【発明の詳細な説明】(技術分野)この発明は、電解質溶液の安定化方法に関する。[Detailed description of the invention](Technical field)The present invention relates to a method for stabilizing electrolyte solutions.
(従来の技術)蛍光表示管や蛍光体ドツトアレイ管においては、陽極セ
グメント電極上に蛍光体層が形成される。(Prior Art) In a fluorescent display tube or a phosphor dot array tube, a phosphor layer is formed on an anode segment electrode.
かかる蛍光体層の形成方法の一つに、電着法とも称され
る電気泳動法を利用したものが知られている(実公昭5
7−55728)、この場合、電解質溶液は、蛍光体粒
子と微量の制御剤を溶媒に分散或いは溶解させられてい
る。蛍光体粒子は分散された状態にあり、制御剤は溶解
してイオン化し、所定極性のイオンが蛍光体粒子を包む
ように付着する。これによって蛍光体粒子は帯電状態と
なり、電界の作用下で電気泳動する。そして、均一な分
散或いは溶解した電解質溶液を得るために、溶液は撹拌
されるのが一般的である。ところで、電解質溶液を所定
時間撹拌した後、電気泳動させて蛍光体粒子をセグメン
ト電極に付着せしめると、初期状態において粒子の付着
状態が不安定になる傾向がある。これは、電解質溶液が
作られた当初、蛍光体粒子の分散や制御剤の溶解が必ず
しも充分ではなく、分散・溶解の均一性も不充分なため
であると考えられるが、未だ完全には解明されていない
。One of the methods for forming such a phosphor layer is known to utilize electrophoresis, also known as electrodeposition.
7-55728), in this case, the electrolyte solution has phosphor particles and a trace amount of control agent dispersed or dissolved in a solvent. The phosphor particles are in a dispersed state, the control agent is dissolved and ionized, and ions of a predetermined polarity are attached so as to surround the phosphor particles. This causes the phosphor particles to become electrically charged and undergo electrophoresis under the action of an electric field. The solution is generally stirred in order to obtain a uniformly dispersed or dissolved electrolyte solution. By the way, when the electrolyte solution is stirred for a predetermined period of time and then subjected to electrophoresis to cause the phosphor particles to adhere to the segment electrodes, the adhesion state of the particles tends to become unstable in the initial state. This is thought to be because when the electrolyte solution was first created, the dispersion of the phosphor particles and the dissolution of the control agent were not always sufficient, and the uniformity of dispersion and dissolution was also insufficient, but this is still not fully understood. It has not been.
かかる不安定な状態は、蛍光体層の付着厚さのむらや電
極エッヂからのはみ出しが大であったり、mtiエッチ
の凹凸が大きくなる等のように、電極部に所定サイズで
所定厚さで蛍光体を付着させたい、という所期の期待か
ら外れるような現象となって現れる。Such an unstable state can be caused by unevenness in the thickness of the phosphor layer deposited, large protrusion from the electrode edge, or large irregularities in the mti etch. It appears as a phenomenon that deviates from the initial expectation of wanting to attach the body.
そこで、電解質溶液が充分に安定化した後で電着工程に
入ればよいと考えられるが、該溶液の安定は、撹拌力式
、撹拌条件、液温その他種々の要因に依存しており、一
定ではない、また、いたずらに長い時間をかけて撹拌し
たのでは、時間の浪費になり、効率的な処理が望めなく
なる。Therefore, it is thought that it is best to start the electrodeposition process after the electrolyte solution is sufficiently stabilized, but the stability of the solution depends on various factors such as the stirring force type, stirring conditions, liquid temperature, and so on. In addition, if stirring takes an unnecessarily long time, time will be wasted and efficient processing will not be possible.
(目 的)本発明は、上記事情に鑑みてなされたものであって、そ
の目的とするところは、効率的な電解質溶液の安定化方
法の提供にある。(Objective) The present invention has been made in view of the above circumstances, and its object is to provide an efficient method for stabilizing an electrolyte solution.
(構 成)本発明は、電着時にセグメント電極を通じて流れる電流
をモニタしたとき、電解質溶液を作った直後(溶液が新
鮮な状態)において、電流値の減少という変化が顕著で
あることに着目してなされたものであって、少なくとも
一方が回転する一対の電極で構成された検出手段を電解
質溶液に浸漬すると共に回転する方の電極にクリーニン
グ部材を接触させつつ回転させ、上記電極間に直流電圧
を印加して、電解質溶液の電気的特性を連続的(又は間
欠的)に検出し、少なくとも、検出した信号が所定の安
定領域に入った時点まで電解質溶液の撹拌を継続するこ
とを特徴とする。(Structure) The present invention focuses on the fact that when the current flowing through the segment electrodes during electrodeposition is monitored, there is a noticeable change in the current value immediately after making the electrolyte solution (when the solution is fresh). A detection means consisting of a pair of electrodes, at least one of which rotates, is immersed in an electrolyte solution and rotated while a cleaning member is in contact with the rotating electrode, and a DC voltage is applied between the electrodes. is applied to continuously (or intermittently) detect the electrical characteristics of the electrolyte solution, and the electrolyte solution is continued to be stirred at least until the detected signal enters a predetermined stability region. .
以下、本発明を実施する装置を例に挙げて本方法発明の
詳細な説明する。Hereinafter, the present method invention will be described in detail by taking an example of an apparatus for carrying out the present invention.
第1図において、容器1には、電解質溶液2が貯溜され
ている。電解質溶液2としては、例えば。In FIG. 1, an electrolyte solution 2 is stored in a container 1. As the electrolyte solution 2, for example.
イソプロピルアルコール((CHa )z CHOH)
からなる溶媒に、酸化亜鉛蛍光体粒子(ZnO: Zn
)を分散し、制御剤としての硝酸アルミニウム(A1(
N Ox ) a・9H,O)を溶解させたものが用い
られる。Isopropyl alcohol ((CHa)z CHOH)
Zinc oxide phosphor particles (ZnO: Zn
) and aluminum nitrate (A1 (
A solution of NOx) a・9H, O) is used.
硝酸アルミニウムは、A13+とNQ、に解離し、A1
がZnO粒子の周りを包み、蛍光体粒子を正に帯電させ
ることになる。電解質溶液2の処方は、予め少量のイソ
プロピルアルコールに硝酸アルミニウムを溶解させた濃
縮液(A液)と、少量のイソプロピルアルコールに酸化
亜鉛蛍光体粒子を分散させた濃縮液(B液)とを作って
おき、電着工程の前にA液とB液とをイソプロピルアル
コールで希釈して所定濃度の電解質溶液(C液)とする
のがよい。Aluminum nitrate dissociates into A13+ and NQ, and A1
wraps around the ZnO particles and positively charges the phosphor particles. The recipe for electrolyte solution 2 is to prepare a concentrated solution (solution A) in which aluminum nitrate is dissolved in a small amount of isopropyl alcohol, and a concentrated solution (solution B) in which zinc oxide phosphor particles are dispersed in a small amount of isopropyl alcohol. It is preferable to dilute liquid A and liquid B with isopropyl alcohol to prepare an electrolyte solution (liquid C) of a predetermined concentration before the electrodeposition step.
容器1には、上記C液としての電解質溶液が貯溜されて
いる。The container 1 stores an electrolyte solution as the C solution.
電解質溶液中には、該溶液の電気的特性を検出するため
の検出手段を構成する電極としての検出用電極3,4が
浸漬されている。一対の電極3,4のうち検出用電極3
は、平板からなる固定電極であって、図示されない支持
手段により固定されて液深方向に配置されている。検出
用電極4は、電極3と所定間隔を置いた位置に配置され
、回転軸5に支持されて回転自在である。検出用電極4
の局面には、該電極表面に付着する蛍光体粒子をクリー
ニングするためのクリーニング部材6が接触させられて
いる・検出用電極3は、スイッチ7と所定電圧を有する直流電
源8を介して接地されている。検出用電極4は、抵抗器
9を介して接地されている。抵抗器9の両端は、アンメ
ータ10に接続されていて、抵抗器に流れる電流値を検
出するようになっている。アンメータ10は1図示され
ない制御手段に接続されている。制御手段には、抵抗器
9の電流値に基づく検出信号が印加される。容器1の底
部には、電解質溶液を撹拌する撹拌手段11が配設され
ている。この撹拌手段11は、制御手段によってその回
転を制御される。電解質溶液の電気的特性を検出する手
段としては、電流の検出に代えて、抵抗器の両端の電圧
値を検出しこれを利用してもよし1゜第1図において、容器1に前記C液を貯溜し、これを撹
拌手段11で撹拌しながらスイッチ7を閉じると、抵抗
器9には、電解質溶液2の電気的特性による電流iが流
れる。抵抗器を流れる電流は連続的に測定され、その検
出値は、制御手段(図示せず)に印加される。抵抗器9
に流れる電流値は、第5図に示すように、経時的に変化
、すなわち次第に低下してゆき、図示の場合、撹拌を開
始してから略60分経過した時点あたりで安定する。Detection electrodes 3 and 4 are immersed in the electrolyte solution as electrodes constituting a detection means for detecting the electrical characteristics of the solution. Detection electrode 3 of a pair of electrodes 3 and 4
is a fixed electrode made of a flat plate, which is fixed by a support means (not shown) and arranged in the depth direction of the liquid. The detection electrode 4 is arranged at a predetermined distance from the electrode 3, and is supported by a rotating shaft 5 and is rotatable. Detection electrode 4
A cleaning member 6 for cleaning phosphor particles adhering to the electrode surface is brought into contact with the surface of the electrode. The detection electrode 3 is grounded via a switch 7 and a DC power supply 8 having a predetermined voltage. ing. The detection electrode 4 is grounded via a resistor 9. Both ends of the resistor 9 are connected to an ammeter 10 to detect the value of the current flowing through the resistor. Ammeter 10 is connected to control means (not shown). A detection signal based on the current value of the resistor 9 is applied to the control means. At the bottom of the container 1, a stirring means 11 for stirring the electrolyte solution is provided. The rotation of this stirring means 11 is controlled by a control means. As a means of detecting the electrical characteristics of the electrolyte solution, instead of detecting the current, it is also possible to detect the voltage value across the resistor and use this. When the switch 7 is closed while the electrolyte solution is stored and stirred by the stirring means 11, a current i depending on the electrical characteristics of the electrolyte solution 2 flows through the resistor 9. The current flowing through the resistor is continuously measured and the detected value is applied to control means (not shown). Resistor 9
As shown in FIG. 5, the current value flowing through the stirrer changes over time, that is, it gradually decreases, and in the case shown in the figure, it stabilizes approximately 60 minutes after the start of stirring.
すなわち、電流iは略30マイクロアンペアの範囲内で
安定する。検出用電極からの検出信号の安定状態は、液
温、液量、濃度、撹拌時間、撹拌条件などにより判定さ
れるものであって、上記数値は一つの例に過ぎないもの
である。That is, the current i is stabilized within a range of approximately 30 microamperes. The stable state of the detection signal from the detection electrode is determined by the liquid temperature, liquid volume, concentration, stirring time, stirring conditions, etc., and the above numerical values are only one example.
そして、電極による検出値が安定した時点で、撹拌手段
11による撹拌作用を停止する。充分な電解質溶液の安
定を望むならば、安定状態を検出してのち、更に一定時
間撹拌動作を継続してもよい。Then, when the value detected by the electrode becomes stable, the stirring action by the stirring means 11 is stopped. If sufficient stabilization of the electrolyte solution is desired, the stirring operation may be continued for a certain period of time after a stable state is detected.
実験によれば、電流iが安定期に入ってから約20分間
撹拌動作を続けたのち、電着用基板を溶液中に浸漬した
ところ、一枚目から所望の蛍光体付着が実現した。According to experiments, when the electrodepositing substrate was immersed in the solution after the stirring operation was continued for about 20 minutes after the current i entered the stable period, the desired phosphor adhesion was achieved from the first sheet.
検出用電極3,4には、電解質溶液中の分散粒子が付着
するので、溶液の安定後はこれら電極への通電が断たれ
る。検出用電極4に付着した分散粒子は、クリーニング
部材6によって除去され、検出能力の低下を防いでいる
。Since particles dispersed in the electrolyte solution adhere to the detection electrodes 3 and 4, electricity to these electrodes is cut off after the solution has stabilized. Dispersed particles adhering to the detection electrode 4 are removed by the cleaning member 6, thereby preventing the detection ability from deteriorating.
また、検出用電極への蛍光体粒子の付着を防止するため
には、電極への通電時間、換言すると。In addition, in order to prevent the phosphor particles from adhering to the detection electrode, the time period for which the electrode is energized must be determined.
電気的特性の検出に要する時間を極力短くした方がよい
、そのためには、溶液の撹拌を開始した直後から一定時
間(第5図に示す例の場合、40分〜50分)が経過し
てからスイッチ7をオンすると共に、更にスイッチ・オ
ンの時間を短く且つ間欠的に行なえばよい。すなわち、
所定の時間間隔で短時間のみ通電するようにスイッチン
グされることが望ましい。It is better to shorten the time required to detect the electrical characteristics as much as possible.To do this, it is necessary to wait for a certain period of time (40 to 50 minutes in the example shown in Figure 5) immediately after starting stirring the solution. In addition to turning on the switch 7 from the start, the switch 7 may be turned on for a short period of time and intermittently. That is,
It is desirable that the power be switched on only for short periods of time at predetermined time intervals.
第2図乃至第4図には、本発明を実施するに適した検出
手段のそれぞれ異なる例を示しである。2 to 4 show different examples of detection means suitable for carrying out the present invention.
第2図に示す例は、検出用電極としてそれぞれ水火方向
に回転駆動される回転体からなる一対の電極3A、4A
を用いたものである。これら電極には、一枚のクリーニ
ング部材6Aの両側縁が接触させられている。In the example shown in FIG. 2, a pair of electrodes 3A and 4A each consisting of a rotating body that is rotationally driven in the water/fire direction is used as a detection electrode.
It uses Both side edges of one cleaning member 6A are brought into contact with these electrodes.
第3図に示す例は、水火方向に回転させられる検出用電
極3B、4Bをクリーニングするクリーニング部材の形
状とその設置態様に特徴がある。The example shown in FIG. 3 is characterized by the shape of the cleaning member that cleans the detection electrodes 3B and 4B rotated in the water and fire directions and the manner in which it is installed.
同図(a)に示す例は、電極の回転中心軸方向から見て
、屋根型のクリーニング部材6Bの両側縁6Ba、6B
bを各電極の周面に接触させたものである。同図(b)
に示す例は、平板型のクリーニング部材6Cの両側縁6
Ca、6Cbを各電極の局面に接触させたものである。In the example shown in FIG. 6(a), both side edges 6Ba and 6B of a roof-shaped cleaning member 6B are shown in FIG.
b is in contact with the circumferential surface of each electrode. Same figure (b)
In the example shown in FIG.
Ca and 6Cb are brought into contact with the surfaces of each electrode.
同図(C)に示す例は、電極の回転中心軸方向から見て
、「コの字」型のクリーニング部材6Dの両側縁6Da
、6Dbを各電極の周面に接触させたものである。各ク
リーニング部材6B〜6Dは、図示されない支持部材に
支持されて固定されるのであるが、電解質溶液の撹拌流
を阻害しないために、第2図(b)に符号6Aaで示す
ような窓状開口を形成されることが望ましい。In the example shown in FIG. 6(C), both side edges 6Da of the "U-shaped" cleaning member 6D are
, 6Db were brought into contact with the peripheral surface of each electrode. Each of the cleaning members 6B to 6D is supported and fixed by a supporting member (not shown), and in order not to impede the stirring flow of the electrolyte solution, a window-shaped opening as shown by the symbol 6Aa in FIG. 2(b) is provided. It is desirable that a
第4図に示す例は、検出用電極3 G、4 Gが偏心軸
5A、5Bに固定されている。クリーニング部材6E、
6Fは、電極を挟持する態様であって、連結部6a、6
aで互いに連結されていて、この連結部を各電極の上端
面に載置させて支持されている。なお、各クリーニング
部材が互いに近付いて。In the example shown in FIG. 4, detection electrodes 3G, 4G are fixed to eccentric shafts 5A, 5B. cleaning member 6E,
6F is a mode in which the electrodes are sandwiched, and connecting portions 6a, 6
They are connected to each other at a point a, and this connecting portion is placed and supported on the upper end surface of each electrode. Note that each cleaning member approaches each other.
電極の周面に圧接するように付勢するばね手段を設けて
もよい。そし、て、クリーニング部材6E。A spring means may be provided for urging the electrode into pressure contact with the circumferential surface of the electrode. And then, cleaning member 6E.
6Fは、第4図(b) 、 (c)に示すように、各電
極3G、4Cが水火方向に回転すると、図において上下
方向に往復移動しながら電極表面をクリーニングする。As shown in FIGS. 4(b) and 4(c), when each electrode 3G, 4C rotates in the water/fire direction, 6F cleans the electrode surface while reciprocating in the vertical direction in the figure.
この例の場合、検出用電極が偏心して回転させられるの
で、電解質溶液の撹拌効果が期待できる。また、各クリ
ーニング部材には、撹拌液流を阻害しないように、窓孔
6Ea、6Faが形成されている。In this example, since the detection electrode is rotated eccentrically, an effect of stirring the electrolyte solution can be expected. In addition, window holes 6Ea and 6Fa are formed in each cleaning member so as not to obstruct the flow of the agitated liquid.
なお、検出手段は、撹拌手段の配置位置等によって、電
解質溶液の水平方向における電気的特性が不均一になり
易い場合、液深方向でなく、水平方向と平行に検出用電
極を配設してもよい。In addition, if the electrical characteristics of the electrolyte solution in the horizontal direction tend to become non-uniform due to the placement position of the stirring means, etc., the detection means should be arranged with the detection electrode parallel to the horizontal direction rather than in the depth direction of the liquid. Good too.
(効 果)以上のように1本発明によれば、回転する検出用電極か
らなる検出手段を用いて、電解質溶液の電気的特性を検
出し、少なくとも、検出手段による検出信号に基づく変
化量が所定の範囲に入る時点まで溶液の撹拌を行なうの
で、溶液は充分に安定化する。また、検出用電極をクリ
ーニングしながら検出作動するので、安定し且つ精度の
よい電気的特性の検出ができる。換言すると、余分な撹
拌を行なわなくて済むから効率的な電解質溶液の処理が
できる。(Effects) As described above, according to one aspect of the present invention, the electrical characteristics of an electrolyte solution are detected using a detection means consisting of a rotating detection electrode, and at least the amount of change based on the detection signal by the detection means is Since the solution is stirred until it reaches a predetermined range, the solution is sufficiently stabilized. Further, since the detection operation is performed while cleaning the detection electrode, stable and accurate detection of electrical characteristics can be achieved. In other words, since there is no need for extra stirring, the electrolyte solution can be processed efficiently.
第1図は本発明の電解質溶液の安定化方法を実施する装
置の一例を示す概略構成図、第2図乃至第4図は本発明
を実施する他の例を示す概略構成図、第5図は電気的特
性の変化量を示す線図である。1・・・容器、2・・・電解質溶液、3,4・・・検出
用電極、8・・・直流電源、11・・・撹拌手段。夷1図FIG. 1 is a schematic configuration diagram showing an example of an apparatus for implementing the electrolyte solution stabilization method of the present invention, FIGS. 2 to 4 are schematic configuration diagrams showing other examples of implementing the present invention, and FIG. 5 is a diagram showing the amount of change in electrical characteristics. DESCRIPTION OF SYMBOLS 1... Container, 2... Electrolyte solution, 3, 4... Detection electrode, 8... DC power supply, 11... Stirring means. Figure 1
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15327585AJPS6213596A (en) | 1985-07-11 | 1985-07-11 | Method for stabilizing electrolyte solution |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15327585AJPS6213596A (en) | 1985-07-11 | 1985-07-11 | Method for stabilizing electrolyte solution |
| Publication Number | Publication Date |
|---|---|
| JPS6213596Atrue JPS6213596A (en) | 1987-01-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15327585APendingJPS6213596A (en) | 1985-07-11 | 1985-07-11 | Method for stabilizing electrolyte solution |
| Country | Link |
|---|---|
| JP (1) | JPS6213596A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6392680B2 (en) | 1986-04-11 | 2002-05-21 | Dai Nippon Insatsu Kabushiki Kaisha | Image formation on objective bodies |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6392680B2 (en) | 1986-04-11 | 2002-05-21 | Dai Nippon Insatsu Kabushiki Kaisha | Image formation on objective bodies |
| Publication | Publication Date | Title |
|---|---|---|
| EP3053186B1 (en) | Device and method for the continuous production of porous silicon layers | |
| US6277262B1 (en) | Method and apparatus for continuous processing of semiconductor wafers | |
| US3432420A (en) | Electrolytic cell assemblies | |
| JPS6213596A (en) | Method for stabilizing electrolyte solution | |
| US4432849A (en) | Method and apparatus for separating macromolecules or particles in a liquid solution | |
| JPH06154797A (en) | Method for operating electroosmosis type dehydrator | |
| JPS61291998A (en) | Stabilizing method for electrolyte solution | |
| US3551317A (en) | Electrolytic apparatus for recovering a metal from a solution | |
| US10612153B2 (en) | Method for electrochemical roughening of thin film electrodes | |
| US4242179A (en) | Method of fabricating cadmium electrodes | |
| CN223176232U (en) | Micro-arc oxidation device and semiconductor thin film preparation system | |
| JP3734131B2 (en) | Microbe count measuring apparatus and microbe count measuring method | |
| JP3373741B2 (en) | Limit current type oxygen sensor device and sensor driving method | |
| JPS6221079B2 (en) | ||
| KAKUTANI et al. | Determination of kinetic parameters of electroreduction of nitrobenzenes at mercury electrode in dimethylformamide by radio frequency polarographic method | |
| JPH06132067A (en) | Ceramic coat electrode | |
| JPH0750064B2 (en) | Solution ion concentration determination device | |
| EP0859228A2 (en) | Electrochemical analyzing apparatus | |
| JPS61290627A (en) | Electrolyte solution stirring device | |
| Gołas et al. | Electrodeposition and anodic stripping of silver on single carbon fibers | |
| JPH03120395A (en) | Coating method with bismuth oxide | |
| JPH0337559A (en) | Ammonia sensor | |
| JP2000171425A (en) | Cell for measuring redox potential and zeta potential and method for measuring redox potential and zeta potential | |
| KR100397927B1 (en) | Fabrication of liquid junction electrode for a micro pH sensor | |
| Yaniv et al. | Electrodeposition and stripping at graphite cloth electrodes in a flow-through cell |