Movatterモバイル変換


[0]ホーム

URL:


JPS6124836B2 - - Google Patents

Info

Publication number
JPS6124836B2
JPS6124836B2JP52111312AJP11131277AJPS6124836B2JP S6124836 B2JPS6124836 B2JP S6124836B2JP 52111312 AJP52111312 AJP 52111312AJP 11131277 AJP11131277 AJP 11131277AJP S6124836 B2JPS6124836 B2JP S6124836B2
Authority
JP
Japan
Prior art keywords
electrode wiring
layer
single crystal
resistance layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52111312A
Other languages
Japanese (ja)
Other versions
JPS5444883A (en
Inventor
Shunji Shiromizu
Tetsuji Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co LtdfiledCriticalTokyo Shibaura Electric Co Ltd
Priority to JP11131277ApriorityCriticalpatent/JPS5444883A/en
Priority to SE7808751Aprioritypatent/SE7808751L/en
Publication of JPS5444883ApublicationCriticalpatent/JPS5444883A/en
Publication of JPS6124836B2publicationCriticalpatent/JPS6124836B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】 この発明は半導体のピエゾ抵抗効果を利用して
流体圧力の測定等を行う半導体圧力変換装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure transducer that measures fluid pressure by utilizing the piezoresistance effect of a semiconductor.

半導体プレーナ技術の応用により、シリコンや
ゲルマニウム等の半導体単結晶板の一部に肉薄の
ダイヤフラムを設け、このダイヤフラムに感圧素
子として拡散抵抗層を形成して、そのピエゾ抵抗
効果を利用した圧力変換装置が実用化されてい
る。その一例の概略構造を示すと第1図のように
なつている。図において、1は例えばn型のシリ
コン単結晶板であり、その中央部に肉薄のダイヤ
フラム2を設け、このダイヤフラム2にp型の拡
散抵抗層3,3,3………を形成している。
表面は絶縁層4で覆われ、その上にAl等からな
る電極配線層5が配設されている。電極配線層5
は絶縁層4に設けたコンタクトホールを介して拡
散抵抗層3に端部で接触し、拡散抵抗層3の内部
結線や外部への電極取出し端子の役割を果たして
いる。従つて、電極配線層5には必要に応じてリ
ード線6がボンデイングされている。単結晶板1
は固定台7に接着固定される。固定台7には貫通
孔8が設けられていて、この貫通孔8に流入する
流体の圧力Pがダイヤフラム2の変形をもたら
し、拡散抵抗層3の抵抗変化をもたらすことにな
る。
By applying semiconductor planar technology, a thin diaphragm is provided on a part of a semiconductor single crystal plate such as silicon or germanium, and a diffused resistance layer is formed on this diaphragm as a pressure-sensitive element to convert pressure using the piezoresistance effect. The device has been put into practical use. The schematic structure of one example is shown in FIG. 1. In the figure, 1 is an n-type silicon single crystal plate, for example, and a thin diaphragm 2 is provided in the center thereof, and p-type diffused resistance layers 3, 31 , 32 , . . . are formed on this diaphragm 2. ing.
The surface is covered with an insulating layer 4, and an electrode wiring layer 5 made of Al or the like is disposed thereon. Electrode wiring layer 5
is in contact with the diffused resistance layer 3 at its end via a contact hole provided in the insulating layer 4, and serves as an internal connection of the diffused resistance layer 3 and an electrode lead terminal to the outside. Therefore, lead wires 6 are bonded to the electrode wiring layer 5 as required. Single crystal plate 1
is adhesively fixed to the fixing base 7. The fixing base 7 is provided with a through hole 8, and the pressure P of the fluid flowing into the through hole 8 causes deformation of the diaphragm 2 and a change in the resistance of the diffusion resistance layer 3.

実際の流体圧力測定は、例えば第2に示すよう
に、2個の拡散抵抗層3,3と2個の固定抵
抗R1,R2とでブリツジ回路を組んで行われる。
この場合、拡散抵抗3,3は一方が流体圧力
Pによつて抵抗値の増大するもの、他方が流体圧
力Pによつて抵抗値が減少するものとする。この
ような抵抗値変化の異方性は、拡散抵抗層3をダ
イヤフラム2のどの領域にどのようなパターンで
設けるかによつて決まる。
Actual fluid pressure measurement is performed, for example, by forming a bridge circuit with two diffusion resistance layers 31 and 32 and two fixed resistances R1 and R2 as shown in the second diagram.
In this case, it is assumed that one of the diffusion resistors 31 and 32 has a resistance value that increases with the fluid pressure P, and the other has a resistance value that decreases with the fluid pressure P. Such anisotropy of resistance value change is determined by which region of the diaphragm 2 and in what pattern the diffused resistance layer 3 is provided.

肉薄のダイヤフラム2に設けられた拡散抵抗層
3は、検知しようとする流体圧力P以外の全ての
外部応力に対して感応しないようにしなければな
らない。これは、固定台7を十分強固なものと
し、単結晶板1の周辺肉厚部をこの固定台にガラ
スあるいはAu−Si合金等により強固に接着する
ことで、ほぼ実現できる。
The diffusion resistance layer 3 provided on the thin diaphragm 2 must be made insensitive to all external stresses other than the fluid pressure P to be detected. This can almost be achieved by making the fixing base 7 sufficiently strong and firmly adhering the peripheral thick portion of the single crystal plate 1 to the fixing base using glass, Au-Si alloy, or the like.

しかし、これだけでは解決できないものに、温
度変化に伴う内部歪みにより生ずる誤差がある。
この点について具体例を挙げて説明する。第1図
では概略的な構造を説明したが、実際に実験に用
いた素子構造を詳細に示すと第3図のようになつ
ている。即ち、絶縁層4の部分は、3000〜7000Å
の熱酸化膜41、約3000ÅのBSG膜42、約3000
Åの第1のPSG膜43が積層され、これらの上に
約4μmのAlからなる電極配線層5が設けら
れ、更にその表面に約1μmの第2のPSG膜44
が設けられている。熱酸化膜41は拡散マスクで
あり、BSG膜42は拡散抵抗層3を得るための固
体拡散源として用いたものであり、第1、第2の
PSG膜43,44はパシベーシヨン膜である。ま
た、単結晶板1の周辺肉厚部の厚さを350μm、
ダイヤフラムの径を17mm、厚さを135μmとし
た。このような素子は、0.1Kg/cm2の流体圧に対し
て1.5〜2%の抵抗変化を示し、低圧力用として
用いられるものである。
However, something that cannot be solved by this alone is the error caused by internal distortion caused by temperature changes.
This point will be explained using a specific example. Although the schematic structure has been explained in FIG. 1, the detailed structure of the element actually used in the experiment is shown in FIG. That is, the portion of the insulating layer 4 has a thickness of 3000 to 7000 Å.
Thermal oxide film 41 of about 3000 Å, BSG film 42 of about 3000 Å
A first PSG film 43 with a thickness of approximately 1 μm is laminated thereon, an electrode wiring layer 5 made of Al with a thickness of approximately 4 μm is provided thereon, and a second PSG film 44 with a thickness of approximately 1 μm is further formed on the surface thereof.
is provided. The thermal oxide film 41 is a diffusion mask, and the BSG film 42 is used as a solid diffusion source to obtain the diffusion resistance layer 3.
The PSG films 43 and 44 are passivation films. In addition, the thickness of the peripheral thick part of the single crystal plate 1 is 350 μm,
The diameter of the diaphragm was 17 mm and the thickness was 135 μm. Such an element exhibits a resistance change of 1.5 to 2% with respect to a fluid pressure of 0.1 Kg/cm2 and is used for low pressure applications.

上述したような素子構造で、第2図のようなブ
リツジ回路(E=4V、フルスケール40mV)を
構成し、−20℃〜80℃の熱サイクルを加えると、
オフセツト電圧ΔVが第4図のようなヒステリシ
ス特性を示す。図から明らかなように、例えば30
℃でのオフセツト電圧ΔVは、80℃の高温を経験
した場合と−20℃の低温を経験した場合とで約
400μVの差が生じている。つまり、温度変化に
対して、零点の再現性が失われ、高精度の圧力測
定ができなくなることを意味する。
If we configure a bridge circuit (E = 4V, full scale 40mV) as shown in Figure 2 with the element structure described above and apply a thermal cycle from -20℃ to 80℃,
The offset voltage ΔV exhibits a hysteresis characteristic as shown in FIG. As is clear from the figure, for example 30
The offset voltage ΔV at °C is approximately the same when experiencing a high temperature of 80 °C and when experiencing a low temperature of -20 °C.
A difference of 400 μV has occurred. This means that the reproducibility of the zero point is lost with respect to temperature changes, making it impossible to measure pressure with high precision.

ところで従来では、上述したように拡散抵抗3
,3がシビアな抵抗変化を示すことから、そ
の抵抗変化を検出するべく上記拡散抵抗3,3
にそれぞれ接続された電極配線層5に起因する
検出抵抗値誤差要因を除く為に、上記電極配線層
5をできる限り低抵抗なものとするようにしてい
る。この電極配線層5の低抵抗化は、その形成材
料によつても左右されるが、一般に配線層5の幅
を広くし、またその厚みを厚くすることによつて
行われる。つまり配線層5の断面積を許容できる
限り広くして、その抵抗値を小さくすることが行
われている。然し乍ら、この種の圧力変換装置に
あつては、それほど顕著な効果が期待できなかつ
た。
By the way, conventionally, as mentioned above, the diffused resistor 3
1 and 32 show severe resistance changes, the above-mentioned diffused resistors 31 and 3 are used to detect the resistance changes.
In order to eliminate the cause of errors in detected resistance values caused by the electrode wiring layers 5 connected to the electrode wiring layers2 and 2, the electrode wiring layers 5 are made to have as low a resistance as possible. The reduction in resistance of the electrode wiring layer 5 is generally achieved by increasing the width and thickness of the wiring layer 5, although it also depends on the material forming the electrode wiring layer 5. In other words, the cross-sectional area of the wiring layer 5 is made as wide as possible to reduce its resistance value. However, with this type of pressure transducer, no significant effect could be expected.

この発明は上記した点に鑑みてなされたもの
で、オフセツト電圧の温度変化に対するヒステリ
シスを小さくし、高性能化、高信頼化を図つた半
導体圧力変換装置を提供するものである。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a semiconductor pressure transducer device that reduces the hysteresis of offset voltage with respect to temperature changes, and achieves higher performance and reliability.

この発明は、流体圧により変形する肉薄部を有
する半導体単結晶板と、この半導体単結晶板の前
記肉薄部に形成された拡散抵抗層と、前記半導体
単結晶板上に絶縁層を介して配設された前記拡散
抵抗層と接触する電極配線層とを備えた半導体圧
力変換装置において、前記電極配線層の低抵抗化
を図るべくその幅を許容できる限り広くしようと
する従来の技術思想に逆行して前記電極配線層の
幅を前記拡散抵抗層の幅以下としたことを特徴と
している。
This invention provides a semiconductor single-crystal plate having a thin portion deformed by fluid pressure, a diffused resistance layer formed in the thin portion of the semiconductor single-crystal plate, and a diffusion resistance layer disposed on the semiconductor single-crystal plate via an insulating layer. In a semiconductor pressure transducer device comprising an electrode wiring layer in contact with the diffusion resistance layer, this goes against the conventional technical idea of making the width of the electrode wiring layer as wide as possible in order to lower the resistance of the electrode wiring layer. The width of the electrode wiring layer is set to be equal to or less than the width of the diffused resistance layer.

圧力変換用の拡散抵抗層は、本来、流体圧力P
にのみ感応させるためのものであるが、実際には
この拡散抵抗層に加わる歪応力であれば、流体圧
力Pによるもの以外の応力、例えば熱膨張差によ
る応力や空気振動により伝わる応力などにも感応
し、これらが素子のS/Nを低下させる原因とな
る。ただし、流体圧力P以外によつて発生する歪
応力であつても、温度変化に対してヒステリシス
を有するものでなければ、零点の再現性には影響
を与えないはずである。先に第3図に示した構造
例から、拡散抵抗層に歪応力を与え易いものとし
ては、熱酸化膜、BSG膜、PSG膜等の絶縁層およ
びAl等からなる電極配線層がある。そして、本
発明者らの実験によれば、前述した温度ヒステリ
シス発生の原因が、半導体単結晶板との関係で熱
膨張率や弾性率が大きく異なる電極配線層にある
ことが判明した。そこで、更に種々の実験を重ね
た結果、電極配線層の幅を拡散抵抗層の幅以下と
することによつて、効果的に前述の温度ヒステリ
シスを減少させ得ることが明らかになつたもので
ある。
A diffusion resistance layer for pressure conversion is originally a fluid pressure P
However, in reality, any strain stress applied to this diffusion resistance layer can also be applied to stress other than that caused by fluid pressure P, such as stress due to thermal expansion difference or stress transmitted by air vibration. This causes a decrease in the S/N of the device. However, even if the strain stress is generated by something other than the fluid pressure P, it should not affect the reproducibility of the zero point unless it has hysteresis with respect to temperature changes. From the structural example shown in FIG. 3 above, there are insulating layers such as thermal oxide films, BSG films, and PSG films, and electrode wiring layers made of Al or the like, which are likely to give strain stress to the diffused resistance layer. According to experiments conducted by the present inventors, it has been found that the cause of the above-described temperature hysteresis is in the electrode wiring layer, which has a coefficient of thermal expansion and a modulus of elasticity that differ greatly depending on the relationship with the semiconductor single crystal plate. Therefore, as a result of further various experiments, it became clear that the aforementioned temperature hysteresis could be effectively reduced by making the width of the electrode wiring layer less than or equal to the width of the diffused resistance layer. .

以下に、実験データに基づいて、この発明の効
果を詳細に説明する。第5図a,bは実験に用い
た圧力変換装置の要部構造で、aは平面パター
ン、bがそのA−A′断面図である。即ち、11
はn型シリコン単結晶板であり、中央部に肉薄と
したダイヤフラム12を形成し、その表面にp型
の拡散抵抗層13を設けている。拡散抵抗層13
の作り方は従来と同様で、熱酸化膜141で拡散
マスクを形成し、BSG膜142、第1のPSG膜1
43を重ね、BSG膜142からのボロン拡散を行
つたものである。そして、コンタクトホールをあ
けてAlの蒸着、パターニングを行つて電極配線
層15,15,15を設け、更にその表面を
第2のPSG膜144で覆つている。電極配線層1
5のボンデイング・パツドは圧力変換に影響のな
い単結晶板周辺の肉厚部に設けられる。
The effects of this invention will be explained in detail below based on experimental data. Figures 5a and 5b show the main structure of the pressure transducer used in the experiment, where a is a planar pattern and b is a sectional view taken along the line A-A'. That is, 11
is an n-type silicon single crystal plate, with a thin diaphragm 12 formed in the center and a p-type diffused resistance layer 13 on its surface. Diffusion resistance layer 13
The manufacturing method is the same as the conventional method, a diffusion mask is formed with a thermal oxide film 141, a BSG film 142, a first PSG film 1
43 are stacked on top of each other, and boron is diffused from the BSG film 142. Then, contact holes are opened and Al is vapor-deposited and patterned to provide electrode wiring layers 15, 151 , 152 , and the surfaces thereof are further covered with a second PSG film 144 . Electrode wiring layer 1
Bonding pad 5 is provided in a thick portion around the single crystal plate that does not affect pressure conversion.

このような構造として、電極配線層の幅と厚さ
を種々変えた場合に、−20℃〜80℃の熱サイクル
を与えたときのオフセツト電圧ΔVが示すヒステ
リシスの大きさ(30℃におけるオフセツト電圧の
差)δVを示したのが第6図である。図は電極配
線層の幅S1と拡散抵抗層の幅S0の比を横軸とし、
電極配線層の厚みをパラメータとして表わしたも
のである。図から明らかなように、ヒステリシス
の大きさはδVは電極配線層の幅と厚みに大きく
依存していることがわかる。そして、S1/S0≦1
とすることによりδVは十分小さくなり、S1/S0
>1とすると急激にδVが大きくなる。
With such a structure, when the width and thickness of the electrode wiring layer are varied, the magnitude of the hysteresis shown by the offset voltage ΔV when subjected to a thermal cycle from -20°C to 80°C (offset voltage at 30°C) Fig. 6 shows the difference in δV. In the figure, the horizontal axis is the ratio of the width S1 of the electrode wiring layer to the width S0 of the diffused resistance layer.
The thickness of the electrode wiring layer is expressed as a parameter. As is clear from the figure, the magnitude of hysteresis δV is largely dependent on the width and thickness of the electrode wiring layer. And S1 /S0 ≦1
By setting δV to be sufficiently small, S1 /S0
>1, δV increases rapidly.

なお、電極配線層を第5図aに一点鎖線で示し
たように拡散抵抗層の長手方向に直角に配設した
場合についても同様の実験を行つたが、拡散抵抗
層の長手方向に沿つて配設した場合との間に有意
差は認められなかつた。
A similar experiment was also conducted in the case where the electrode wiring layer was disposed perpendicular to the longitudinal direction of the diffused resistance layer as shown by the dashed line in Figure 5a. No significant difference was observed between the two cases.

以上のように、この発明によれば、流体圧に感
応する拡散抵抗層の幅を電極配線層の幅以下に選
ぶことによつて、温度変化に対するオフセツト電
圧のヒステリシスを十分小さくすることができ、
高精度の圧力変換が可能となる。
As described above, according to the present invention, by selecting the width of the diffusion resistance layer that is sensitive to fluid pressure to be equal to or less than the width of the electrode wiring layer, the hysteresis of the offset voltage with respect to temperature changes can be made sufficiently small.
Highly accurate pressure conversion becomes possible.

なお、以上の説明では、電極配線層の材料とし
てAlを用いたが、半導体単結晶板との関係で熱
膨張率や弾性率などの物理定数が大きく異なるも
のであれば、Pt、Au、Ni、Mo、Cu、Ta、Ti、
Wなど金属を用いた場合にも同様の効果が得られ
る。
In the above explanation, Al was used as the material for the electrode wiring layer, but if the physical constants such as thermal expansion coefficient and elastic modulus are significantly different in relation to the semiconductor single crystal board, Pt, Au, Ni etc. , Mo, Cu, Ta, Ti,
A similar effect can be obtained when a metal such as W is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体圧力変換装置の基本構造を概略
的に示す図、第2図は感圧素子としての拡散抵抗
を固定抵抗と共にブリツジ回路に組込んだ圧力測
定回路を示す図、第3図は第1図の要部断面構造
を詳細に示す図、第4図は従来の半導体圧力変換
装置の温度変化に対するオフセツト電圧のヒステ
リシス特性例を示す図、第5図a,bはこの発明
の効果を明らかにするための実験に用いた半導体
圧力変換装置の要部構造を示す図、第6図はその
実験データを示す図である。 11……n型シリコン単結晶板、12……ダイ
ヤフラム(肉薄部)、13……拡散抵抗層、14
1……熱酸化膜、142……BSG膜、143,1
44……PSG膜、15,15,15……電極
配線層。
Fig. 1 is a diagram schematically showing the basic structure of a semiconductor pressure transducer, Fig. 2 is a diagram showing a pressure measurement circuit in which a diffused resistor as a pressure sensing element is incorporated into a bridge circuit together with a fixed resistor, and Fig. FIG. 4 is a diagram showing an example of the hysteresis characteristic of the offset voltage with respect to temperature change of a conventional semiconductor pressure transducer device, and FIG. 5 a and b are diagrams showing the effects of the present invention. FIG. 6 is a diagram showing the main part structure of a semiconductor pressure transducer used in an experiment to clarify this, and FIG. 6 is a diagram showing the experimental data. 11... N-type silicon single crystal plate, 12... Diaphragm (thin part), 13... Diffused resistance layer, 14
1...Thermal oxide film, 142...BSG film, 143,1
44...PSG film, 15, 151 , 152 ... electrode wiring layer.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 流体圧により変形する肉薄部を有する半導体
単結晶板と、この半導体単結晶板の前記肉薄部に
形成された拡散抵抗層と、この拡散抵抗層の両端
部にそれぞれコンタクトホールを形成して前記半
導体単結晶板表面に設けられた絶縁層と、この絶
縁層上に一端を上記コンタクトホールを介して前
記拡散抵抗層の端部に接続し、他端を前記半導体
単結晶板の周縁肉厚部に配設した一対の電極配線
層とを備え、前記電極配線層の幅を前記拡散抵抗
層の幅以下としたことを特徴とする半導体圧力変
換装置。
1. A semiconductor single crystal plate having a thin wall portion deformed by fluid pressure, a diffused resistance layer formed in the thin wall portion of this semiconductor single crystal plate, and contact holes formed at both ends of the diffused resistance layer, respectively. an insulating layer provided on the surface of the semiconductor single crystal board; one end of the insulating layer on this insulating layer is connected to the end of the diffused resistance layer through the contact hole; and the other end is connected to a peripheral thick part of the semiconductor single crystal board. 1. A semiconductor pressure transducer device comprising: a pair of electrode wiring layers disposed in the semiconductor pressure transducer, the width of the electrode wiring layer being equal to or less than the width of the diffusion resistance layer.
JP11131277A1977-09-161977-09-16Semiconductor pressure converterGrantedJPS5444883A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
JP11131277AJPS5444883A (en)1977-09-161977-09-16Semiconductor pressure converter
SE7808751ASE7808751L (en)1977-09-161978-08-18 BATTERY-POWERED IONIZATION ROCKER UNIT

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP11131277AJPS5444883A (en)1977-09-161977-09-16Semiconductor pressure converter

Publications (2)

Publication NumberPublication Date
JPS5444883A JPS5444883A (en)1979-04-09
JPS6124836B2true JPS6124836B2 (en)1986-06-12

Family

ID=14558024

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP11131277AGrantedJPS5444883A (en)1977-09-161977-09-16Semiconductor pressure converter

Country Status (2)

CountryLink
JP (1)JPS5444883A (en)
SE (1)SE7808751L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH02110027U (en)*1989-02-101990-09-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2827718B2 (en)*1992-07-151998-11-25株式会社デンソー Semiconductor acceleration sensor
US6056888A (en)*1999-04-192000-05-02Motorola, Inc.Electronic component and method of manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5549174B2 (en)*1971-09-271980-12-10
JPS51143380A (en)*1975-06-041976-12-09Hitachi LtdSemiconductor pressure converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH02110027U (en)*1989-02-101990-09-03

Also Published As

Publication numberPublication date
SE7808751L (en)1979-02-20
JPS5444883A (en)1979-04-09

Similar Documents

PublicationPublication DateTitle
US4333349A (en)Binary balancing apparatus for semiconductor transducer structures
US4467656A (en)Transducer apparatus employing convoluted semiconductor diaphragms
US4500864A (en)Pressure sensor
US3270554A (en)Diffused layer transducers
US6234027B1 (en)Pressure sensor for semi-conductor
JPS60128673A (en)Semiconductor pressure-sensing device
JPS6341080A (en)Semiconductor acceleration sensor
US6700473B2 (en)Pressure transducer employing on-chip resistor compensation
US4932265A (en)Pressure transducer using thick film resistor
JPS6090696A (en)Pressure-sensitive sensor
JPS6124836B2 (en)
US3493912A (en)Strain responsive transducer means of the diaphragm type
JPS5887880A (en) Semiconductor diaphragm sensor
JPS5856424B2 (en) force transducer
JPS5856423B2 (en) force transducer
JPH05149773A (en)Using method of strain gage
JPS6222272B2 (en)
JPH0455542B2 (en)
JPH01199476A (en)Pressure sensor
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0419495B2 (en)
RU2284613C1 (en)Semiconductor pressure transducer and its manufacturing process
JPS59217374A (en)Semiconductor strain converter
JPS6155263B2 (en)
HK96594A (en)Pressure transducers and a method of measuring pressure

[8]ページ先頭

©2009-2025 Movatter.jp