Movatterモバイル変換


[0]ホーム

URL:


JPS61152990A - Screw vacuum pump - Google Patents

Screw vacuum pump

Info

Publication number
JPS61152990A
JPS61152990AJP27286084AJP27286084AJPS61152990AJP S61152990 AJPS61152990 AJP S61152990AJP 27286084 AJP27286084 AJP 27286084AJP 27286084 AJP27286084 AJP 27286084AJP S61152990 AJPS61152990 AJP S61152990A
Authority
JP
Japan
Prior art keywords
working chamber
rotor
rotors
vacuum pump
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27286084A
Other languages
Japanese (ja)
Inventor
Kotaro Naya
納谷 孝太郎
Koji Takagi
高木 恒治
Katsumi Matsubara
松原 克躬
Riichi Uchida
利一 内田
Masatoshi Muramatsu
村松 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokico LtdfiledCriticalHitachi Ltd
Priority to JP27286084ApriorityCriticalpatent/JPS61152990A/en
Priority to DE8585101569Tprioritypatent/DE3573152D1/en
Priority to US06/701,199prioritypatent/US4714418A/en
Priority to EP85101569Aprioritypatent/EP0166851B1/en
Priority to CN85101185.3Aprioritypatent/CN1005641B/en
Publication of JPS61152990ApublicationCriticalpatent/JPS61152990A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

PURPOSE:To spread a range of pressure which can be covered by one set of vacuum pump, by closely sealing both ends of a transferred working chamber to be closed by the engagement of an internal and an external thread. CONSTITUTION:A screw vacuum pump, forming its external threaded rotor 39 decreasing a number of teeth by one sheet smaller than that of an internal threaded rotor 40, closely seals both ends of a working chamber 67, 70 to be closed by an engagement part 68, 69 of the both rotors. A working chamber 72, 73, preceding the working chamber 70, closely seals the both ends to be closed by a casing wall and the engagement part 69 of the both rotors, compressing gas while decreasing the volume. While a working chamber, following the working chamber 70, closely seals only one end of said chamber to be closed by the engagement part of the both rotors, performing suction of gas while increasing the volume. The pump, disconnecting a suction side from a delivery side through the working chambers 67, 70 and the rotor engagement part in two places, enables gas to be efficiently compressed even under high pressure ratio.

Description

Translated fromJapanese

【発明の詳細な説明】(発明の利用分野〕本発明は、スクリュ式真空ポンプに係り、特に大気圧か
ら10−4Torrレベルの低・中真空領域に好適な無
潤滑式のスクリュ真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a screw vacuum pump, and more particularly to a non-lubricated screw vacuum pump suitable for low to medium vacuum ranges from atmospheric pressure to 10 −4 Torr level.

〔発明の背景〕[Background of the invention]

半導体を製造するには、真空状態にした容器内にウェハ
ーを収納して行なわれるが、容器内を真空状態とするに
は、容器内に窒素ガス等の不活性ガスを供給しつつ真空
ポンプで吸引し容器内の不純物(0,、H,O等)を除
去し、数Torrから10−’Torrレベルの真空状
態とするようになっている。
To manufacture semiconductors, wafers are stored in a vacuum container, but to create a vacuum inside the container, a vacuum pump is used while supplying an inert gas such as nitrogen gas into the container. Impurities (0, H, O, etc.) in the container are removed by suction, and a vacuum state of several Torr to 10-' Torr level is created.

こういった半導体製造工程において使用される真空ポン
プは、油回転ポンプ、ルーツ式のメカニカルブースタポ
ンプなどが用いられている。
Vacuum pumps used in these semiconductor manufacturing processes include oil rotary pumps and Roots-type mechanical booster pumps.

しかし、これらポンプには以下の欠点がある。However, these pumps have the following drawbacks.

油回転ポンプでは、使用している潤滑油が、半導体製造
過程で用いる各種ガス(例えば、ヒ素、ガリウム、塩等
、 Po1y −S i等)と接触して、潤滑油として
の寿命が非常に短くなるという欠点があつた。また、油
分子が半導体製造容器内に逆拡散して半導体製造工程上
好ましくないという問題があった。
In oil rotary pumps, the lubricating oil used comes into contact with various gases used in the semiconductor manufacturing process (e.g., arsenic, gallium, salt, etc., PoIy-Si, etc.), resulting in a very short lifespan as a lubricating oil. It had the disadvantage of becoming. Further, there is a problem in that oil molecules back diffuse into the semiconductor manufacturing container, which is unfavorable in the semiconductor manufacturing process.

また、これらポンプでは、適正排気速度を得るための使
用圧力範囲が狭いため、所定圧に到達するまでに数種の
真空ポンプを切換えて使用しなければならないという欠
点があった。
In addition, these pumps have a narrow operating pressure range for obtaining an appropriate pumping speed, and therefore have the disadvantage that several types of vacuum pumps must be switched and used until a predetermined pressure is reached.

さらに、大気圧から10−’Torrレベルまで一台の
真空ポンプで排気することができず、従来より。
Furthermore, conventionally, it has not been possible to evacuate from atmospheric pressure to the 10-'Torr level with a single vacuum pump.

無潤滑式で、上記圧力範囲を一台でカバーできる真空ポ
ンプの開発が希求されていた。
There has been a desire to develop a vacuum pump that is non-lubricated and can cover the above pressure range.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前−記問題点に鑑み、10−’Tor
r程度のレベルの中真空を、1段でしかも無潤滑のポン
プで達成できる真空ポンプを提供することにある。
In view of the above-mentioned problems, an object of the present invention is to
The purpose of the present invention is to provide a vacuum pump capable of achieving a medium vacuum of about 100 psi with a single stage and without lubrication.

〔発明の概要〕第1図、第2図において、符号2,4はケーシング1内
において噛み合うように配設された一対の雌雄ロータで
、それぞれのロータ2,4の軸部はラジアル軸受5やス
ラスト軸受6(6A、6B)で支承されている。両ロー
タ2,4の軸部には同期歯車9.10が設けられ、両ロ
ータ2,4が同期して回転するようになっており、ケー
シング1の上端部に形成された吸入ポート11から気体
が両ロータ2,4に圧縮されてケーシング1下端部に形
成された吐出ポート12へ吐き出され、吸入ポート11
と連通されている真空容器(図示せず)内を真空状態と
するようになっている。ラジアル軸受5.スラスト軸受
6.同期歯車9,10には潤滑油が供給されており、こ
れらの潤滑油が両ロータ2,4の収納されているケーシ
ング内に侵入しないようにロー、夕の軸支部にはカーボ
リングシール14.ネジシール15からなる軸封装置1
6゜17が設けられている。
[Summary of the Invention] In FIGS. 1 and 2, reference numerals 2 and 4 indicate a pair of male and female rotors that are arranged to mesh in the casing 1, and the shaft portions of the respective rotors 2 and 4 are mounted on radial bearings 5 and 4. It is supported by thrust bearings 6 (6A, 6B). Synchronous gears 9 and 10 are provided on the shafts of both rotors 2 and 4, so that both rotors 2 and 4 rotate synchronously, and gas is supplied from the suction port 11 formed at the upper end of the casing 1. is compressed by both the rotors 2 and 4 and discharged to the discharge port 12 formed at the lower end of the casing 1, and the suction port 11
The inside of a vacuum container (not shown) which is in communication with the vacuum chamber is kept in a vacuum state. Radial bearing 5. Thrust bearing6. Lubricating oil is supplied to the synchronous gears 9 and 10, and carbo ring seals 14. Shaft seal device 1 consisting of screw seal 15
6°17 is provided.

しかし、軸封装置117の潤滑油はロータ軸端部にて大
気に臨んでいるため大気圧に等しいが、吸込ポート11
側の軸支部では大気圧によりかなり低く、ロータ軸支部
の潤滑油に差圧が生じ、軸封袋!i!17だけでは潤滑
油がケーシング内に侵入することを確実に防止すること
はできない。そのため油分子が逆拡散して真空容器内に
侵入したり。
However, since the lubricating oil in the shaft sealing device 117 is exposed to the atmosphere at the end of the rotor shaft, the pressure is equal to atmospheric pressure.
At the side shaft support, the atmospheric pressure is quite low, creating a differential pressure in the lubricating oil of the rotor shaft support, causing the shaft to seal! i! 17 alone cannot reliably prevent lubricating oil from entering the casing. As a result, oil molecules diffuse back and enter the vacuum container.

あるいは翰封部から大気が侵入したりして効率を低下さ
せる等、従来技術の問題点を十分に解決するまでには至
っていない。
In addition, the problems of the prior art have not been sufficiently solved, such as air entering through the sealing part and reducing efficiency.

第3図(a)、(b)は、スクリュ流体機械で雄ロータ
20、雌ロータ21が噛み合っている状態を。
Figures 3(a) and 3(b) show a screw fluid machine in which the male rotor 20 and female rotor 21 are engaged.

ロータの周方向に展開して示したモデルである。This is a model developed in the circumferential direction of the rotor.

本図は、雄ロータの歯数5枚、雌ロータの歯数6枚につ
いて示しているが、本発明は、雄ロータの歯数2枚以上
で、雌ロータの歯数が常に1枚多い場合の歯数組合せに
ついても有効である。
Although this figure shows the male rotor with 5 teeth and the female rotor with 6 teeth, the present invention is applicable to cases where the male rotor has 2 or more teeth and the female rotor always has 1 more tooth. It is also valid for combinations of the number of teeth.

ロータを覆うケーシング22は、その軸方向の一端が気
体の吸入ポート23として大きく開口しており1反対側
には吐出ポート24が設けられている。この両ポート以
外ではケーシング22は微少な隙間をもって、口・−夕
20,21を覆い、ロータとケーシングによりV字形の
作動室を形成する。
A casing 22 covering the rotor has a large opening at one end in the axial direction as a gas suction port 23, and a discharge port 24 on the opposite side. Other than these two ports, the casing 22 covers the ports 20 and 21 with a small gap, and the rotor and the casing form a V-shaped working chamber.

ロータが回転すると両ロータの噛み合い部は吸入ポート
23から吐出ポート24へ向がって移動するが、この際
作動室25はその容積を減少させ作動室内の気体を圧縮
する。一方作動室26は容積一定であるので気体の圧縮
作用はなく、移送作用をなす。
When the rotors rotate, the meshing portion of both rotors moves from the suction port 23 toward the discharge port 24, but at this time, the volume of the working chamber 25 is reduced and the gas within the working chamber is compressed. On the other hand, since the volume of the working chamber 26 is constant, there is no compressing action of the gas, but a transporting action.

なお、図中吸入ポート23と連通している各作動室は、
ロータの回転とともにその容積を増大させ気体の吸入作
用をなす。
In addition, each working chamber communicating with the suction port 23 in the figure is
As the rotor rotates, its volume increases to create a gas suction effect.

第3図(n)、(b)で、作動室27は吐出ボート24
を通して気体を吐出中であり、ここの圧力は吐出圧力に
等しく各作動室の中で最も圧力が高くなっている6作動
室27からの気体の洩れはロータ外周部およびロータ端
面とケーシングの間の隙間を通って隣りの作用室28へ
洩れるものと、両ロータの噛合い部kを通って第3図(
b)で、表側から裏側へ、すなわち、雄ロータ側の作動
室29と雌ロータ側の作動室3oへ洩れるものがある。
In FIGS. 3(n) and (b), the working chamber 27 is connected to the discharge boat 24.
Gas is being discharged through the casing, and the pressure here is equal to the discharge pressure. Gas leakage from the working chamber 27, which has the highest pressure among the working chambers, occurs at the outer periphery of the rotor and between the rotor end face and the casing. One leaks through the gap into the adjacent working chamber 28, and the other leaks through the meshing part k of both rotors as shown in Figure 3 (
In b), there is some leakage from the front side to the back side, that is, to the working chamber 29 on the male rotor side and the working chamber 3o on the female rotor side.

スクリュ圧縮機の場合、雄ロータの巻き角は、通常、3
60°以下であるので、作動室29と30は直接吸入ボ
ートに連通しており、ロータの噛み合い部のシール効果
の良し悪しが圧縮機の性能を大きく左右する。ロータ外
周部については、吐出ポートと吸入ポートの間には幾つ
かのスクリュ山部によるシール効果が期待できるので、
ここからの気体の洩れは比較的小さい。
For screw compressors, the winding angle of the male rotor is usually 3
Since the angle is less than 60 degrees, the working chambers 29 and 30 are in direct communication with the suction boat, and the quality of the sealing effect at the meshing portion of the rotor greatly influences the performance of the compressor. Regarding the outer circumference of the rotor, it is expected that there will be a sealing effect between the discharge port and the suction port due to the crests of several screws.
Gas leakage from here is relatively small.

そこで、作動室29.30が直接吸入ボートへ洩れない
ようにするには、第3図(a)で、実線りの部分までロ
ータを長くすればよい。
Therefore, in order to prevent the working chambers 29, 30 from directly leaking into the suction boat, the rotor should be made as long as the solid line in FIG. 3(a).

このように長くすることにより、各作動室は吸入ポート
と吐出ポートの間に少くとも2ケ所の密閉部を有するこ
とにより、真空ポンプの性能を良くすることができる。
By increasing the length in this manner, each working chamber has at least two sealed portions between the suction port and the discharge port, thereby improving the performance of the vacuum pump.

まとめると、ロータを長くするということは、(1)吸
込行程の作動室と、移送行程の作動室とを隔てる第1の
密閉部5移送行程の作動室と圧縮行程寥たは、吐出行程
の作動室とを隔てる第2の密閉部を備え、第1,2の密
閉部はともに両ロータの噛合い部によって形成される。
In summary, lengthening the rotor means that (1) the first sealed part 5 separates the working chamber of the suction stroke and the working chamber of the transfer stroke; A second sealed portion is provided that separates the rotor from the working chamber, and both the first and second sealed portions are formed by the meshing portions of both rotors.

(2)移送行程の作動室を形成する第1.第2の密閉部
、圧縮行程に入る直前の作動室を形成する第2.第3の
密閉部を備え、第1の密閉部は、ケーシングによって形
成され、第2,3の密閉部は、両ロータ同志の噛合い部
によって形成されるようにしたことである。換言すれば
、ロータの任意の1つの溝に沿って、吸入、移送作用を
行なわせる移送用の作動室と圧縮、吐出作用を行なわせ
る圧縮吐出用の作動室とを有し、この一対の作動室がロ
ータの各溝に沿って形成される。そして、ロータの回転
にともなって、一対の作動室は、軸方向に移動するので
移送室が途中において、圧縮、吐出用の作動室となり、
この作動室の吸−人口寄りの位置に新たに移送用の作動
室が形成される。他の対の作動室も同様である。両ロー
タとケーシングによって形成される作動室が吸入口から
遮断されて、移送用の作動室を形成する時期は、圧縮、
吐出作用を行なう作動室が、容積を縮小し始めるときか
ら。
(2) The first chamber that forms the working chamber for the transfer stroke. a second sealed portion, a second sealed portion forming a working chamber immediately before entering the compression stroke; A third sealed part is provided, the first sealed part is formed by the casing, and the second and third sealed parts are formed by the meshing parts of both rotors. In other words, along any one groove of the rotor, there is a transfer working chamber for suction and transfer, and a compression and discharge working chamber for compression and discharge. A chamber is formed along each groove of the rotor. As the rotor rotates, the pair of working chambers moves in the axial direction, so the transfer chamber becomes a working chamber for compression and discharge in the middle.
A new transfer working chamber is formed at a position closer to the suction port of this working chamber. The same goes for the other pairs of working chambers. When the working chamber formed by both rotors and the casing is isolated from the suction port to form the working chamber for transfer, compression,
From the time the working chamber that performs the discharge action begins to shrink in volume.

吐出口に連通ずる直前に達するまでの間に選定すること
が望ましい。
It is desirable to select the point just before it communicates with the discharge port.

(発明の実施例〕以下本発明の一実施例を第4図、第5図および第6図に
より説明する。
(Embodiment of the Invention) An embodiment of the present invention will be described below with reference to FIGS. 4, 5, and 6.

5枚の歯および溝をもった雄ロータ39と6枚の歯およ
び溝をもった雌ロータ40は主ケーシング41と吸入ケ
ーシング42内の軸受45,46゜47.48により回
転自在に支えられている60−タの軸端にはタイミング
ギヤ49,50を取り付け、′m・雌ロータが互いに接
触しないよう両ロータ間の隙間を調整する。軸受45,
46の潤滑は飛まつ給油により行ない、吸入カバ43内
に溜った潤滑油を56をタイミングギヤによって跳ねか
ける。一方軸受47.48の潤滑のため雄ロータ軸には
円板51を取り付け、吐出カバ44内の潤滑油57を円
板51により跳ねかける。シャフトシール52,53,
54,55は軸受やタイミングギヤの潤滑油が作動室内
へ侵入するのを防いでいる。ロータの吐出側作動室66
と吐出カバ44内はほぼ大気圧になるので、吐出側のシ
ャフトシール54,55に作用する差圧は比較的小さい
が、吸入側作動室65は10−4τorrレベルの圧力
となるため吸入カバ43内を大気に開放すると吸入側シ
ャフトシール52,53に作用する差圧が大きくなりシ
ールが難かしくなる。そこで吸入カバ43内を排気管5
9.60によって低圧の差動室67と連通させ、吸入カ
バ43内の圧力を下げてシャフトシール52,53に作
用する差圧を小さくしてシール効果を高めている。吸入
カバ43内は油の飛沫が充満しているので、この油が排
圧I¥159,60を通って作動室へ入るのを防ぐため
吸入カバには飛沫分離室58が設けられ、また排圧管に
はオイルトラップ61が取付けられている。また万一排
圧管を通って油が作動室へ入った場合でも、この油が吸
入ポート63側へ逆流しないようにするため、主ケーシ
ング41の排圧口62はロータの作動室67が吸入ポー
ト63から完全に閉じられた後の位置に開口されている
。、雄ロータ39の作動室67は、この作動室が吸入ポ
ート63を通過後吐出ボート64と連通するまでの間に
雌ロータ40と2ケ所の噛み合い部68゜69を有し、
同様に雌ロータの作動室70は雄ロータと2ケ所の噛み
合い部71.69を有する。
A male rotor 39 with five teeth and grooves and a female rotor 40 with six teeth and grooves are rotatably supported by bearings 45, 46° 47.48 in the main casing 41 and the suction casing 42. Timing gears 49 and 50 are attached to the shaft ends of the 60-torers, and the gap between the female rotors is adjusted so that the female rotors do not come into contact with each other. bearing 45,
Lubrication of 46 is performed by splash oil supply, and the lubricating oil accumulated in the suction cover 43 is splashed onto 56 by a timing gear. On the other hand, a disk 51 is attached to the male rotor shaft to lubricate the bearings 47 and 48, and the disk 51 splashes the lubricating oil 57 inside the discharge cover 44. Shaft seals 52, 53,
54 and 55 prevent lubricating oil from the bearings and timing gear from entering the working chamber. Rotor discharge side working chamber 66
Since the pressure inside the discharge cover 44 is almost atmospheric, the differential pressure acting on the shaft seals 54 and 55 on the discharge side is relatively small. If the inside is opened to the atmosphere, the differential pressure acting on the suction side shaft seals 52 and 53 will increase, making sealing difficult. Therefore, the inside of the intake cover 43 is connected to the exhaust pipe 5.
9.60 communicates with the low-pressure differential chamber 67 to lower the pressure inside the suction cover 43 and reduce the differential pressure acting on the shaft seals 52 and 53, thereby enhancing the sealing effect. Since the inside of the suction cover 43 is filled with oil droplets, a droplet separation chamber 58 is provided in the suction cover to prevent this oil from entering the working chamber through the exhaust pressure I. An oil trap 61 is attached to the pressure pipe. In addition, even if oil enters the working chamber through the exhaust pressure pipe, in order to prevent this oil from flowing back to the suction port 63 side, the exhaust port 62 of the main casing 41 is connected to the rotor's working chamber 67 at the suction port. 63 to the position after being completely closed. , the working chamber 67 of the male rotor 39 has two engagement parts 68° and 69 with the female rotor 40 after passing through the suction port 63 and before communicating with the discharge boat 64;
Similarly, the working chamber 70 of the female rotor has two engagement portions 71, 69 with the male rotor.

ロータの回転に伴い気体は吸入ポート63からロータ歯
溝とケーシングによって形成される作動室に吸い込まれ
、吐出ポート64から吐出される。
As the rotor rotates, gas is sucked into the working chamber formed by the rotor tooth space and the casing through the suction port 63, and is discharged through the discharge port 64.

作動室67.70はロータの回転に伴い容積一定のまま
気体を移送するが、さらにロータが回転した位置にある
作動室72,73はロータの回転に伴いその容積を減少
させ気体を内部圧縮する。このため吐出出側では気体の
温度が上昇するので。
The working chambers 67 and 70 transfer gas with a constant volume as the rotor rotates, but the working chambers 72 and 73 located at the position where the rotor rotates decrease their volume and internally compress the gas as the rotor rotates. . This causes the temperature of the gas to rise on the discharge side.

主ケーシング41の吐出側には冷却ジャケット74a〜
74eを設け、このジャケット内に冷却水を通しケーシ
ングや圧縮気体を冷却する。
On the discharge side of the main casing 41 are cooling jackets 74a to 74a.
74e is provided, and cooling water is passed through this jacket to cool the casing and compressed gas.

第6図は本発明の他の実施例であり、説明を簡単にする
ためロータ部分についてのみ示すが、ロータ以外の構成
は第4図、第5図と同一である。
FIG. 6 shows another embodiment of the present invention, and to simplify the explanation, only the rotor portion is shown, but the configuration other than the rotor is the same as FIGS. 4 and 5.

真空ポンプの吸入側では気体の比容積が大きく吐出側で
は小さいので、真空ポンプの排気速度を大きくするには
吸入・移送作用をなす作動室の容積を大きく、圧縮作用
をなす作動室の容積は小さくした方がよい。第6図で雄
ロータ75と雌ロータ76は、吸入・移動作用をなす部
分77.78と。
The specific volume of gas is large on the suction side of a vacuum pump and small on the discharge side, so in order to increase the pumping speed of a vacuum pump, the volume of the working chamber that performs suction and transfer actions is increased, and the volume of the working chamber that performs compression action is It's better to make it smaller. In FIG. 6, the male rotor 75 and the female rotor 76 are portions 77 and 78 that perform suction and movement functions.

圧縮作用をなす部分79.80によって構成されている
。吸入・移送部’17.78は圧縮部79゜80と比べ
てロータのねじれ角ψ工、ψ、が小さくL/Dが大きい
。したがって、第11図のロータを用いた真空ポンプは
、第4図の真空ポンプと同じ大きさで、大きな排気速度
を得ることができる。
It is constituted by parts 79, 80 which perform a compression action. The suction/transfer section '17.78 has a smaller rotor torsion angle ψ and a larger L/D than the compression section 79.80. Therefore, the vacuum pump using the rotor shown in FIG. 11 has the same size as the vacuum pump shown in FIG. 4, and can obtain a high pumping speed.

上記の各実施例では、密閉部が2〜3箇所のものにつき
述べたが、密閉部が3〜4箇所(両ロータの噛合部によ
る密閉部を常時2箇所)のもの、すなわちロータの任意
の1つの溝部に沿って、吐出口から吸入口に至る間に圧
縮、吐出用の作動室、この作動室と両ロータの噛合部に
よる密閉部を介して連なる移送用の作動室、さらにこの
移送用の作動室と両ロータの噛合部による密閉部を介し
て第2の移送用作動室を形成してもよい。
In each of the above embodiments, the case where there are 2 to 3 sealed parts is described, but the case where there are 3 to 4 sealed parts (there are always 2 sealed parts by the meshing part of both rotors), that is, any part of the rotor Along one groove, from the discharge port to the suction port, there is a working chamber for compression and discharge, a working chamber for transfer that is connected to this working chamber via a sealed part formed by the meshing part of both rotors, and a working chamber for transfer. A second transfer working chamber may be formed through the working chamber and a sealed portion formed by the meshing portion of both rotors.

このように溝部1箇所について移送用の作動室が2室形
成すると、ガス洩れが減少するのでさらに高い真空度を
得ることができる。
When two working chambers for transfer are formed for one groove in this manner, gas leakage is reduced, and a higher degree of vacuum can be obtained.

以上のように1本発明の実施例によれば、オイルフリー
真空ポンプの排気特性が大幅に改善され、1台の真空ポ
ンプで効率良く大気圧から1O−4Torrレベルの中
真空領域までの広い作動範囲をカバーすることが可能と
なる。
As described above, according to an embodiment of the present invention, the exhaust characteristics of an oil-free vacuum pump are greatly improved, and one vacuum pump can efficiently operate over a wide range of conditions from atmospheric pressure to medium vacuum at the 10-4 Torr level. It is possible to cover a wide range.

また本発明に係る真空ポンプを使用(することにより、
従来の油回転ポンプやメカニカルブースターなどを組合
せて使った真空系と比べて構造が簡単で安価な真空系を
構成することができる。さらに真空系の構成が簡単にな
ることにより、バルブの切換えなど煩雑な操作が不要に
なり制御系を簡単で安定なものにすることができる。
In addition, by using the vacuum pump according to the present invention,
Compared to vacuum systems that use a combination of conventional oil rotary pumps and mechanical boosters, it is possible to construct a vacuum system that is simpler and cheaper. Furthermore, by simplifying the configuration of the vacuum system, complicated operations such as switching valves are no longer necessary, and the control system can be made simple and stable.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べたように本発明によれば、大気圧から1
0−’Torr程度レベルの中真空を1段のポンプで達
成できる真空ポンプを提供することができる。
As described in detail above, according to the present invention, from atmospheric pressure to
It is possible to provide a vacuum pump that can achieve a medium vacuum of about 0-'Torr level with a single stage pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は               。オイルフリースクリユー圧縮機の平面図、第2図は、第
1図の■−■線断面図、第31!lおよび第4図は、本
発明の動作説明図、第5図は、ロータの噛み合い状態を
示す斜視図、第6図は1本発明の一実施例の平面断面図
、第7図は、第6図のA−A断面図、第8図は1本発明
の他の実施例の説明図である。27・・・雄ロータのモデル、28・・・雌ロータのモ
デル、29・・・雄ロータ、40・・・雌ロータ。41・・・主ケーシング、42・・・吸入ケーシング、
45.46・・・深みぞ玉軸受、47.48・・・円筒
ころ軸受、49.50・・・タイミングギヤ、52゜5
3.54,55・・・シャフトシール、63・・・吸入
ポート、64・・・吐出ポート。
Figure 1 is. The plan view of the oil-free screw compressor, Figure 2, is a sectional view taken along the line ■-■ of Figure 1, Figure 31! 1 and 4 are explanatory diagrams of the operation of the present invention, FIG. 5 is a perspective view showing the meshing state of the rotors, FIG. 6 is a plan sectional view of one embodiment of the present invention, and FIG. 6 is a sectional view taken along line A-A in FIG. 6, and FIG. 8 is an explanatory diagram of another embodiment of the present invention. 27...Male rotor model, 28...Female rotor model, 29...Male rotor, 40...Female rotor. 41... Main casing, 42... Suction casing,
45.46...Deep groove ball bearing, 47.48...Cylindrical roller bearing, 49.50...Timing gear, 52゜5
3.54, 55...Shaft seal, 63...Suction port, 64...Discharge port.

Claims (1)

Translated fromJapanese
【特許請求の範囲】1、吸入ポートおよび吐出ポートが形成されているポン
プケーシングと、両端部が軸支され同期して回転するよ
うに前記ポンプケーシング内に配設された互いに噛み合
う一対のスクリューロータと、それぞれのロータ軸支部
に設けられた軸封装置とを備えてなり、前記の一対ロー
タの歯数が、雄ロータのそれが、雌ロータのそれの一枚
少くなつているもので構成し、その溝部に沿つて少くと
も一対の作動室を、前記両スクリューロータとケーシン
グとによつて形成し、この一対の作動室の1つは、圧縮
・吐出作用を有し、残りの作動室は吸入・移送作用を有
することを特徴とするスクリュー真空ポンプ。2、特許請求の範囲第1項において、雄ロータの歯数が
5枚、雌ロータの歯数が6枚となつているオイルフリー
スクリュー真空ポンプ。
[Claims] 1. A pump casing in which a suction port and a discharge port are formed, and a pair of mutually meshing screw rotors disposed within the pump casing so that both ends are pivotally supported and rotate synchronously. and a shaft sealing device provided on each rotor shaft support, and the number of teeth of the pair of rotors is one less than that of the male rotor than that of the female rotor. , at least a pair of working chambers are formed along the groove by the screw rotors and the casing, one of the pair of working chambers has a compression/discharge function, and the remaining working chambers have a compression/discharge function. A screw vacuum pump characterized by having suction and transfer functions. 2. The oil-free screw vacuum pump according to claim 1, wherein the male rotor has five teeth and the female rotor has six teeth.
JP27286084A1984-04-111984-12-26Screw vacuum pumpPendingJPS61152990A (en)

Priority Applications (5)

Application NumberPriority DateFiling DateTitle
JP27286084AJPS61152990A (en)1984-12-261984-12-26Screw vacuum pump
DE8585101569TDE3573152D1 (en)1984-04-111985-02-13Screw type vacuum pump
US06/701,199US4714418A (en)1984-04-111985-02-13Screw type vacuum pump
EP85101569AEP0166851B1 (en)1984-04-111985-02-13Screw type vacuum pump
CN85101185.3ACN1005641B (en)1984-12-261985-04-01Screw vacuum pump

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP27286084AJPS61152990A (en)1984-12-261984-12-26Screw vacuum pump

Publications (1)

Publication NumberPublication Date
JPS61152990Atrue JPS61152990A (en)1986-07-11

Family

ID=17519779

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP27286084APendingJPS61152990A (en)1984-04-111984-12-26Screw vacuum pump

Country Status (2)

CountryLink
JP (1)JPS61152990A (en)
CN (1)CN1005641B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5314320A (en)*1991-07-101994-05-24Ebara CorporationScrew vacuum pump with a reduced starting load
US5374170A (en)*1991-07-101994-12-20Ebara CorporationScrew vacuum pump

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1295437C (en)*2003-05-222007-01-17于政道Loading automatic balancing double-helical-lobe refrigerating compressor
ITPR20090054A1 (en)*2009-07-102011-01-11Robuschi S P A DRY SCREW COMPRESSOR
BE1022302B1 (en)*2014-09-102016-03-14ATLAS COPCO AIRPOWER , naamloze vennootschap SCREW COMPRESSOR ELEMENT
CN105673503B (en)*2014-11-252017-07-25巫修海 The screw of the screw vacuum pump
CA2972636C (en)*2015-01-152020-07-14Atlas Copco Airpower, Naamloze VennootschapOil-injected vacuum pump element
CN111345484A (en)*2020-03-112020-06-30四川自立机械有限公司Energy-saving pressure-maintaining rotary valve
CN114439943B (en)*2022-02-092024-05-14沈阳工业大学Spiral seal structure and compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS58110889A (en)*1981-12-231983-07-01Hitachi LtdScrew compressor
JPS5924994B2 (en)*1976-01-051984-06-13久光製薬株式会社 Novel pyrido[2,3-d]-S-triazolo[4,3-c]pyrimidine derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5924994B2 (en)*1976-01-051984-06-13久光製薬株式会社 Novel pyrido[2,3-d]-S-triazolo[4,3-c]pyrimidine derivatives
JPS58110889A (en)*1981-12-231983-07-01Hitachi LtdScrew compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5314320A (en)*1991-07-101994-05-24Ebara CorporationScrew vacuum pump with a reduced starting load
US5374170A (en)*1991-07-101994-12-20Ebara CorporationScrew vacuum pump

Also Published As

Publication numberPublication date
CN1005641B (en)1989-11-01
CN85101185A (en)1986-07-23

Similar Documents

PublicationPublication DateTitle
US4781553A (en)Screw vacuum pump with lubricated bearings and a plurality of shaft sealing means
US4714418A (en)Screw type vacuum pump
JPS62243982A (en)2-stage vacuum pump and operating method thereof
JPH066950B2 (en) Multi-stage roots type vacuum pump
JP2001207984A (en) Vacuum exhaust device
JPH079239B2 (en) Screw vacuum pump
JP3085561B2 (en) Screw vacuum pump
US7744356B2 (en)Screw vacuum pump with male and female screw rotors having unequal leads
JPS61152990A (en)Screw vacuum pump
US20050287028A1 (en)Scroll fluid machine
JP3661885B2 (en) Screw vacuum pump and screw gear
JPS63285279A (en) Vacuum pump shaft sealing device
US7637726B2 (en)Screw vacuum pump
JPH0588392B2 (en)
JP2007263122A (en) Vacuum exhaust device
JP2002174174A (en) Vacuum exhaust device
JPH11270482A (en)Vacuum pump
JP2005195027A (en)Screw fluid machine and screw gear
JPS61152992A (en) screw fluid machine
JP4360005B2 (en) Gear chamber pressure relief mechanism for mechanically driven superchargers
JP2002070776A (en)Composite vacuum pump
JP2007298043A (en) Vacuum exhaust device
JPS62197685A (en)Shaft seal device of screw vacuum pump
JPS6123392B2 (en)
JP2000130378A (en)Vacuum pump

[8]ページ先頭

©2009-2025 Movatter.jp