Movatterモバイル変換


[0]ホーム

URL:


JPS6122752A - Motor - Google Patents

Motor

Info

Publication number
JPS6122752A
JPS6122752AJP14151284AJP14151284AJPS6122752AJP S6122752 AJPS6122752 AJP S6122752AJP 14151284 AJP14151284 AJP 14151284AJP 14151284 AJP14151284 AJP 14151284AJP S6122752 AJPS6122752 AJP S6122752A
Authority
JP
Japan
Prior art keywords
gear
output
case
motor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14151284A
Other languages
Japanese (ja)
Other versions
JPH065981B2 (en
Inventor
Yasuo Ueno
康男 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Gijutsu Kaihatsu Co Ltd
Original Assignee
Kokusai Gijutsu Kaihatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Gijutsu Kaihatsu Co LtdfiledCriticalKokusai Gijutsu Kaihatsu Co Ltd
Priority to JP14151284ApriorityCriticalpatent/JPH065981B2/en
Publication of JPS6122752ApublicationCriticalpatent/JPS6122752A/en
Publication of JPH065981B2publicationCriticalpatent/JPH065981B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

PURPOSE:To reduce the minimum rotary angle and to increase a torque by rocking of a rockable gear fluctuated between an output gear and a stationary gear by a plurality of electromagnets. CONSTITUTION:A stationary gear 2 and a plurality of poles 3-1-3-6 are secured to a case 1, and coils 4-1-4-6 are respectively engaged with the outer peripheries of the poles 3-1-3-6. An output shaft 6 is rotatably provided through a bearing 5 in the center of the case 1. Further, a rockable gear 10 having the first and second gears 8, 9 (9 not shown) on both side surfaces between the gear 2 and an output gear 7. When the coils are sequentially energized, a rotor 14 rotates one revolution, and the inclining direction of the gear 10 rotates one revolution during the period. This rotation is transmitted through the tooth surfaces 8, 9 engaged with the gear 2 and the gear 7 to the shaft 6.

Description

Translated fromJapanese

【発明の詳細な説明】本発明は電力を機械回転力に変換する為のモータに関す
るものであり、特に一つの電気パルス信号によって、餓
めて微少な角度回転し、大きな回転力全発揮するモータ
に[狽するものである。
[Detailed Description of the Invention] The present invention relates to a motor for converting electric power into mechanical rotational force, and in particular to a motor that rotates by a small angle in response to a single electric pulse signal and exerts the full force of a large rotational force. It is something to [abuse].

近来各種産業部門におけるモータの用途は噌々拡大しつ
つある。特に従来任意の速1度で回転していれは良いと
いうのがモータに対する要望であつたが、最近は任意の
角度回転して停止するという事が重要な項目となって来
た。もちろん停止状態    ′でその位置な保つ必要
があり、その為にはいわゆるパルスモータが適当であり
、この種のモータの需要は急速に増加しつつある。又最
小回転角度は出来る丈微小なもの、トルクは太き々もの
、パルス応答性は速いものが望まれるのは当然なことで
ある。現在はモータ自体は構造的に限界に達してお9、
四に上記五つの特性を向上させるのは困難であると]7
て、特殊な減速歯車装置を用いた!ll電気回路上の工
夫により性能の向上を計っている。
In recent years, the applications of motors in various industrial sectors have been expanding rapidly. In particular, in the past, the demand for motors was that they could rotate at any arbitrary speed of 1 degree, but recently it has become important to be able to rotate at any angle and then stop. Of course, it is necessary to maintain the same position in the stopped state, and a so-called pulse motor is suitable for this purpose, and the demand for this type of motor is rapidly increasing. Naturally, it is desired that the minimum rotation angle be as small as possible, the torque be large, and the pulse response be fast. Currently, the motor itself has reached its structural limit9.
Fourth, it is difficult to improve the above five characteristics]7
Using a special reduction gear device! We are trying to improve performance by making improvements to the electric circuit.

しかるに減速装置を用いると構造部品が増加し、モータ
を含めた駆動部の体積2重量1価格が増加する上、一般
に減速装置のバックラッシュによる回転角度の誤差や撮
動音生ずることがある。又電気回路の工夫では、最小回
転角を小さくてることは出来るが、トルクを増すことは
出来ない。
However, when a reduction gear is used, the number of structural parts increases, the volume, weight, and price of the drive unit including the motor increase, and in addition, backlash of the reduction gear may generally cause an error in rotation angle and noise during shooting. Also, by devising the electric circuit, it is possible to reduce the minimum rotation angle, but it is not possible to increase the torque.

以上のごとき状況の下で本発明は、出力歯車と固定歯車
の間で揺動回転する揺動歯車の揺動運動を複数の電磁石
で行なうごとき偽造により上記欠点を排(7、従来9モ
ータの約1/1(J [J程度の微小回転角度での運動
・停止が可能であり、又10倍以上の回転力を発i’l
l1fることの出来る極めて高性能なモータ?−堤供す
るものである。
Under the above circumstances, the present invention eliminates the above-mentioned drawbacks by forging the oscillating motion of the oscillating gear that oscillates and rotates between the output gear and the fixed gear using a plurality of electromagnets. It is possible to move and stop at a minute rotation angle of approximately 1/1 (J
An extremely high-performance motor that can move l1f? - It is something to be provided.

以下図について、その構造を説1明する。The structure will be explained below with reference to the figure.

第1図は本発明の一実施例の構造を示す側断面図であり
、第2図はその正断面図である。
FIG. 1 is a side sectional view showing the structure of an embodiment of the present invention, and FIG. 2 is a front sectional view thereof.

第1図、第2図において、ケース/にけ固定歯車認及び
複数個の磁極3−/〜3−乙が固着され、各々の磁極3
−/〜3−乙の外周にはコイルグー/〜グー乙が嵌挿さ
れている。又、ケース/の中心には軸受夕を介[7て出
力軸6が回転自在に設けられておシ、該出力軸乙には出
力歯車7が前記固定歯車と互いに歯面を対向するととく
数句けられている。更に固定歯車コと出力歯車7との間
には第1の歯面ざと第2の歯面9をその両面に商才る揺
動歯車10が設けら九ている。揺動歯車/θの中心部に
は穴//を有し、該穴//には輪環状のボール溝/2が
揺動歯車/θの中心面上に設けられ、出力軸乙にニード
ルローラー73を介して回転自在に嵌合する回転子/グ
の球面外形部/夕には回転軸と一定角)現傾斜した輪環
状のボール溝/乙が設けられ、該ボール溝/乙と揺動歯
車/θの穴//に設けられたボール溝/2とは複数個の
ボール/2を介して回転自在に嵌合している。
In Figures 1 and 2, a case/fixed gear and a plurality of magnetic poles 3-/-3-B are fixed, and each magnetic pole 3
-/~3-A coil goo/~goo O is inserted into the outer periphery of Otsu. In addition, an output shaft 6 is rotatably provided at the center of the case via a bearing 7, and an output gear 7 is mounted on the output shaft 7 with tooth surfaces facing each other with the fixed gear. It is said. Furthermore, an oscillating gear 10 having a first tooth surface and a second tooth surface 9 on both sides is provided between the fixed gear 7 and the output gear 7. The oscillating gear /θ has a hole // in the center thereof, an annular ball groove /2 is provided in the hole // on the center surface of the oscillating gear /θ, and a needle roller is attached to the output shaft B. The spherical outer part of the rotor, which is rotatably fitted through 73, is provided with an inclined annular ball groove (at a constant angle with the rotating shaft), and swings with the ball groove. The ball groove /2 provided in the hole of the gear /θ is rotatably fitted through a plurality of balls /2.

又、揺動歯車/θの一方の面は輪環状の平面部/とを形
成し磁極3と対向しており、外形部/9は球面状をなし
、ケース/の内面に近接している。間ケース/、揺動歯
車/θ及び磁極3−/〜3−乙は磁性材料で形成されて
いる。又固定歯車−と常に噛合っている揺動歯車10の
第1の歯面?及び第2の歯面りと常に噛合っている出力
歯車7の歯面は、全て回転子/グの球面外形部/!の中
心oを中心とする傘歯車全形成しており、各々の歯数は
A、B。
Further, one surface of the oscillating gear /θ forms an annular flat part / and faces the magnetic pole 3, and the outer part /9 has a spherical shape and is close to the inner surface of the case /. The intermediate case/, the rocking gear/θ, and the magnetic poles 3-/ to 3-B are made of a magnetic material. Also, the first tooth surface of the oscillating gear 10 that always meshes with the fixed gear? The tooth surfaces of the output gear 7, which are always in mesh with the second tooth surfaces, are all spherical outer portions of the rotor /! All bevel gears are formed with the center o as the center, and the number of teeth of each is A and B.

C,Dと定められている。It is defined as C and D.

次に第1図及び第2図に示す実施例について本発明の詳
細な説明する、今、磁極3−/は揺動歯車10の平面部/?が最も近接
した状態となっている。この状態でとなりの磁極3−.
2に設けられたコイルグー認に通電すると、磁極3−2
と平面部Iの間に吸引力が生じる。
Next, the present invention will be described in detail with reference to the embodiment shown in FIGS. is the closest state. In this state, the adjacent magnetic pole 3-.
When power is applied to the coil provided at 2, the magnetic pole 3-2
An attractive force is generated between the flat part I and the flat part I.

そうすると6回転子/グが磁極3−2の方向に600回
転し、そのボール溝/乙の傾斜によシ揺勅歯車/θの傾
斜方向が同じ<60°変化して、平面部/どと磁極3−
2とが最も近接した状態で停止する。
Then, the 6 rotor/g rotates 600 times in the direction of the magnetic pole 3-2, and due to the inclination of its ball groove/O, the inclination direction of the rocking gear/θ changes by the same <60°, and the flat part/ Magnetic pole 3-
2 will stop when they are closest to each other.

この様にしてコイルグー3.ケース・グーに。In this way, coil goo 3. To Case Goo.

グー/と順次通電していくと、回転子/グが一回転する
間に揺動歯車πはその傾斜方向が一回転することとなる
。そうすると、固定歯車λと噛合っている第1の歯面?
との間に各々の歯数A、!:Bの差だけの回転変位ケ生
ずる。この時の回転角θ1は、−B1−−i−となる。更に、同時に第2の歯面9(歯数G)と出力歯
車7(歯数D)との間にも揺動歯車10の揺動運動の結
果の回転変位が生ずる。その時の回転角θ2は出力歯車
7を規準にして考えれば、−Dθ2−一が−となる。全体として考えた場合の回転角θはθ1とθ2
の和であるからθ−01」−02一□十−丁−である。今、−例として、A : 100. ’B−1
01゜C= i02. D=101  とした場合、=
 −9,901x 1o ”即ち回転子/グが一回転すると、出力軸は逆方向に約1
万分の1回転することとなる。コイルグー/〜グー乙の
数が6ケであるから出力軸を一回転させるに必要なパル
ス数は約6万パルスとなり、従来のパルスモータが20
0〜400ノクルスであるのに比べて数百倍の値となる
。このことは1・ぐルスで得られる回転角度が従来のモ
ータの数百分の1の微小なものまで可能であることを意
味する。しかもこの微小角度は揺動歯車10の運動によ
る機械的な減速によるものであるので、もし機械効率が
著しく悪くなければ回転トルクは減速比に反比例して強
くなるので従来モータの数百倍となる可能性を持ってい
る。実用状態で種々の損失を含めた場合でも数10倍の
トルクは充分に保証することが出来る。更にこの場合、
減速機構はケース/の内部にモータの一部として内蔵さ
れてし丑っているので別途に減速機を用いる時と比べて
スペース及び重量の大巾な減少となり、本発明のモータ
を使用17た場合装置自体が大巾に小型化される可能性
を持っている。又、機構部分は全て剛性の高いものであ
り材料のたわみを利用した構造は採用していないので回
転角の精度は高く、ヌ振勅全生ずる可能性もない。一方
この(チ1な大[1〕な減速を必要としない場合には、
回転子/4tの球面外形部/!の中心Oの位置を変える
ことにより、歯数AとB又はCとDを同数とすることで
その部分の減速比全1とし全体の減速比′ff:数百分
の1程度にすることも出来る。
When the current is applied to the rotor/g in sequence, the oscillating gear π rotates once in its inclination direction while the rotor /g rotates once. Then, the first tooth surface that meshes with the fixed gear λ?
The number of teeth between each A,! : A rotational displacement equal to the difference in B occurs. The rotation angle θ1 at this time becomes −B 1−i−. Furthermore, at the same time, a rotational displacement occurs between the second tooth surface 9 (number of teeth G) and the output gear 7 (number of teeth D) as a result of the oscillating movement of the oscillating gear 10. If the rotation angle θ2 at that time is considered with the output gear 7 as a reference, -D θ2-1 becomes -. The rotation angle θ when considered as a whole is θ1 and θ2
Since it is the sum of θ-01''-02 1□10-cho-. Now - as an example, A: 100. 'B-1
01°C=i02. When D=101, =
-9,901x 1o ” In other words, when the rotor/g rotates once, the output shaft moves approximately 1° in the opposite direction.
This results in a rotation of 1/10,000. Since the number of coils is 6, the number of pulses required to rotate the output shaft once is approximately 60,000 pulses, and the conventional pulse motor is 20,000 pulses.
The value is several hundred times higher than that of 0 to 400 noculus. This means that the rotation angle that can be obtained with 1.degree. is possible up to several hundredths of that of conventional motors. Moreover, this minute angle is due to mechanical deceleration due to the movement of the oscillating gear 10, so if the mechanical efficiency is not extremely poor, the rotational torque will increase in inverse proportion to the reduction ratio, so it will be several hundred times stronger than that of a conventional motor. has potential. Even when various losses are included in practical conditions, a torque several tens of times higher can be sufficiently guaranteed. Furthermore, in this case,
Since the speed reduction mechanism is built into the case as part of the motor, the space and weight are greatly reduced compared to when a separate speed reduction device is used. In this case, the device itself has the potential to be significantly miniaturized. In addition, all the mechanical parts are highly rigid and do not employ a structure that utilizes material deflection, so the rotation angle is highly accurate and there is no possibility of erroneous movement. On the other hand, if this large [1] deceleration is not required,
Rotor/4t spherical outer part/! By changing the position of the center O, by making the number of teeth A and B or C and D the same, the reduction ratio of that part can be set to 1, and the overall reduction ratio 'ff: about 1/several hundredth. I can do it.

第3図は本発明の他の一実施例の構造を示す側所面i′
ス1であり、第11図はその正酊1而図である。第5図
及び第4図において回転子/グー/及び/ケースは互い
に逆方向に傾いたボール溝/J−7、/に−2を有した
状態でパイプ〃で結合されている。固定歯車2−/、λ
−2、出力歯車7−/、7−2、揺動歯車10−/、/
Q−2は第1図、第2図に示す実施例のものを左右対称
に設けたものであり、磁極3−/〜3−6は非磁性体の
ホルダーJを介17てケース/に固定されている。又、
パイプ〃の外周には60°ごとに5−N−8−N−0−
0と着磁きれたマグネットリング、22を有する。尚、
0は無着磁を示す。又、該マクネツl−,2Jに近接し
て磁気感知素子。υ−/、〃−一が18[10ごとに配
置され、間接的にケース/に固定されている。
FIG. 3 shows the structure of another embodiment of the present invention on the lateral plane i'.
Figure 11 is a diagram of its true meaning. In FIGS. 5 and 4, the rotor/goo/and/case are connected by a pipe with ball grooves/J-7 and -2 inclined in opposite directions. Fixed gear 2-/, λ
-2, output gear 7-/, 7-2, rocking gear 10-/, /
Q-2 is a symmetrical arrangement of the embodiment shown in Figs. 1 and 2, and the magnetic poles 3-/-3-6 are fixed to the case/ through a non-magnetic holder J. has been done. or,
5-N-8-N-0- on the outer circumference of the pipe every 60°
0 and a fully magnetized magnet ring 22. still,
0 indicates no magnetization. Also, there is a magnetic sensing element in the vicinity of the magnetic sensor 1-, 2J. υ-/, 〃-1 are arranged every 18 [10] and are indirectly fixed to the case/.

第5図及び第4図に示す実施例において、その動作原理
は第1図及び第2図に示す実施例のものと大略同じであ
るが、第1図、第2図に示す実施例の場合には、駆動パ
ルスの周波数が高く、回転子/グの回転が高速になると
揺動館車10の揺動運$41による振動が発生1−るお
それがある。これに対し第5図、第4図に示す実施例に
おいては、揺動歯車10−/と/θ−2が対称の運動を
するので、前記振動を完全に打消すことが出来る。又、
回転子/グー/及び/(/−,2はパイプ〃で結合され
ているので回転力を互いに半分づつ受は持つこととなり
、歯車等各部に加わる応カケ半減させることが出来る上
回転を滑らかにすることが出来る効果を有する。
In the embodiment shown in FIGS. 5 and 4, the operating principle is almost the same as that of the embodiment shown in FIGS. 1 and 2; however, in the embodiment shown in FIGS. If the frequency of the drive pulse is high and the rotation of the rotor becomes high speed, there is a risk that vibrations will occur due to the rocking movement of the rocking wheel 10. On the other hand, in the embodiment shown in FIGS. 5 and 4, the oscillating gears 10-/ and /θ-2 move symmetrically, so that the vibration can be completely canceled out. or,
Since the rotors / goo / and / ( / -, 2 are connected by a pipe, they receive half the rotational force from each other, allowing for smooth upper rotation that can reduce the stress applied to various parts such as gears by half. It has the effect of being able to

又、パイプ〃に設けたマグネット二と磁気検知素子。U
−/、。υ−2により回転子/クー/、/クー2の回転
位置全検知することが出来る。表はその検知状態を示f
Also, there is a magnet 2 and a magnetic sensing element installed on the pipe. U
-/,. By using υ-2, the entire rotational position of the rotor /ku/, /ku2 can be detected. The table shows the detection status f
.

このことにより回転子/4t−/1./4t−一部/Z
 /l/ 、X駆動により正しく回転しているか否か、
即ちいわゆる脱調状態の有無を検知することが出来る。
This results in rotor /4t-/1. /4t-part/Z
/l/, whether or not it is rotating correctly due to the X drive;
That is, it is possible to detect the presence or absence of a so-called out-of-step state.

このことは従来のパルスモータにはない特徴であり、駆
動装置全体の信頼性を大巾に向上することが出来る。更
に前記磁気検知素子u−/ 、+2J −jの出力信号
によって各コイルクー/〜クー乙の通電回路を制御すれ
ば、いわゆるブラシレスモータとして一般のDoモータ
のごとき使用方法も可能になる。この場合の駆動回路の
一実施例を第5図に示す。
This is a feature not found in conventional pulse motors, and can greatly improve the reliability of the entire drive device. Furthermore, if the energizing circuits of the coils 1 to 2 are controlled by the output signals of the magnetic sensing elements u-/ and +2J-j, it becomes possible to use the motor as a so-called brushless motor, such as a general Do motor. An embodiment of the drive circuit in this case is shown in FIG.

第5図において、241は電源、コはコイル制御回路、
ぶは正転、停止、逆転切換回路である。切換回路g’6
正転にセットしておけば、磁気検知素子、:1g −/
 1.2J −,2によって検知した回転子/グー/、
/グー2の位置より常に1つ先のコイルに通電する様に
コイル制御回路Jに信号を送ってやれば、連続的に正方
向に回転する。又、逆転にセットしておけば1つ後のコ
イルに通電するごとくなり、連続的に逆方向に回転する
。又、停止にセツトシておけば停止位置を強いトルクで
保持することが出来るごときものである。
In FIG. 5, 241 is a power supply, ko is a coil control circuit,
bu is a forward rotation, stop, and reverse rotation switching circuit. Switching circuit g'6
If set to normal rotation, magnetic sensing element: 1g -/
1.2J −, rotor detected by 2/Goo/,
If a signal is sent to the coil control circuit J to always energize the coil one position ahead of the position 2, the coil will rotate continuously in the forward direction. Also, if you set it to reverse, it will be as if the next coil is energized, and it will rotate continuously in the opposite direction. Also, if it is set to stop, the stop position can be maintained with strong torque.

向、第1図〜第5図までの説明において磁極3−/〜3
−6、コイルグー/〜グーにの数を6ケとしているが、
その数は3ヶ以上であれば何個でも良い。又、歯数A、
B、l:!、Dも任意に選択して良い1、父、マグネッ
ト工及び磁気検知素子〃−/、23−2の着磁方法及び
数についても本実施例に限定するものではない。更に第
1図、第2図に示す実施例に第5図、第4図に示すマグ
ネット〃及び磁気検知素子、!J−/、23−2’l:
設けることが出来ることもいう−までもない。
In the explanations of FIGS. 1 to 5, magnetic poles 3-/-3
-6, the number of coil goo/~goo is 6,
The number may be any number as long as it is 3 or more. Also, the number of teeth A,
B, l:! , D may be arbitrarily selected. The magnetization method and the number of magnets and magnetic sensing elements 23-2 are not limited to those in this embodiment. Furthermore, the magnets and magnetic sensing elements shown in FIGS. 5 and 4 are added to the embodiments shown in FIGS. 1 and 2! J-/, 23-2'l:
It goes without saying that it can be provided.

以上の説明のごとく、本発明のモータは全く新規な駆動
原理に基づくものでありその微少なステップ回転角、強
大な回転トルク及び回転位置検知機能等、独自の極めて
優れた特徴を有するものであり、更に小型軽量であるの
で、産業界における本発明の効果は極めて著しい。
As explained above, the motor of the present invention is based on a completely new driving principle and has unique and excellent features such as a small step rotation angle, a large rotational torque, and a rotational position detection function. Furthermore, since it is small and lightweight, the effects of the present invention in the industrial field are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す側断面図、第2
1スはその正断面図、第S図は本発明の他の一実施例の
構造を示f側断面図、第4図はその正断面図、第5図は
1駆動回路図である。/  ケース、λ・・・・・固定歯車、3・・・磁極、
グ・・・コイル、乙・・・・・・出力軸、7・・・・出
力1虐車、/の・・・・・揺動歯車、工・・・・・マグ
ネット、3・・ 磁気検知素子。
Fig. 1 is a side sectional view showing the structure of one embodiment of the present invention;
1 is a front sectional view thereof, FIG. S is a sectional view on the f side showing the structure of another embodiment of the present invention, FIG. / Case, λ...Fixed gear, 3...Magnetic pole,
G... Coil, B... Output shaft, 7... Output 1 wheel, /... Rocking gear, Work... Magnet, 3... Magnetic detection element.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]出力軸と共に回転する出力歯車と、固定歯車とを互に歯
面が対向するごとく設け、前記両歯車の間に両面に歯面
を有する揺動歯車を出力軸と同芯上で回転及び揺動自在
に設け、該揺動歯車の第1の歯面を固定歯車に噛合わせ
、第2の歯面を出力歯車に噛合わせ、更に揺動歯車の揺
動を複数個の電磁石の吸引力によって行なわしめるごと
くなしたことを特徴とするモータ。
An output gear that rotates together with the output shaft and a fixed gear are provided so that their tooth surfaces face each other, and an oscillating gear that has tooth surfaces on both sides is provided between the two gears to rotate and oscillate concentrically with the output shaft. The first tooth surface of the oscillating gear meshes with the fixed gear, the second tooth surface of the oscillating gear meshes with the output gear, and the oscillating gear is further oscillated by the attraction force of a plurality of electromagnets. A motor that is characterized by its ability to tighten.
JP14151284A1984-07-101984-07-10 MotorExpired - LifetimeJPH065981B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP14151284AJPH065981B2 (en)1984-07-101984-07-10 Motor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP14151284AJPH065981B2 (en)1984-07-101984-07-10 Motor

Publications (2)

Publication NumberPublication Date
JPS6122752Atrue JPS6122752A (en)1986-01-31
JPH065981B2 JPH065981B2 (en)1994-01-19

Family

ID=15293684

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP14151284AExpired - LifetimeJPH065981B2 (en)1984-07-101984-07-10 Motor

Country Status (1)

CountryLink
JP (1)JPH065981B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2012080771A (en)*2011-12-212012-04-19Oriental Motor Co LtdGeared motor
WO2012152727A3 (en)*2011-05-062013-07-18Johnson Controls GmbhPlanetary gear arrangement for a seat adjustment mechanism and method for operating such a planetary gear arrangement
JP2015039286A (en)*2013-07-122015-02-26ザ・ボーイング・カンパニーTheBoeing CompanyActive-active redundant motor gear system
JP2016116437A (en)*2014-12-112016-06-23ザ・ボーイング・カンパニーThe Boeing CompanyReluctance motor with virtual rotor
JP2016540471A (en)*2013-10-012016-12-22ザ・ボーイング・カンパニーThe Boeing Company Reluctance motor system
US9592363B2 (en)2003-03-272017-03-14Boston Scientific Scimed, Inc.Medical device
US9808595B2 (en)2007-08-072017-11-07Boston Scientific Scimed, IncMicrofabricated catheter with improved bonding structure
US9901706B2 (en)2014-04-112018-02-27Boston Scientific Scimed, Inc.Catheters and catheter shafts
CN112740523A (en)*2018-05-232021-04-30Tau电机股份有限公司 motor
US11351048B2 (en)2015-11-162022-06-07Boston Scientific Scimed, Inc.Stent delivery systems with a reinforced deployment sheath
WO2024069915A1 (en)*2022-09-302024-04-04ローツェ株式会社Actuator and workpiece transfer robot comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2014047797A (en)*2012-08-292014-03-17Mitsubishi Heavy Ind LtdActuator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9592363B2 (en)2003-03-272017-03-14Boston Scientific Scimed, Inc.Medical device
US10207077B2 (en)2003-03-272019-02-19Boston Scientific Scimed, Inc.Medical device
US9808595B2 (en)2007-08-072017-11-07Boston Scientific Scimed, IncMicrofabricated catheter with improved bonding structure
WO2012152727A3 (en)*2011-05-062013-07-18Johnson Controls GmbhPlanetary gear arrangement for a seat adjustment mechanism and method for operating such a planetary gear arrangement
CN103517825A (en)*2011-05-062014-01-15约翰逊控股公司Planetary gear arrangement for a seat adjustment mechanism and method for operating such a planetary gear arrangement
JP2014519301A (en)*2011-05-062014-08-07ジョンソン・コントロールズ・ゲー・エム・ベー・ハー Planetary gear device for seat adjustment mechanism and method of operating the planetary gear device
JP2012080771A (en)*2011-12-212012-04-19Oriental Motor Co LtdGeared motor
JP2015039286A (en)*2013-07-122015-02-26ザ・ボーイング・カンパニーTheBoeing CompanyActive-active redundant motor gear system
JP2016540471A (en)*2013-10-012016-12-22ザ・ボーイング・カンパニーThe Boeing Company Reluctance motor system
US9901706B2 (en)2014-04-112018-02-27Boston Scientific Scimed, Inc.Catheters and catheter shafts
JP2016116437A (en)*2014-12-112016-06-23ザ・ボーイング・カンパニーThe Boeing CompanyReluctance motor with virtual rotor
US11351048B2 (en)2015-11-162022-06-07Boston Scientific Scimed, Inc.Stent delivery systems with a reinforced deployment sheath
CN112740523A (en)*2018-05-232021-04-30Tau电机股份有限公司 motor
JP2021525505A (en)*2018-05-232021-09-24タウ モーターズ,インコーポレイテッド Electric motor
US11870319B2 (en)2018-05-232024-01-09Tau Motors, Inc.Electric motor
JP2024023694A (en)*2018-05-232024-02-21タウ モーターズ,インコーポレイテッド electric motor
WO2024069915A1 (en)*2022-09-302024-04-04ローツェ株式会社Actuator and workpiece transfer robot comprising same
WO2024070583A1 (en)2022-09-302024-04-04ローツェ株式会社Actuator and workpiece delivery robot equipped with same
KR20250048469A (en)2022-09-302025-04-08로제 가부시키가이샤 Actuator and work return robot equipped with it

Also Published As

Publication numberPublication date
JPH065981B2 (en)1994-01-19

Similar Documents

PublicationPublication DateTitle
US4644233A (en)D.C. brushless motor having wider and narrower pole parts
JP6711362B2 (en) Magnetic transmission
JP4150069B2 (en) Two-phase motor
JPS6122752A (en)Motor
US4642539A (en)Torque motor with unlimited angular excursion
JPH0815389B2 (en) Step type motor and its drive circuit
JP3427511B2 (en) Dual-shaft output motor
KR20110115077A (en) Linear rotary actuator
US3111596A (en)Synchronous electric motor
JPH02151253A (en)Stepping motor having low stopping torque
US3456139A (en)Wobble drum step motor
JPH10191606A (en)Electromagnetic motor with two coaxial rotors
HK49489A (en)Stepping motor with two directions of rotation, in particular for electronic time pieces, and motor unit comprising the same
US6731093B1 (en)2-step bi-directional stepping motor
JPH08336274A (en)Magnetic screw transmission
JPH04229065A (en) small motor
JPH0736466Y2 (en) Rotation detection device
JP2003075559A (en)Step motor for clock
USRE27446E (en)Welchmotor with gyrating rotor
US5289065A (en)Zero air gap orbiting gear stepper motor
JPS6223361A (en)Motor actuator
JPS6110957A (en)Normal/reverse rotatable motor
JP3630469B2 (en) Multi-pole motor and clock machine body using the same
JP2547082B2 (en) Brushless motor
JPH02299495A (en)Brushless motor

[8]ページ先頭

©2009-2025 Movatter.jp