【発明の詳細な説明】〔産業上の利用分野〕電解液循環型積層二次電池の枠付隔膜の製造方法に関す
るものであって、具体的に枠付隔膜の両面にポスト(突
起又はリブ)を設けることによ、す、従来の積層電池で
使用せざるを得なかったバッキングを使用せずに例えば
IkW級の積層電池に用いられる枠付隔膜を提供するこ
とを目的としている。[Detailed Description of the Invention] [Industrial Field of Application] This relates to a method for manufacturing a framed diaphragm for an electrolyte circulation type stacked secondary battery, and specifically includes posts (protrusions or ribs) on both sides of the framed diaphragm. By providing this, it is an object of the present invention to provide a framed diaphragm that can be used in, for example, IkW class stacked batteries without using a backing that has been required in conventional stacked batteries.
金属−ハロゲン電解液循環型積層二次電池例えば亜鉛−
臭素電池は、膜即ち隔膜によって区画された正、負極室
内に夫々正、負極が配置され、前記両極室に夫々電解液
が循環させられた状態で、充電時には負極ではzn廿+
2a−+zn %正極では2Br−+Br!+2e″の
反応を生じ、放電時には上記と逆の反応(酸化、還元)
が生じる。Metal-halogen electrolyte circulating type stacked secondary battery, e.g. zinc-
In a bromine battery, positive and negative electrodes are arranged in positive and negative electrode chambers separated by a membrane, or a diaphragm, and an electrolyte is circulated in each of the two electrode chambers, and during charging, the negative electrode is
2Br-+Br at 2a-+zn% positive electrode! +2e'' reaction occurs, and during discharge, the opposite reaction to the above (oxidation, reduction) occurs.
occurs.
したがって、各電極及び隔膜は先ず活物質に対し腐食等
の恐れがなく、且つ隔膜においてはエネルギー効率が低
下しないよう微細多孔質膜であることが必要である。Therefore, first of all, each electrode and diaphragm must be a microporous membrane so that there is no fear of corrosion of the active material, and the diaphragm does not reduce energy efficiency.
断fnス浦占上り、従婁から湛障の材質として活物質の
ハロゲンに対性を有するポリエチレン、ポリブロピレン
等のプラスチックで、かつ臭素等の透過性を良好ならし
めるため多孔質とした隔膜部材が用いられている。The diaphragm member is made of plastic such as polyethylene or polypropylene, which has compatibility with halogen as an active material, and is porous to improve the permeability of bromine, etc. It is used.
第6図は、この種の金属−ハロゲン二次電池を代表する
一例として、亜鉛−臭素電解液循環型積層二次電池の構
成を示し、図中の符号(1)は締付端板、(2)は積層
端板、(3)は集電メツシュを備えた電極端板、(4)
は中央部にスペーサーメツシュを備えたバッキング、(
5)は中央部の隔膜部材aQと一体成型された絶縁枠(
5/)を有する枠付隔膜であり、該絶縁枠(51)に陽
極マニホールド(7)と陰極マニホールド(8)が夫々
穿設され、この陽極マニホールド(力と前記隔膜部材a
1との間にマイクロチャンネル(9)が形成されている
。(6)は中央部の電極aりと一体成型された絶縁枠(
6′)を有する枠付中間電極であって、このような中間
電極が複数牧夫々の間に前記バッキング(4)を介在さ
せて積層電池を構成させである。α4は締付用ボルトを
挿通ずる穴であり、ここに締付ボルトを通し、ナツトを
締めることにより一体化されて積層電池となる。FIG. 6 shows the configuration of a zinc-bromine electrolyte circulation type stacked secondary battery as a representative example of this type of metal-halogen secondary battery, and the reference numeral (1) in the figure indicates the fastening end plate; 2) is a laminated end plate, (3) is an electrode end plate with a current collecting mesh, (4)
is a backing with a spacer mesh in the center, (
5) is an insulating frame (
5/), an anode manifold (7) and a cathode manifold (8) are respectively perforated in the insulating frame (51), and the anode manifold (force and the diaphragm member a
A microchannel (9) is formed between the two. (6) is an insulating frame (
6'), and the backing (4) is interposed between a plurality of such intermediate electrodes to form a stacked battery. α4 is a hole through which a tightening bolt is inserted, and by passing the tightening bolt through this hole and tightening a nut, the cells are integrated to form a laminated battery.
併して、従来の枠付隔膜(5)の成型方法は、多孔質プ
ラスチックからなる隔膜部材を予め金型内にインサート
レ、ヒートプレス法によって成型していたが、成型後の
絶縁枠の厚さにヒートプレス固有のバラツキがあり、四
隅が最小厚さとなる傾向があった。そのため、前記の如
く金型内に隔膜部材をインサートした後、枠部を形成す
るプラスチックINを金型内キャビライへインジェクシ
ョンモールド法により圧入して成をすることが行われて
いる。In addition, in the conventional molding method of the framed diaphragm (5), the diaphragm member made of porous plastic was molded in advance in a mold by insert tray and heat press method, but the thickness of the insulating frame after molding was There were variations inherent in heat pressing, and the four corners tended to have the smallest thickness. Therefore, after inserting the diaphragm member into the mold as described above, the plastic IN forming the frame is press-fitted into the cavity in the mold by injection molding.
一方、これ以外の別の問題として、従来の枠付隔膜(5
)は第7図、第8図に示す如く隔膜部材α(Iは肉厚が
薄く、絶縁枠6勺が厚くなっており、且つ隔膜部材Ql
が絶縁枠(5つの略中央に位置するような構造になって
いた。このため、概念的には第9図の如き積層電池を組
立てる場合に、実際には第6図のヨウに「隔膜−パッキ
ングー電極−パツキンクー隔膜」の順に積層する。これ
は第10図に示す如く隔膜部材α〔が軟質素材であるた
め撓みを生じ、隔膜部材Qlの一部が電極α力に接触し
、かなりの面積が貼り付くことがある。この状態を生じ
た・場合は、隔膜部材α1と電極(Iりの間の空間住ジ
が閉塞されることになり、電解液の流路もまた閉塞状態
になるので、ここを通過する電解液の流量が減少し、さ
らに他の各隔膜−見極間の空間α9を通過する電解液量
を不均一にするので、全体として著しく電池の性能を低
下させることになる。その対策として従来から前述の第
6図のように「隔暎−パッキングー電極−パッキングー
隔膜」の順に積層し、このバッキング(4)の中央部に
設けられているスペーサーメツシュaυを介在させるか
、もしくスペーサーメツシュを隔膜部材部の両面又は電
極(13の両面のいずれかに固定する形で止めて積層組
立を行い、隔膜部材a1の撓みを防止すると共に、各セ
ル(隔膜−電極間空間)の均一厚さ化を図り、電解液流
路、流量、流量分布の均一化を確保して来た。On the other hand, there is another problem with the conventional framed diaphragm (5
) is a diaphragm member α (I has a thin wall thickness and an insulating frame 6 is thick, as shown in FIGS. 7 and 8), and a diaphragm member Ql
was located approximately in the center of the insulating frame (five insulating frames).For this reason, when assembling a stacked battery as shown in Figure 9 conceptually, the "diaphragm - Packing - electrode - packing - diaphragm.This is because the diaphragm member α [is made of a soft material and bends as shown in Fig. 10, and a part of the diaphragm member Ql comes into contact with the electrode α force, causing a considerable amount of force. The area may stick. If this condition occurs, the space between the diaphragm member α1 and the electrode (I) will be blocked, and the electrolyte flow path will also be blocked. Therefore, the flow rate of the electrolytic solution passing through this decreases, and the amount of electrolytic solution passing through the space α9 between each of the other diaphragms and the electrode becomes uneven, which significantly reduces the performance of the battery as a whole. As a countermeasure, conventionally, as shown in Fig. 6, the layers are laminated in the order of "diaphragm-packing-electrode-packing-diaphragm", and the spacer mesh aυ provided in the center of this backing (4) is A laminated assembly is performed by interposing a spacer mesh or fixing a spacer mesh to either both sides of the diaphragm member part or both sides of the electrode (13) to prevent the diaphragm member a1 from deflecting, and to prevent the diaphragm member a1 from deflecting. - The space between the electrodes) has been made uniform in thickness, and the electrolyte flow path, flow rate, and flow rate distribution have been made uniform.
しかし、このような従来技術においては、電池組立時に
前述の手順で積層してゆかねばならないのものが困難さ
を増して来た。However, in such prior art, it has become increasingly difficult to stack the batteries according to the above-mentioned procedure when assembling the battery.
このように、従来の枠付隔膜が積暦電池組立後、運転時
に撓みを生じ、隣接する電極面へ貼付くことによって電
解液の流れに支障を生じるという問題があった。そこで
本発明は、この問題を改善し、例えば1にW級の多セル
積層電池においても使用に耐える撓みの生じない枠付隔
膜の製造方法を提供せんとするものである。As described above, there is a problem in that the conventional framed diaphragm is bent during operation after assembly of the battery, and sticks to the adjacent electrode surface, thereby impeding the flow of the electrolyte. SUMMARY OF THE INVENTION The present invention aims to improve this problem and provide a method for manufacturing a diaphragm with a frame that does not cause deflection and can be used even in, for example, a W class multi-cell stacked battery.
本発明においては、上記の従来技術の問題点を解消する
ために次の手段を採用するものである。In the present invention, the following means are employed to solve the problems of the prior art described above.
即ち、多孔質プラスチックからなる隔膜部材を予め金型
内にインサートし、該隔膜部材の外周にプラスチックか
らなる枠部をインジェクションモールド法により一体成
型するに当り、前記隔膜部材の両面にポスト(突起又は
リブ)を設け、かつ前記金型の固定側、可動側双方のイ
ンサートクランプ面に前記隔膜部材ポストの逃げ穴を設
けた金型製造方法である。That is, when a diaphragm member made of porous plastic is inserted into a mold in advance and a frame made of plastic is integrally molded around the outer periphery of the diaphragm member by injection molding, posts (protrusions or In this mold manufacturing method, a rib is provided, and an escape hole for the diaphragm member post is provided on both the fixed and movable insert clamp surfaces of the mold.
又、上記隔膜部材の両面のポストが、ヒートプレス法又
はロール成型法により予め成型されたことをも要旨の一
部とする枠付隔膜の製造方法である。Further, in the method of manufacturing a framed diaphragm, the gist of the method is that the posts on both sides of the diaphragm member are molded in advance by a heat press method or a roll molding method.
上記手段を要旨とする本発明によれば、従来の枠付隔膜
で問題とされていた積層電池組立後の運転時に生ずる撓
みによる電極面への貼付きが解消され、電解液の流れに
支障を来す恐れがなくなるという作用がもたらされる。According to the present invention, which has the above-mentioned means as a gist, sticking to the electrode surface due to deflection that occurs during operation after assembling a stacked battery, which has been a problem with conventional framed diaphragms, is eliminated, and the flow of electrolyte is not hindered. This has the effect of eliminating the fear that this will occur.
次に、第1〜5図に示す本発明の一実施例に基づいて説
明をさらに補足する。Next, the explanation will be further supplemented based on one embodiment of the present invention shown in FIGS. 1 to 5.
第1図は、本発明の特徴とする枠付隔膜の断面概念図で
あり、第2図は金型のインサートクランプ面に設けたポ
スト逃げ穴を示す断面図であり、第3図は金型内にポス
ト付隔膜部材をインサートした時の金型断面図であり、
第4図はポスト付隔膜部材の全体を示す平面図であり、
第5図は金型内へポスト付隔膜部材をインサートする手
順を示す斜視図である。Fig. 1 is a conceptual cross-sectional view of a frame-equipped diaphragm that is a feature of the present invention, Fig. 2 is a cross-sectional view showing post escape holes provided on the insert clamping surface of the mold, and Fig. 3 is a cross-sectional view showing the post escape hole provided on the insert clamping surface of the mold. It is a cross-sectional view of the mold when a diaphragm member with a post is inserted inside.
FIG. 4 is a plan view showing the entire diaphragm member with posts,
FIG. 5 is a perspective view showing the procedure for inserting the diaphragm member with posts into the mold.
各図に共通の(161は、本発明のポスト付隔膜部材で
あって、その両面にポスト即ち複数の突起C17)が設
けである。(lυは固定側金型、(1!1は可動側金型
、f2(1はキャピテイで、ここに枠部を形成する例え
ばポリエチレン等のプラスチックをインジェクションモ
ールド法により圧入される。(ハ)は前記ポスト付隔膜
部材の両側部の適当な位置に設けられている位置決め穴
であり、この穴が固定側金型α樽のクランプ面四に設け
である位置決めビン勾に嵌合するようにしである。(ハ
)は真空吸引孔で、これによりポスト付隔膜部材(IQ
が固定側金型α秒のクランプ(イ)へ密着させられる。Common to each figure (161 is a diaphragm member with posts of the present invention, and posts, that is, a plurality of protrusions C17) are provided on both sides of the diaphragm member. (lυ is the fixed side mold, (1!1 is the movable side mold, f2 (1 is the capity, where the plastic such as polyethylene that forms the frame is press-fitted by injection molding. These are positioning holes provided at appropriate positions on both sides of the diaphragm member with posts, and these holes are designed to fit into positioning holes provided on the clamping surface 4 of the fixed side mold α barrel. (C) is a vacuum suction hole, which allows the diaphragm member with posts (IQ
is brought into close contact with the fixed side mold α second clamp (A).
本発明におけるポスト付隔膜部材aeのポストは、この
実施例のように柱状突起としてもよいが、必ずしもこれ
に限定されず、すじ状突起即ちリブであってもよい。こ
うすれば仮に該隔膜部材αeに撓みが発生したような場
合でも、隣接電極面へ接触するのはポストの突起だけで
、膜部本体はそのポストに支えられて電極との間に空間
を確保し、この空間を電解液が流れることになるので、
電池のエネルギー効率に支障を来すことはない。The posts of the post-attached diaphragm member ae in the present invention may be columnar projections as in this embodiment, but are not necessarily limited to this, and may be striped projections, that is, ribs. In this way, even if the diaphragm member αe is bent, only the protrusion of the post will come into contact with the adjacent electrode surface, and the membrane main body will be supported by the post to ensure a space between it and the electrode. However, since the electrolyte will flow through this space,
This does not affect the energy efficiency of the battery.
上記本発明の実施例でも説明したように、本発明によれ
ば次の効果を奏することができる。As explained in the embodiments of the present invention, the present invention provides the following effects.
(1)積層電池を組立てる場合にスペーサーメツシュを
不要とした。(1) No spacer mesh is required when assembling a stacked battery.
(11)前記0)の結果、部品数が少くなり積層電池が
コンパクトになり、かつ大容量(例えばIkW級)の積
層電池の組立が可能となった。(11) As a result of the above 0), the number of parts is reduced, the stacked battery becomes compact, and it becomes possible to assemble a large capacity (for example, IkW class) stacked battery.
QID 各セルの電解液の流量分布の均一化が図られ
た。QID The flow distribution of the electrolyte in each cell was made uniform.
(V) 本発明に用いる金型は従来用にも転用するこ
とが可能である。(V) The mold used in the present invention can also be used for conventional molds.
第1〜5図は本発明方法の一実施例を示し、第1図はポ
スト付枠付隔膜の断面概念図、第2図は金型のインサー
トクランプ面に設けたポスト逃げ穴を示す断面図、第6
図は金型内にポスト付隔膜部材をインサートした時の金
型断面図、第4図はポスト付隔膜部材の全体を示す平面
図、第5図は、金型内へポスト付隔膜部材をインサート
する手11を示す斜視図である。第6図は亜鉛−臭素積
Wj?l!池の基本構成を示す説明図、第7図は従来の
枠付膜の平面図、第8図は第7図のA−A断面図、第9
図は従来の枠付隔膜で積層電池を組立てた場合の断面概
念図、第10図は従来の枠付隔膜に撓みを生じた場合の
電極との接触を示す断面概念図である。αつ・・・空間、θe・・・ポスト付隔膜部材、αη・
・・ポスト、(1ト・・固定側金型、11・・・可動側
金型、CD・・・キャビティ、(21)・・・位置決め
穴、翰・・・クランプ面、に)・・・位置決めビン、(
ハ)・・・真空吸引孔。代理人 弁理士 木 村 三 朗第1図第2図第3図R第4図第7図第8図第9図第10図Figures 1 to 5 show an embodiment of the method of the present invention, Figure 1 is a cross-sectional conceptual diagram of a diaphragm with a post and frame, and Figure 2 is a cross-sectional diagram showing a post clearance hole provided on the insert clamping surface of a mold. , 6th
The figure is a cross-sectional view of the mold when the diaphragm member with posts is inserted into the mold, Figure 4 is a plan view showing the entire diaphragm member with posts, and Figure 5 is the diaphragm member with posts inserted into the mold. It is a perspective view showing hand 11 which does. Figure 6 shows the zinc-bromine product Wj? l! An explanatory diagram showing the basic structure of a pond, Fig. 7 is a plan view of a conventional framed membrane, Fig. 8 is a sectional view taken along line A-A in Fig. 7, and Fig. 9
The figure is a cross-sectional conceptual diagram of a stacked battery assembled using a conventional framed diaphragm, and FIG. 10 is a cross-sectional conceptual diagram showing contact with an electrode when the conventional framed diaphragm is bent. α...Space, θe...Diaphragm member with post, αη・
...Post, (1..Fixed side mold, 11..Movable side mold, CD..Cavity, (21)..Positioning hole, wire...Clamping surface,)... Positioning bin, (
c)...Vacuum suction hole. Agent Patent Attorney Sanro Kimura Figure 1 Figure 2 Figure 3 R Figure 4 Figure 7 Figure 8 Figure 9 Figure 10
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59178224AJPS6158161A (en) | 1984-08-29 | 1984-08-29 | Manufacture of frame-mounted barrier membrane for stacked battery |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59178224AJPS6158161A (en) | 1984-08-29 | 1984-08-29 | Manufacture of frame-mounted barrier membrane for stacked battery |
| Publication Number | Publication Date |
|---|---|
| JPS6158161Atrue JPS6158161A (en) | 1986-03-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59178224APendingJPS6158161A (en) | 1984-08-29 | 1984-08-29 | Manufacture of frame-mounted barrier membrane for stacked battery |
| Country | Link |
|---|---|
| JP (1) | JPS6158161A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019054216A1 (en)* | 2017-09-14 | 2019-03-21 | 日産自動車株式会社 | Separator for lithium ion battery |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019054216A1 (en)* | 2017-09-14 | 2019-03-21 | 日産自動車株式会社 | Separator for lithium ion battery |
| JP2019053877A (en)* | 2017-09-14 | 2019-04-04 | 三洋化成工業株式会社 | Separator for lithium ion battery |
| Publication | Publication Date | Title |
|---|---|---|
| JP7271601B2 (en) | Battery plates useful in bipolar battery assemblies and method of preparation | |
| US10141598B2 (en) | Reinforced bipolar battery assembly | |
| EP3480867B1 (en) | Bipolar battery assembly | |
| JP7510958B2 (en) | Battery assembly with integral edge seal and method of forming same | |
| JP4559566B2 (en) | Square sealed battery | |
| US3941615A (en) | Battery construction | |
| US12107253B2 (en) | Active materials useful in balancing power and energy density of a battery assembly | |
| US7393611B2 (en) | Sealed rechargeable battery and battery module | |
| JPS62268054A (en) | Storage battery | |
| US20170229715A1 (en) | Method of Fabricating Bipolar Pate of Flow Cell | |
| US6468318B1 (en) | Case partition design for continuous plate strap batteries | |
| US5002841A (en) | Composite end block for a battery | |
| EP3324463B1 (en) | Reinforced bipolar battery assembly | |
| US6780540B2 (en) | Element sleeve for a battery | |
| WO2021136015A1 (en) | Method for manufacturing bipolar battery, method for manufacturing bipolar plate thereof, and method for manufacturing unipolar plate thereof | |
| US4209575A (en) | Multi-cell batteries | |
| JP4182314B2 (en) | Battery electrode group | |
| JPH01183071A (en) | Electrolyte circulation type stacked secondary battery | |
| JPS6158161A (en) | Manufacture of frame-mounted barrier membrane for stacked battery | |
| US20040031143A1 (en) | Method of manufacturing metal air cell system | |
| CN218939761U (en) | Battery, battery module and vehicle | |
| KR100776765B1 (en) | Large capacity battery | |
| JP2853296B2 (en) | Bipolar electrode plate for stacked batteries | |
| JPS6158159A (en) | Secondary battery | |
| JP2588631Y2 (en) | Sealed lead-acid battery |