Movatterモバイル変換


[0]ホーム

URL:


JPS62112918A - Combustion controlling device - Google Patents

Combustion controlling device

Info

Publication number
JPS62112918A
JPS62112918AJP60251320AJP25132085AJPS62112918AJP S62112918 AJPS62112918 AJP S62112918AJP 60251320 AJP60251320 AJP 60251320AJP 25132085 AJP25132085 AJP 25132085AJP S62112918 AJPS62112918 AJP S62112918A
Authority
JP
Japan
Prior art keywords
combustion
air
fuel
section
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60251320A
Other languages
Japanese (ja)
Other versions
JPH0423167B2 (en
Inventor
Keiichi Mori
慶一 森
Hirohisa Imai
博久 今井
Katsuhiko Yamamoto
克彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co LtdfiledCriticalMatsushita Electric Industrial Co Ltd
Priority to JP60251320ApriorityCriticalpatent/JPS62112918A/en
Publication of JPS62112918ApublicationCriticalpatent/JPS62112918A/en
Publication of JPH0423167B2publicationCriticalpatent/JPH0423167B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】産業上の利用分野本発明はガスや石油等を使用した燃焼機器における空燃
比の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-fuel ratio control device for combustion equipment using gas, oil, or the like.

従来の技術ガスや石油を燃料として燃焼させる時、燃料に応じた最
適な空気量を供給する事により逆火や失火、あるいは不
完全燃焼の発生を防ぎ安定な燃焼を維持できる。この燃
料と空気量の比を空燃比と呼び、従来燃焼状態を検知し
て常に最適な空燃比を保つように燃料、あるいは空気量
を制御する手段が考えられていた。
Conventional technology When burning gas or oil as fuel, stable combustion can be maintained by supplying the optimal amount of air depending on the fuel to prevent backfire, misfire, or incomplete combustion. This ratio of the amount of fuel and air is called the air-fuel ratio, and conventional methods have been devised to detect the combustion state and control the amount of fuel or air so as to always maintain an optimal air-fuel ratio.

石油燃焼機における空燃比制御の方式は、例えば特開昭
51−119635号公報に記載されているものがよく
考えられる。これは火炎に挿入したフレームロッドによ
り火炎の炎イオン電流を検出し、この炎イオン電流が空
燃比によシ変化することを利用し、ある燃焼量における
炎電流Ifを最適な空燃比におけるI(の設定値に保つ
ように燃3 ・判供給用ポンプの発振周波数を制御する構成である。第
7図にこの制御特性を示す。第7図で横軸11はフレー
ムロッドの炎電流、縦軸fは燃料ポンプの発振周波数を
示す。今、バーナの燃焼量がローに相当する空気量を供
給している時、炎電流I(が最適空燃比の炎電流値If
Lになるようにポンプ周波数1を制御する。もし空燃比
がずれて炎電流Ifが1f・になった時、ポンプ周波数
はf′になり燃焼量を増加し、炎電流がIfLに戻るよ
うに制御する。燃焼量をハイに切替だ時はB線に従って
制御する。
As a method of air-fuel ratio control in an oil-burning machine, the method described in, for example, Japanese Patent Application Laid-open No. 119635/1980 can be considered. This method detects the flame ion current of the flame with a flame rod inserted into the flame, and uses the fact that this flame ion current changes depending on the air-fuel ratio to calculate the flame current If at a certain combustion amount to I( This configuration controls the oscillation frequency of the fuel supply pump to maintain the flame current at the set value. Figure 7 shows this control characteristic. In Figure 7, the horizontal axis 11 is the flame current of the flame rod, and the vertical axis is the flame current of the flame rod. f indicates the oscillation frequency of the fuel pump. Now, when the burner is supplying an air amount corresponding to a low combustion amount, the flame current I (is the flame current value If at the optimum air-fuel ratio.
Pump frequency 1 is controlled so that it becomes L. If the air-fuel ratio deviates and the flame current If becomes 1f., the pump frequency becomes f', the combustion amount is increased, and the flame current is controlled to return to IfL. When switching the combustion amount to high, control according to line B.

発明が解決しようとする問題点しかし上記のような従来の空燃比制御方式に大2つの問
題点を有する。1つは炎電流11は各種条件により大き
く変化する点にある。例えばフレームロッドとバーナの
距離、ロンドの形状、ロンドに印加する電圧等が変化す
るとII O値が異なり、同じIfLに設定できたとし
てもそれが最適空燃比であるとは限らない。2番目の問
題点は従来例に示す制御方式にファンヒータ等の室内開
放型燃焼機に応用した場合、炎電流11が室内の酸素濃
度低下(以下酸欠と呼ぶ)が発生した場合にも変化する
ことにある。
Problems to be Solved by the Invention However, the conventional air-fuel ratio control method as described above has two major problems. One is that the flame current 11 varies greatly depending on various conditions. For example, if the distance between the flame rod and the burner, the shape of the rond, the voltage applied to the rond, etc. change, the IIO value will differ, and even if the same IfL can be set, it is not necessarily the optimum air-fuel ratio. The second problem is that when the control method shown in the conventional example is applied to an indoor open type combustion machine such as a fan heater, the flame current 11 changes even when the indoor oxygen concentration decreases (hereinafter referred to as oxygen deficiency). It's about doing.

通常空燃比制御のない場合はこの特性を利用し、炎電流
Ifが一定値になった時に酸欠と判定して室内換気を促
すか燃焼を停止する。しかし空燃比制御を行なっている
時は、酸欠が発生しても常に炎電流IfLに保つように
ポンプ周波数を修正してしまう。従って室内酸素濃度が
16〜15チに低下してもそれなりにバーナの燃焼は継
続し、酸欠が検出できない。
Normally, in the absence of air-fuel ratio control, this characteristic is utilized, and when the flame current If reaches a certain value, it is determined that there is an oxygen deficiency, and indoor ventilation is encouraged or combustion is stopped. However, when performing air-fuel ratio control, the pump frequency is corrected so as to always maintain the flame current IfL even if oxygen deficiency occurs. Therefore, even if the indoor oxygen concentration drops to 16 to 15 degrees, combustion in the burner continues to a certain extent, and oxygen deficiency cannot be detected.

これを検知するにはポンプ周波数fの変化量が一定の値
組1になった時に酸欠と判定する方法が考えられるが、
ポンプ周波数量は燃焼量によっても変化するため、これ
との判別も必要となり、複雑な制御アリゴリズムを必要
とした。
A possible way to detect this is to determine that there is an oxygen deficiency when the amount of change in the pump frequency f reaches a certain value set 1.
Since the amount of pump frequency also changes depending on the amount of combustion, it is necessary to distinguish between this and a complicated control algorithm.

問題点を解決するだめの手段本発明は上記問題点を解決するために、フレームロッド
の信号により、バーナとの燃料の供給量を制御する燃料
制御装置および燃焼空気を供給す5 ・、−7る送風機を制御する燃焼制御回路を設け、燃焼制御回路
は燃焼機の運転初期に空燃比を設定する空燃比設定部と
、この設定された空燃比を保ちながら、室温等の負荷の
変化に応じて燃焼量を演算制御する燃焼量制御部、およ
びフレームロッド電波を検出する燃焼検知部とからなシ
、空燃比設定部には基準となる空気量を出力する基準空
気出力部から供給された空気量の時にフレームロッド出
力が最大となるように燃焼量を調整する燃料調整部と、
フレームロッド出力が最大であることを検知するピーク
検知部、およびこの時の燃料の調整値と記憶する記憶部
を有する構成とし、以後燃焼量制御部は、必要な燃料供
給量をこの記憶部で記憶した値を元に演算する構成とし
た。
Means for Solving the Problems In order to solve the above problems, the present invention provides a fuel control device that controls the amount of fuel supplied to the burner and combustion air according to a signal from the flame rod. The combustion control circuit includes an air-fuel ratio setting section that sets the air-fuel ratio at the beginning of operation of the combustor, and a combustion control circuit that controls the air-fuel ratio in response to changes in load such as room temperature while maintaining the set air-fuel ratio. The air-fuel ratio setting section includes a combustion amount control section that calculates and controls the combustion amount, and a combustion detection section that detects flame rod radio waves. a fuel adjustment section that adjusts the combustion amount so that the flame rod output is maximized when the amount of fuel is reached;
The configuration includes a peak detection section that detects that the flame rod output is at its maximum, and a storage section that stores the fuel adjustment value at this time. From now on, the combustion amount control section uses this storage section to store the necessary fuel supply amount. It is configured to perform calculations based on stored values.

作  用上記構成により、空燃比の調整は機器の運転開始時に行
ない、一度空燃比調整が終了するとその後の空燃比は調
整時の記憶値から演算して求めるように作用する。つま
り通常燃焼時は炎電流による空燃比のフィードバック制
御は行なわない。ま6 、−、。
Operation With the above configuration, the air-fuel ratio is adjusted at the start of operation of the device, and once the air-fuel ratio adjustment is completed, the subsequent air-fuel ratio is calculated and calculated from the value stored at the time of adjustment. In other words, during normal combustion, feedback control of the air-fuel ratio using flame current is not performed. Ma6,-,.

た空燃比の調整時においても炎電流1(の絶対値で検出
する構成ではなく、炎電流のピーク値になるように空燃
比を調整する。
Even when adjusting the air-fuel ratio, the air-fuel ratio is adjusted so as to reach the peak value of the flame current, rather than detecting the absolute value of the flame current 1.

実施例以下本発明の実施例を第1図から第6図を用いて説明す
る。実施例では石油気化式バーナによる室内開放燃焼型
温風暖房機(ファンヒータ)を例にして説明していく。
EXAMPLES Examples of the present invention will be described below with reference to FIGS. 1 to 6. In the embodiment, an indoor open combustion hot air heater (fan heater) using an oil vaporization burner will be described as an example.

第1図は本発明のシヌテムブロック図を示す。FIG. 1 shows a synutem block diagram of the present invention.

1はバーナで、燃料タンク2から燃料ポンプ3により供
給された燃料と送風機4にょシ送風された空気を気化混
合器5によシ気化混合されバーナ1で燃焼する。6はフ
レームロッドでバーナ1の火炎に流れる炎電流11f:
燃焼制御回路7の燃焼検知部8に伝える。送風機4は外
部に設けた室温センサ9と温度設定値10の温度差に応
じて燃焼用送風空気量を演算する空気量制御部11によ
り制御される。一方燃料ボンプ3は燃焼量制御部12の
信号により制御する。尚、燃焼機の運転開始時はスイッ
チSa、Sbが図とは逆方向の接点に接7 ・続され、送風機4は基準空気出力部1aから予め定めら
れた基準空気量を供給するように制御され、燃料ポンプ
3はこの基準空気量の時に炎電流I(が最大値になるよ
うにピーク検知部14の信号に応じて燃料調整部15で
調整される。調整が終了すればこの調整値、つまり炎電
流Iiがピーク時の燃料ポンプ出力(周波数)を記憶部
16に記憶する。基準空気出力部13、ピーク検知部1
4、燃料調整部15、記憶部16を含めて空燃比設定部
17と呼ぶ。この後スイッチSa、Sbは図の接点に戻
シ以後空気量制御部11からの送風機出力に応じてポン
プ3の発振周波数を記憶部16の値を関数として演算し
て求め、燃焼量制御部12からポンプ駆動出力を出す。
Reference numeral 1 denotes a burner, in which fuel supplied from a fuel tank 2 by a fuel pump 3 and air blown by a blower 4 are vaporized and mixed by a vaporizer mixer 5, and the mixture is combusted by a burner 1. 6 is a flame rod, and flame current 11f flowing through the flame of burner 1:
The information is transmitted to the combustion detection section 8 of the combustion control circuit 7. The blower 4 is controlled by an air amount control section 11 that calculates the amount of combustion air to be blown according to the temperature difference between a room temperature sensor 9 provided outside and a temperature setting value 10. On the other hand, the fuel pump 3 is controlled by a signal from a combustion amount control section 12. When the combustion machine starts operating, the switches Sa and Sb are connected to the contacts in the direction opposite to that shown in the figure, and the blower 4 is controlled to supply a predetermined amount of reference air from the reference air output section 1a. The fuel pump 3 is adjusted by the fuel adjustment unit 15 according to the signal from the peak detection unit 14 so that the flame current I (at the reference air amount reaches the maximum value).When the adjustment is completed, this adjusted value, In other words, the fuel pump output (frequency) when the flame current Ii peaks is stored in the storage unit 16. Reference air output unit 13, peak detection unit 1
4, the fuel adjustment section 15 and the storage section 16 are collectively referred to as an air-fuel ratio setting section 17. After that, the switches Sa and Sb are returned to the contact points shown in the figure, and the oscillation frequency of the pump 3 is calculated according to the blower output from the air amount control section 11 as a function of the value in the storage section 16, and the combustion amount control section 12 Outputs pump drive output from.

次に具体動作を説明していく。第2図は空燃比と炎電流
の関係を示すグラフで横軸に一次空気比PA (ここで
は空燃比を一次空気比PAで説明する。PA−実際のバ
ーナー次空気量/理論−次空気量)縦軸に炎電流Ifを
示す。図のA、B線は燃焼量による差で燃焼量が大きい
時はB線、小さい時はA線となる。炎電流IfはPAが
1.0の点をピークとした曲線となり、PA〉1.0(
空気過剰側)、PA<1.0(空気不足側)でも低下す
る山形のカーブを描く。ここではバーナはPAが1よシ
少し低い点FAIで最適燃焼となるように設計されてい
るとする。(これはバーナにょ多異なる)またPA≦P
A2 0時にバーナは不完全燃焼となるため炎電流1(
がIfaあるいは■ib以下になった時に制御回路は異
常と判定する。
Next, we will explain the specific operation. Figure 2 is a graph showing the relationship between air-fuel ratio and flame current, and the horizontal axis shows the primary air ratio PA (Here, the air-fuel ratio is explained in terms of the primary air ratio PA. PA - Actual burner primary air amount / Theoretical secondary air amount ) The vertical axis shows the flame current If. Lines A and B in the diagram differ depending on the amount of combustion; when the amount of combustion is large, line B is used, and when the amount of combustion is small, line A is used. The flame current If is a curve with a peak at the point where PA is 1.0, and PA>1.0(
It draws a mountain-shaped curve that decreases even when PA<1.0 (air excess side) and PA<1.0 (air deficiency side). Here, it is assumed that the burner is designed to achieve optimal combustion at a point FAI where PA is slightly lower than 1. (This varies depending on the burner) Also, PA≦P
A2 At 0, the burner has incomplete combustion, so the flame current is 1 (
When becomes less than Ifa or ■ib, the control circuit determines that there is an abnormality.

PAは、ある燃焼量に固定した時の供給空気量と比例す
るためバーナの燃焼量θFに対する燃料ポンプ3の発振
周波数f1および送風機4の送風モータ回転数nは、第
3図a、bK示すように比例関係となる。今、第2図で
PA−PAIの時のモータ回転数はnA、nBとなりポ
ンプ周波数はfA。
Since PA is proportional to the amount of air supplied when the combustion amount is fixed at a certain combustion amount, the oscillation frequency f1 of the fuel pump 3 and the rotation speed n of the blower motor of the blower 4 with respect to the combustion amount θF of the burner are as shown in FIGS. 3a and bK. There is a proportional relationship. Now, in Fig. 2, the motor rotation speed at PA-PAI is nA, nB, and the pump frequency is fA.

fBとなる。nPは燃焼量θFBにおけるPA=1.0
の時のモータ回転数で基準空気出力部13より出力サレ
る。図でCDE線は燃料ポンプのバラツキであり同じポ
ンプ周波数fBであっても燃焼量はθFB・〜θFB’
まで変化する。このためモータ回転91・7数nBが一定でもPAがFAIからずれてしまう。
fB. nP is PA=1.0 at combustion amount θFB
The output from the reference air output section 13 decreases at the motor rotation speed when . In the figure, the CDE line shows variations in the fuel pump, and even if the pump frequency fB is the same, the combustion amount is θFB・~θFB'
changes up to. For this reason, even if the motor rotation 91.7 nB is constant, PA deviates from FAI.

これを解決するためにポンプ周波数fB(i−ポンプば
らつきに応じてfB’〜fB’に調整する必要が有る。
To solve this problem, it is necessary to adjust the pump frequency fB (i-fB' to fB' depending on the pump variation).

本発明では空燃比設定部17でこの作業を行なう。In the present invention, this work is performed by the air-fuel ratio setting section 17.

第4図に空燃比設定部17をマイクロコンピュータで構
成した場合のフローチャートを、第5図にその特性を示
す。ここでは空燃比の設定を燃焼量θFB  で行なう
場合を例に説明する。今ポンプ周波数がfBO時、燃焼
量が標準値θFBであるならば、モータ回転数nPの風
量で炎電流I(がピークとなる。(第5図C線)これを
検出するためにピーク検知部14は、モータ回転数をn
lとR2に可変し、各々の炎電流Ifl、If2を計測
し、その差Δ量が一定値に以下である時にピーク点であ
ると判定する。もし燃焼量がバラツキで第3図り線であ
ったとすると、ポンプ周波数fBでの燃焼量□はθFB
’となる。このため炎電流のピーク点はnPよりも大き
な(風量が多い)nP’に発生する。ピーク検知部14
はnlとR2の炎電流Ifl〆とIf2’10 ベー。
FIG. 4 shows a flowchart when the air-fuel ratio setting section 17 is configured with a microcomputer, and FIG. 5 shows its characteristics. Here, an example will be explained in which the air-fuel ratio is set using the combustion amount θFB. Now, when the pump frequency is fBO, if the combustion amount is the standard value θFB, the flame current I (peaks at the air volume of the motor rotation speed nP (line C in Figure 5). To detect this, the peak detection unit 14 is the motor rotation speed n
1 and R2, measure the respective flame currents Ifl and If2, and determine that the peak point is reached when the difference Δ amount is less than a certain value. If the combustion amount varies and is shown on the third grid line, the combustion amount □ at pump frequency fB is θFB
' becomes. Therefore, the peak point of the flame current occurs at nP', which is larger than nP (air volume is large). Peak detection section 14
are the flame currents Ifl〆 and If2'10 of nl and R2.

の差△Tを求め、この傾きの方向に応じてポンプ周波数
fBを増減する。(ここでは減少)これをくり返し、第
5図の矢印のようにC線に近づけていく。
The difference ΔT is determined, and the pump frequency fB is increased or decreased depending on the direction of this slope. (Decrease here) Repeat this process to get closer to line C as shown by the arrow in Figure 5.

以上のようにして燃焼量θFBのポンプ周波数fBが求
まると、記憶部16にこの周波数fBを記憶する。
When the pump frequency fB of the combustion amount θFB is determined as described above, this frequency fB is stored in the storage unit 16.

一方空気量制御部11は温度センサ9と温度設定値10
の温度差△Tに応じて送風機4のモータ回転数nを決定
する。(この時のnは第2図の一時空気比PA−PAI
の時の値を示す。)第6図にこの特性を示す。第6図は
横軸に温度差△T(R8は設定温度10、Rtは温度セ
ンサの値9)およびポンプ周波数量、縦軸nはモータの
回転数を示す。”maxは最大燃焼時、”minは最小
燃焼時の各々のモータ回転数である。
On the other hand, the air amount control section 11 has a temperature sensor 9 and a temperature set value 10.
The motor rotation speed n of the blower 4 is determined according to the temperature difference ΔT. (At this time, n is the temporary air ratio PA-PAI in Figure 2.
Shows the value when . ) Figure 6 shows this characteristic. In FIG. 6, the horizontal axis shows the temperature difference ΔT (R8 is the set temperature 10, Rt is the temperature sensor value 9) and the pump frequency amount, and the vertical axis n shows the rotation speed of the motor. ``max'' is the motor rotation speed at maximum combustion, and ``min'' is the motor rotation speed at minimum combustion.

モータの回転数nが決定すればこの値によりポンプ周波
数1を演算求める。この時ポンプ周波数量は図のE−D
にバラツキが発生する。ここで前述の空燃比設定部17
により最大燃焼時のポンプ11 ・\−ノ周波数量がfBであったとすればF線上で周波数fff
:演算するように燃焼量制御部12が動作する。
Once the rotation speed n of the motor is determined, the pump frequency 1 is calculated from this value. At this time, the pump frequency amount is E-D in the diagram.
Variations occur. Here, the above-mentioned air-fuel ratio setting section 17
Therefore, if the frequency amount of pump 11 at maximum combustion is fB, then the frequency fff on the F line
: The combustion amount control unit 12 operates to calculate.

(演算例f−(a−n+b)fB  a、bは定数)以
上の構成によりポンプのバラツキは修正し、常に求める
燃焼量で、求める空燃比で燃焼可能となるのである。
(Calculation example f-(a-n+b)fB where a and b are constants) With the above configuration, variations in the pump can be corrected, and combustion can always be performed at the desired combustion amount and air-fuel ratio.

尚、本実施例では空燃比設定部17で、最大燃焼θFB
の時にポンプ周波数1を設定したが、これに限らずどの
燃焼量で設定しても全く同一の働きが得られる。またフ
ァンヒータ以外の燃焼機やガス燃料であっても同様の効
果が得られる。
In this embodiment, the air-fuel ratio setting section 17 sets the maximum combustion θFB.
Although the pump frequency was set to 1 at the time of , the same effect can be obtained regardless of the combustion amount set. Further, the same effect can be obtained even with a combustion machine other than a fan heater or a gas fuel.

さらに安全性を白土させるために、燃料調整部15にポ
ンプ周波数量の可変幅(fHの最大値と最小値)を限定
し、この値以上に周波数量を持ってこなければピーク点
がない時には、ゴミづまり等により正常な空気量が送ら
れていない、あるいは正常な燃焼量が出ていないと判定
して燃焼を停止する構成にしてもよい。またピーク検知
部14はこの時の炎電流Ifl、ff2の値にも上下に
限界値を決めておくことによシ、フレームロッドの絶縁
不良や、既に不完全燃焼になっていると判定して燃焼を
停止することも容易に実現できる。
Furthermore, in order to ensure safety, the variable range of the pump frequency amount (maximum and minimum value of fH) is limited in the fuel adjustment unit 15, and when there is no peak point unless the frequency amount is brought above this value, It may be configured to stop combustion when it is determined that the normal amount of air is not being sent due to dust clogging or the like, or that the normal combustion amount is not being produced. In addition, by setting upper and lower limit values for the flame currents Ifl and ff2 at this time, the peak detection unit 14 can determine that there is poor insulation of the flame rod or that incomplete combustion has already occurred. It is also easy to stop combustion.

発明の詳細な説明したように本発明の燃焼制御装置は次の様な効果
がある。
As described in detail, the combustion control device of the present invention has the following effects.

(1)燃焼量、空燃比共最適点に自動設定されるため、
手動の調整手段が全くなく常に安定な燃焼を維持できる
(1) Since both the combustion amount and air-fuel ratio are automatically set to the optimal point,
There is no manual adjustment at all, and stable combustion can be maintained at all times.

@)空燃比設定部は、燃焼機の使用開始時の一定時間動
作するのみであり、それ以後は設定された値を基に演算
してモータ回転数および燃料供給量を決定するのみであ
る。従って燃焼中、酸素欠乏が発生してもこれにより空
燃比を補正することがないので、炎電流の変化を検出し
て酸欠が検知可能となり安全である。
@) The air-fuel ratio setting section only operates for a certain period of time when the combustion machine starts to be used, and thereafter only determines the motor rotation speed and fuel supply amount by calculating based on the set values. Therefore, even if oxygen deficiency occurs during combustion, the air-fuel ratio is not corrected, so oxygen deficiency can be detected by detecting changes in flame current, which is safe.

(3)空燃比設定部では炎電流の絶対値で制御するので
なく、炎電流のピーク点を検出する手段である。このた
め、ロッド電極の距離やロッド形状、印加電圧の差があ
っても炎電流のピーク点は全く影響されることがなく、
正確な空燃比の設定が可13ベーノ能である。
(3) The air-fuel ratio setting section does not perform control based on the absolute value of the flame current, but rather detects the peak point of the flame current. Therefore, even if there are differences in rod electrode distance, rod shape, or applied voltage, the peak point of the flame current is not affected at all.
Accurate air-fuel ratio setting is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の燃焼制御装置の制御ブロッ
ク図、第2図は空燃比とフレームロッドによる炎電流の
特性図、第3図a、bは燃焼量とポンプ周波数および送
風機モータ回転数の関係を示す特性図、第4図は空燃比
制御部の動作を説明するフロー図、第5図はその特性図
、第6図は燃焼量制御部の特性図、第7図は従来の空燃
比制御方式の特性図である。1・・・・・・バーナ、3・・・・・・燃料ポンプ(燃
料制御装置)、4・・・・・・送風機、6・・・・・・
フレームロッド、7・・・・・・燃焼制御回路、8・・
・・・・燃焼検知部、12・・・・・・燃焼制御部、1
3・・・・・・基準空気出力部、14・・・・・・ピー
ク検知部、15・・・・・・燃料調整部、16・・・・
・・記憶部、17・・・・・・空燃比設定部。代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図!第3図第2rlAの一;又空気九PAポンプ肩り教j (IIZ)
Fig. 1 is a control block diagram of a combustion control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of the air-fuel ratio and flame current due to the flame rod, and Fig. 3 a and b are the combustion amount, pump frequency, and blower motor. A characteristic diagram showing the relationship between the rotational speed, FIG. 4 is a flow diagram explaining the operation of the air-fuel ratio control section, FIG. 5 is a characteristic diagram thereof, FIG. 6 is a characteristic diagram of the combustion amount control section, and FIG. 7 is a conventional diagram. FIG. 3 is a characteristic diagram of the air-fuel ratio control method of FIG. 1...Burner, 3...Fuel pump (fuel control device), 4...Blower, 6...
Flame rod, 7... Combustion control circuit, 8...
... Combustion detection section, 12 ... Combustion control section, 1
3...Reference air output section, 14...Peak detection section, 15...Fuel adjustment section, 16...
...Storage section, 17...Air-fuel ratio setting section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure! Fig. 3 No. 2 rlA 1; Air 9 PA Pump shoulder instruction (IIZ)

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]燃焼機の燃料を燃焼するバーナと、このバーナへの燃料
の供給量を制御する燃料制御装置と、燃焼空気を供給す
る送風機と、燃焼火炎に挿入し炎イオン電流によりバー
ナの燃焼状態を検知するフレームロッドと、前記燃料制
御装置および送風機を駆動制御する燃焼制御回路を有し
、前記燃焼制御回路には、燃焼機の運転開始時に燃焼条
件を設定する空燃比設定部と、前記空燃比設定部で設定
した空燃比を保ちつつバーナの燃焼量を演算制御する燃
焼量制御部、およびフレームロッド出力を検出する燃焼
検知部を含み、前記空燃比設定部は、送風機より予め定
められた空気量を出力する基準空気出力部と、この時に
フレームロッド出力が最大となるように燃料供給量を調
整する燃料調整部と、ピーク検知部、および燃料調整部
の調整値を記憶し、必要な時に燃焼量制御部に出力する
記憶部とからなる燃焼制御装置。
A burner that burns the fuel of the combustion machine, a fuel control device that controls the amount of fuel supplied to the burner, a blower that supplies combustion air, and a blower that is inserted into the combustion flame and detects the combustion state of the burner using flame ion current. It has a flame rod, and a combustion control circuit that drives and controls the fuel control device and the blower, and the combustion control circuit includes an air-fuel ratio setting section that sets combustion conditions at the start of operation of the combustor, and the air-fuel ratio setting section. The air-fuel ratio setting section includes a combustion amount control section that calculates and controls the combustion amount of the burner while maintaining the air-fuel ratio set in the above, and a combustion detection section that detects the flame rod output. The reference air output section that outputs, the fuel adjustment section that adjusts the fuel supply amount so that the flame rod output is maximized at this time, the peak detection section, and the adjustment values of the fuel adjustment section are memorized, and the combustion amount is adjusted when necessary. A combustion control device consisting of a storage section that outputs to a control section.
JP60251320A1985-11-081985-11-08Combustion controlling deviceGrantedJPS62112918A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP60251320AJPS62112918A (en)1985-11-081985-11-08Combustion controlling device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP60251320AJPS62112918A (en)1985-11-081985-11-08Combustion controlling device

Publications (2)

Publication NumberPublication Date
JPS62112918Atrue JPS62112918A (en)1987-05-23
JPH0423167B2 JPH0423167B2 (en)1992-04-21

Family

ID=17221059

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP60251320AGrantedJPS62112918A (en)1985-11-081985-11-08Combustion controlling device

Country Status (1)

CountryLink
JP (1)JPS62112918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6106931A (en)*1990-12-272000-08-22Tokai Kogyo Kabushiki KaishaPanel unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6106931A (en)*1990-12-272000-08-22Tokai Kogyo Kabushiki KaishaPanel unit
US6287406B1 (en)1990-12-272001-09-11Tokai Kogyo Kabushiki KaishaMethods for making window panel units having in situ extruded frames
US6787085B2 (en)1990-12-272004-09-07Tokai Kogyo Kabushiki KaishaMethod for making window panel units having in situ extruded frames
US6803001B2 (en)1990-12-272004-10-12Tokai Kogyo Kabushiki KaishaMethod for making window panel units having in situ extruded frames

Also Published As

Publication numberPublication date
JPH0423167B2 (en)1992-04-21

Similar Documents

PublicationPublication DateTitle
CN110573800A (en)Method for controlling a gas-operated heating device
JPS62112918A (en)Combustion controlling device
JPH0584413B2 (en)
JPS6138376B2 (en)
JP2868067B2 (en) Combustion control device
JPS62245021A (en)Combustion control device
JPH0682038A (en) Vaporizer heater control method and apparatus
JP3008735B2 (en) Combustion control device
JPH06100336B2 (en) Combustion control device
JP2681709B2 (en) A combustion amount control method for a heater and a combustion amount control device for a heater.
JPS62258928A (en)Combustion control device
JPH073284B2 (en) Combustion control device
JPH0328586A (en)Control device for proportional valve
JPS62142923A (en)Combustion control device
JPS6349624A (en) combustion device
JPS63129218A (en) Combustion control device
JP4230131B2 (en) Combustion equipment
JPH01302023A (en) Combustion control device
JPS63105319A (en)Combustion control apparatus
JPH0727333A (en) Combustion control device
JPS62245022A (en) Combustion control device
JP3063466B2 (en) Combustion control device
JPH06100335B2 (en) Combustion control device
JPH0875147A (en)Oil burner
JP2002039528A (en) Combustion equipment

[8]ページ先頭

©2009-2025 Movatter.jp