Movatterモバイル変換


[0]ホーム

URL:


JPS6144268A - Engine-driven heat pump device - Google Patents

Engine-driven heat pump device

Info

Publication number
JPS6144268A
JPS6144268AJP59167071AJP16707184AJPS6144268AJP S6144268 AJPS6144268 AJP S6144268AJP 59167071 AJP59167071 AJP 59167071AJP 16707184 AJP16707184 AJP 16707184AJP S6144268 AJPS6144268 AJP S6144268A
Authority
JP
Japan
Prior art keywords
heat
engine
refrigerant
circuit
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59167071A
Other languages
Japanese (ja)
Other versions
JPH0332712B2 (en
Inventor
善樹 泉
唐土 宏
修一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co LtdfiledCriticalMatsushita Electric Industrial Co Ltd
Priority to JP59167071ApriorityCriticalpatent/JPS6144268A/en
Publication of JPS6144268ApublicationCriticalpatent/JPS6144268A/en
Publication of JPH0332712B2publicationCriticalpatent/JPH0332712B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】産業上の利用分野本発明は、天然ガスや石油等を熱源とする内燃機関(エ
ンジン)によって圧縮機を駆動してヒートポンプ冷暖房
運転やヒートポンプ給湯加熱を行なうエンジン駆動ヒー
トポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an engine-driven heat pump device that performs heat pump cooling/heating operation and heat pump hot water heating by driving a compressor by an internal combustion engine (engine) using natural gas, oil, etc. as a heat source. It is related to.

従来例の構成とその問題点第2図に、従来のエンジン駆動ヒートポンプ装置の構成
図を示している。同図において、1は排3・\内ファンで、これらを順次連結して冷暖ヒートポンプ回
路Aを構成し、この冷暖ヒートポンプ回路へから、電磁
弁17aを介して冷媒回路を分岐し、蓄熱槽11′内の
流体12′を冷媒の凝縮熱で熱交換する加熱器13を有
するヒートポンプ給賜回路B成している。15bはラジ
ェータであり、専用ファン15aで送風冷却し、この排
熱回収回路C中で排熱器14とエンジン1との間に排熱
器14の下流側に三方電磁弁16を介して直列に挿入さ
れている。これはエンジン1のオーバーヒートを防止す
るためのもので、蓄熱槽14内の流体と熱交換しない程
、流体12の温度が1−昇し、そしてエンジン1を冷却
すべき冷却水の温度が」−昇した場―合に水田三方弁16を切換えて冷却媒体をラジェータ1
5b側に流してエンジン1や排ガス熱交換器2から回収
した排熱を大気等に放熱する。
Configuration of Conventional Example and Its Problems FIG. 2 shows a configuration diagram of a conventional engine-driven heat pump device. In the same figure, reference numeral 1 denotes an exhaust fan 3 and an internal fan, which are successively connected to form a cooling/heating heat pump circuit A. A refrigerant circuit is branched from this cooling/heating heat pump circuit via a solenoid valve 17a, and a heat storage tank 11 is connected. A heat pump supply circuit B includes a heater 13 that exchanges heat with the fluid 12' in the heat pump 12' using the condensation heat of the refrigerant. 15b is a radiator, which is blown and cooled by a dedicated fan 15a, and is connected in series between the heat exhaust device 14 and the engine 1 on the downstream side of the heat exhaust device 14 via a three-way solenoid valve 16 in this exhaust heat recovery circuit C. It has been inserted. This is to prevent the engine 1 from overheating.The more it does not exchange heat with the fluid in the heat storage tank 14, the more the temperature of the fluid 12 increases by 1-1, and the temperature of the cooling water that should cool the engine 1 increases. When the temperature rises, the three-way valve 16 is switched to transfer the cooling medium to the radiator 1.
The exhaust heat collected from the engine 1 and the exhaust gas heat exchanger 2 by flowing to the 5b side is radiated to the atmosphere or the like.

このような従来のエンジン駆動ヒートポンプ装置が、暖
房運転する時、冷媒回路と排熱回収回路とは別個である
ために、エンジン排熱は蓄熱槽に蓄熱されるだけで、暖
房には寄与しない。その為に暖房時の冷媒回路効率は低
い。さらに、冷却水がある温度以上の時、エンジン排熱
をすてるへくが、この構成である以上、ラジェータと専
用ファンが別個に必要となり部品点数増加によるコスト
上昇という結果をまねいていた。このように、従来は、
」二記種々の欠点を有していた。
When such a conventional engine-driven heat pump device performs heating operation, the refrigerant circuit and the exhaust heat recovery circuit are separate, so engine exhaust heat is only stored in the heat storage tank and does not contribute to heating. Therefore, the efficiency of the refrigerant circuit during heating is low. Furthermore, when the cooling water reaches a certain temperature, it dissipates the exhaust heat from the engine, but with this configuration, a radiator and a dedicated fan are required separately, resulting in an increase in costs due to an increase in the number of parts. In this way, conventionally,
2) It had various drawbacks.

発明の目的本発明は、前記従来の欠点を除去するもので、排熱回収
回路中に、冷媒加熱器を設け、冷暖ヒートポンプ回路中
に液ポンプを設は冷媒加熱器と結び、冷媒を圧縮機吐出
側へ帰す冷媒加熱回路を構成することで、暖房運転時に
液ポンプを作動させて、冷媒回路効率の向上と、冷房運
転時に冷却水が所定温度以」―になった時に、液ポンプ
を作動させ、室外熱交換器からエンジンの熱をすてるも
の5・・で、ラジェータと専用ファンを除去しようとするもので
ある。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned drawbacks of the conventional technology.The present invention provides a refrigerant heater in the exhaust heat recovery circuit, a liquid pump in the cooling/heating heat pump circuit, connects the refrigerant heater, and transfers the refrigerant to the compressor. By configuring a refrigerant heating circuit that returns the refrigerant to the discharge side, the liquid pump is activated during heating operation to improve refrigerant circuit efficiency, and the liquid pump is activated when the cooling water reaches a predetermined temperature during cooling operation. This is a system that dissipates engine heat from an outdoor heat exchanger.It is intended to remove the radiator and dedicated fan.

発明の構成」−記目的を達成するために本発明は、エンジンと、前
記エンジンにより駆動される圧縮機、四方弁、室外熱交
換器、減圧器、室内熱交換器、凝縮液液だめ器を順次連
結した冷暖ヒートポンプ回路と、前記冷暖ヒートポンプ
回路から電磁弁を介して分岐させ蓄熱槽内の流体を冷媒
の凝縮熱で加熱する加熱器を有するヒートポンプ結局回
路と、前記エンジンの排ガス熱交換器に冷却水をポンプ
により循環して排熱を回収し、排熱を前記蓄熱槽内の流
体と熱交換する排熱器を有する排熱回収回路とを設け、
その排熱回路中に前記排熱器の上流側と、冷媒側へ排熱
を与える冷媒加熱器を設け、前記冷暖ヒートポンプ回路
中に、前記凝縮液液だめ器の下流側に液ポンプ、冷媒加
熱器を経由して逆止弁を介して圧縮機の吐出側に連通さ
せた冷媒加熱回路を設け、暖房運転時に前記液ポンプを
動作さぜ、前記エンジン排熱を暖房に利用するのみなら
ず、冷房運転時、前記冷却水が所定温度以−にになった
時に液ポンプを動作させて過剰な前記エンジン排熱を前
記室外熱交換器から放熱する機能を設けたものである。
[Structure of the Invention] - To achieve the object, the present invention comprises an engine, a compressor driven by the engine, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, and a condensate liquid reservoir. A cooling/heating heat pump circuit connected in sequence, a heat pump circuit having a heater branched from the cooling/heating heat pump circuit via a solenoid valve and heating fluid in a heat storage tank with condensation heat of a refrigerant, and an exhaust gas heat exchanger of the engine. an exhaust heat recovery circuit having a heat exhaust device that circulates cooling water with a pump to recover exhaust heat and exchanges heat with the fluid in the heat storage tank;
In the heat exhaust circuit, a refrigerant heater that provides exhaust heat to the upstream side of the heat exhaust device and the refrigerant side is provided, and in the cooling/heating heat pump circuit, a liquid pump and a refrigerant heating device are provided downstream of the condensate liquid reservoir. A refrigerant heating circuit is provided that communicates with the discharge side of the compressor via a check valve, and the liquid pump is operated during heating operation, and the engine exhaust heat is not only used for heating, but also During cooling operation, when the cooling water reaches a predetermined temperature or higher, a liquid pump is operated to radiate excess engine exhaust heat from the outdoor heat exchanger.

その結果、暖房運転時の冷媒回路効率の向」二と、過剰
となったエンジン熱をすてるラジェータと専用ファンが
不要となり部品点数の減少によるコストダウンがはかれ
るものである。
As a result, the efficiency of the refrigerant circuit during heating operation is improved, and a radiator and dedicated fan to dissipate excess engine heat are no longer required, resulting in cost reduction due to a reduction in the number of parts.

実施例の説明以下、本発明の一実施例について第1図に沿って説明す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

同図において、1は排ガス熱交換器2を有するエンジン
、3は排ガスの吐出マフラ、4はエンジン1を始動さぜ
るスタータ、5はエンジン1により駆動される圧縮機、
6は四方弁、7aは室外ファン、7bは室外熱交換器、
8aは室内ファン、8bは室内熱交換器、9は凝縮液液
だめ器、12は暖房用減圧器、11は冷房用減圧器、1
3aは暖房時開の電磁弁、14は冷房時開の電磁弁、1
3bは冷房時通過可の逆止弁、15は暖房時通7 ・−過用の逆1に弁であり、これらを順次連結して冷暖ヒー
トポンプ回路Aを構成し、この冷暖ヒートポンプ回路A
から、ヒートポンプ給湯運転時開の電磁弁16aを介し
て冷媒回路を分岐し、蓄熱槽24内の流体25を冷媒の
凝縮熱で熱交換する加熱器17を有するヒートポンプ給
湯回路Bを構成している。ここで18はヒートポンプ給
湯運転時の減圧器であり、19,16bはそれぞれ冷媒
の流れ方向を固定する逆止弁である。そして、前記エン
ジン1と排カス熱交換器2に冷却水をポンプ23により
循環させて排熱を回収し、蓄熱槽24内の流体25と熱
交換して加熱する排熱器22を有する排熱回収回路Cを
構成している。このυト熱回路中に、排熱器22の上流
側に、冷媒側へ排熱を月える冷媒加熱器20を設け、前
記冷暖ヒートポンプ回路中に、前記凝縮液液だめ器9の
下流側に液ポンプ10を設け、その下流側に、冷媒加熱
器20を経由して、逆止弁21を介して圧縮機5の吐出
側に連通さぜる冷媒加熱回路を設ける。
In the figure, 1 is an engine having an exhaust gas heat exchanger 2, 3 is an exhaust gas discharge muffler, 4 is a starter for starting the engine 1, 5 is a compressor driven by the engine 1,
6 is a four-way valve, 7a is an outdoor fan, 7b is an outdoor heat exchanger,
8a is an indoor fan, 8b is an indoor heat exchanger, 9 is a condensate liquid reservoir, 12 is a heating pressure reducer, 11 is a cooling pressure reducer, 1
3a is a solenoid valve that opens during heating; 14 is a solenoid valve that opens during cooling; 1
3b is a check valve that allows passage during cooling, and 15 is a reverse valve that allows passage during heating.These are successively connected to form a cooling/heating heat pump circuit A.
The refrigerant circuit is branched from the refrigerant circuit via an electromagnetic valve 16a that is open during heat pump hot water supply operation, and a heat pump hot water supply circuit B is configured which has a heater 17 that exchanges heat with the fluid 25 in the heat storage tank 24 using the condensation heat of the refrigerant. . Here, 18 is a pressure reducer during heat pump hot water supply operation, and 19 and 16b are check valves that fix the flow direction of the refrigerant, respectively. Cooling water is circulated through the engine 1 and the exhaust gas heat exchanger 2 by a pump 23 to recover exhaust heat, and the exhaust heat exchanger 22 is provided to heat the exhaust heat by exchanging heat with the fluid 25 in the heat storage tank 24. It constitutes a recovery circuit C. In this υ heat circuit, a refrigerant heater 20 is provided upstream of the heat exhaust device 22 to transfer waste heat to the refrigerant side, and in the cooling/heating heat pump circuit, a refrigerant heater 20 is provided on the downstream side of the condensate liquid reservoir 9. A liquid pump 10 is provided, and a refrigerant heating circuit that communicates with the discharge side of the compressor 5 via a refrigerant heater 20 and a check valve 21 is provided downstream thereof.

以」二の構成において、その動作を説明すると、ヒート
ポンプ運転時は、先ずスタータ4でエンジン1を始動さ
せて圧縮機5を駆動させ、冷暖房給湯運転に応じて四方
弁6を切換え、冷暖ヒートポンプ回路Aにおいて冷房時
は冷媒(図示せず)を矢印実線の如く流して室外熱交換
器7bを凝縮器となし、室内熱交換器8bを蒸発器とし
て作用させる。室外熱交換器7bを出た冷媒は電磁弁1
4を通り、液だめ器9に一部凝縮液がたまるが、次に冷
房用減圧器11を経由して室内熱交換器8bへ流れ、逆
止弁13bを経由し、最終的に圧縮機1へもどる。
To explain the operation of the second configuration, when operating the heat pump, first, the starter 4 starts the engine 1, drives the compressor 5, switches the four-way valve 6 according to the cooling/heating hot water supply operation, and starts the cooling/heating heat pump circuit. In A, during cooling, a refrigerant (not shown) is caused to flow as indicated by the solid arrow line, so that the outdoor heat exchanger 7b acts as a condenser, and the indoor heat exchanger 8b acts as an evaporator. The refrigerant exiting the outdoor heat exchanger 7b passes through the solenoid valve 1.
4, some of the condensate accumulates in the liquid reservoir 9, but then flows through the cooling pressure reducer 11 to the indoor heat exchanger 8b, passes through the check valve 13b, and finally reaches the compressor 1. Return to

暖房運転時は逆に冷媒を矢印点線の如く流して室外熱交
換器7bを蒸発器となし、室内熱交換器8bを凝縮器と
して作用させ、電磁弁13aを通過し室内熱交換器8b
を流出した冷媒は逆止弁15を通り、液だめ器9に一部
凝縮液がたまるが、次に暖房用減圧器12を経由して室
外熱交換器7bへ流入していく。
During heating operation, on the other hand, the refrigerant flows as indicated by the dotted arrow to make the outdoor heat exchanger 7b act as an evaporator, and the indoor heat exchanger 8b acts as a condenser, passing through the solenoid valve 13a and refrigerant flowing into the indoor heat exchanger 8b.
The refrigerant that has flowed out passes through the check valve 15, and some condensed liquid accumulates in the liquid reservoir 9, but then flows into the outdoor heat exchanger 7b via the heating pressure reducer 12.

また、ヒートポンプ給湯運転時には1点鎖線で9べ〜7は電磁弁16aを通過して蓄熱槽24内の加熱器17で
凝縮して流れ、逆止弁19、給湯用減圧器18を経由し
て室外熱交換器7bで蒸発する。冷暖ヒートポンプ運転
、ヒートポンプ給湯運転いずれの場合もエンジン1を運
転させているので同時に排熱回収回路Cを利用すること
によって、エンジン1及び排ガス熱交換器2にポンプ2
3により冷却水(図示せず)を流して排熱を回収して、
冷媒加熱器20を経由して、排熱器22で蓄熱槽24内
の流体25を加熱する。
In addition, during heat pump hot water supply operation, 9B~7 as shown by the dashed dotted line passes through the solenoid valve 16a, condenses in the heater 17 in the heat storage tank 24, and flows through the check valve 19 and hot water supply pressure reducer 18. It is evaporated in the outdoor heat exchanger 7b. Since the engine 1 is operated in both the cooling/heating heat pump operation and the heat pump hot water supply operation, by using the exhaust heat recovery circuit C at the same time, the pump 2 is connected to the engine 1 and the exhaust gas heat exchanger 2.
3, the exhaust heat is recovered by flowing cooling water (not shown),
The fluid 25 in the heat storage tank 24 is heated by the heat exhaust device 22 via the refrigerant heater 20 .

ヒートポンプ暖房運転時に、液ポンプ10を動作さぜる
と液だめ器9にたまった凝縮液が冷媒加熱回路に流れ出
し、冷媒加熱器20でエンジン排熱を冷媒が回収し、高
圧ガス状となった冷媒が逆止弁21を介して圧縮機5の
吐出側へ返される。
When the liquid pump 10 is operated during heat pump heating operation, the condensed liquid accumulated in the liquid reservoir 9 flows into the refrigerant heating circuit, and the refrigerant recovers engine exhaust heat in the refrigerant heater 20, becoming a high-pressure gas. The refrigerant is returned to the discharge side of the compressor 5 via the check valve 21.

そして圧縮機5より吐出された冷媒と混合されて室内熱
交換器8bへ流れ、エンジン排熱が冷媒を介して暖房に
与えられるために暖房運転時の冷媒回路効率が向」ニす
る。
The refrigerant is mixed with the refrigerant discharged from the compressor 5 and flows to the indoor heat exchanger 8b, and the engine exhaust heat is applied to the heating via the refrigerant, thereby improving the refrigerant circuit efficiency during heating operation.

さらに、一般にヒートポンプ給湯回路Bの加熱10べ−
7器17で加熱できる流体25の温度は、冷媒の圧力条件
より55°C程度であるが、排熱回収回路Cにおける排
熱器22で得られる流体25の温度は85〜90°C程
度である。そして加熱器17で加熱された流体25は、
排熱器22でさらに加熱されるようになっている。ここ
で冷房運転時、排熱回収回路Cにおいて、蓄熱槽24内
の流体25の温度が上昇してくると排熱器22にて冷却
水が流体25と熱交換しにくくなり、さらに排熱器22
人口の冷却水温度が上昇する。そしてエンジン1に戻る
冷却水温度がある設定値を越える場合には、液ポンプ1
0を動作させて凝縮液を送り、冷媒加熱器20で、エン
ジン排熱により気化させてその高圧ガス状の冷媒を圧縮
機5の吐出ガスと混合して、室外熱交換器7bで凝縮熱
としてすてる。
Furthermore, the heating 10 base of the heat pump hot water supply circuit B is generally
7 The temperature of the fluid 25 that can be heated in the vessel 17 is about 55°C due to the pressure conditions of the refrigerant, but the temperature of the fluid 25 obtained in the heat exhauster 22 in the exhaust heat recovery circuit C is about 85 to 90°C. be. The fluid 25 heated by the heater 17 is
It is further heated by a heat exhauster 22. During cooling operation, when the temperature of the fluid 25 in the heat storage tank 24 rises in the exhaust heat recovery circuit C, it becomes difficult for the cooling water to exchange heat with the fluid 25 in the heat exhaust device 22, and further 22
Population cooling water temperature increases. If the temperature of the cooling water returning to engine 1 exceeds a certain set value, liquid pump 1
0 is operated to send the condensate, and the refrigerant heater 20 vaporizes it using engine exhaust heat. The high-pressure gaseous refrigerant is mixed with the discharge gas of the compressor 5, and the outdoor heat exchanger 7b converts it into condensation heat. Abandon it.

この様に、室外熱交換器7bでエンジンの余剰熱をすて
る構成により、ラジェータと専用ファンが不必要になり
、部品点数の減少をとおしてコストダウンがはかれる。
In this way, with the configuration in which excess engine heat is dissipated by the outdoor heat exchanger 7b, a radiator and a dedicated fan are unnecessary, and costs are reduced through a reduction in the number of parts.

つまり、冷媒加熱回路を、暖房運転時の冷媒回路効率の
向上のみならず、冷11 ぺ−7房運転時の過剰なエンジン余剰熱の放熱にも利用しよう
とするものである。
In other words, the refrigerant heating circuit is intended to be used not only to improve refrigerant circuit efficiency during heating operation, but also to radiate excess engine surplus heat during cooling operation.

発明の効果以」二のように本発明は、エンジンと、前記エンジンに
より駆動される圧縮機、四方弁、室外熱交換器、減圧器
、室内熱交換器、凝縮液液だめ器を順次連結した冷暖ヒ
ートポンプ回路と、前記冷暖ヒートポンプ回路から電磁
弁を介して分岐させ蓄熱槽内の流体を冷媒の凝縮熱で加
熱する加熱器を有するヒートポンプ給湯回路と、前記エ
ンジンの排ガス熱交換器に冷却水をポンプにより循環し
て排熱を回収し、排熱を前記蓄熱槽内の流体と熱交換す
る排熱器を有する排熱回路とを設け、その排熱回路中に
前記排熱器の上流側に、冷媒側へ排熱を与える冷媒加熱
器を設け、前記冷暖ヒートポンプ回路中に、前記凝縮液
液だめ器の下流側に液ポンプ、冷媒加熱器を経由し逆止
弁を介して圧縮機の吐出側に連通させた冷媒加熱回路を
設け、暖房運転時に、前記液ポンプを動作させ凝縮液液
だめ器より凝縮液を冷媒加熱器に送り、エンジン排熱を
冷媒側で回収し暖房に利用することで冷媒回路効率の向
」二による省エネルギー化がはかれる。
Effects of the Invention As described in 2, the present invention sequentially connects an engine, a compressor driven by the engine, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, and a condensate reservoir. A heat pump hot water supply circuit having a cooling/heating heat pump circuit, a heater branched from the cooling/heating heat pump circuit via a solenoid valve and heating fluid in a heat storage tank with condensation heat of a refrigerant, and supplying cooling water to an exhaust gas heat exchanger of the engine. a heat exhaust circuit having a heat exhaust device that circulates with a pump to recover exhaust heat and exchanges the exhaust heat with the fluid in the heat storage tank; , a refrigerant heater that gives exhaust heat to the refrigerant side is provided, and in the cooling/heating heat pump circuit, the condensate is discharged from the compressor via a liquid pump and a refrigerant heater on the downstream side of the condensate liquid reservoir and a check valve. A refrigerant heating circuit is provided in communication with the refrigerant side, and during heating operation, the liquid pump is operated to send condensed liquid from the condensate liquid reservoir to the refrigerant heater, and engine exhaust heat is recovered on the refrigerant side and used for heating. Energy savings can be achieved by improving refrigerant circuit efficiency.

さらに、冷房運転時に前記冷却水が所定温度以−1―に
なった時に液ポンプを動作させて前述のように過剰なエ
ンジン排熱を冷媒側で回収し室外熱交換器で放熱するこ
とにより、ラジェータと専用ファンが不必要となり部品
点数の減少によるコストダウンがはかれる等、種々の効
果を有するものである。
Furthermore, when the cooling water reaches a predetermined temperature or higher during cooling operation, the liquid pump is operated to recover excess engine exhaust heat on the refrigerant side as described above and radiate the heat in the outdoor heat exchanger. This has various effects, such as eliminating the need for a radiator and a dedicated fan, reducing costs by reducing the number of parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のエンジン駆動ヒートポンプ装置の一実
施例を示す回路構成図、第2図は従来のエンジン駆動ヒ
ートポンプ装置の回路構成図である。1・・・・・エンジン、5・・・・・・圧縮機、6・・
・・・・四方弁、7a・・・・室外ファン、7b・・・
・室外熱交換器、8a・・・・・・室内ファン、8b・
・・・・室内熱交換器、9・・・凝縮液液ため器、11
・・・・・・冷房用減圧器、12・・・・・・暖房用減
圧器、18・・・・ヒートポンプ給湯用減圧器、10・
・・・・・液ポンプ、17・−・・加熱器、13・\−22・・・・・排熱器、20・・・・・・冷媒加熱器、
24・・・・・・蓄熱槽、A・・・・・冷暖ヒートポン
プ回路、B・・・・・・ヒートポンプ給湯回路、C・・
・・・・排熱回収回路。
FIG. 1 is a circuit diagram showing an embodiment of an engine-driven heat pump device of the present invention, and FIG. 2 is a circuit diagram of a conventional engine-driven heat pump device. 1...Engine, 5...Compressor, 6...
...Four-way valve, 7a...Outdoor fan, 7b...
・Outdoor heat exchanger, 8a...Indoor fan, 8b・
... Indoor heat exchanger, 9 ... Condensate liquid reservoir, 11
... Pressure reducer for cooling, 12 ... Pressure reducer for heating, 18 ... Pressure reducer for heat pump hot water supply, 10.
...Liquid pump, 17... Heater, 13.\- 22... Heat exhaust device, 20... Refrigerant heater,
24...Heat storage tank, A...Cooling/heating heat pump circuit, B...Heat pump hot water supply circuit, C...
...Exhaust heat recovery circuit.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]エンジンと、前記エンジンにより駆動される圧縮機、四
方弁、室外熱交換器、減圧器、室内熱交換器、凝縮液液
だめ器を順次連結した冷暖ヒートポンプ回路と、前記冷
暖ヒートポンプ回路から電磁弁を介して分岐させ蓄熱槽
内の流体を冷媒の凝縮熱で加熱する加熱器を有するヒー
トポンプ給湯回路と、前記エンジンの排ガス熱交換器に
冷却水をポンプにより循環して排熱を回収し、排熱を前
記蓄熱槽内の流体と熱交換する排熱器を有する排熱回路
とを設け、その排熱回路中に前記排熱器の上流側に、冷
媒側へ排熱を与える冷媒加熱器を設け、前記冷暖ヒート
ポンプ回路中に、前記凝縮液液だめ器の下流側に液ポン
プ、冷媒加熱器を経由して逆止弁を介して圧縮機の吐出
側に連通させた冷媒加熱回路を設け、さらに暖房運転時
には前記液ポンプを動作させ、前記エンジン排熱を暖房
に利用するとともに、冷房運転時に、前記冷却水が所定
温度以上になった時に液ポンプを動作させて前記エンジ
ンの余剰熱を前記室外熱交換器から放熱する手段を設け
たエンジン駆動ヒートポンプ装置。
An engine, a cooling/heating heat pump circuit which sequentially connects a compressor driven by the engine, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, and a condensate liquid reservoir, and a solenoid valve from the cooling/heating heat pump circuit. A heat pump hot water supply circuit has a heater that heats the fluid in the heat storage tank with the condensation heat of the refrigerant, and the cooling water is circulated by a pump to the exhaust gas heat exchanger of the engine to recover exhaust heat. and a heat exhaust circuit having a heat exhauster that exchanges heat with the fluid in the heat storage tank, and a refrigerant heater that gives exhaust heat to the refrigerant side is provided in the heat exhaust circuit upstream of the heat exhauster. , a refrigerant heating circuit is provided in the cooling/heating heat pump circuit downstream of the condensate liquid reservoir, the refrigerant heating circuit communicating with the discharge side of the compressor via a liquid pump and a refrigerant heater via a check valve; During heating operation, the liquid pump is operated to utilize the engine exhaust heat for heating, and during cooling operation, when the cooling water reaches a predetermined temperature or higher, the liquid pump is operated to transfer excess heat from the engine to the outside. An engine-driven heat pump device equipped with a means to radiate heat from a heat exchanger.
JP59167071A1984-08-091984-08-09 Engine-driven heat pump deviceGrantedJPS6144268A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP59167071AJPS6144268A (en)1984-08-091984-08-09 Engine-driven heat pump device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP59167071AJPS6144268A (en)1984-08-091984-08-09 Engine-driven heat pump device

Publications (2)

Publication NumberPublication Date
JPS6144268Atrue JPS6144268A (en)1986-03-03
JPH0332712B2 JPH0332712B2 (en)1991-05-14

Family

ID=15842862

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP59167071AGrantedJPS6144268A (en)1984-08-091984-08-09 Engine-driven heat pump device

Country Status (1)

CountryLink
JP (1)JPS6144268A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5066465A (en)*1989-12-271991-11-19Olympus Optical Co., Ltd.Reaction apparatus
US5188968A (en)*1989-12-281993-02-23Olympus Optical Co., Ltd.Method and reaction kit for agglutination detection
JP2006345807A (en)*2005-06-172006-12-28Toppan Printing Co Ltd Reaction chip
WO2007142174A1 (en)2006-06-052007-12-13Olympus CorporationContainer for determining particle agglutination

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS58130973A (en)*1982-01-291983-08-04小型ガス冷房技術研究組合Engine driving heat pump device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS58130973A (en)*1982-01-291983-08-04小型ガス冷房技術研究組合Engine driving heat pump device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5066465A (en)*1989-12-271991-11-19Olympus Optical Co., Ltd.Reaction apparatus
US5188968A (en)*1989-12-281993-02-23Olympus Optical Co., Ltd.Method and reaction kit for agglutination detection
JP2006345807A (en)*2005-06-172006-12-28Toppan Printing Co Ltd Reaction chip
WO2007142174A1 (en)2006-06-052007-12-13Olympus CorporationContainer for determining particle agglutination
US7807107B2 (en)2006-06-052010-10-05Beckman Coulter, Inc.Particle agglutination-evaluating container

Also Published As

Publication numberPublication date
JPH0332712B2 (en)1991-05-14

Similar Documents

PublicationPublication DateTitle
US7155927B2 (en)Exhaust heat utilizing refrigeration system
JP2002516595A (en) Vehicle air conditioner and method of using the same
JPS6144268A (en) Engine-driven heat pump device
JPS5852949A (en)Heat pump device driven by engine
JPH074777A (en)Engine waste heat recovery device
JPS6343662B2 (en)
JPS62294872A (en)Engine drive type heat pump device
JPS618574A (en)Air conditioner for heat pump of engine
JP2000074524A (en) Engine driven heat pump system
JPS61190263A (en) Engine-driven heat pump device
JPS61190264A (en)Engine driving heat pump device
JPS58130973A (en)Engine driving heat pump device
JPH1114185A (en)Air conditioner
JPH033874B2 (en)
JP3740757B2 (en) Air conditioner
JPH10306954A (en)Engine driven refrigerant compression circulation type heat transfer device
KR970008009B1 (en)Heating/cooling system by multi stage type heat pump
JPH074778A (en)Heat exchanger for engine heat pump
JPS61250468A (en)Heat pump type air-conditioning hot-water supply device
JPS6193361A (en)Engine driving heat pump system
JPS62780A (en) Engine-driven heat pump type air-conditioning/heating water heater
JPS6166060A (en)Engine-heat pump device
JPS5918359A (en)Air-conditioning hot-water supply device
JPH08210726A (en)Engine-drive type heat pump air-conditioner
JPS60178269A (en)Engine driving heat pump device

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp