Movatterモバイル変換


[0]ホーム

URL:


JPS6139329B2 - - Google Patents

Info

Publication number
JPS6139329B2
JPS6139329B2JP53061533AJP6153378AJPS6139329B2JP S6139329 B2JPS6139329 B2JP S6139329B2JP 53061533 AJP53061533 AJP 53061533AJP 6153378 AJP6153378 AJP 6153378AJP S6139329 B2JPS6139329 B2JP S6139329B2
Authority
JP
Japan
Prior art keywords
polymer
temperature
lactide
glycolide
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53061533A
Other languages
Japanese (ja)
Other versions
JPS53145899A (en
Inventor
Nooman Roozensafuto Maikuru
Ransuingu Uebu Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid CofiledCriticalAmerican Cyanamid Co
Publication of JPS53145899ApublicationCriticalpatent/JPS53145899A/en
Publication of JPS6139329B2publicationCriticalpatent/JPS6139329B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese
【発明の詳細な説明】[Detailed description of the invention]

本発明は合成ポリエステルの外科用品の製造法
ならびに該外科用品およびそれらを使用する方法
に関するものである。 合成科用品の製造にラクチドポリエステルを使
用することは当該分野では周知である。これに関
連して種々のポリエステルの特性を変えるために
しばしば共モノマーが使用される。ポリエステル
を作るための慣習的な重合法は適当な環式ラクチ
ドの開環重合による。通常共重合体を調製する場
合には通常一つのラクチドを他のものと共重合さ
せる。共重合のための共モノマーとして他の還式
物質を用いることも任意である。それらには他の
ラクトン類、炭酸トリメチレンのような他の化合
物およびその他が含まれる。 用いられる重合法およびアト処理法ならびに外
科用品の製造法は該分野ではよく知られている。
製造する外科用品には吸収性および非吸収性用品
が含まれる。 この点に関して米国特許第3268486号および同
第3268487号には興味がある。 重合が逐次的(sequentially)又は増大的
(incrementally)におこなわれる開環重合により
共重合ラクチドポリエステルを重合させることに
よつて外科用品用合成ポリエステルが効果的に製
造されることがこの度見出された。これは共重合
体鎖を形成すべき共モノマーを引き続いて
(cosecutively)加えることによつて達成され
る。重合操作を段階的に又は次々に行なうことに
よつて、重合体が寸法的に安定で高度に結晶性の
又は高度に配向された分子構造を形成する能力を
通常程度に妨げられる前に、外科用品の生体内特
性を一層広範囲に変性することができる。 本発明の方法は重合過程中に二つ以上の共モノ
マーを用いる二つ以上の段階で行なうことができ
る。二つのモノマーを一つ又は二つ以上の段階に
同時に使用しうる。各段階に若し望むならば異な
る触媒を用いることができる。 一般に同一反応容器中で逐次的に共モノマーを
添加することによつて引き続き重合を行なうこと
が適当である。しかし、もし望むならば一つ又は
二つ以上重合体セグメントを製造し、これを異な
る反応容器に移して次の化学反応に従つてポリエ
ステルを形成させる方式も本発明の範囲に含ま
る。 慣習的に外科用品の製造に用いられる二つのラ
クチドはL(−)ラクチドとグリコリドである。
これらの化合物は本発明の場合でも好適である。
さらにこれらを本発明の連続重合法に同時に使用
することが好適である。炭酸トリメチレン、2−
ケト−1・4−ジオキサンのような慣習的に用い
られる他の環式共モノマーおよび下記の化合物の
一つ又は二つ以上も亦本発明を実施する場合ラク
チドと共重合する共モノマーの一つとして使用さ
れる:β−プロピオラクトン、テトラメチルグリ
コライド、β−ブチロラクトン、γ−ブチロラク
トン、δ−バレロラクトン、ε−カプロラクト
ン、ピバロラクトンおよび下記化合物の分子内環
式エステル類;α−ヒドロキシ酪酸、α−ヒドロ
キシイソ酪酸、α−ヒドロキシ吉草酸、α−ヒド
ロキシイソ吉草酸、α−ヒドロキシカプロン酸、
α−ヒドロキシ−α−エチル酪酸、α−ヒドロキ
シイソカプロン酸、α−ヒドロキシ−β−メチル
吉草酸、α−ヒドロキシヘプタン酸、α−ヒドロ
キシオクタン酸、α−ヒドロキシデカン酸、α−
ヒドロキシミリスチン酸、α−ヒドロキシステア
リン酸、α−ヒドロキシリグノセリン酸、α・α
−ジエチルプロピオラクトン、炭酸エチレン、
2・5−ジケトモルホリン、シユウ酸エチレン、
6・8−ジオキサビシクロ〔3・2・1〕オクタ
ン−7−オン、ジサリチライド、トリオキサン、
3−メチル−1・4−ジオキサン−2・5−ジオ
ン、3・5−ジメチル−1・4−ジオキサン−2
−オン。 本発明はラクチド共モノマーの主要成分として
グリコリドを用いて製造したポリエステルから無
菌の吸収性合成外科用品(特に縫合糸)を製造す
ることをその利用範囲の一つとするものである。
現在の技術水準では本重合体の分子水準の構造の
詳細および吸収機構の詳細は確実には解明されて
いない。 本発明の好適な具体形の一つはラクチド(好ま
しくはL(−)ラクチド)をグリコリドと逐次的
に共重合させることに関連する。連続的に反復し
てL(−)ラクチド、グリコリドおよびL(−)
ラクチドを共重合させて得られるトリブロツク構
造は興味深いものである。後者の場合には生成し
たポリエステルは主としてグリコリド重合体鎖の
両端上に乳酸単位を持つ。 一般にABおよびABA型ポリスチレン−ブタジ
エン重合体中には三種類の形態学的単位、すなわ
ち、球、棒(又は円柱)および薄層が知られる
が、本発明のポリエステルにおいてもこの形態が
示されると信じられる。ポリスチレン−ブタジエ
ン重合体の場合にはスチレンとブタジエンのモル
比が80/20の時球状領域が電子顕微鏡によつて観
察されている。ブタジエン単位が相対的に増加し
て上記のモル比が減少すると、ミクロ相の形態は
変化し、スチレン単位マトリツクス中のブタジエ
ン単位の球がスチレン単位マトリツクス中のブタ
ジエン単位の棒となり、次いで単位の層に変る。
更にブタジエンの量が増加して該モル比が減ずる
とスチレン単位は初めてブタジエンマトリツクス
中の棒又は円柱としてのミクロ相分離を生ずる。
さらにモル比が減少するとスチレン単位はブタジ
エン単位のマトリツクス中の球として示される。
この変化の詳細についてはM・Matsuo、S・
SagaeおよびH・Asai:Polymer、10 79頁
(1969)を参照されたい。 本発明の実施による吸収性縫合糸の製造にあつ
てはL(−)ラクチドセグメントのような不活性
ホモ重合体のモノマー部分の少量がグリコリド単
位の鎖の両端又は一端に含まれているようなポリ
エステルを用いることができる。安定したセグメ
ントが比較的少量含まれることから考えるとその
場合のミクロ相分離の状況は例えばグリコリド単
位マトリツクス中の棒状のL(−)ラクチド単位
又はさらに好適の例としてはグリコリド単位のマ
トリツクス中に球状L(−)ラクチドが存在する
ものと信じられる。 外科用品は上記の参照特許に教示されているポ
リエステルに対して常用される方法を用いてポリ
エステルから製造される。また得た外科用品は慣
用されているやり方で使用される。 下記の実施例に、本発明を実施するに当つて有
用な方法を説明するが、本発明はこれらの実施例
によつて制限されるものと解すべきではない。特
にことわらない限りすべての部および百分率は重
量に関する表示である。実施例 1〜2 塩化第一錫二水和物(SnCl2・2H2O)を含むエ
ーテル溶液とラウリルアルコールを10mg/ml含有
するエーテル溶液とを製造した。これらの溶液の
充分量を二本の重合管に加え溶媒を除去した最終
触媒重量とラウリルアルコール重量がL(−)ラ
クチドモノマー20.0gにつき次の数値になるよう
にした:
This invention relates to methods of making synthetic polyester surgical articles and methods of using them. The use of lactide polyesters in the manufacture of synthetic medical products is well known in the art. Comonomers are often used in this connection to modify the properties of various polyesters. The conventional polymerization method for making polyesters is by ring-opening polymerization of appropriate cyclic lactides. When preparing copolymers, one lactide is usually copolymerized with another. It is also optional to use other reducing materials as comonomers for copolymerization. These include other lactones, other compounds such as trimethylene carbonate, and others. The polymerization and atoprocessing methods used and methods of manufacturing surgical supplies are well known in the art.
The surgical products manufactured include absorbable and non-absorbable products. US Pat. No. 3,268,486 and US Pat. No. 3,268,487 are of interest in this regard. It has now been discovered that synthetic polyesters for surgical supplies can be effectively produced by polymerizing copolymerized lactide polyesters by ring-opening polymerization in which the polymerization is carried out sequentially or incrementally. . This is achieved by sequentially adding comonomers to form the copolymer chain. Before the ability of the polymer to form a dimensionally stable, highly crystalline or highly oriented molecular structure is normally disturbed by performing the polymerization operations stepwise or one after the other, the surgical procedure is performed. The in-vivo properties of the article can be modified more extensively. The process of the invention can be carried out in more than one stage using more than one comonomer during the polymerization process. Two monomers can be used simultaneously in one or more stages. Different catalysts can be used in each stage if desired. It is generally appropriate to carry out subsequent polymerizations by sequential addition of comonomers in the same reaction vessel. However, if desired, it is also within the scope of the present invention to prepare one or more polymer segments and transfer them to different reaction vessels to undergo subsequent chemical reactions to form the polyester. Two lactides conventionally used in the manufacture of surgical supplies are L(-)lactide and glycolide.
These compounds are also suitable for the present invention.
Furthermore, it is preferable to use these simultaneously in the continuous polymerization method of the present invention. trimethylene carbonate, 2-
Other conventionally used cyclic comonomers such as keto-1,4-dioxane and one or more of the following compounds are also among the comonomers copolymerized with lactide when practicing the invention: used as: β-propiolactone, tetramethyl glycolide, β-butyrolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, pivalolactone and intramolecular cyclic esters of the following compounds; α-hydroxybutyric acid, α-hydroxyisobutyric acid, α-hydroxyvaleric acid, α-hydroxyisovaleric acid, α-hydroxycaproic acid,
α-hydroxy-α-ethylbutyric acid, α-hydroxyisocaproic acid, α-hydroxy-β-methylvaleric acid, α-hydroxyheptanoic acid, α-hydroxyoctanoic acid, α-hydroxydecanoic acid, α-
Hydroxymyristic acid, α-hydroxystearic acid, α-hydroxylignoceric acid, α・α
-diethylpropiolactone, ethylene carbonate,
2,5-diketomorpholine, ethylene oxalate,
6,8-dioxabicyclo[3.2.1]octan-7-one, disalicylide, trioxane,
3-methyl-1,4-dioxane-2,5-dione, 3,5-dimethyl-1,4-dioxane-2
-On. One of the applications of this invention is the production of sterile, absorbable synthetic surgical products (particularly sutures) from polyesters produced using glycolide as the main component of the lactide comonomer.
At the current state of the art, the details of the molecular level structure and absorption mechanism of this polymer have not been clearly elucidated. One preferred embodiment of the invention involves the sequential copolymerization of lactide, preferably L(-)lactide, with glycolide. successively repeating L(-)lactide, glycolide and L(-)
The triblock structure obtained by copolymerizing lactide is interesting. In the latter case, the polyester produced has primarily lactic acid units on both ends of the glycolide polymer chain. Generally, three types of morphological units are known in AB and ABA type polystyrene-butadiene polymers, namely, spheres, rods (or cylinders), and thin layers, and this morphology is also exhibited in the polyester of the present invention. Believable. In the case of polystyrene-butadiene polymers, spherical regions have been observed by electron microscopy when the molar ratio of styrene to butadiene is 80/20. As the above molar ratio increases with the relative increase of butadiene units, the morphology of the microphase changes, with spheres of butadiene units in a matrix of styrene units becoming rods of butadiene units in a matrix of styrene units, and then layers of units. Changes to
As the amount of butadiene increases further and the molar ratio decreases, the styrene units only undergo microphase separation as rods or cylinders in the butadiene matrix.
As the molar ratio decreases further, the styrene units appear as spheres in a matrix of butadiene units.
For details of this change, see M. Matsuo, S.
See Sagae and H. Asai: Polymer, p.10 79 (1969). In preparing absorbable sutures in accordance with the practice of this invention, a small amount of an inert homopolymer monomer moiety, such as an L(-)lactide segment, may be included at either or both ends of the chain of glycolide units. Polyester can be used. Considering the relatively small amount of stable segments contained, the microphase separation situation in that case may be, for example, rod-shaped L(-)lactide units in a matrix of glycolide units or, more preferably, spherical L(-)lactide units in a matrix of glycolide units. It is believed that L(-)lactide is present. Surgical articles are manufactured from polyester using methods commonly used for polyester as taught in the above referenced patents. The surgical supplies obtained are also used in a conventional manner. The following examples illustrate methods useful in carrying out the invention, but the invention should not be construed as limited by these examples. All parts and percentages are by weight unless otherwise indicated. Examples 1-2 An ether solution containing stannous chloride dihydrate (SnCl2 .2H2 O) and an ether solution containing 10 mg/ml of lauryl alcohol were prepared. Sufficient amounts of these solutions were added to two polymerization tubes so that the final catalyst weight and lauryl alcohol weight after removing the solvent were as follows per 20.0 g of L(-)lactide monomer:

【表】 溶媒を除去した後20.0gのL(−)ラクチドを
各管に加えた。管を真空にしてから密封しこれを
油浴中で180℃に24時間保つた。これを油浴から
取り出し室温まで放冷する。管を開き重合物をウ
イリーミルで粉砕し20メツシユの金網を通して
0.1mgHg中で24時間50℃に乾燥した。管1および
2から得た重合体の転化率はそれぞれ86%および
89%で固有粘度はそれぞれ0.33および0.27であつ
た。重合体への転化率は乾燥前の重合体重量燥後
の重合体重量を割つて得た。固有粘度は乾燥重合
体0.5gをヘキサフルオロアセトン1.5水和物100
ml中に溶解した溶液の30℃における固有粘度であ
る。 100mlの三つ口丸底フラスコ中に上記の固有粘
度0.33のポリL(−)ラクチド7.0gを入れた。
そのフラスコにはガラスシヤフト、撹拌用モータ
ーに連結したテフロン撹拌機、およびアルゴンシ
リンダーに連結したガス導入管が装備されてい
る。フラスコをアルゴンガスで15分間通気洗浄し
た。この通気は重合の間続けて行なわれた。フラ
スコを190℃の油浴中におくと内容物は15分後に
180°±2℃に達した。この時3.5gのグリコリド
を加えてかきまぜ油浴温度を内容物が30分間180
°±2℃に保たれるように調節した。次に油浴温
度を上げ30分後に内容物の温度が220°±2℃に
達するように調節した。この時グリコリドの残り
31.5gを加えかきまぜながら内容物の温度を220
±2℃に1時間30分保つた。次に油浴を取り去り
撹拌を止めフラスコ内容物をアルゴン気流中でほ
ぼ室温にまで放却した。通気を止めガラスフラス
コを破壊し重合物を取り出してウイリーミルで砕
いた後20メツシユ金網を通す。3.0gの重合体を
先ず60mlのヘシキサフルオロアセトンの1.5水和
物中に60℃で溶解し、この溶液をかきまぜながら
600mlのメタノール中に落して沈殿させる。重合
物を過捕集後ソツクスレー抽出機で2日間アセ
トンで抽出しふつ素化物溶媒の残留分を除去す
る。次に重合体を50℃、0.1mmHgの真空中で一夜
真空乾燥する。重合体の収率は95%であつた。ヘ
キサフルオロアセトン1.5水和物中の固有粘度は
0.77であつた。NMRで測定した重合体鎖中の乳
酸単位のモル%は8.8、D.T.A.(示差熱分析)の
吸熱ピークから測定した融点は218℃であつた。
この重合体を用いて埋没用繊維シートを作つた。 第二の二段階共重合体は次のように調製した。
上記と同じ100mlの三つ口フラスコ中に4.0gのポ
リL(−)ラクチド(固有粘度0.27)を加え撹拌
した。この中をアルゴンガスで洗浄し、以下の反
応中も引続いて通気した。フラスコを190℃の油
浴中に置くと15分以内に内容物の温度は180゜±
2℃に達した。この時かきまぜながら3.6gのグ
リコリドを加え油浴温度を調節して内容物の温度
を180゜±2℃に30分保つた。次いで油浴温度を
上昇させ内容物の温度が30分後に220゜±2℃に
達するように調節し、次いで31.4gのグリコリド
を加え手続き撹拌しつつ220゜±2℃の温度に1
時間半に亘つて保持した。次に油浴を取り去り撹
拌を止め内容物がほとんど室温にまで冷却するま
でアルゴン通気を続けた。通気を止めガラスフラ
スコを破壊し重合物を取り出してウイリーミルで
砕いて20メツシユの金網を通す。この重合体3.0
gを60mlのヘキサフルオロアセトン1.5水和物
(HFAS)中に60℃で溶解した後、溶液を600mlの
メタノールを撹拌しつつその中に滴下させて沈殿
させた。重合体を過捕集しソツクスレ−抽出器
中で2日間アセトンによつて抽出した。次に重合
体を0.1mmHgの真空炉で50℃に一夜乾燥すると収
率95%で製品を得た。ヘキサフルオロアセトン
1.5水和物中の固有粘度は0.82であつた。重合体
中の乳酸単位のモル%をNMRで測定すると5.9で
あつた。示差熱分析によつて吸熱ピークから測定
した融点は219℃であつた。実施例 3 実施例1〜2の手順に従い但し塩化第一錫二水
和物1.2mgおよびラウリルアルコール7.5mgを使用
してポリL(−)ラクチドの試料を調製した。転
化率は98%で固有粘度は0.5であつた。100mlの三
つ口丸底フラスコ(ガラスシヤフト、撹拌モータ
ー付テフロン羽根およびアルゴン円筒容器からの
ガス導入管を持つ)中にポリL(−)ラクチド
10.0gを入れた。アルゴンを15分間通気しさらに
次の重合反応中もアルゴン通気を保持した。フラ
スコを190℃の油浴中におき15分以内に内容物の
温度を180±2℃とする。次いでかきまぜながら
2gのグリコリドを加え油浴温度を内容物が180
゜±2℃に保たれるように30分間調節して撹拌を
続けた。次に油浴温度を上げ30分後にフラスコ内
容物の温度を220゜±2℃に達せしめた。この時
18.0gのグリコリドを加えフラスコ内容物の温度
を220゜±2℃に1時間半の間保ちながら撹拌し
た。油浴からフラスコを取り出し撹拌を止めフラ
スコ内容物をアルゴン通気下で放冷してほぼ室温
に低下させた。次いで通気を止めガラスフラスコ
を破壊し重合物をウイリーミルで粉砕して20メツ
シユ金網を通過させた。 この重合体20.0gを400mlの60℃のヘキサフル
オロアセトン1.5水和物中に溶解した後、溶液を
4000mlのメタノール中にかきまぜながら滴下し
た。沈殿した重合体を過捕集しソツクスレー抽
出器で2日間アセトンで抽出した。重合体を50℃
0.1mmHgの真空炉中で乾燥させると72%の収率で
重合体を得た。固有粘度(ヘキサフルオロアセト
ン中)は0.60、NMRで得た重合体中の乳酸単位
モル%は33であつた。示差熱分析による吸熱ピー
クからの融点は219℃であつた。実施例 4 上述と同じ三つ口丸底フラスコ(100ml)中に
6.0gのポリL(−)ラクチド(実施例3の方法
によつたが加熱は1.5時間200℃であつた。固有粘
度は0.29)を加えた。アルゴンガスの通気を15分
行ない重合反応中も通気を続けた。フラスコを
200℃の油浴中におき浴温度を上げフラスコ内容
物の温度を200゜±2℃まで15分間で達せしめ
た。次いで48.0gのグリコリドを撹拌添加した後
内容物の温度が30分後に225゜±2℃に至るまで
油浴温度を上げた。この温度で1時間半の間撹拌
した後6.0gのL(−)ラクチドを加え(この間
撹拌を続けた)更にこの温度で1時間半撹拌を続
けた。撹拌を止め油浴を取り除き内容物をアルゴ
ン通気しながらほぼ室温に至るまで放冷し通気を
止めた。ガラスフラスコを破壊し重合物を取り出
しウイリーミルで砕いて20メツシユ金網を通過さ
せた。この重合体5.0gを10mlのヘキサフルオロ
アセトン1.5水和物中に溶解し、溶液を1000mlの
メタノール中にかきまぜながら滴下した。沈殿し
た重合体を過捕集しソツクスレー抽出器中でア
セトンで2日間抽出した。重合物を50℃0.1mmHg
の真空炉中で一夜乾燥すると収率82%で重合体を
得た。ヘキサフルオロアセトン中の固有粘度は
0.81であつた。NMRによる重合体鎖中の乳酸単
位のモル%は11.2、示差熱分析の吸熱ピークによ
る融点は216℃であつた。実施例 5 上述と同様な三つ口丸底フラスコ(100ml)中
に固有粘度0.42のポリ(ε−カプロラクトン)
4.5gを加えた。ポリ(ε−カプロラクトン)重
合体は実施例1の方法で調製したが、塩化第一錫
二水和物8.0mgおよびラウリルアルコール500mgお
よびL(−)ラクチドの代りにε−カプロラクト
ンを使用したフラスコをアルゴンガスで15分間通
気後重合反応中も引続いて通気を行なつた。フラ
スコを190℃の油浴中におくと15分以内でフラス
コ内容物は180゜±2℃に達した。1.35gのグリ
コリドをかきまぜながら添加し内容物の温度を
180゜±2℃に30分間保つようにかきまぜながら
油浴温度を調節した。次に内容物温度が30分後に
220゜±2℃になるように油浴温度を上げた。こ
の時内容物をかきまぜながら12.15gのグリコリ
ドを加えさらに撹拌しつつ内容物の温度を220±
2℃に1時間保つた。次に油浴を取り去り撹拌を
止めフラスコ内容物をアルゴン通気下でほぼ室温
にまで放冷した。通気を止めてガラスフラスコを
破壊し重合物を取り出しウイリーミルで粉砕し20
メツシユ金網を通過させた。4.0gの重合体を60
℃の80mlのヘキサフルオロアセトン中に溶解しこ
の溶液を1000mlのメタノール中に撹拌しながら滴
下した。沈殿した重合物を過捕集しソツクスレ
ー抽出器中で2日間アセトンによる抽出を行なつ
た。得た重合体を50℃0.1mmHg真空炉中で乾燥す
ると収率73%で重合体を得た。ヘキサフルオロア
セトン中の固有粘度は0.77であつた。NMRで測
定した重合体鎖中のε−ヒドロキシカプロン酸単
位のモル%は12.3であり、これはカプロアセトン
単位12.1重量%に当たる。示差熱分析による吸熱
ピークから得た融点は218℃であつた。実施例 6 三つ口丸底フラスコ(100ml、撹拌用モータ
ー、ガラスシヤフト、テフロン羽根およびアルゴ
ン円筒容器からのガス導入口付)中に固有粘度
0.34のポリ(炭酸トリメチレン)7.0gを加え
た。ポリ(炭酸トリメチレン)は実施例1の方法
に従つて調製したが、該方法中のL(−)ラクチ
ドの代りに炭酸トリメチレンを用いおよび塩化第
一錫1.5水和物4.0mgと250mgのラウリルアルコー
ルを用いた。転化率は48%であつた。アルゴンガ
スをフラスコに15分間どつと通し、引続く重合反
応中もアルゴン通気を続けた。フラスコを190℃
の油浴中におくと15分以内でフラスコ内容物は
180゜±2℃となつた。撹拌と共に3.5gのグリコ
リドを加え油浴温度を調節して撹拌中の内容物の
温度が30分間180゜±2℃に保たれるようにし
た。次に油浴温度を上昇させ30分後の内容物の温
度を220゜±2℃とした。この時31.5gのグリコ
リドを撹拌しつつ加え撹拌中の内容物の温度を
220゜±2℃に1時間半保つた。油浴を除去し撹
拌を止めフラスコ内容物をアルゴン通気下でほぼ
室温にまで放冷した。次いで通気を止めガラスフ
ラスコを破壊し重合体を取り出してウイリーミル
で粉砕し20メツシユの金網を通過させた。この重
合体5.0gを100mlの60℃のヘキサフルオロアセト
ンに溶解し、この溶液を1000mlのメタノール中に
撹拌しつつ滴下した。沈殿した重合体を過捕集
しソツクスレー抽出器中で2日間アセトンによる
抽出を行なつた。重合体を50℃0.1mmHgの真空炉
中で乾燥すると収率86%で重合体を得た。ヘキサ
フルオロアセトン中の固有粘度は0.64であつた。
NMRで測定した重合体鎖中の炭酸トリメチレン
から誘導された単位のモル%は16.4であつた。こ
れは炭酸トリメチレン単位として14.7重量%に該
当する。示差熱分析による吸熱ピークから測定し
た融点は218℃であつた。実施例 7 140℃に予熱された撹拌されつつある反応器中
にL(−)ラクチド(1612g)、塩化第一錫二水
和物(0.204g)およびラウリルアルコール
(4.77g)を加えた。窒素雰囲気下で撹拌しつつ
反応系を200℃に上昇させるに30分間をかけ次い
でこの温度に2時間保つた。 反応器を50mmHgに減圧し混合物を30分かきま
ぜ、その間混合物の温度を180℃に降下させた。 反応容器中に窒素を大気圧まで導入して200℃
の温度まで5分間で上昇させた。予め100℃に加
熱した溶融グリコリド(5198g)を加え温度を上
げ15分間で225℃に達せしめこの温度にさらに20
分間保持した。 次に反応器中の内容物を取り出し室温まで冷却
した後重合体の塊を砕き粉砕後140℃に11時間8
〜10mmHgに真空乾燥してすべての揮発分を除去
する。次いで紡糸および粘度測定をおこなう。 重合体の固有粘度はヘキサフルオロアセトン
1.5水和物中0.5%溶液として30℃で測定したが
1.14であつた。最終重合体中の乳酸単位をNMR
で測定すると20.3モル%であつた。ホツトステー
ジ偏光顕微鏡を用いて測定した融点範囲は215゜
〜223.5℃であつた。 乾燥重合体の一部を約230℃で作動する小型連
続押出機のホツパー中に加えた。押出機には長さ
の径に対する比が4:1であり径60ミルの円筒形
の射出孔を持つダイスが装備されている。押出物
は水で急却され毎分44フイートの速度で捲き取ら
れる。続いて熱空気引張り装置中55℃で最初の長
さの4.5倍に引き伸ばされる。固有粘度1.05のグ
リコライドホモポリマーの試料を同方式で押出し
引き伸ばし上記共重合体繊維と共に135℃に3時
間1mmHgの圧力下でアト処理した。 かくして得た直径2.45ミルの共重合体繊維はそ
の共モノマー含有率が20.3モル%という高い値で
あるにも拘らず加速強度保持試験において極めて
高い引張り強度保持性(34600psi)を持ち、また
最初の引張り強度が96500psiという非常にすぐれ
た値を持つことが見出された。これと対照的に直
径2.10ミルのホモポリマー繊維の初期強度は
140000psiで加速試験での対応する強度は
25300psiであつた。 上述のようにこのような共重合体ポリエステル
は、乳酸単位よりなる鎖状部分がグリコール酸単
位のマトリツクスの中でそれら自身で重なり合う
配向に先立つて、溶融状態において球状領域を有
するミクロ相分離によつて特徴づけられるこのよ
うなミクロ相分離を持つポリエステル類は重合体
鎖中に添加されたL(−)ラクチドのモル%が約
25%になるまで存在することが信じられる。乳酸
単位が約25%乃至約40%の範囲では乳酸単位の円
柱状領域が顕著であることが推定される。これは
L(−)ラクチド、グリコリドさらにL(−)ラ
クチドと連続的に反復して重合させる結果ポリエ
ステル鎖の両端上に乳酸単位が圧倒的に増加する
ことを示すと思われる。 溶融状態における異なる領域の存在の様相は推
論的なものであるが、重合体の相分離又は沈殿の
存在の確実性は主成分であるホモポリマーの融点
と共重合体の融点を比較することによつて明らか
であろう。 かくして、本発明によつて調製される好適な外
科用品はラクチドポリエステルから調製される吸
収性無菌合成外科用縫合糸であつて、そのポリエ
ステルはグリコリド単位のマトリツクス中にL
(−)ラクチド単位の円柱状又は好ましくは球状
領域を持つ共重合体より成るものである。縫合糸
は外科用針と縫合糸の無菌組み合わせの形である
ことができる。慣習的な接合糸の構成法と殺菌法
とが用いられる。好ましくは単繊条、または複繊
条を編んだポリエステル編み糸を外科用針の頭部
中に装着し、針着きの縫合糸を酸化エチレンのよ
うな殺菌剤で殺菌する。連続的に反復してL
(−)ラクチドとグリコリドを重合させて得たポ
リエステルは縫合糸として最適である。 本発明の外科用品は一般の縫合糸と同様に使用
される。即ち治療過程で血管縫合のように生体組
織を望む位置に他の生体組織と連結保持する慣習
的な方式で使用できる。特に生体組織の傷を閉じ
合わせ縫合するのに本針付縫合糸は適している。
Table: After removing the solvent, 20.0 g of L(-)lactide was added to each tube. The tube was evacuated and sealed and kept at 180°C in an oil bath for 24 hours. Remove this from the oil bath and allow to cool to room temperature. Open the tube, crush the polymer in a Willie mill, and pass it through a 20-mesh wire mesh.
Dry at 50°C for 24 hours in 0.1 mgHg. The conversion of polymer obtained from tubes 1 and 2 was 86% and 2, respectively.
At 89%, the intrinsic viscosities were 0.33 and 0.27, respectively. The conversion rate to the polymer was obtained by dividing the polymer weight before drying by the polymer weight after drying. The intrinsic viscosity is 0.5g of dry polymer and 100% of hexafluoroacetone hemihydrate.
It is the intrinsic viscosity of a solution dissolved in ml at 30°C. 7.0 g of the above poly-L(-)lactide having an intrinsic viscosity of 0.33 was placed in a 100 ml three-necked round bottom flask.
The flask is equipped with a glass shaft, a Teflon stirrer connected to a stirring motor, and a gas inlet tube connected to an argon cylinder. The flask was flushed with argon gas for 15 minutes. This aeration continued throughout the polymerization. If the flask is placed in an oil bath at 190℃, the contents will disappear after 15 minutes.
The temperature reached 180°±2°C. At this time, add 3.5g of glycolide, stir and reduce the oil bath temperature to 180℃ for 30 minutes.
The temperature was adjusted to be maintained at °±2°C. Next, the temperature of the oil bath was increased so that the temperature of the contents reached 220°±2°C after 30 minutes. At this time, the remaining glycolide
Add 31.5g and bring the temperature of the contents to 220 while stirring.
It was kept at ±2°C for 1 hour and 30 minutes. The oil bath was then removed, stirring was stopped, and the contents of the flask were allowed to cool to about room temperature under a stream of argon. Stop the ventilation, destroy the glass flask, take out the polymer, crush it in a Willie mill, and pass it through a 20-mesh wire mesh. 3.0 g of the polymer was first dissolved in 60 ml of hexafluoroacetone hemihydrate at 60°C, and the solution was dissolved while stirring.
Drop into 600 ml of methanol to precipitate. After over-collecting the polymer, it is extracted with acetone using a Soxhlet extractor for 2 days to remove the residual fluoride solvent. The polymer is then vacuum dried at 50° C. and 0.1 mm Hg vacuum overnight. The yield of polymer was 95%. The intrinsic viscosity in hexafluoroacetone hemihydrate is
It was 0.77. The mole % of lactic acid units in the polymer chain measured by NMR was 8.8, and the melting point measured from the endothermic peak of DTA (differential thermal analysis) was 218°C.
A fiber sheet for burial was made using this polymer. A second two-stage copolymer was prepared as follows.
4.0 g of poly-L(-)lactide (intrinsic viscosity 0.27) was added to the same 100 ml three-necked flask as above and stirred. The inside of the reactor was washed with argon gas, and the atmosphere was continuously vented during the following reaction. If the flask is placed in an oil bath at 190°C, the temperature of the contents will rise to 180°± within 15 minutes.
The temperature reached 2℃. At this time, 3.6 g of glycolide was added while stirring, and the temperature of the oil bath was adjusted to maintain the temperature of the contents at 180°±2°C for 30 minutes. Next, the temperature of the oil bath was increased and adjusted so that the temperature of the contents reached 220° ± 2°C after 30 minutes, and then 31.4 g of glycolide was added and the temperature was raised to 220° ± 2°C while stirring the procedure.
It was held for half an hour. The oil bath was then removed, stirring was stopped, and argon bubbling was continued until the contents had cooled to approximately room temperature. Stop the ventilation, destroy the glass flask, take out the polymer, crush it in a Willy mill, and pass it through a 20-mesh wire mesh. This polymer 3.0
g was dissolved in 60 ml of hexafluoroacetone hemihydrate (HFAS) at 60°C, and the solution was dropped into 600 ml of methanol with stirring to cause precipitation. The polymer was overcollected and extracted with acetone in a Soxhlet extractor for 2 days. The polymer was then dried in a vacuum oven at 0.1 mmHg at 50°C overnight to obtain the product with a yield of 95%. Hexafluoroacetone
The intrinsic viscosity in the hemihydrate was 0.82. The mole percent of lactic acid units in the polymer was determined to be 5.9 by NMR. The melting point determined from the endothermic peak by differential thermal analysis was 219°C. Example 3 A sample of poly-L(-)lactide was prepared according to the procedure of Examples 1-2, but using 1.2 mg of stannous chloride dihydrate and 7.5 mg of lauryl alcohol. The conversion rate was 98% and the intrinsic viscosity was 0.5. Poly L(-)lactide in a 100 ml three-necked round-bottomed flask (with glass shaft, Teflon impeller with stirring motor, and gas inlet tube from an argon cylindrical container).
10.0g was added. Argon was bubbled through for 15 minutes, and the argon bubble was maintained during the next polymerization reaction. Place the flask in an oil bath at 190°C and bring the temperature of the contents to 180±2°C within 15 minutes. Then, while stirring, add 2g of glycolide and adjust the oil bath temperature to 180℃.
Stirring was continued for 30 minutes so that the temperature was maintained at ±2°C. Next, the temperature of the oil bath was raised, and after 30 minutes, the temperature of the contents of the flask reached 220°±2°C. At this time
18.0 g of glycolide was added and stirred while maintaining the temperature of the flask contents at 220°±2°C for 1.5 hours. The flask was removed from the oil bath, stirring was stopped, and the contents of the flask were allowed to cool to approximately room temperature under an argon atmosphere. Next, the ventilation was stopped, the glass flask was broken, and the polymer was ground in a Willie mill and passed through a 20-mesh wire mesh. After dissolving 20.0 g of this polymer in 400 ml of hexafluoroacetone hemihydrate at 60°C, the solution was
The mixture was added dropwise to 4000 ml of methanol while stirring. The precipitated polymer was collected and extracted with acetone using a Soxhlet extractor for 2 days. Polymer at 50℃
Drying in a vacuum oven at 0.1 mmHg gave the polymer in 72% yield. The intrinsic viscosity (in hexafluoroacetone) was 0.60, and the mole % of lactic acid units in the polymer obtained by NMR was 33. The melting point from the endothermic peak determined by differential thermal analysis was 219°C. Example 4 In the same three neck round bottom flask (100 ml) as above.
6.0 g of poly L(-)lactide (according to the method of Example 3 but heated at 200 DEG C. for 1.5 hours, intrinsic viscosity 0.29) was added. Argon gas was aerated for 15 minutes, and the aeration was continued during the polymerization reaction. a flask
The flask was placed in an oil bath at 200°C and the bath temperature was raised to bring the contents of the flask to a temperature of 200°±2°C in 15 minutes. Then, after stirring and adding 48.0 g of glycolide, the oil bath temperature was raised until the temperature of the contents reached 225°±2°C after 30 minutes. After stirring at this temperature for 1.5 hours, 6.0 g of L(-)lactide was added (stirring was continued during this time), and stirring was continued for an additional 1.5 hours at this temperature. Stirring was stopped, the oil bath was removed, and the contents were allowed to cool to approximately room temperature while bubbling with argon, and the bubbling was stopped. The glass flask was destroyed, the polymer was taken out, crushed in a Willie mill, and passed through a 20-mesh wire mesh. 5.0 g of this polymer was dissolved in 10 ml of hexafluoroacetone hemihydrate, and the solution was added dropwise to 1000 ml of methanol with stirring. The precipitated polymer was overcollected and extracted with acetone in a Soxhlet extractor for 2 days. Polymer at 50℃0.1mmHg
After drying in a vacuum oven overnight, a polymer was obtained with a yield of 82%. The intrinsic viscosity in hexafluoroacetone is
It was 0.81. The mole % of lactic acid units in the polymer chain was determined by NMR to be 11.2, and the melting point determined by the endothermic peak by differential thermal analysis was 216°C. Example 5 Poly(ε-caprolactone) with an intrinsic viscosity of 0.42 was placed in a three-necked round bottom flask (100 ml) similar to that described above.
Added 4.5g. Poly(ε-caprolactone) polymer was prepared by the method of Example 1, but using a flask using 8.0 mg of stannous chloride dihydrate and 500 mg of lauryl alcohol and using ε-caprolactone in place of L(-)lactide. After aeration with argon gas for 15 minutes, aeration was continued during the polymerization reaction. The flask was placed in an oil bath at 190°C and within 15 minutes the contents of the flask reached a temperature of 180°±2°C. Add 1.35g of glycolide with stirring and bring the temperature of the contents to
The temperature of the oil bath was adjusted while stirring to keep it at 180°±2°C for 30 minutes. Then after 30 minutes the content temperature is
The oil bath temperature was increased to 220°±2°C. At this time, add 12.15g of glycolide while stirring the contents, and keep the temperature of the contents at 220± while stirring.
It was kept at 2°C for 1 hour. The oil bath was then removed, stirring was stopped, and the contents of the flask were allowed to cool to approximately room temperature under argon ventilation. Stop the ventilation, destroy the glass flask, take out the polymer, and crush it with a Willy mill.
Passed through mesh wire mesh. 4.0g of polymer to 60
The solution was dissolved in 80 ml of hexafluoroacetone at 0.degree. C. and added dropwise to 1000 ml of methanol with stirring. The precipitated polymer was collected and extracted with acetone in a Soxhlet extractor for 2 days. The obtained polymer was dried in a vacuum oven at 50° C. and 0.1 mmHg to obtain a polymer with a yield of 73%. The intrinsic viscosity in hexafluoroacetone was 0.77. The mole percentage of ε-hydroxycaproic acid units in the polymer chain determined by NMR is 12.3, which corresponds to 12.1% by weight of caproacetone units. The melting point obtained from the endothermic peak by differential thermal analysis was 218°C. Example 6 Intrinsic viscosity in a 3-necked round-bottomed flask (100 ml, with stirring motor, glass shaft, Teflon blade and gas inlet from an argon cylindrical container)
7.0 g of 0.34 poly(trimethylene carbonate) was added. Poly(trimethylene carbonate) was prepared according to the method of Example 1, substituting trimethylene carbonate for L(-)lactide in the method and using 4.0 mg of stannous chloride hemihydrate and 250 mg of lauryl alcohol. was used. The conversion rate was 48%. Argon gas was passed through the flask in 15 minute increments and continued during the subsequent polymerization reaction. Heat the flask to 190℃
When placed in an oil bath, the contents of the flask will disappear within 15 minutes.
The temperature was 180°±2°C. With stirring, 3.5 g of glycolide was added and the oil bath temperature was adjusted so that the temperature of the contents during stirring was maintained at 180° ± 2° C. for 30 minutes. Next, the temperature of the oil bath was increased and the temperature of the contents after 30 minutes was 220°±2°C. At this time, 31.5g of glycolide was added while stirring and the temperature of the contents was adjusted.
It was kept at 220°±2°C for 1.5 hours. The oil bath was removed, stirring was stopped, and the contents of the flask were allowed to cool to approximately room temperature under argon. Next, the ventilation was stopped, the glass flask was broken, and the polymer was taken out, ground in a Willie mill, and passed through a 20-mesh wire mesh. 5.0 g of this polymer was dissolved in 100 ml of hexafluoroacetone at 60° C., and this solution was added dropwise to 1000 ml of methanol with stirring. The precipitated polymer was over-collected and extracted with acetone in a Soxhlet extractor for 2 days. The polymer was dried in a vacuum oven at 50°C and 0.1 mmHg to obtain a polymer with a yield of 86%. The intrinsic viscosity in hexafluoroacetone was 0.64.
The mole percent of units derived from trimethylene carbonate in the polymer chain determined by NMR was 16.4. This corresponds to 14.7% by weight as trimethylene carbonate units. The melting point measured from the endothermic peak by differential thermal analysis was 218°C. Example 7 L(-)lactide (1612 g), stannous chloride dihydrate (0.204 g) and lauryl alcohol (4.77 g) were added to a stirred reactor preheated to 140<0>C. The reaction system was raised to 200° C. for 30 minutes with stirring under a nitrogen atmosphere and then held at this temperature for 2 hours. The reactor was evacuated to 50 mmHg and the mixture was stirred for 30 minutes while the temperature of the mixture was allowed to drop to 180°C. Introduce nitrogen into the reaction vessel to atmospheric pressure and heat to 200℃
It took 5 minutes to raise the temperature to . Add molten glycolide (5198 g) preheated to 100°C and raise the temperature to 225°C in 15 minutes.
Hold for minutes. Next, the contents in the reactor were taken out and cooled to room temperature, and the polymer lumps were crushed and then heated to 140℃ for 11 hours.
Remove all volatiles by vacuum drying to ~10 mmHg. Next, spinning and viscosity measurement are performed. The intrinsic viscosity of the polymer is hexafluoroacetone
Measured at 30°C as a 0.5% solution in hemihydrate.
It was 1.14. NMR of lactic acid units in the final polymer
When measured, it was 20.3 mol%. The melting point range was 215° to 223.5°C as determined using a hot stage polarizing microscope. A portion of the dry polymer was added to the hopper of a small continuous extruder operating at about 230°C. The extruder was equipped with a die having a 4:1 length to diameter ratio and a 60 mil diameter cylindrical injection hole. The extrudate is quenched with water and rolled up at a rate of 44 feet per minute. It is then stretched to 4.5 times its original length at 55° C. in a hot air stretching device. A sample of a glycolide homopolymer having an intrinsic viscosity of 1.05 was extruded and drawn in the same manner, and treated with the above-mentioned copolymer fiber at 135° C. for 3 hours under a pressure of 1 mmHg. The 2.45 mil diameter copolymer fiber thus obtained had extremely high tensile strength retention (34,600 psi) in the accelerated strength retention test despite its high comonomer content of 20.3 mol%, and It was found that the tensile strength was an excellent value of 96,500 psi. In contrast, the initial strength of a 2.10 mil diameter homopolymer fiber is
The corresponding strength in accelerated tests at 140000psi is
It was 25300psi. As mentioned above, such copolymer polyesters undergo microphase separation in the molten state with spherical regions prior to orientation in which the chains of lactic acid units overlap themselves in a matrix of glycolic acid units. Polyesters with such microphase separation characterized as
It is believed that it will exist until it reaches 25%. It is estimated that in the range of about 25% to about 40% lactic acid units, cylindrical regions of lactic acid units are prominent. This appears to indicate a predominant increase in lactic acid units on both ends of the polyester chain as a result of successive repeated polymerizations with L(-)lactide, glycolide, and then L(-)lactide. Although the existence of different regions in the molten state is speculative, the existence of phase separation or precipitation in the polymer can be confirmed by comparing the melting points of the homopolymer and the copolymer. It should be obvious. Thus, a preferred surgical article prepared in accordance with the present invention is an absorbable sterile synthetic surgical suture prepared from a lactide polyester, the polyester containing L in a matrix of glycolide units.
It consists of a copolymer having cylindrical or preferably spherical regions of (-)lactide units. The suture can be in the form of a sterile combination of a surgical needle and suture. Conventional bonding thread construction and sterilization methods are used. A polyester yarn, preferably a monofilament or multifilament yarn, is placed in the head of a surgical needle, and the needle-attached suture is sterilized with a disinfectant such as ethylene oxide. Continuously repeat L
(-) Polyester obtained by polymerizing lactide and glycolide is optimal as a suture thread. The surgical device of the present invention is used in the same manner as a conventional suture. That is, it can be used in a conventional manner such as blood vessel suturing to connect and hold living tissue in a desired position with other living tissue during the treatment process. The suture thread with this needle is particularly suitable for closing and suturing wounds in living tissue.

Claims (1)

Translated fromJapanese
【特許請求の範囲】1 主モノマーとしてのグリコリド及びグリコリ
ド以外の環状エステルモノマーを共重合させて生
成する合成吸収性共重合体から製造される無菌性
外科用品の製法であつて、 該グリコリドモノマー、該環状エステルモノマ
ー又は該モノマー類の組合せが、他のモノマー又
は該組合せの添加前に、実質的に完全に重合され
ているよう、重合中にモノマー類の逐次的添加を
行なつて得られた共重合体から製造する方法。2 該環状エステルモノマーがラクチドである特
許請求の範囲第1項記載の方法。3 該環状エステルモノマーがL(−)ラクチド
である特許請求の範囲第2項記載の方法。4 該環状エステルモノマーがラクトン類、オキ
ザレート類及びカーボネート類よりなる群より選
ばれるモノマーである特許請求の範囲第2項記載
の方法。5 該環状エステルモノマーが1・4−ジオキサ
ン−2・3−ジオンである特許請求の範囲第4項
記載の方法。6 該環状エステルモノマーが1・3−ジオキサ
ン−2−オンである特許請求の範囲第4項記載の
方法。
[Scope of Claims] 1. A method for producing sterile surgical supplies from a synthetic absorbable copolymer produced by copolymerizing glycolide as a main monomer and a cyclic ester monomer other than glycolide, comprising: the glycolide monomer; obtained by sequential addition of monomers during polymerization such that the cyclic ester monomer or combination of monomers is substantially completely polymerized before addition of other monomers or combinations of monomers. A method of manufacturing from copolymers. 2. The method according to claim 1, wherein the cyclic ester monomer is lactide. 3. The method according to claim 2, wherein the cyclic ester monomer is L(-)lactide. 4. The method according to claim 2, wherein the cyclic ester monomer is a monomer selected from the group consisting of lactones, oxalates, and carbonates. 5. The method according to claim 4, wherein the cyclic ester monomer is 1,4-dioxane-2,3-dione. 6. The method according to claim 4, wherein the cyclic ester monomer is 1,3-dioxan-2-one.
JP6153378A1977-05-231978-05-23Manufacture of absorptive lactide polyester copolymer for surgical productsGrantedJPS53145899A (en)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US79983677A1977-05-231977-05-23

Publications (2)

Publication NumberPublication Date
JPS53145899A JPS53145899A (en)1978-12-19
JPS6139329B2true JPS6139329B2 (en)1986-09-03

Family

ID=25176885

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP6153378AGrantedJPS53145899A (en)1977-05-231978-05-23Manufacture of absorptive lactide polyester copolymer for surgical products

Country Status (23)

CountryLink
JP (1)JPS53145899A (en)
AR (1)AR218303A1 (en)
AU (1)AU525415B2 (en)
BE (1)BE867222A (en)
BR (1)BR7803223A (en)
CA (1)CA1128231A (en)
DD (1)DD139794A5 (en)
DE (1)DE2821570A1 (en)
DK (1)DK225978A (en)
EG (1)EG14151A (en)
ES (1)ES470114A1 (en)
FI (1)FI65443C (en)
FR (1)FR2391734A1 (en)
GB (2)GB1604177A (en)
HU (1)HU180198B (en)
IT (1)IT1105550B (en)
NL (1)NL185493C (en)
NO (1)NO152791C (en)
NZ (1)NZ186944A (en)
PL (1)PL117675B1 (en)
RO (1)RO85051B (en)
SE (1)SE444891B (en)
ZA (1)ZA782039B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4137921A (en)*1977-06-241979-02-06Ethicon, Inc.Addition copolymers of lactide and glycolide and method of preparation
FR2439003A1 (en)*1978-10-201980-05-16Anvar NEW OSTEOSYNTHESIS PARTS, THEIR PREPARATION AND THEIR APPLICATION
US4273920A (en)*1979-09-121981-06-16Eli Lilly And CompanyPolymerization process and product
EP0050215B1 (en)*1980-10-201987-11-19American Cyanamid CompanyModification of polyglycolic acid to achieve variable in-vivo physical properties
US4429080A (en)*1982-07-011984-01-31American Cyanamid CompanySynthetic copolymer surgical articles and method of manufacturing the same
NZ205680A (en)*1982-10-011986-05-09Ethicon IncGlycolide/epsilon-caprolactone copolymers and sterile surgical articles made therefrom
ES2091185T3 (en)*1984-03-061996-11-01United States Surgical Corp A PROCEDURE FOR THE PREPARATION OF TWO-PHASE COMPOSITIONS FOR ABSORBABLE SURGICAL DEVICES.
US4643191A (en)*1985-11-291987-02-17Ethicon, Inc.Crystalline copolymers of p-dioxanone and lactide and surgical devices made therefrom
DE3641692A1 (en)*1986-12-061988-06-09Boehringer Ingelheim Kg CATALYST-FREE RESORBABLE HOMOPOLYMERS AND COPOLYMERS
US4916193A (en)*1987-12-171990-04-10Allied-Signal Inc.Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US5256764A (en)*1987-12-171993-10-26United States Surgical CorporationMedical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5145945A (en)*1987-12-171992-09-08Allied-Signal Inc.Homopolymers and copolymers having recurring carbonate units
US4920203A (en)*1987-12-171990-04-24Allied-Signal Inc.Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5120802A (en)*1987-12-171992-06-09Allied-Signal Inc.Polycarbonate-based block copolymers and devices
US5274074A (en)*1987-12-171993-12-28United States Surgical CorporationMedical devices fabricated from homopolymers and copolymers having recurring carbonate units
JP2606260B2 (en)*1988-03-071997-04-30日本合成ゴム株式会社 Block copolymer
US5250584A (en)*1988-08-311993-10-05G-C Dental Industrial Corp.Periodontium-regenerative materials
JPH02628A (en)*1988-12-011990-01-05Daicel Chem Ind LtdLactone polymer of narrow molecular weight distribution and its production
US5247013A (en)*1989-01-271993-09-21Mitsui Toatsu Chemicals, Inc.Biocompatible polyester and production thereof
EP0407617B1 (en)*1989-01-271997-05-28MITSUI TOATSU CHEMICALS, Inc.Process for the preparation of a biocompatible polyester
DE4030998C2 (en)*1989-10-041995-11-23Ernst Peter Prof Dr M Strecker Percutaneous vascular filter
US5080665A (en)*1990-07-061992-01-14American Cyanamid CompanyDeformable, absorbable surgical device
US5352515A (en)*1992-03-021994-10-04American Cyanamid CompanyCoating for tissue drag reduction
US5322925A (en)*1992-10-301994-06-21United States Surgical CorporationAbsorbable block copolymers and surgical articles made therefrom
US6756000B2 (en)2000-10-032004-06-29Ethicon, Inc.Process of making multifilament yarn
ES2859599T3 (en)*2014-08-192021-10-04Purac Biochem Bv Lactide Block Copolymer and Preparation Procedure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3268487A (en)*1963-12-231966-08-23Shell Oil CoProcess for polymerization of lactides
US3867190A (en)*1971-10-181975-02-18American Cyanamid CoReducing capillarity of polyglycolic acid sutures
US3784585A (en)*1971-10-211974-01-08American Cyanamid CoWater-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
JPS4936597A (en)*1972-08-071974-04-04

Also Published As

Publication numberPublication date
FI65443C (en)1984-05-10
SE7805831L (en)1978-11-24
BR7803223A (en)1979-01-02
DE2821570A1 (en)1978-11-30
DK225978A (en)1978-11-24
PL207038A1 (en)1979-06-04
GB1604178A (en)1981-12-02
AR218303A1 (en)1980-05-30
NL185493B (en)1989-12-01
NL7805276A (en)1978-11-27
FI65443B (en)1984-01-31
ES470114A1 (en)1979-09-16
RO85051A (en)1984-10-31
HU180198B (en)1983-02-28
BE867222A (en)1978-11-20
NO812911L (en)1978-11-24
IT7849479A0 (en)1978-05-22
CA1128231A (en)1982-07-20
NO152791B (en)1985-08-12
AU525415B2 (en)1982-11-04
JPS53145899A (en)1978-12-19
PL117675B1 (en)1981-08-31
DE2821570C2 (en)1989-04-06
NO152791C (en)1985-11-20
IT1105550B (en)1985-11-04
FI781419A7 (en)1978-11-24
AU3512278A (en)1979-10-18
FR2391734B1 (en)1981-06-12
SE444891B (en)1986-05-20
EG14151A (en)1983-12-31
ZA782039B (en)1979-09-26
GB1604177A (en)1981-12-02
RO85051B (en)1984-11-30
NZ186944A (en)1980-05-08
FR2391734A1 (en)1978-12-22
DD139794A5 (en)1980-01-23
NL185493C (en)1990-05-01

Similar Documents

PublicationPublication DateTitle
JPS6139329B2 (en)
US4300565A (en)Synthetic polyester surgical articles
US4243775A (en)Synthetic polyester surgical articles
JP2714454B2 (en) Method for producing bioabsorbable polyester
US4452973A (en)Poly(glycolic acid)/poly(oxyethylene) triblock copolymers and method of manufacturing the same
JP3218055B2 (en) Bioabsorbable segmented copolymer
JP2986509B2 (en) Modified polyester resin composition, method for producing the same, and use thereof
US4838267A (en)Glycolide/p-dioxanone block copolymers
JP2916419B2 (en) Copolymer of p-dioxanone and lactide
US8309137B2 (en)DL-lactide-ε-caprolactone copolymers
JPH0696633B2 (en) Process for producing copolymer of glycolide and ε-caprolactone
JPH0912689A (en)High-strength, rapidly absorbable and melt processable poly(glycolide-co-para-dioxanone) copolymer having high glycolide content
JPH03502651A (en) Medical devices made from homopolymers and copolymers containing repeating carbonate units
US20180326114A1 (en)Absorbable Medical Devices Based on Novel Films and Foams Made From Semi-Crystalline, Segmented Copolymers of Lactide and Epsilon-Caprolactone Exhibiting Long Term Absorption Characteristics
Lee et al.Synthesis and Properties of ABA Block Copoly (ester-ethers) Comprising Poly (L-lactide)(A) and Poly (oxypropylene-co-oxyethylene)(B) with Different Molecular Weights.
JP3557050B2 (en) Bioabsorbable polymer and method for producing the same
JP7116169B2 (en) Lactic acid-glycolic acid copolymer and method for producing the same
CN116554449A (en)Preparation method of segmented structure controllable absorbable block copolymer microsphere
MXPA04012824A (en)Block copolymers for surgical articles.
CN103848979B (en)P-Dioxane ketone polymer and synthetic method thereof and application
CN113024791A (en)Preparation method of ultra-high molecular weight aliphatic polycarbonate
Bezwada et al.Poly (p-dioxanone) and its Copolymers
KR810001147B1 (en) Method of Manufacturing Surgical Supplies
NO146385B (en) STERILE SURGICAL SUTURES, AND PROCEDURE FOR THE PREPARATION OF SUCH SUTURES
JP2001151878A (en)METHOD FOR PRODUCING POLY(p-DIOXANONE), POLY(p-DIOXANONE) MONOFILAMENT AND METHOD FOR PRODUCING THE SAME

[8]ページ先頭

©2009-2025 Movatter.jp