-24 | ザイコール・インコーポレーテッド | Reprogrammable Nonvolatile Nonlinear Electronic Potentiometer |
| FR2668867A1 (en)* | 1990-11-02 | 1992-05-07 | Burger Jacques | BINARY ENCODING METHOD WITH TENSILE RATE OF SUBSTANTIALLY UNIFORM BINARY ELEMENTS, AND CORRESPONDING INCREMENTATION AND DECREMENTATION METHODS. |
| US5300930A (en)* | 1990-11-02 | 1994-04-05 | France Telecom | Binary encoding method with substantially uniform rate of changing of the binary elements and corresponding method of incrementation and decrementation |
| US6331768B1 (en) | 2000-06-13 | 2001-12-18 | Xicor, Inc. | High-resolution, high-precision solid-state potentiometer |
| US6555996B2 (en) | 2000-06-13 | 2003-04-29 | Xicor, Inc. | High-resolution, high-precision solid-state potentiometer |
| Publication | Publication Date | Title |
|---|---|---|
| US6781877B2 (en) | Techniques for reducing effects of coupling between storage elements of adjacent rows of memory cells | |
| US6965526B2 (en) | Sectored flash memory comprising means for controlling and for refreshing memory cells | |
| US5920502A (en) | Nonvolatile semiconductor memory with fast data programming and erasing function using ECC | |
| JP4113423B2 (en) | Semiconductor memory device and reference cell correction method | |
| US5930167A (en) | Multi-state non-volatile flash memory capable of being its own two state write cache | |
| US7797597B2 (en) | Error detection, documentation, and correction in a flash memory device | |
| US8531863B2 (en) | Method for operating an integrated circuit having a resistivity changing memory cell | |
| JP2509297B2 (en) | Semiconductor memory device with self-correction function and microcomputer | |
| US6108236A (en) | Smart card comprising integrated circuitry including EPROM and error check and correction system | |
| CN1647045A (en) | Methods for storing data in non-volatile memories | |
| JP2645417B2 (en) | Non-volatile memory device | |
| KR20050096947A (en) | Method for counting beyond endurance limitations of non volatile memories | |
| JPS62299116A (en) | Nonvolatile counter | |
| CN101044578A (en) | Memory device and method providing an average threshold based refresh mechanism | |
| JPH0252894B2 (en) | ||
| JPH03222196A (en) | Non-volatile semiconductor memory device | |
| US7269090B2 (en) | Memory access with consecutive addresses corresponding to different rows | |
| JP3656029B2 (en) | Method and circuit device for reliably changing a value stored in a non-volatile memory | |
| KR100486132B1 (en) | Nonvolatile semiconductor memory with fast data programming and erasing using ECC | |
| JP2660697B2 (en) | Writing method of nonvolatile storage element | |
| JPS62140516A (en) | Nonvolatile counter device | |
| JPH02103798A (en) | Rewritable semiconductor memory | |
| US5687124A (en) | Circuit for identifying a memory cell having erroneous data stored therein | |
| JPH11260074A (en) | Memory device using eeprom | |
| US20060155916A1 (en) | Writing uncorrupted data to electronic memory |