Movatterモバイル変換


[0]ホーム

URL:


JPS61269989A - Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by welding - Google Patents

Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by welding

Info

Publication number
JPS61269989A
JPS61269989AJP11266585AJP11266585AJPS61269989AJP S61269989 AJPS61269989 AJP S61269989AJP 11266585 AJP11266585 AJP 11266585AJP 11266585 AJP11266585 AJP 11266585AJP S61269989 AJPS61269989 AJP S61269989A
Authority
JP
Japan
Prior art keywords
copper
welding
copper alloy
base metal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11266585A
Other languages
Japanese (ja)
Other versions
JPH0334434B2 (en
Inventor
Kazuo Tanaka
一雄 田中
Masanori Moribe
森部 正典
Atsushi Numata
淳 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel LtdfiledCriticalKobe Steel Ltd
Priority to JP11266585ApriorityCriticalpatent/JPS61269989A/en
Publication of JPS61269989ApublicationCriticalpatent/JPS61269989A/en
Publication of JPH0334434B2publicationCriticalpatent/JPH0334434B2/ja
Grantedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To prevent the strength deterioration and deformation of a base metal and to form a defect-free weld zone by using the base metal limited in the content of a hydrogen component and oxygen component to a specific value or below, pressing a backing strip made of copper or copper alloy to the rear of the butt weld zone and subjecting the weld zone to electron beam welding. CONSTITUTION:The base metal limited to <=5ppm hydrogen component content and <=100ppm oxygen component content among the components incorporated into the copper or copper alloy material which is the base metal for welding is used and is subjected to electron beam welding. The backing strip made of the copper or copper alloy is therefore pressed to the rear of the butt weld zone and said zone is welded. The base metal made of the copper or copper alloy has intrinsically a low dissipation rate of heat and therefore the weld zone and the heat affected zone around the same are eventually quickly cooled so that these zones receive, on the contrary, the effect similar to the effect obtd. by a soln. heat treatment without being subjected to annealing and softening. The blowhole defects, etc. generated in the weld zone are decreased by limiting the content of the hydrogen and oxygen components in the base metal.

Description

Translated fromJapanese

【発明の詳細な説明】[産業上の利用分野]本発明は、銅又は銅合金材製の筒形連続鋳造モールドや
溶解用るつぼ炉等を溶接製造する方法に関し、殊に溶接
部における欠陥が少なく、しかも高レベルの製品品質及
び作業能率を得ることのできる。銅又は銅合金を母材と
する突合せ溶接方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for welding and manufacturing cylindrical continuous casting molds, melting crucible furnaces, etc. made of copper or copper alloy materials, and in particular, to However, it is possible to obtain a high level of product quality and work efficiency. This invention relates to a butt welding method using copper or copper alloy as a base material.

[従来の技術]鋼の造塊法には、エネルギーの省力化や歩留りの向上を
目的として連続鋳造法が古くから採用されており、該連
続鋳造に用いられるモールドは一般に銅又は銅合金を材
料として構成されるが、耐熱強度等を考慮して銅合金が
使用される場合も少なくない、連続鋳造用のモールドは
筒形に形成され、内側寸法が150mm程度以下のモー
ルドは、押出し法によって一体成形されるが、前記寸法
より大きなものは銅又は銅合金の板材を締結材を利用し
て組立てた組立モールドが使用される0代表的な組立モ
ールドの例を第2図(横断面図)に示す。
[Conventional technology] Continuous casting has been used for a long time in steel ingot making for the purpose of saving energy and improving yield, and the molds used for continuous casting are generally made of copper or copper alloys. However, copper alloys are often used in consideration of heat resistance strength, etc. Molds for continuous casting are formed into a cylindrical shape, and molds with an inner dimension of about 150 mm or less are made in one piece by extrusion. However, for items larger than the above dimensions, an assembly mold made by assembling copper or copper alloy plates using fasteners is used.An example of a typical assembly mold is shown in Fig. 2 (cross-sectional view). show.

一方最近の連続鋳造装置においては、鋳造製品の品質向
上を目的に電磁攪拌鋳造が実用化されるようになり、攪
拌効率を向上させるためにモールドの小型軽量化が要求
され、大がかりな構造となる組立モールドに代わって溶
接一体化型のモール。
On the other hand, in recent continuous casting equipment, electromagnetic stirring casting has been put into practical use with the aim of improving the quality of cast products, and molds are required to be smaller and lighter in order to improve stirring efficiency, resulting in large-scale structures. An integrated welding mold replaces the assembly mold.

ドを使用する例が増大してきている。The use of codes is increasing.

例えば2分割、4分割された銅又は銅合金製のモールド
材をTIG溶接又はMIG溶接によって一体化して連続
鋳造用モールドを作製している。
For example, a mold for continuous casting is produced by integrating molding materials made of copper or copper alloy that are divided into two or four parts by TIG welding or MIG welding.

しかるに銅又は銅合金材は鋼材と比較して熱伝導率が極
端に高く、熱の逸散速度が速い為、溶接を行なう場合に
、母材の開先部分だけを溶融させるということが非常に
むつかしい、しかも溶融金属の凝固速度も速い為溶融金
属のぬれが悪く、溶接部での融合不良やブローホール等
の溶接欠陥が起こり易い、そのため一般に厚板の銅又は
銅合金板材をTIG溶接又はMIG溶接する場合には、
溶接母材全体を300℃以上に予熱して溶接を行なう必
要があった。
However, copper or copper alloy materials have extremely high thermal conductivity and high heat dissipation rate compared to steel materials, so it is very difficult to melt only the groove part of the base metal when welding. It is difficult to weld, and the solidification rate of the molten metal is also fast, so wetting of the molten metal is poor, and welding defects such as poor fusion and blowholes are likely to occur at the weld.Therefore, thick copper or copper alloy plates are generally welded by TIG welding or MIG welding. When welding,
It was necessary to preheat the entire welding base material to 300° C. or higher before welding.

[発明が解決しようとする問題点1溶接母材である銅又は銅合金の板材を高温で予熱しなが
ら溶接した場合、以下の様な問題点が発生する。
[Problem to be Solved by the Invention 1] When welding a copper or copper alloy plate material as a welding base material while preheating it at a high temperature, the following problems occur.

(1)多大なエネルギーと労力が要求されるばかりでな
く作業能率を低下させることにもなる。
(1) Not only does it require a great deal of energy and labor, but it also reduces work efficiency.

(2)母材を高温に加熱するため、溶接作業前の冷間加
工および熱処理によって折角高強度を得ていた母材が、
予熱により焼鈍された状態となり、母材強度を低下させ
てしまう。
(2) Because the base material is heated to a high temperature, the base material, which had already achieved high strength through cold working and heat treatment before welding,
The preheating results in an annealed state, which reduces the strength of the base material.

(3)さらに予熱温度から常温への冷却時に、母材が著
しく変形する為、溶接終了後変形修正のための切削加工
等の作業量が著しく多くなってしまう、特に時効硬化型
銅合金に対して予熱を加えながらアーク溶接を行なった
場合、母材及び溶接部とも焼鈍された状態となってしま
い、強度を確保するためには溶接作業終了後、高温加熱
Φ水中急冷を行ない溶体化処理しなければならない、従
って急冷によって製品に大きな変形を発生してしまい、
製品品質を確保するためには、切削加工等の矯正作業が
どうしても多くなってしまう。
(3) Furthermore, the base metal is significantly deformed during cooling from preheating temperature to room temperature, so the amount of work such as cutting to correct deformation after welding is completed is significantly increased, especially for age-hardening copper alloys. If arc welding is performed while preheating, both the base metal and the welded part will be annealed, and in order to ensure strength, after the welding process is completed, high-temperature heating and quenching in water must be carried out for solution treatment. Therefore, rapid cooling may cause large deformation of the product.
In order to ensure product quality, correction work such as cutting inevitably increases.

そこで本発明者らは、連続鋳造用モールドの様な銅又は
銅合金材で形成される一体構造物を溶接する方法につい
て、溶接母材の強度低下や変形を生ずることなく、しか
も欠陥のない確実な溶接部を形成することのできる溶接
法の確立を期して種々研究を積み重ねた結果、本発明を
完成させるに至った。
Therefore, the present inventors have developed a method for welding an integral structure made of copper or copper alloy material, such as a continuous casting mold, without causing a decrease in strength or deformation of the weld base material, and without causing any defects. As a result of various research efforts aimed at establishing a welding method capable of forming a welded joint, the present invention has been completed.

[問題点を解決するための手段]上記問題点を解決するため、本発明は以下の様に銅又は
銅合金材の材質と溶接法を特定した点に要旨が存在する
。即ち水素成分含有量が5 ppm以下、酸素成分含有
量が100PP■以下に夫々制限された銅又は銅合金材
を用い、突合せ溶接部裏面に銅又は銅合金製裏当材を当
接して電子ビーム溶接する点に主旨が存在する。
[Means for Solving the Problems] In order to solve the above problems, the gist of the present invention lies in specifying the material of the copper or copper alloy material and the welding method as described below. That is, using a copper or copper alloy material whose hydrogen component content is limited to 5 ppm or less and oxygen component content to 100 PP or less, a copper or copper alloy backing material is brought into contact with the back side of the butt weld, and an electron beam is applied. There is a gist in the point of welding.

[作用]電子ビーム溶接は、通常のアーク溶接に比較してエネル
ギー密度が格段に高いという特徴を有しており、銅又は
銅合金のように熱伝導率が高く、熱の逸散速度の速い材
料でも予熱を行なわなくともlパスで深溶込み溶接が可
能である。そのうえ溶接部から母材への熱影響が少なく
、母材の軟化や変形を最小限に抑えることができる。
[Function] Electron beam welding is characterized by a much higher energy density than normal arc welding, and unlike copper or copper alloys, it has high thermal conductivity and a fast heat dissipation rate. Even with materials, deep penetration welding is possible in one pass without preheating. Furthermore, there is little heat influence from the welded part to the base metal, and softening and deformation of the base metal can be minimized.

また銅及び銅合金製の母材はもともと熱の逸散速度が速
いため溶接部及びその周囲の熱影響部は急冷されること
になり、焼鈍軟化を受けることなく、逆に溶体化処理さ
れたのと同様の効果を受け、強制固溶された状態となる
In addition, since the heat dissipation rate of base metals made of copper and copper alloys is originally fast, the weld zone and surrounding heat-affected zone are rapidly cooled, so that the weld zone and the surrounding heat-affected zone are not subjected to annealing softening, but are instead subjected to solution treatment. It has the same effect as , and becomes a forced solid solution state.

さらに電子ビーム溶接時の溶接用は非常に狭くしかも平
行状であるという特徴を有しているため、溶接時の角変
形はほとんど発生せず、横収縮量も0.15〜0.4層
■程度と非常に小さくなる。
Furthermore, since the welding area during electron beam welding is very narrow and parallel, almost no angular deformation occurs during welding, and the amount of lateral shrinkage is 0.15 to 0.4 layers. The degree becomes very small.

しかし電子ビーム溶接では、前記した様に溶融金属の凝
固速度が速いので、溶融金属中に生成した気泡は逃げ出
すことができず、そのままブローホールとなって溶接部
に残留してしまうという欠点がある。該ブローホールを
減少させる方法としては電子ビームに揺動を与える。又
は電子ビーム溶接の進行速度を遅くして生成した気泡を
溶融部から出してしまう等の方法が考えられるが、溶接
進行速度を遅くするのにも限界があり、ブローホール減
少対策としては十分ではない。
However, in electron beam welding, as mentioned above, the solidification rate of the molten metal is fast, so the bubbles generated in the molten metal cannot escape and remain in the welded area as blowholes. . A method for reducing the blowhole is to apply oscillation to the electron beam. Alternatively, methods such as slowing down the progress speed of electron beam welding and allowing the generated air bubbles to come out of the molten zone can be considered, but there are limits to slowing down the progress speed of welding, and this is not sufficient as a measure to reduce blowholes. do not have.

そこで溶接母材である銅又は銅合金材中のガス成分であ
る酸素及び水素に注目し、ブローホールの発生量と母材
中の酸素含有量及び水素含有量との関係を調べた結果、
以下のことをつきとめた。即ち第1図(グラフ)に示す
様にJIS  Z3104に基づき2級以上の溶接部(
白丸印)を得るためには母材中の酸素含有量がtoop
p■以下、水素含有量がspp履以下であることが必要
であることが分かった。
Therefore, we focused on oxygen and hydrogen, which are gas components in the copper or copper alloy material that is the welding base material, and investigated the relationship between the amount of blowholes generated and the oxygen content and hydrogen content in the base material.
We found the following. In other words, as shown in Fig. 1 (graph), welded parts of grade 2 or higher based on JIS Z3104 (
In order to obtain the white circle mark), the oxygen content in the base material must be too high.
It has been found that it is necessary for the hydrogen content to be below p■ and below spp.

ところで銅又は銅合金材を突合せて電子ビーム溶接する
場合、溶接部の裏波形状はアンダーフィルやピットなど
の欠陥が生じ易く、良好な裏波が得られ難いという問題
がある。ところが共金糸の裏当材を開先部に配置して溶
接すれば、アンダーフィルやピット等の欠陥を回避し得
ることが判明した。即ち電子ビームが貫通してしまわな
い程度の厚さを有する裏当材を使用することにより、ア
ンダーフィルやピットを避けることができる。該裏当材
の材料としては、裏当材の一部が溶融して母材溶接部中
に混入することを考えれば共金糸の材料を使用すること
が好ましい、しかし溶接時における母材合金と裏当材合
金の相〃拡散による溶接金属の物性改善を図ろうとする
場合は、裏当材として母材とは異種の銅合金或は純銅を
使用することもできる。
However, when electron beam welding is performed by butting copper or copper alloy materials, there is a problem in that the ura wave shape of the welded part is prone to defects such as underfill and pits, making it difficult to obtain a good ura wave shape. However, it has been found that defects such as underfill and pits can be avoided by placing a backing material of gold thread on the groove and welding. That is, by using a backing material that is thick enough to prevent the electron beam from penetrating it, underfill and pits can be avoided. As the material for the backing material, considering that a part of the backing material may melt and get mixed into the welded part of the base metal, it is preferable to use a matching metal thread material. When attempting to improve the physical properties of the weld metal by phase diffusion of the backing material alloy, a copper alloy different from the base metal or pure copper may be used as the backing material.

[実施例]電子ビーム溶接機の機構は第3図(説明図)に示す通り
であり、陰極フィラメント7を加熱し、放出された電子
を陽極8によって加速し、集束レンズ10によって収束
を行なう、この電子を被溶接物12に衝突させ、この衝
突エネルギーによって被溶接物を高温に加熱して溶接す
る。
[Example] The mechanism of the electron beam welding machine is as shown in FIG. 3 (explanatory diagram), in which a cathode filament 7 is heated, emitted electrons are accelerated by an anode 8, and focused by a focusing lens 10. These electrons collide with the object to be welded 12, and the object to be welded is heated to a high temperature by the collision energy and welded.

水素、酸素の成分含有量の異なる銅及び銅合金材を用い
て電子ビーム溶接を行ない、JIS  Z3104に基
づいて放射線透過試験を行ない、溶接部におけるブロー
ホール発生の判定を行なった。その結果は第1表に示す
通りであり、本発明に係る水素、酸素成分含有量の条件
を満たす実施例は1表中No、1.2,4,7,9,1
1゜13.14,15.16であり、これらはJISZ
  3104に基づく1級又は2級相当の溶接性能をし
た。
Electron beam welding was performed using copper and copper alloy materials with different contents of hydrogen and oxygen, and a radiation transmission test was conducted based on JIS Z3104 to determine the occurrence of blowholes in the weld. The results are shown in Table 1, and examples that meet the conditions of hydrogen and oxygen component content according to the present invention are No. 1, 1.2, 4, 7, 9, and 1 in Table 1.
1°13.14, 15.16, these are JISZ
The welding performance was equivalent to Class 1 or Class 2 based on 3104.

なお第1表中No、3.5,6,8,10.12は比較
例であり、本発明の水素、酸素成分含有量を満たしてお
らず、ブローホール発生の判定結果はいずれも3級又は
4級相当であった。
Note that No. 3.5, 6, 8, and 10.12 in Table 1 are comparative examples, which do not meet the hydrogen and oxygen component contents of the present invention, and the blowhole generation determination results are all grade 3. Or it was equivalent to grade 4.

次に第5図(a)に示す如く母材2同士を突合せ、開先
裏面側に銅又は調合金製の裏当材3を配設して電子ビー
ム溶接を行ない、第5図(b)に示す様な溶接部13を
得た。この場合電子ビームが裏面側へ貫通しないので、
通常電子ビーム溶接で必要なビーム吸収板を開先裏面側
に設ける必要がなく作業は簡略化された。しかし本発明
では、上記ビームが裏当材内部でとまる部分溶造み溶接
に限定される訳ではなく、ビームが裏当材を貫通する貫
通溶接を採用した場合でも、欠陥のない健全な溶接部を
得ることができる。ただし上記したいずれの場合にも溶
接母材と裏当材3とが溶着してしまうので、溶接終了後
、裏当材3を切削削除する作業を伴う。
Next, as shown in FIG. 5(a), the base materials 2 are butted together, a backing material 3 made of copper or prepared alloy is placed on the back side of the groove, and electron beam welding is performed, as shown in FIG. 5(b). A welded portion 13 as shown in FIG. 1 was obtained. In this case, the electron beam does not penetrate to the back side, so
There is no need to install a beam absorption plate on the back side of the groove, which is normally required in electron beam welding, simplifying the work. However, the present invention is not limited to partial welding in which the beam stops inside the backing material, and even when penetration welding in which the beam penetrates the backing material is adopted, a sound welded part without defects can be obtained. can be obtained. However, in any of the above cases, the welding base material and the backing material 3 are welded together, so the work of cutting and removing the backing material 3 is required after welding is completed.

次に第2表は、裏当材の材質が電子ビーム溶接継手の引
張強さにどの様な影響を及ぼすかを明確にする為に行な
った結果を示したものである。
Next, Table 2 shows the results obtained to clarify how the material of the backing material affects the tensile strength of electron beam welded joints.

その結果、裏当材の材質としては必らずしも母材と共金
材が最良という訳ではなく、裏当材としてCu−Cr−
Zr系の合金を用いた場合の方が溶接部の引張強さはわ
ずかに高い値を示している。
As a result, it is not always the best material for the backing material to match the base material, and Cu-Cr-
The tensile strength of the welded part shows a slightly higher value when Zr-based alloy is used.

またCu−Cr−Zr系の合金を母材とする場合、Zr
が溶接割れに悪影響を及ぼすことが分かっているが、裏
当材に純銅を使用することにより、溶接部中のZr量が
減少し、溶接割れが減少することも確認された。
In addition, when Cu-Cr-Zr alloy is used as the base material, Zr
Although it is known that Zr has a negative effect on weld cracking, it was also confirmed that by using pure copper for the backing material, the amount of Zr in the weld was reduced and weld cracking was reduced.

従って母材と異る材質の裏当材を用いることにより、共
金材を使用する場合に比較してむしろ良好な結果が得ら
れることもある。
Therefore, by using a backing material made of a material different from that of the base material, better results may be obtained than when using a matching material.

電子ビーム溶接の場合、ビード巾がアーク溶接に比べて
狭いのが大きな特徴の1つであり、このため厳しい開先
精度が要求され、開先の直線性が悪い場合には、目はず
れを生じたり、又開先のギャップが大きいとアンダーフ
ィルやブローホール等欠陥の原因となる。
One of the major characteristics of electron beam welding is that the bead width is narrower than that of arc welding, which requires strict groove precision, and if the groove has poor straightness, misalignment may occur. Also, if the groove gap is large, it may cause defects such as underfill and blowholes.

断面形状が円形、四角形又は多角形である筒形の連続鋳
造用モールドを電子ビーム溶接によって一体化するには
、縦2分割とすることにより最良の開先溶接線を得るこ
とができる。しかしてlシーム溶接だけで済むモールド
を製作すると、溶接開先線を合せるときに、材料がスプ
リングバックを生じるため、開先のギャップ量を小さく
保つことが困難となる。また3分割以上にすると溶接前
の組立作業が煩雑となり1品質および作業効率の何れの
面からしても例えば第4図に示す様に2分割で2シーム
溶接する方法が最も好ましい。
When integrating a cylindrical continuous casting mold with a circular, square, or polygonal cross-sectional shape by electron beam welding, the best groove weld line can be obtained by dividing the mold into two vertically. However, if a mold is manufactured that requires only one seam welding, the material will spring back when the weld groove lines are aligned, making it difficult to keep the groove gap small. Further, if the parts are divided into three or more, the assembly work before welding becomes complicated, and from the viewpoint of both quality and work efficiency, it is most preferable to perform two-part welding with two seams as shown in FIG. 4, for example.

溶接により一体化して連続鋳造用モールド等を作製する
順序としては、(A)板材の状態で溶体化処理を行ない
、その後板材を分割片に成形し、時効処理して前記分割
片を溶接にて一体化する方法と、(B)分割片を一体化
して後時効処理を行なう方法とがある。ところが一体化
のための溶接をアーク溶接にて行なう場合、母材の予熱
及び       ]溶溶接熱により、母材は完全に焼
鈍された状態となっており、溶接母材および溶接部とも
にビッカース硬さは第6図(b)に示す様に60〜70
程度(荷重5 Kg)を示す、この値は、アーク溶接と
時効処理の作業順序を逆にしてもさしてかわらない、一
方第6図(&)に示す如く電子ビーム溶接を行なったも
のについては、時効処理後に溶接を行なったものでは、
ビード中心の極一部で軟化されビッカース硬さが低下し
ている部分はあるが、製品全体の硬さは、アーク溶接し
たもの[第6図(b)]に比較して格段に優れた値を示
している。この場合、電子ビーム溶接後に時効処理を行
なう方法を採用すれば、ビード中心部の硬さも改善する
ことができる。
The order of integrating by welding to create a continuous casting mold, etc. is as follows: (A) Solution treatment is performed on the sheet material, then the sheet material is formed into divided pieces, aged, and the divided pieces are welded. There is a method of integrating the pieces, and a method (B) of integrating the divided pieces and performing a post-aging treatment. However, when welding for integration is performed by arc welding, the base metal is completely annealed due to the preheating of the base metal and the welding heat, and both the weld base metal and the welded part have a Vickers hardness. is 60 to 70 as shown in Figure 6(b).
This value does not change much even if the order of arc welding and aging treatment is reversed.On the other hand, for those subjected to electron beam welding as shown in Fig. 6 (&), For items welded after aging treatment,
Although there is a small part at the center of the bead that has softened and its Vickers hardness has decreased, the hardness of the entire product is much better than that of the arc welded product [Figure 6 (b)]. It shows. In this case, if a method of performing aging treatment after electron beam welding is adopted, the hardness of the bead center can also be improved.

また:JS3表は銅合金(Cu−0,8%Cr−0,1
5%Zr)溶接部の継手引張試験の結果を示したもので
ある。
Also: JS3 table shows copper alloy (Cu-0,8%Cr-0,1
5% Zr) shows the results of a joint tensile test of the welded part.

この結果からも明らかな様に、時効処理して電子ビーム
溶接する場合及び電子ビーム溶接して時効処理する場合
いずれでも、アーク溶接する場合に比較して、高レベル
溶接継手強度を得ることができる。
As is clear from these results, a higher level of welded joint strength can be obtained in both cases of aging treatment and electron beam welding, and of electron beam welding and aging treatment, compared to arc welding. .

[5I4明の効果]銅又は銅合金で形成される連続鋳造用モールド等の一体
化のために電子ビーム溶接を用いることにより、製品の
熱変形を極力少なくすることができ、しかも予熱等によ
る母材の強度劣化を最小限に抑えることができる。
[Effects of 5I4 light] By using electron beam welding to integrate continuous casting molds made of copper or copper alloy, thermal deformation of the product can be minimized, and furthermore, it is possible to reduce the thermal deformation of the product by preheating etc. Deterioration in the strength of the material can be minimized.

また溶接部に生じがちなブローホール欠陥等は、母材中
のガス成分含有量を制限することにより減少させること
が可能となり、銅又は銅合金の裏当材を用いることによ
って良好な溶接ビード形状を確保し得ることになった。
In addition, blowhole defects that tend to occur in welds can be reduced by limiting the gas component content in the base metal, and by using a copper or copper alloy backing material, a good weld bead shape can be achieved. It was decided that it would be possible to secure the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接部におけるブローホールの発生と母材中の
酸素、水素成分含有量の関係を示すグラフ、第2図は連
続鋳造用の組立モルトを示す横断面図、第3rgJは電
子ビーム溶接機の原理を示す説明図、第4図は連続鋳造
用モールドのシーム溶接例を示す説明図、第5図(a)
、(b)は裏当材を使用した電子ビーム溶接前後の溶接
部の形状を示す断面図、第6図(a)は電子ビーム溶接
を行なった場合の硬さ分布を示すグラフ、第6図(b)
は従来のMIG溶接を行なった場合の硬さ分布を示すグ
ラフである。1・・・連鋳用モールドla・・・連鋳用組立モールド2・・・溶接母材     3・・・裏当材4・・・電
子ビーム    5・・・銅板6・・・冷却用ジャケッ
ト 7・・・陰極フィラメント8・・・陽極     
  9・・・電子銃lO・・・集束レンズ    11
・・・真空室12・・・被溶接物     13・・・
溶接部]
Figure 1 is a graph showing the relationship between the occurrence of blowholes in welds and the content of oxygen and hydrogen in the base metal. Figure 2 is a cross-sectional view of assembled malt for continuous casting. 3rd rgJ is electron beam welding. An explanatory diagram showing the principle of the machine, Fig. 4 is an explanatory diagram showing an example of seam welding of a continuous casting mold, Fig. 5 (a)
, (b) is a cross-sectional view showing the shape of the welded part before and after electron beam welding using a backing material, Fig. 6 (a) is a graph showing the hardness distribution when electron beam welding is performed, Fig. 6 (b)
is a graph showing hardness distribution when conventional MIG welding is performed. 1... Mold la for continuous casting... Assembly mold for continuous casting 2... Welding base material 3... Backing material 4... Electron beam 5... Copper plate 6... Cooling jacket 7 ...Cathode filament 8...Anode
9... Electron gun lO... Focusing lens 11
...Vacuum chamber 12...Workpiece to be welded 13...
welded part]

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]銅或は銅合金製の筒形連続鋳造モールド又は溶接用るつ
ぼ炉を溶接製造する方法において、水素成分含有量が5
ppm以下、酸素成分含有量が100ppm以下に制限
された母材を使用し、突合せ溶接部裏面に銅又は銅合金
製の裏当材を当接して電子ビーム溶接することを特徴と
する銅或は銅合金製の筒形連続鋳造モールド又は溶解用
るつぼ炉の溶接製造方法
In a method for welding and manufacturing a cylindrical continuous casting mold or a welding crucible furnace made of copper or copper alloy, the hydrogen component content is 5.
Copper or copper alloy, characterized in that electron beam welding is performed by using a base material whose oxygen component content is limited to 100 ppm or less, and by contacting a backing material made of copper or copper alloy to the back side of the butt weld. Welding manufacturing method for copper alloy cylindrical continuous casting mold or melting crucible furnace
JP11266585A1985-05-251985-05-25Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by weldingGrantedJPS61269989A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP11266585AJPS61269989A (en)1985-05-251985-05-25Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by welding

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP11266585AJPS61269989A (en)1985-05-251985-05-25Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by welding

Publications (2)

Publication NumberPublication Date
JPS61269989Atrue JPS61269989A (en)1986-11-29
JPH0334434B2 JPH0334434B2 (en)1991-05-22

Family

ID=14592416

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP11266585AGrantedJPS61269989A (en)1985-05-251985-05-25Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by welding

Country Status (1)

CountryLink
JP (1)JPS61269989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2872441A1 (en)*2004-07-012006-01-06Commissariat Energie AtomiqueElectron beam welding procedure for aluminium alloy components consists of forming weld bead 20 per cent deeper than components thickness to avoid fissuring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6975296B1 (en)1991-06-142005-12-13Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and method of driving the same
CN1244891C (en)1992-08-272006-03-08株式会社半导体能源研究所Active matrix display
US5643801A (en)1992-11-061997-07-01Semiconductor Energy Laboratory Co., Ltd.Laser processing method and alignment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2872441A1 (en)*2004-07-012006-01-06Commissariat Energie AtomiqueElectron beam welding procedure for aluminium alloy components consists of forming weld bead 20 per cent deeper than components thickness to avoid fissuring

Also Published As

Publication numberPublication date
JPH0334434B2 (en)1991-05-22

Similar Documents

PublicationPublication DateTitle
US8253060B2 (en)Hybrid laser arc welding process and apparatus
US8253061B2 (en)Hybrid laser arc welding process and apparatus
KR101554800B1 (en)Method of manufacturing laser welded steel pipe
CN107999916B (en)A kind of compound silk filling melt-brazing method of the double light beam laser-TIG of dissimilar material
US4751365A (en)Method for butt welding two pieces of different metal, particularly pieces of medium or high carbon content steel, with a laser beam
JP5725723B2 (en) High power laser beam welding and its assembly
CN106270879A (en)The magnesium of a kind of coating assistant regulating and controlling and steel foreign material laser welding-brazing method
JP2009119485A (en)Manufacturing method of welded section steel
CN115055810A (en)Aluminum alloy laser welding process based on adjustable ring mode
CN118180608A (en) A vacuum laser welding method for titanium alloy welding and root defect repair
JP3767369B2 (en) Method of lap welding of thin steel plates and welded thin steel plates
JP2002361469A (en)Welding method
Chen et al.Achieving high strength joint of pure copper via laser-cold metal transfer arc hybrid welding
JPS61269989A (en)Cylindrical continuous casting mold made of copper or copper alloy and production of crucible for melting by welding
CN118371851A (en) A dual-wavelength laser additive welding method for improving the weld formation quality of internal flow channel structures
CN117506143A (en)Laser welding method for titanium alloy bar without undercut
JP2002178176A (en) Butt welding method and welded thin steel plate
JP3767359B2 (en) Butt welding method and welded thin steel plate
JP2001150155A (en)Method for electron beam welding of aluminum or aluminum alloy material
JPH07144288A (en) Laser pipe welding method
CN116727864B (en)Composite welding process of die-casting aluminum alloy battery pack tray
JPH06285657A (en)Laser welding process
CN110560867A (en)Vacuum electron beam welding method for aluminum alloy water-cooled joint
JPH10156564A (en)Laser welding method for aluminum or aluminum alloy
US3885121A (en)Method for electroslag welding of copper blanks

[8]ページ先頭

©2009-2025 Movatter.jp