Movatterモバイル変換


[0]ホーム

URL:


JPS61144191A - Transmitting system of stereoscopic television picture - Google Patents

Transmitting system of stereoscopic television picture

Info

Publication number
JPS61144191A
JPS61144191AJP59265798AJP26579884AJPS61144191AJP S61144191 AJPS61144191 AJP S61144191AJP 59265798 AJP59265798 AJP 59265798AJP 26579884 AJP26579884 AJP 26579884AJP S61144191 AJPS61144191 AJP S61144191A
Authority
JP
Japan
Prior art keywords
image
picture
difference
difference signal
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59265798A
Other languages
Japanese (ja)
Other versions
JPH0443477B2 (en
Inventor
Ichiro Yuyama
湯山 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting CorpfiledCriticalNippon Hoso Kyokai NHK
Priority to JP59265798ApriorityCriticalpatent/JPS61144191A/en
Priority to EP86900252Aprioritypatent/EP0204006B1/en
Priority to DE8686900252Tprioritypatent/DE3584368D1/en
Priority to US06/939,430prioritypatent/US4704627A/en
Priority to PCT/JP1985/000690prioritypatent/WO1986003924A1/en
Publication of JPS61144191ApublicationCriticalpatent/JPS61144191A/en
Publication of JPH0443477B2publicationCriticalpatent/JPH0443477B2/ja
Grantedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To make largely compression of stereoscopic television picture signals by transmitting difference signals between data compressed right and left pictures and positional deviation amount between a picture and right and left pictures. CONSTITUTION:An object is photographed by two cameras and a left picture and a right picture are obtained. These pictures are divided into plural small areas. The right picture (a) in one of these small areas is shifted and difference from the left picture (b) in the same area is made minimum. The right picture (a) is shifted by deflection vector (c) and a picture (d) is obtained. The difference between the picture (d) and left picture (b) is taken and a right/left difference signal (e) is obtained. As the difference between the picture (d) and left picture (b) is minimized, the right/left difference signal (e) becomes a level close to zero in most areas, and large compression of data quantity can be made.

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野)本発明は立体テレビジョン画像信号の伝送方式に関わり
、所要伝送量の低減を図ろうとするものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a transmission system for stereoscopic television image signals, and is intended to reduce the amount of transmission required.

(従来の技術)従来、立体テレビジョン画像信号の伝送に関しては、左
右両画像信号をそのまま直接伝送する方式がある。この
方式は、基礎になるテレビジョン信号の2倍の伝送量を
必要とする欠点があった。
(Prior Art) Conventionally, regarding the transmission of stereoscopic television image signals, there is a method of directly transmitting both left and right image signals as they are. This method had the drawback of requiring twice the transmission amount of the underlying television signal.

また立体テレビジョン画像信号の別の伝送方式としては
、1ライン毎に適当なサンプル点を考え、右画像が左画
像の移動により作られているとして、その移動量と左画
像とを伝送する方式が本願人になる特開昭54−111
871号公報「距離測定方法」の明細書に開示されてい
る。
Another method for transmitting 3D television image signals is to consider appropriate sample points for each line, assume that the right image is created by moving the left image, and transmit the amount of movement and the left image. JP-A-54-111 becomes the applicant.
It is disclosed in the specification of Publication No. 871 "Distance Measuring Method".

この方式によると各ライン毎に移動量情報を伝送するた
め、1ライン由りサンプル点をMとし、Nラインあると
すると伝送すべき移動量情報数はMN個と多くなる。さ
らに、第2図(atのごとき左画像と右画像の立体視が
あるとき、右カメラにより撮像された右画像に存在し、
左カメラにより撮像された左画像では陰になる部分りに
ついては、左画像に被写体りの情報が全くないことから
、左画像にいかなるライン方向の移動処理を行なっても
右画像を作ることができず(例えば第2図1b)のドツ
トの移動)、右画像の再生が不十分なため、左右両眼に
対する画像の不自然さが長時間にわたる番組では疲労そ
の他の問題をひきおこす懸念があった。
According to this method, movement amount information is transmitted for each line, so if one line has M sample points and there are N lines, the number of movement amount information to be transmitted will be as large as MN. Furthermore, when there is a stereoscopic view of the left image and the right image as shown in Figure 2 (at), the image that exists in the right image captured by the right camera,
Regarding the shadowed areas in the left image captured by the left camera, there is no information about the subject in the left image, so no matter what line direction movement processing is performed on the left image, the right image cannot be created. (for example, the movement of the dots in FIG. 2, 1b)), the reproduction of the right image is insufficient, and the unnaturalness of the images for both the left and right eyes may cause fatigue and other problems during long programs.

さらにこの方式によると第8図に示したような立体視で
は、右にずらせて左画像から右画像を作るため、x印部
について右画像の再生は可能であるが、・印部について
右画像の再生は不可能である。
Furthermore, according to this method, in stereoscopic viewing as shown in Figure 8, the right image is created from the left image by shifting it to the right, so it is possible to reproduce the right image for the x mark area, but the right image for the is impossible to reproduce.

従って前に飛び出す立体像の再生は不可能となる。Therefore, it is impossible to reproduce a three-dimensional image that jumps forward.

またさらにこの方式ではラインの位置すらしだけから右
画像を再生するためこまかい画像ではギザギザがでてし
まう。
Furthermore, in this method, the right image is reproduced only from the position of the line, so a jagged image appears in a detailed image.

(発明が解決しようとする問題点)以上従来技術の項でも述べたごとく、これまでの立体テ
レビジョン画像信号の伝送では、伝送情報が冗長のため
伝送帯域が不必要に広かったり、情報圧縮の手段が不適
切なため必要とする情報まで落してしまう欠点があった
(Problems to be Solved by the Invention) As mentioned above in the section of the prior art, in the conventional transmission of 3D television image signals, the transmission information is redundant, so the transmission band is unnecessarily wide, and the information compression The disadvantage was that the necessary information was lost due to inappropriate methods.

(問題点を解決するための手段)そこで本発明の目的は、適切な伝送情報の圧縮により、
最小限心太とする情報はこれを伝送し、受信側ではこれ
を不自然さのない立体画像として再生する立体テレビジ
ョン画像伝送方式を提供せんとするものである。
(Means for solving the problem) Therefore, an object of the present invention is to compress transmission information appropriately.
The aim is to provide a stereoscopic television image transmission system that transmits information with a minimum thickness and reproduces it as a stereoscopic image without any unnaturalness on the receiving side.

すなわち本発明立体テレビジョン画像伝送方式は、立体
テレビジョン画像信号を伝送するKあたり、該立体テレ
ビジョン画像の左右IIkI像をそれぞれ複数個の小領
域に分割し、その小領域における一方の画像と、その小
領域と画面上対応する同じ位置にある小領域の他方の画
像との差信号が小さくなるように、前記一方の画像を偏
移して前記一方の画像と前記他方の画像との間の位置偏
移量を求め、各小領域ごとに該位置側#量により偏移し
た前記一方の画像と前記他方の画像との差信号を求めて
その差信号をデータ圧縮し、該データ圧縮された差信号
と、前記一方のm像と、前記位置偏移量を表わす信号と
を伝送することを特徴とするものである。
That is, the stereoscopic television image transmission system of the present invention divides the left and right IIkI images of the stereoscopic television image into a plurality of small areas, and one image in each of the small areas and , shift the one image between the one image and the other image so that the difference signal between the small area and the other image of the corresponding small area at the same position on the screen becomes small. , the difference signal between the one image and the other image shifted by the amount on the position side is determined for each small region, and the difference signal is data-compressed, and the data is compressed. The present invention is characterized in that it transmits a difference signal representing the one m-image, and a signal representing the amount of positional deviation.

(作用)本発明では左眼、右眼に相当するカメラ出力(左画像、
右画像)K対し、適切な2次元のブロック分けを行なっ
た後、各ブロック毎に左右画像の位置差(偏移量)を求
め、この偏移量で左画像(もしくは右画像)を偏移した
後、右画像(もしくは左画像)との差信号を得、この差
信号と偏移量情報とを左画像(もしくは右画像)情報と
ともに伝送することにより所要伝送量を低減するととも
に、全情報が伝送されていない右画像(もしくは左画像
)を受信側で完全に再生する。このようKして本発明は
従来の欠点を排除する。
(Function) In the present invention, the camera output corresponding to the left eye and right eye (left image,
After dividing the right image) K into appropriate two-dimensional blocks, find the positional difference (shift amount) between the left and right images for each block, and shift the left image (or right image) using this shift amount. After that, a difference signal with the right image (or left image) is obtained, and this difference signal and deviation amount information are transmitted together with the left image (or right image) information, thereby reducing the required transmission amount and transmitting all the information. The right image (or left image) that is not transmitted is completely reproduced on the receiving side. Thus, the present invention eliminates the drawbacks of the prior art.

被写体を第11ffl(atに示すような立方体とする
と、左および右画像は第2図(atに示すようになる。
If the subject is a cube as shown in Figure 11ffl (at), the left and right images will be as shown in Figure 2 (at).

すなわちA面については左右で画面上の位置が異なり、
0面、D面のように片一方にしか現われない部分もある
。また8面のように左右の偏移量が場所により異なる部
分もある。本方式ではこの左右両画像を符号化するに当
って第4図のように画面をブロック化し、各ブロックに
ついて左右画像間の偏移量と、その偏移を与えた場合に
取り残される左右画像間の差信号を、基準とした左また
は右画像とともに符号化する。
In other words, for side A, the left and right sides have different positions on the screen,
There are some parts that only appear on one side, such as side 0 and side D. There are also parts, such as the 8th plane, where the amount of left and right deviation differs depending on the location. In this method, when encoding both the left and right images, the screen is divided into blocks as shown in Figure 4, and for each block, the amount of shift between the left and right images, and the difference between the left and right images that will be left behind when that shift is given. The difference signal is encoded along with the reference left or right image.

第4図において画像は水平にM個、垂直にN個の領域に
分割されているとし、今vi ” i+1 ’hje 
h、i+□のラインで囲まれたハツチの領域について考
える。第6図における(’) e tb)は同領域の左
画像、右画像を示す。この第5図(a) 、 (b)に
ついて第5図(a)を移動しながら第5図(b)との差
を最小にする方法や、両画像を7−リエ展開してその位
相項を求める方法などにより、第5図(alの画像をど
の程度偏移させたらIE5図+b)の画像に最も近くな
るかを求めることができる。第5図(alはそのような
偏移ベクトル第5図(c)により第5図(a)の画像を
偏移したもので、第51iU(d)と第5図Tb)との
差を求めることによりfs5図(elの左右差信号を得
ることができる。
In Fig. 4, it is assumed that the image is divided into M areas horizontally and N areas vertically, and now vi '' i+1 'hje
Consider the hatch area surrounded by lines h, i+□. (') e tb) in FIG. 6 indicates the left and right images of the same area. Regarding these images (a) and (b), there is a method to minimize the difference between them and FIG. 5(b) while moving FIG. It is possible to find out how much the image in FIG. 5 (al) should be shifted to become closest to the image in FIG. Figure 5 (al is the image of Figure 5 (a) shifted by such a shift vector Figure 5 (c), and the difference between Figure 51iU (d) and Figure 5 Tb) is calculated. By doing this, the left-right difference signal of fs5 diagram (el) can be obtained.

この左右差信号は、本来圧、右画像が同一被写体を若干
の左右差をもってながめたものであり、上記説明の如く
この左右差信号は若干の左右差をもほとんど取り除いた
後の差であるので、大部分の領域で左右差信号は零に近
いレベルとなり、一部G、D面に相当する部分やブロッ
クの接続部に有意な信号レベルが発生しているだけであ
る。従ってこの信号を非直線量子化蔚やランレングス符
号化法など、すでに良く知られているデータ圧縮法によ
り符号化する事で大巾なデータ量の圧縮ができる。
This left-right difference signal is originally obtained by viewing the same subject with a slight left-right difference in pressure and the right image, and as explained above, this left-right difference signal is the difference after almost all slight left-right differences have been removed. In most areas, the left-right difference signal is at a level close to zero, and significant signal levels only occur in some portions corresponding to the G and D planes and in the connecting portions of the blocks. Therefore, by encoding this signal using a well-known data compression method such as non-linear quantization or run-length encoding, a large amount of data can be compressed.

受信側では、送られてきた左画像信号第5図(a)を偏
移ベクトル第5図fc)で偏移して第5図(a)の偏移
左画像を得た後、第5図(elの差信号を付加すること
により第5図(blの右画像が再生される事は明らかで
ある。
On the receiving side, the left image signal shown in FIG. 5(a) is shifted by the shift vector shown in FIG. 5(fc) to obtain the shifted left image shown in FIG. 5(a). It is clear that by adding the difference signal of (el), the right image of FIG. 5 (bl) is reproduced.

(実#Iシ)次に本発明の冥雄側を図面を参照し例をあげて詳細に説
明する。
(Actual #I) Next, the Meiyu side of the present invention will be explained in detail with reference to the drawings and an example.

第1図(alは本発明立体テレビジョン画像伝送方式の
概念図であり、2台のカメラにより得られる左画像、右
画佐を本発明による方法で符号化して伝送し、受信側の
復号器で左、右画像を再生し左。
Figure 1 (al) is a conceptual diagram of the stereoscopic television image transmission system of the present invention, in which the left image and right image obtained by two cameras are encoded and transmitted by the method of the present invention, and the receiving side decoder Left and right to play the image on the left.

右モニターに表示し、その画像を偏光フィルターなどK
より受信者の左、右の目に正しく投写されるようにする
The image is displayed on the right monitor, and the image is filtered through a polarizing filter, etc.
This allows the image to be projected correctly to the recipient's left and right eyes.

第1図(a)における符号器の構成を第1図(b)に、
復号器の構成を第1図(clに示す。マルチプレクサ−
、デマルチプレクサ−は、それぞれ左画像、差信号、偏
移ベクトルを適当に多重、分離する機能であり、伝送路
の性質により各種方式を用いることができる。
The configuration of the encoder in FIG. 1(a) is shown in FIG. 1(b).
The configuration of the decoder is shown in Figure 1 (cl).
, demultiplexer have the function of appropriately multiplexing and separating the left image, difference signal, and shift vector, respectively, and various methods can be used depending on the characteristics of the transmission path.

次に偏移ベクトルの検出について述べる。今考えるブロ
ック領域が垂直方向11ライン水平方向1z絵素で構成
され、このブロック領域が画面上縦方向ではN番目、横
方向ではX番目にあるとし、偏移ベクトルのとり得る偏
移種類を第6図のごとく12肩類、すなわち上下方向に
は1ラインずつ2種類、左右方向には1絵素、2絵素、
8絵素偏移の計6種類、斜方向は第6図に示す4種類の
偏移(図の○印は絵素、の位置)に限定し、これら偏移
ベクトルによる偏移をそれぞれ(p、q)とすれば、こ
れら偏移ベクトルによる偏移層の左右画像差な最少にす
るベクトルを選ぶには、−7R(N+ i + M +
 3 ) )を実行すればよい。ここでVI、 (N 
十i + p 、 M+コ+q)は左画像の縦N番目、
横M番目のブロックの1番ライン、1番絵素に偏移ベク
トル(p +q)処理した後の信号をあられし、VR(
N+1 、a+j)は右画像のN、Mブロックt+j絵
素の信号をあられす。また偏移p、qは第6図に示した
Vを(−1゜2)のごとくとるようにする。
Next, detection of the deviation vector will be described. Assume that the block area we are considering now consists of 11 vertical lines and 1z picture elements in the horizontal direction, and that this block area is located at the Nth vertically and Xth horizontally on the screen, and the possible types of deviation of the deviation vector are expressed as As shown in Figure 6, there are 12 shoulder classes, 2 types of 1 line each in the vertical direction, 1 picture element, 2 picture elements in the left and right direction,
A total of 6 types of 8 pixel deviations, and the diagonal direction is limited to 4 types of deviations shown in Figure 6 (○ marks in the figure are the positions of picture elements), and the deviations due to these deviation vectors are respectively (p , q), to select a vector that minimizes the difference between left and right images of the shift layer due to these shift vectors, -7R(N+i+M+
3))). Here VI, (N
10i+p, M+ko+q) is the vertical Nth of the left image,
The signal after the shift vector (p + q) processing is applied to the 1st line and 1st pixel of the M-th horizontal block, and VR (
N+1, a+j) is the signal of the picture element of N, M block t+j of the right image. Also, the deviations p and q are set such that V shown in FIG. 6 is (-1°2).

従って第7図のように入力信号を順次書き込み、読み出
しはリード・アドレス(Read Address )
により制御されるフレームメモリーを左右画像に2枚ず
つ用意し、ブロック内の絵素毎に左右画像差の和をとり
、(p、q)に関する最小値を調べ、最小の和を与える
(p、q)を偏移ベクトルとする。例えば高品位テレビ
ジョンが11z5ライン1440絵素で1画面が構成さ
れているとすれば、ブロック数は(1125/11)X
(1440/12)中12000 (ブロック)、偏移
ベクトルの数を第6図の如く12とすると、1ブロツク
内について上式の和は12X11=182(回)を要す
るので、17L/−A全体では12000 x 182
 x 12 (回)の和が必要で、1回の和に割り当て
られる時間は8B(msac)÷(12000Xll1
2X12)中1.8(n sac )となる。EOLに
よる加算は現在でも数n seaで実行できるので、上
記和の計算は上式を適当に並列処理することにより現在
も可能であり、将来素子の速度がさらに速くなれば第7
図の構成が可能である。
Therefore, as shown in Figure 7, input signals are written sequentially and read using the read address.
Prepare two frame memories for the left and right images controlled by , calculate the sum of the left and right image differences for each picture element in the block, check the minimum value regarding (p, q), and give the minimum sum (p, q). Let q) be the deviation vector. For example, if one screen of a high-definition television is composed of 11z5 lines and 1440 picture elements, the number of blocks is (1125/11)
(1440/12) in 12,000 (blocks), and if the number of shift vectors is 12 as shown in Figure 6, the sum of the above equation within one block requires 12 x 11 = 182 (times), so the entire 17L/-A So 12000 x 182
x 12 (times) of summation is required, and the time allocated for one summation is 8B (msac) ÷ (12000Xll1
2×12) to 1.8 (n sac ). Since addition by EOL can be executed in several n seas even now, the calculation of the above sum is possible even now by appropriately parallel processing the above equation, and if the speed of elements becomes even faster in the future,
The configuration of the diagram is possible.

上記実施例では左、右画像をただちにブロック化して偏
移信号を求めたが、この時第1図(alの実施例の符号
器の前に画面全体の偏移をサンプル点を減じて調べ、全
体の偏移を行なった画像について同実施例の符号化を行
なえば、ブロック別偏移ベクトル検出腑で偏移ベクトル
をさがす領域をせまくできるので、ハードウェアを削減
できる。
In the above embodiment, the left and right images were immediately divided into blocks to obtain a shift signal, but at this time, before the encoder of the embodiment shown in FIG. If the same embodiment is applied to an image that has been entirely shifted, the area in which the shift vector is searched can be narrowed by block-by-block shift vector detection, and the hardware can be reduced.

また装置の価格を下げるため、ブロック化をせず全体の
偏移とその偏移で補正した後の差信号とで同様の構成を
行うことも可能である。
Furthermore, in order to reduce the cost of the device, it is also possible to perform a similar configuration using the overall deviation and the difference signal corrected by the deviation without forming blocks.

最後に8台以上のカメラを用いる場合の実施例について
述べるが、これはいわゆる多眼法の場合で、複数のカメ
ラとプロジェクタ−を一対一に結んで構成する(第8図
(a) + (b) )。この伝送(TR)に関しては
、EとF、FとG、GとH1間で本発明を適用し、各々
の偏移ベクトルと差信号を得て基幹Eの信号とともに伝
送する。
Finally, we will discuss an example in which eight or more cameras are used. This is a so-called multi-view method, in which a plurality of cameras and projectors are connected one-to-one (Fig. 8(a) + ( b) ). Regarding this transmission (TR), the present invention is applied between E and F, F and G, and G and H1, and the respective shift vectors and difference signals are obtained and transmitted together with the main E signal.

この場合眼をr、8の位置にもってきてスクリーンを見
ると、e、fの位置で物体をながめたときの立体像が見
え、眼を移動してg、tの位置でスクリーンを見るとf
、Hの位置で物体をながめたときの立体像が見える。
In this case, if you bring your eyes to positions r and 8 and look at the screen, you will see a 3D image of the object when you looked at it from positions e and f, and if you move your eyes and look at the screen from positions g and t f
You can see a three-dimensional image when looking at an object at positions ,H.

なお本発明と例えば二宮、大塚: NHK技術研究、V
ol、8 B  、 41 、 p 24 (1981
) ”IEQキ[正フレーム間符号化方式“とを比較す
ると、それら構成が一見似ているように見えるが、以下
の点で差異があるのでここでそれを付記しておく。
In addition, the present invention and, for example, Ninomiya, Otsuka: NHK Technical Research, V
ol, 8 B, 41, p 24 (1981
) When compared with "IEQ key [regular interframe coding system]", their configurations appear to be similar at first glance, but there are differences in the following points, which will be noted here.

本願にかかる立体視では、いかなる光景でも左右画像は
左右眼の得る情報に対応し、左右眼は同一被写体を同一
時に見ているため、比較するフレーム画像はほぼ同一の
画像であるが、′動き補正“で扱う連続するフレームの
それぞれの画像は時間的に異なるため、カット切替時に
はそれらのフレーム画像が全く異なるものになる。それ
故立体視では左右画像情報の冗長度は常に大きいが、′
動ぎ補正9ではカット切替時には冗長度が全くなくなり
、もう1フレ一ム分の情報の伝送が必要となる。しかし
ながら、#動き補正10目的は伝送情報を圧縮して、l
フレーム伝送に要する帯域幅より狭い帯域幅で伝送する
事にあるため、カット切替時には数フレーム時間で伝送
する事になりフレーム間補正の効果がなくなる。−万立
体視の場合にはカット切替の場合でも左右画像はほぼ同
一で問題はおこらない。
In stereoscopic vision according to the present application, the left and right images of any scene correspond to the information obtained by the left and right eyes, and the left and right eyes are viewing the same subject at the same time, so the frame images to be compared are almost the same, but Since the images of consecutive frames treated with "correction" are different in time, the frame images become completely different when switching cuts.Therefore, in stereoscopic viewing, the redundancy of left and right image information is always large, but
In motion correction 9, there is no redundancy at all when switching cuts, and it becomes necessary to transmit information for one more frame. However, the purpose of #Motion Correction 10 is to compress the transmitted information and
Since the transmission is performed using a narrower bandwidth than the bandwidth required for frame transmission, the transmission takes several frames at the time of cut switching, which eliminates the effect of interframe correction. - In the case of multi-stereoscopic vision, the left and right images are almost the same even when switching cuts, so no problem occurs.

また“動き補正“では動きは前後左右に異方性はないが
、立体視では左右が主で上下が従であるため、上下にあ
らい縦長のブロック領域を作ればよいし、さらに立体視
の偏移ベクトルは水平のみを取り出してもよいから簡単
な構成とすることもできる。
In addition, with "motion correction", the movement is not anisotropic in the front, back, left, and right directions, but in stereoscopic vision, the left and right are dominant and the top and bottom are secondary, so it is only necessary to create a vertically long block area that is uneven vertically. Since only the horizontal displacement vector may be taken out, a simple configuration can be achieved.

またさらに″動き補正1では静止部に比べ動き部が従で
あり、パンのような動きは1つの動きベクトルで大きな
面積の情報を伝送できるが、立体視では被写体が本来8
次元で物理的な異方性がないので小領域に分割して各々
に異なったベクトルを用いる必要がある。
Furthermore, in Motion Correction 1, the moving part is subordinate to the stationary part, and movements such as panning can transmit information over a large area with one motion vector, but in stereoscopic vision, the subject is originally
Since there is no physical anisotropy in dimension, it is necessary to divide the region into small regions and use different vectors for each region.

(発明の効果)この発明を実施する事により従来ztiii面分の伝送
帯域を必要とした立体テレビジョンの伝送に関し、大幅
な伝送帯域の圧縮が可能となり、高品位テレビジョン方
式に若干の付加情報を付加するだけで立体テレビジョン
方式の伝送が可能となる。
(Effects of the Invention) By implementing the present invention, it becomes possible to significantly compress the transmission band for stereoscopic television, which conventionally required a transmission band for ztiii screens, and add some additional information to the high-definition television system. 3D television transmission becomes possible by simply adding .

例えば高品位テレビジョンを基にした立体テレビジョン
では、一画面のサンプル数1125(本)×1440 
(画素) X 8 (R,G、B信号)=4.860,
000に対し、画像を100X100に分割した場合偏
移ベクトル情報数は全画素情報数のたかだか0.2%程
度(10,000÷4,860,000)にすぎず、差
信号もその性質から1/lo以下の圧縮が可能で、全体
として所要伝送容量はもとの高品位テレビジョンの1割
増程度圧する事ができる。
For example, in a 3D television based on high-definition television, the number of samples per screen is 1125 (pieces) x 1440.
(Pixel) X 8 (R, G, B signals) = 4.860,
000, but when the image is divided into 100x100, the number of shift vector information is only about 0.2% (10,000÷4,860,000) of the total pixel information, and the difference signal is also 1 due to its nature. Compression of /lo or less is possible, and the overall required transmission capacity can be increased by about 10% compared to the original high-definition television.

またこの方式では伝送量の減少だけでなく、左右カメラ
の運用などにより生じる左右画像の上下方向の位置誤差
についても、各偏移ベクトルの上下方向成分がほぼ一定
と見なされる場合、これを零と置きかえる事により自動
的に修正するので、両眼視で問題となる疲労の1つの原
因を除去することができる。
In addition, this method not only reduces the amount of transmission, but also eliminates the vertical positional error of the left and right images caused by the operation of the left and right cameras, etc., if the vertical component of each deviation vector is considered to be approximately constant. Since it is automatically corrected by replacing it, one of the causes of fatigue, which is a problem with binocular vision, can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは本発明立体テレビジョン画像歓送方式の
概念図、第1図(b)、 (c)はそれぞれ第1図(a
)の符号器、復号詣の一実施例を示す図、第2図(a) 、 (b) 、第8図は従来の立体テレ
ビジョンにおける問題点を説明するための図、!4図は
本発明による画像のブロック化の1例を示す図、第5図は本発明の左右画像差信号の発生を順次に説明す
るための図で、tal 、 (bl 、 (c) 、 
(a)、 tal図は、それぞれ、左画像、右画像、偏
移ベクトル、偏移後の左画像、左右差信号を示す図、第6図は偏移ベクトル検出のためにとるべきベクトルの
1例を示す図、第7図は本発明偏移ベクトル検出法の概念を示すための
ブロック線図、第8図は本発明の他の実施例を示す図である。特許出願人 日 本 放 送 協 金策1図(a)一派第2図(a)(b)=丑コ第3図ハ第4図第8図(a)C第8図(b)R5T   U
Figure 1 (al is a conceptual diagram of the stereoscopic television image transport system of the present invention, Figure 1 (b) and (c) are respectively Figure 1 (a)
2 (a), (b), and 8 are diagrams for explaining problems in conventional stereoscopic television. FIG. 4 is a diagram showing an example of image blocking according to the present invention, and FIG. 5 is a diagram for sequentially explaining the generation of left and right image difference signals according to the present invention, in which tal, (bl, (c),
(a) The tal diagram shows the left image, right image, shift vector, left image after shift, and left-right difference signal, respectively. Figure 6 shows one of the vectors to be taken for detecting the shift vector. FIG. 7 is a block diagram showing the concept of the shift vector detection method of the present invention, and FIG. 8 is a diagram showing another embodiment of the present invention. Patent Applicant: Japan Broadcasting Corporation Money Plan Figure 1 (a) Group Figure 2 (a) (b) = Ushiko Figure 3 Ha Figure 4 Figure 8 (a) C Figure 8 (b) R5T U

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1、立体テレビジョン画像信号を伝送するにあたり、該
立体テレビジョン画像の左右画像をそれぞれ複数個の小
領域に分割し、その小領域における一方の画像と、その
小領域と画面上対応する同じ位置にある小領域の他方の
画像との差信号が小さくなるように、前記一方の画像を
偏移して、前記一方の画像と前記他方の画像との間の位
置偏移量を求め、各小領域ごとに該位置偏移量により偏
移した前記一方の画像と前記他方の画像との差信号を求
めてその差信号をデータ圧縮し、該データ圧縮された差
信号と、前記一方の画像と、前記位置偏移量を表わす信
号とを伝送することを特徴とする立体テレビジョン画像
伝送方式。
1. When transmitting a 3D television image signal, the left and right images of the 3D television image are each divided into a plurality of small areas, and one image in each of the small areas and the same position on the screen corresponding to that small area are Shift the one image so that the difference signal between the small region in A difference signal between the one image and the other image shifted by the positional shift amount for each region is obtained, the difference signal is data-compressed, and the data-compressed difference signal and the one image are , and a signal representing the amount of positional deviation.
JP59265798A1984-12-171984-12-17Transmitting system of stereoscopic television pictureGrantedJPS61144191A (en)

Priority Applications (5)

Application NumberPriority DateFiling DateTitle
JP59265798AJPS61144191A (en)1984-12-171984-12-17Transmitting system of stereoscopic television picture
EP86900252AEP0204006B1 (en)1984-12-171985-12-17System for transmitting stereoscopic television pictures
DE8686900252TDE3584368D1 (en)1984-12-171985-12-17 TRANSMISSION SYSTEM FOR STEREOSCOPIC TELEVISION.
US06/939,430US4704627A (en)1984-12-171985-12-17Stereoscopic television picture transmission system
PCT/JP1985/000690WO1986003924A1 (en)1984-12-171985-12-17System for transmitting stereoscopic television pictures

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP59265798AJPS61144191A (en)1984-12-171984-12-17Transmitting system of stereoscopic television picture

Publications (2)

Publication NumberPublication Date
JPS61144191Atrue JPS61144191A (en)1986-07-01
JPH0443477B2 JPH0443477B2 (en)1992-07-16

Family

ID=17422183

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP59265798AGrantedJPS61144191A (en)1984-12-171984-12-17Transmitting system of stereoscopic television picture

Country Status (1)

CountryLink
JP (1)JPS61144191A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS62272697A (en)*1986-05-211987-11-26Hitachi Ltd How to record stereoscopic television signals
JPS63198498A (en)*1986-11-061988-08-17ブリティッシュ・ブロードキャスティング・コーポレーションMethod and apparatus for transmitting three-dimensional video signal
JPS6419892A (en)*1987-07-141989-01-23Atr Tsushin Syst KenkyushoRedundancy compressing method and reproducing method for stereoscopic picture
JPS6464489A (en)*1987-09-031989-03-10Atr Tsushin Syst KenkyushoRedundancy compressing method for stereoscopic picture and reproducing method thereof
JPS6472690A (en)*1987-09-021989-03-17IbmMethod and system for transmission and receiving of three-dimensional video image
JPH01114283A (en)*1987-10-281989-05-02A T R Tsushin Syst Kenkyusho:KkMethod for compressing and reproducing redundancy of stereoscopic picture
JPH02100591A (en)*1988-10-071990-04-12Nippon Telegr & Teleph Corp <Ntt>Parallax compensating method
JPH05145951A (en)*1991-11-191993-06-11Nec CorpImage pickup data transmitting system
JP2009531927A (en)*2006-03-312009-09-03コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Efficient encoding of multiple fields of view
WO2010073513A1 (en)2008-12-262010-07-01日本ビクター株式会社Image encoding device, image encoding method, program thereof, image decoding device, image decoding method, and program thereof
US8139150B2 (en)2006-10-132012-03-20Victor Company Of Japan, Ltd.Method and apparatus for encoding and decoding multi-view video signal, and related computer programs
WO2013038629A1 (en)*2011-09-132013-03-21Canon Kabushiki KaishaImaging apparatus and method for controlling same
US9342861B2 (en)2011-04-192016-05-17Deluxe 3D LlcAlternate viewpoint rendering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020066008A1 (en)*2018-09-282020-04-02株式会社ソニー・インタラクティブエンタテインメントImage data output device, content creation device, content reproduction device, image data output method, content creation method, and content reproduction method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS62272697A (en)*1986-05-211987-11-26Hitachi Ltd How to record stereoscopic television signals
JPS63198498A (en)*1986-11-061988-08-17ブリティッシュ・ブロードキャスティング・コーポレーションMethod and apparatus for transmitting three-dimensional video signal
JPH06319157A (en)*1986-11-061994-11-15British Broadcasting Corp <Bbc>Transmitting device of video picture including information of depth
JPS6419892A (en)*1987-07-141989-01-23Atr Tsushin Syst KenkyushoRedundancy compressing method and reproducing method for stereoscopic picture
JPS6472690A (en)*1987-09-021989-03-17IbmMethod and system for transmission and receiving of three-dimensional video image
JPS6464489A (en)*1987-09-031989-03-10Atr Tsushin Syst KenkyushoRedundancy compressing method for stereoscopic picture and reproducing method thereof
JPH01114283A (en)*1987-10-281989-05-02A T R Tsushin Syst Kenkyusho:KkMethod for compressing and reproducing redundancy of stereoscopic picture
JPH02100591A (en)*1988-10-071990-04-12Nippon Telegr & Teleph Corp <Ntt>Parallax compensating method
JPH05145951A (en)*1991-11-191993-06-11Nec CorpImage pickup data transmitting system
JP2009531927A (en)*2006-03-312009-09-03コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Efficient encoding of multiple fields of view
US9986258B2 (en)2006-03-312018-05-29Koninklijke Philips N.V.Efficient encoding of multiple views
US8139150B2 (en)2006-10-132012-03-20Victor Company Of Japan, Ltd.Method and apparatus for encoding and decoding multi-view video signal, and related computer programs
US8750632B2 (en)2008-12-262014-06-10JVC Kenwood CorporationApparatus and method for encoding images from multiple viewpoints and associated depth information
WO2010073513A1 (en)2008-12-262010-07-01日本ビクター株式会社Image encoding device, image encoding method, program thereof, image decoding device, image decoding method, and program thereof
US9342861B2 (en)2011-04-192016-05-17Deluxe 3D LlcAlternate viewpoint rendering
WO2013038629A1 (en)*2011-09-132013-03-21Canon Kabushiki KaishaImaging apparatus and method for controlling same
JP2013061440A (en)*2011-09-132013-04-04Canon IncImaging device and control method of imaging device
RU2567438C1 (en)*2011-09-132015-11-10Кэнон Кабусики КайсяImage forming device and method of controlling same

Also Published As

Publication numberPublication date
JPH0443477B2 (en)1992-07-16

Similar Documents

PublicationPublication DateTitle
US4905081A (en)Method and apparatus for transmitting and receiving 3D video pictures
US6747610B1 (en)Stereoscopic image display apparatus capable of selectively displaying desired stereoscopic image
KR100820129B1 (en) Stereoscopic image reproducing apparatus and stereoscopic image reproducing method
US6055012A (en)Digital multi-view video compression with complexity and compatibility constraints
ES2676055T5 (en) Effective image receptor for multiple views
EP0306448B1 (en)Method and apparatus for transmitting and receiving 3-dimensional video images
US6108005A (en)Method for producing a synthesized stereoscopic image
CA2435044C (en)Image conversion and encoding techniques
US4704627A (en)Stereoscopic television picture transmission system
US9357231B2 (en)Video encoding device, video encoding method, video reproducing device, video reproducing method, video recording medium, and video data stream
US20090284584A1 (en)Image processing device
JPS61144191A (en)Transmitting system of stereoscopic television picture
EP1617683A1 (en)Three-dimensionally viewed image providing method, and three-dimensional image display apparatus
KR20110039537A (en) Multi-Standard Coding Device for 3D Video Signals
US20060015919A1 (en)System and method for transferring video information
JPS61253993A (en) Transmission method of stereoscopic television image signal
JP2004343290A (en) 3D image display device
JPS58218292A (en)Color television device
JPH08205201A (en)Pseudo stereoscopic vision method
JPS60264194A (en)Method for processing stereoscopic television signal and equipment at its transmission and reception side
JP6502701B2 (en) Element image group generating device, program therefor, and digital broadcast receiving device
JPH03117093A (en) Processing and transmission method of stereoscopic television image signals
US20120154554A1 (en)Video signal processing apparatus, processing method, and video display apparatus
JPH11103473A (en) 3D image display device
KR101556149B1 (en) Receiving system and data processing method

[8]ページ先頭

©2009-2025 Movatter.jp