Movatterモバイル変換


[0]ホーム

URL:


JPS6152855A - Percutaneous blood oxygen partial pressure measuring sensor - Google Patents

Percutaneous blood oxygen partial pressure measuring sensor

Info

Publication number
JPS6152855A
JPS6152855AJP59173783AJP17378384AJPS6152855AJP S6152855 AJPS6152855 AJP S6152855AJP 59173783 AJP59173783 AJP 59173783AJP 17378384 AJP17378384 AJP 17378384AJP S6152855 AJPS6152855 AJP S6152855A
Authority
JP
Japan
Prior art keywords
noble metal
cathode
oxygen
anode
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59173783A
Other languages
Japanese (ja)
Inventor
小郷 克幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries LtdfiledCriticalSumitomo Electric Industries Ltd
Priority to JP59173783ApriorityCriticalpatent/JPS6152855A/en
Publication of JPS6152855ApublicationCriticalpatent/JPS6152855A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】(技術分野)本発明は箱:極性を用いた経皮癩中6シ素ガスセンサに
関する。  。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a box-polar transcutaneous leprosyta6-silicon gas sensor. .

(従来技術とその欠点)力抜特に動脈力液中の酸素濃度を知ることは、新生児並
びに人工呼吸を必要とする箪傷患者の呼吸管理を行なう
上で極めて重要である。従来。
(Prior Art and Its Disadvantages) Knowing the oxygen concentration in the arterial fluid during strain relief is extremely important in managing the breathing of newborn infants and patients with dimples who require artificial respiration. Conventional.

動脈力液中の酸素濃度(または分圧、以下同じ)を測定
する方法としては、動脈中の力抜を抜き取って直接測定
する方法が主として用いられてきたが、この方法では経
時的に連続判定を行なうことが不可能であること、また
患者に苦痛を与えることが問題であった。特に呼吸管理
を要する新生児においては、低酸素による脳障害、その
他の致命的な障害と、高酸素による網膜破壊を防止する
ために動脈葡酸素分圧を常時測定し、測定値をもとに必
要な処理をとることが要求されているが、従来の動脈前
の裸面による方法では著しく困難と患者への負担を伴う
The main method used to measure the oxygen concentration (or partial pressure, the same applies hereinafter) in arterial fluid has been to remove the strain in the artery and directly measure it, but this method requires continuous determination over time. The problem was that it was impossible to perform the procedure and that it caused pain to the patient. Particularly in newborn infants who require respiratory management, arterial oxygen partial pressure is constantly measured to prevent brain damage and other fatal disorders caused by hypoxia and retinal damage caused by hyperoxia. However, the conventional method using a bare surface in front of the artery is extremely difficult and burdens the patient.

経皮酸素測定法は上記の直接法とは異なり、力抜から皮
下組織を通じて拡散された酸素を皮膚の裏面で捕捉し患
者に苦痛を与えることなく、経時的に連続測定が出来る
ものである。経皮酸素測定法に用いるセンサーの機構は
、特殊なりラーク型複合酸素電極に定温加熱機構を加え
たものでこれを被験者の皮膚表面にあてがうと皮下の組
織内の酸素が皮膚から拡散して、電極膜を通って貴金属
陰極に到達し、ここで還元されて水を生じる。この電解
電流から組織内の酸素分圧値が得られるのであるが、こ
の際センサーに接する部分あるいはその附近の皮I、1
を適温に加熱するとセンサー附近の皮下組織が局部的に
動脈化するので、センサーで測定される酸素分圧は電極
構造や測定条件が適切であれば動脈面のものに実質的に
等しいものとなる。
Transcutaneous oximetry differs from the above-mentioned direct method in that it captures oxygen diffused through the subcutaneous tissue after straining on the back of the skin, allowing continuous measurement over time without causing pain to the patient. The sensor mechanism used in transcutaneous oxygen measurement is a special Lark-type compound oxygen electrode with a constant temperature heating mechanism added. When this is applied to the subject's skin surface, oxygen in the subcutaneous tissues diffuses from the skin. It passes through the electrode membrane to the noble metal cathode, where it is reduced to produce water. The oxygen partial pressure value in the tissue can be obtained from this electrolytic current.
When heated to an appropriate temperature, the subcutaneous tissue near the sensor becomes locally arterialized, so the oxygen partial pressure measured by the sensor will be substantially equal to that at the arterial surface if the electrode structure and measurement conditions are appropriate. .

次に、動脈前酸素濃度の経皮的測定の原理を説明する。Next, the principle of transcutaneous measurement of pre-arterial oxygen concentration will be explained.

センサーを皮膚に密着させ皮膚との接触面のセンサ一温
度を43〜44°Cに加熱すると、この部分の皮膚が加
熱されて皮下組織が動脈化する。
When the sensor is placed in close contact with the skin and the temperature of the sensor surface in contact with the skin is heated to 43 to 44°C, the skin in this area is heated and the subcutaneous tissue becomes arterial.

そのため組織内の酸素濃度は動脈崩中に含まれるものと
実僧的に等しいものとなり、この酸素が皮膚組織を拡散
して、膜を透過しさらに電解液中を拡散して陰極に到達
する。この際、陰極と陽極の間に−0,5〜0.8ボル
トの電圧を加えておくと。
Therefore, the oxygen concentration within the tissue is essentially the same as that contained in arterial collapse, and this oxygen diffuses through the skin tissue, permeates the membrane, and further diffuses through the electrolyte to reach the cathode. At this time, apply a voltage of -0.5 to 0.8 volts between the cathode and anode.

陰極では酸素の還元が、陽極では銀の1化反応が   
  1行なわれる。なお、この時の電解液には塩化カリ
ウム(KcI )が主体の電解液を用いる。
Oxygen reduction occurs at the cathode, and silver monide reaction occurs at the anode.
It is performed once. In this case, an electrolytic solution containing mainly potassium chloride (KcI) is used.

陰極(白金または金)の表面では02+4H”+4e−=4H20(酸性の場合)O□+
2H20+4e−=40H(中性またはアルカリ性の場
合)と02量に応じた電子の消費を生じ陽極(銀)の部分では4Ag+4(1−−4AgCI +4e(あらゆるpH
において)と電子の生成がある。
On the surface of the cathode (platinum or gold) 02+4H"+4e-=4H20 (if acidic) O□+
2H20+4e- = 40H (in case of neutral or alkaline conditions) and electrons are consumed according to the amount of 02, and in the anode (silver) part 4Ag+4 (1--4AgCI +4e (at any pH)
) and the generation of electrons.

その結果、電極間に電解電流が流れるが、この電流は膜
を透過し、電解液中を拡散して陰極に到達した酸素分子
数、したがって膜表面での酸素ガス濃度に比例するので
この冨脈を測定することにより皮下組織したがって動脈
崩内の酸素濃度を近似的に測定できることになる。
As a result, an electrolytic current flows between the electrodes, but this current is proportional to the number of oxygen molecules that permeate the membrane, diffuse in the electrolyte, and reach the cathode, and is therefore proportional to the oxygen gas concentration at the membrane surface. By measuring this, the oxygen concentration in the subcutaneous tissue and therefore in the arterial collapse can be approximately measured.

第2図は最近開発されてこれまで使用されてきた在来の
動脈抑等通中の酸素濃度または酸素分圧の連続測定用゛
センサー構造の一例を示しているが図中1はセンサーの
電極支持部を有する蓋体、2は加熱用部材、3は酸素が
選択的に走過する半透・  性の電(1(膜8を下端面
VC=定した膜保持部材、4は電解液Eを封止するため
のシール部材、5はニクロム線等の電熱用コイルを巻装
するための部材2に設けた環状凹所、6は蓋体1と部材
2とを連結するためのねじ孔、7は部材2の半径方向内
側に張り出した伝熱用平板、 10は白金または金環製
の円筒状陰極、11は例えば銀製の円筒状陽極、12は
陰極10と陽極11とを絶縁するためのガラス環装の絶
縁材、14は伝熱用平板に設けた対皮眉面用開孔、Eは
餉講γ液である。
Figure 2 shows an example of a recently developed sensor structure for continuous measurement of oxygen concentration or oxygen partial pressure during conventional arterial flow. 2 is a heating member; 3 is a semi-permeable electrolyte (1) through which oxygen selectively passes; 1 is a membrane holding member with a lower end face VC of the membrane 8; 4 is an electrolytic solution E; 5 is an annular recess provided in member 2 for winding an electric heating coil such as nichrome wire; 6 is a screw hole for connecting lid 1 and member 2; Reference numeral 7 denotes a heat transfer flat plate projecting inward in the radial direction of the member 2, 10 a cylindrical cathode made of platinum or a metal ring, 11 a cylindrical anode made of, for example, silver, and 12 a glass for insulating the cathode 10 and anode 11. Insulating material for the ring, 14 is a hole for the eyebrow surface of the skin provided in the heat transfer flat plate, and E is a liquid containing gamma liquid.

しかしながら、上記従来のセンサは電極反応により酸素
を消費するため計測中、皮膚層に酸素フラックスを生じ
、このため皮屑の酸素透過性が測定値に影響を及ぼすと
いう欠点がある。すなわち。
However, the above-mentioned conventional sensor has the disadvantage that oxygen is consumed by the electrode reaction, which causes an oxygen flux in the skin layer during measurement, and thus the oxygen permeability of the skin debris affects the measured value. Namely.

計測に先立ちセンサは所定雰囲気内(例えば空気中)で
較正されるが、これを人体に適用した場合皮膚の酸素透
過抵抗が作用するため、測定値は実際の動脈廂値より低
い酸素分圧値を示すこととなる。また、被測定者個人に
より或は同一被測定者であっても測定部位によって皮屑
の酸素透過性が異なるために測定値にばらつきを生ずる
Prior to measurement, the sensor is calibrated in a predetermined atmosphere (for example, air), but when applied to the human body, the oxygen permeation resistance of the skin comes into play, so the measured value may be a lower oxygen partial pressure value than the actual arterial value. This will show the following. In addition, the oxygen permeability of skin scraps varies depending on the person to be measured, or even depending on the measurement site of the same person, resulting in variations in measured values.

(発明の構成)本発明は上記従来の欠点を除去すべくなされたもので、
このため本発明は電極先端部とガス透過性膜との間に電
解液層を保持してなる電極法による経皮崩中酸素分圧到
定センサfおいて、前記1!極が絶縁層を間にはさんで
隣接配置°された貴金属陰極および貨金属陽極と銀/塩
化銀参照電極とからなり、*金属陰極が銀/塩化銀参照
−g&に対して−0,4〜−〇、9v間で定電位を保つ
ように貴金属陰極と貴金属陽極間に電圧を印加すること
を特徴とする。
(Structure of the Invention) The present invention has been made to eliminate the above-mentioned conventional drawbacks.
Therefore, the present invention provides a percutaneous oxygen partial pressure reaching sensor f using an electrode method in which an electrolyte layer is held between an electrode tip and a gas permeable membrane. The electrode consists of a precious metal cathode and a precious metal anode and a silver/silver chloride reference electrode arranged adjacently with an insulating layer in between; It is characterized in that a voltage is applied between the noble metal cathode and the noble metal anode so as to maintain a constant potential between 9V and 9V.

(作用)上記本発明の構成によれば、貴金属陰極では。(effect)According to the above configuration of the present invention, in the noble metal cathode.

02 + 4H+ 4 e  = 4H20(酸性の場
合)02 + 21(20+ 4e  = 40H(中
性またはアルカリ性の場合)と酸素が分解され、かつその酸素量に応じた電子の消費
を生じ、一方貴金属陽極では。
02 + 4H+ 4e = 4H20 (in acidic case) 02 + 21 (20+ 4e = 40H (in neutral or alkaline case)) Oxygen is decomposed and electrons are consumed according to the amount of oxygen, while noble metal anode Well then.

4H20= O’2 + 4H+ 4 e  (酸性ま
たは中性の場合)40H−−02−1−2I−(20+4e  (アルカ
リ性の場合)と酸素が発生されかつそれに相応した電子が供給される
。すなわち、陰極で消費される酸素および電子の量は両
枠で発生される酸素および電子の量と同じであり、これ
ら両極を接近させることにより実質上M、極反応による
酸素消費をなくすことができる。このため計測中皮屑層
の酸素フラックスがなくなり、測定([への皮膚の酸素
透過性の影響を排除することができる。そして両極間に
は、その都度の外部酸素濃度と平衡した電解液中の酸素
濃度に応じた電流が流れるので、これを測定することに
より酸素分圧を測定することができる。
4H20=O'2 + 4H+ 4e (for acidic or neutral conditions) 40H--02-1-2I-(20+4e (for alkaline conditions)) Oxygen is generated and corresponding electrons are supplied. That is, The amount of oxygen and electrons consumed at the cathode is the same as the amount of oxygen and electrons generated at both frames, and by bringing these two electrodes close to each other, it is possible to substantially eliminate oxygen consumption due to the polar reaction. Therefore, there is no oxygen flux in the mesothelial debris layer during measurement, and the influence of skin oxygen permeability on the measurement can be eliminated. Since a current flows depending on the oxygen concentration, the oxygen partial pressure can be measured by measuring this current.

(実施例)以下1本発明の実施例を添附図に沼って説明するに、第
1図は本発明の一実施例を示すもの       艷で
あり、同図において第2図と同一参照番号は同一構成部
品を示す。
(Example) Below, an embodiment of the present invention will be explained with reference to the attached drawings. Figure 1 shows an embodiment of the present invention. In the same figure, the same reference numbers as in Figure 2 are used. Identical components are shown.

本発明センサでは、上述したように陰極で酸素を分解す
ると同時に陽極で酸素を発生させるべく。
In the sensor of the present invention, as described above, oxygen is decomposed at the cathode and at the same time oxygen is generated at the anode.

これら陰極15および陽極16に白金または金等の貴金
属を用い、これら両電極15.16を間に薄い絶縁層1
7をはさんで近接配置する。しかし、陰極15゜陽極1
6ともに貴金属を用いた場合、第1図の2電極方式を採
用したのでは電極電位が一様に定まらないために酸素分
圧測定が困難となる。そこで銀/塩化銀電極等の参照電
極11を用いて3電極方式とし、該参照電極11vc対
し陰極15の電位が−0,4〜−019V間で定電位に
保たれるように陰極15および陽極16間に電圧を印加
する。このようにして陰極15の電位が参照電極11に
対し定電位に設定されると陰極で酸素が還元される。ま
た陽極16では陰極で起こる反応と等しい電気量の反応
が起るように電位が制御される。かかる電圧制御はポテ
ンショスタットを用いた三電極方式の回路により容易に
実現し得る。このよ5ffして、センサに入り。
A noble metal such as platinum or gold is used for these cathodes 15 and anodes 16, and a thin insulating layer 1 is placed between these electrodes 15 and 16.
Place them close to each other with 7 in between. However, cathode 15° anode 1
When precious metals are used for both electrodes 6 and 6, if the two-electrode method shown in FIG. 1 is adopted, the electrode potential is not uniformly determined, making it difficult to measure oxygen partial pressure. Therefore, a three-electrode system is used using a reference electrode 11 such as a silver/silver chloride electrode, and the cathode 15 and anode A voltage is applied between 16 and 16. In this way, when the potential of the cathode 15 is set to a constant potential with respect to the reference electrode 11, oxygen is reduced at the cathode. Further, the potential at the anode 16 is controlled so that a reaction with the same amount of electricity as the reaction occurring at the cathode occurs. Such voltage control can be easily realized by a three-electrode circuit using a potentiostat. After 5ff, it enters the sensor.

陰極に到達した酸素は全て還元されてその量に比例した
電流が測定される。陽極では陰極で消費された酸素量と
等しい量のは素が発生される。
All oxygen that reaches the cathode is reduced, and a current proportional to the amount is measured. At the anode, an amount of hydrogen is generated equal to the amount of oxygen consumed at the cathode.

上記陰極15と陽極16との間の距離、つまりは絶縁層
17の厚さは、陽極16で発生した酸素が外部に逃げず
そのまま陰極15で消費され、センサ全体で酸素消費が
全くないような状態をつくるため無限に接近することが
理想的であるが、実際には電極膜8と電解液Eの薄層の
厚さの相とほぼ同じであるか又はそれ以下であればよ<
、数マイクロメートル以下であることが望ましい。
The distance between the cathode 15 and the anode 16, that is, the thickness of the insulating layer 17, is set such that the oxygen generated at the anode 16 does not escape to the outside and is consumed as it is at the cathode 15, and there is no oxygen consumption in the entire sensor. In order to create a state, it is ideal that they approach each other infinitely, but in reality, the thickness of the thin layer of the electrode film 8 and the electrolytic solution E should be approximately the same or less than that.
, preferably several micrometers or less.

また、陰極15および陽極16の厚さも、電極膜8と電
解液の薄層の厚さとほぼ同程度か又はそれ以下とされ、
好ましくは数マイクロメートル以下である。これら陰極
、陽極の薄い金属膜は、イオンスパッタリング法、真空
蒸着法、スパッタ蒸着法。
Further, the thickness of the cathode 15 and the anode 16 is approximately the same as or less than the thickness of the electrode film 8 and the thin layer of electrolyte,
Preferably it is several micrometers or less. These thin metal films for the cathode and anode can be formed using ion sputtering, vacuum evaporation, or sputter evaporation.

クラスターイオン蒸着法等の物理的デポジション法を用
いてつくることができる。また、陰極15゜陽極16間
の絶縁層17は、上記の物理的デポジション法に加えて
、CVD法、プラズマCVD法、プラズマ重合法等化学
的デポジション法を用いてつくることができる。
It can be produced using a physical deposition method such as a cluster ion deposition method. Further, the insulating layer 17 between the cathode 15° and the anode 16 can be formed using a chemical deposition method such as a CVD method, a plasma CVD method, or a plasma polymerization method in addition to the above-mentioned physical deposition method.

(効果)以上のように1本発明によれば陰極でしt素が還元され
ると同時に陽極で酸素を発生させ、かつ両極を近接して
配置することにより実質上電極反応による酸素消費をゼ
ロにすることができる。
(Effects) As described above, according to the present invention, oxygen is generated at the anode at the same time that t atoms are reduced at the cathode, and by arranging the two electrodes close to each other, oxygen consumption due to electrode reactions is virtually eliminated. It can be done.

このため計測中皮膚層の酸素フラックスがなくなり、皮
膚層の酸素透過性により測定値が影響されることなく、
実際の動脈匍値に近い測定値を得ることができる。特に
、酸素フラックスによる酸素分圧の過小測定は成人の場
合著しいが1本発明によりこれが解消された。
Therefore, there is no oxygen flux in the skin layer during measurement, and the measured value is not affected by the oxygen permeability of the skin layer.
Measurements close to actual arterial peak values can be obtained. In particular, the undermeasurement of oxygen partial pressure due to oxygen flux is significant in adults, but this has been solved by the present invention.

本発明の実験例によれば、同一被検体(成人)πついて
本発明によるセンサと、第2図図示タイプの従来センサ
と、直接裸面法とを用いて酸素分圧測定を行ったところ
、それぞれPO□ 測定値は。
According to an experimental example of the present invention, oxygen partial pressure was measured on the same subject (adult) π using a sensor according to the present invention, a conventional sensor of the type shown in FIG. 2, and a direct bare surface method. The PO□ measurement values are respectively.

82mmH,9,61mmH,9,84mmH,9であ
り2本発明によるセンサが従来センサよりも直接採匍法
による測定値に近いことがわかった。
82 mmH, 9, 61 mmH, 9, 84 mmH, 9, and it was found that the sensor according to the present invention was closer to the measured value by the direct sampling method than the conventional sensor.

なお2本発明は酸素分圧測定センサのみならず。Note that the present invention is not limited to a sensor for measuring oxygen partial pressure.

酸素/炭酸ガス分圧測定複合センサ等電極法により酸素
分圧を測定するセンサに広く応用可能である。
It can be widely applied to sensors that measure oxygen partial pressure using an electrode method, such as a composite sensor for measuring oxygen/carbon dioxide gas partial pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明センサの一実施例を示す断面図。第2図は従来センサの構造を示す断面図である。8・・・電極膜、11・・・参照電杉15・・・貴金属陰極、16・・・貴金属陽極17・・
・絶縁層、    E・・・電解液特許出願人  住友
電気工業株式会社(外5名)
FIG. 1 is a sectional view showing an embodiment of the sensor of the present invention. FIG. 2 is a sectional view showing the structure of a conventional sensor. 8... Electrode film, 11... Reference electric cedar 15... Precious metal cathode, 16... Precious metal anode 17...
・Insulating layer, E... Electrolyte patent applicant Sumitomo Electric Industries, Ltd. (5 others)

Claims (6)

Translated fromJapanese
【特許請求の範囲】[Claims](1)電極先端部とガス透過性膜との間に電解液層を保
持してなる電極法による経皮血中酸素分圧測定センサに
おいて、前記電極が絶縁層を間にはさんで隣接配置され
た貴金属陰極および貴金属陽極と銀/塩化銀参照電極と
からなり、貴金属陰極が銀/塩化銀参照電極に対して−
0.4〜−0.9V間で定電位を保つように貴金属陰極
と貴金属陽極間に電圧を印加することを特徴とする経皮
血中酸素分圧測定センサ。
(1) In a transcutaneous blood oxygen partial pressure measurement sensor using an electrode method in which an electrolyte layer is held between an electrode tip and a gas permeable membrane, the electrodes are arranged adjacently with an insulating layer in between. consisting of a noble metal cathode and a noble metal anode and a silver/silver chloride reference electrode, where the noble metal cathode is -
A sensor for measuring transcutaneous blood oxygen partial pressure, characterized in that a voltage is applied between a noble metal cathode and a noble metal anode so as to maintain a constant potential between 0.4 and -0.9V.
(2)前記貴金属陰極と貴金属陽極との間の絶縁層の厚
さが電解液層及びガス透過性膜の厚さの和とほぼ同じで
あるか又はそれ以下である特許請求の範囲第1項のセン
サ。
(2) Claim 1, wherein the thickness of the insulating layer between the noble metal cathode and the noble metal anode is approximately the same as or less than the sum of the thicknesses of the electrolyte layer and the gas permeable membrane. sensor.
(3)前記絶縁層の厚さが数マイクロメートル以下であ
る特許請求の範囲第1項のセンサ。
(3) The sensor according to claim 1, wherein the thickness of the insulating layer is several micrometers or less.
(4)前記貴金属陰極および貴金属陽極の厚さがそれぞ
れ電解液層及びガス透過性膜の厚さの和とほぼ同じであ
るか又はそれ以下である特許請求の範囲第1項のセンサ
(4) The sensor according to claim 1, wherein the thickness of the noble metal cathode and the noble metal anode is approximately the same as or less than the sum of the thicknesses of the electrolyte layer and the gas permeable membrane, respectively.
(5)前記貴金属陰極および陽極の厚さがそれぞれ数マ
イクロメートル以下である特許請求の範囲第1項のセン
サ。
(5) The sensor according to claim 1, wherein the noble metal cathode and anode each have a thickness of several micrometers or less.
(6)前記貴金属陰極、貴金属陽極およびこれら陰極お
よび陽極間の絶縁層が物理的デポジション法又は化学的
デポジション法により形成されてなる特許請求の範囲第
1項乃至第5項のいずれかによるセンサ。
(6) According to any one of claims 1 to 5, wherein the noble metal cathode, the noble metal anode, and the insulating layer between the cathode and the anode are formed by a physical deposition method or a chemical deposition method. sensor.
JP59173783A1984-08-211984-08-21Percutaneous blood oxygen partial pressure measuring sensorPendingJPS6152855A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP59173783AJPS6152855A (en)1984-08-211984-08-21Percutaneous blood oxygen partial pressure measuring sensor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP59173783AJPS6152855A (en)1984-08-211984-08-21Percutaneous blood oxygen partial pressure measuring sensor

Publications (1)

Publication NumberPublication Date
JPS6152855Atrue JPS6152855A (en)1986-03-15

Family

ID=15967067

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP59173783APendingJPS6152855A (en)1984-08-211984-08-21Percutaneous blood oxygen partial pressure measuring sensor

Country Status (1)

CountryLink
JP (1)JPS6152855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009532139A (en)*2006-04-072009-09-10ラジオメーター・メディカル・アー・ペー・エス Electrochemical sensor unit mounting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2009532139A (en)*2006-04-072009-09-10ラジオメーター・メディカル・アー・ペー・エス Electrochemical sensor unit mounting device

Similar Documents

PublicationPublication DateTitle
Johnson et al.In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue
US5954685A (en)Electrochemical sensor with dual purpose electrode
SeveringhausA combined transcutaneous PO2-PCO2 electrode with electrochemical HCO3-stabilization
Sato et al.Generation and transit pathway of H+ is critical for inhibition of palmar sweating by iontophoresis in water
Evans et al.Steady states of oxygen tension in human dermis
JPH057657B2 (en)
ATE88275T1 (en) ELECTRODE ASSEMBLY FOR TRANSCUTANEOUS MEASURING THE PARAMETERS OF GASES IN BLOOD AND SENSING A BIOELECTRIC SIGNAL, AND AN ELECTRODE UNIT COMPRISING SUCH AN ELECTRODE ASSEMBLY.
JPS6152855A (en)Percutaneous blood oxygen partial pressure measuring sensor
Eberhard et al.Oxygen monitoring of newborns by skin electrodes. Correlation between arterial and cutaneously determined PO2
Brunswick et al.Use of Ni electrodes chronoamperometry for improved diagnostics of diabetes and cardiac diseases
JPH031817Y2 (en)
Tassinary et al.Issues in biometrics: offset potentials and the electrical stability of Ag/AgCl electrodes
JPS62133937A (en)Percataneous sensor
JPS6129458B2 (en)
JPS6125541A (en) transdermal glucose sensor
JPS6176134A (en) Transmucosal blood gas sensor
Petani et al.Dissolved ozone sensing in water and blood based on commercial screen-printed and BDD electrodes
WelshIntracellular potassium activities in canine tracheal epithelium
JPS61115538A (en) Transcutaneous sensor
HiemstraThe amperometric determination of oxygen in tissue as a tool in peripheral circulation research
JPS6185926A (en) Transmucosal blood gas sensor
JPS6176135A (en) Transmucosal blood gas sensor
JP7711332B1 (en) Transcutaneous carbon dioxide measuring device
JPS63135131A (en) Transcutaneous sensor
JPS6389143A (en)Electrolyte for oxygen measuring electrode

[8]ページ先頭

©2009-2025 Movatter.jp