【発明の詳細な説明】〈産業上の利用分野〉この発明は、各種電線路に生じる短絡等の事故区間を判
別する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for determining fault sections such as short circuits occurring in various electric lines.
〈従来の技術〉、送電線路において事故が発生した場合に、その事故が
どこで発生したかを知ることは、安全上や修復のために
極めて重要である。<Prior Art> When an accident occurs on a power transmission line, it is extremely important for safety and repair purposes to know where the accident occurred.
例えば架空電線路と地中電線路の連接線路において、事
故が架空側で生じたか地中側で生じたかを瞬時に判別す
ることは系統運用上大事なことである。For example, in connection lines between overhead power lines and underground power lines, it is important for system operation to instantly determine whether an accident occurred on the overhead side or the underground side.
従来、上記のような電線路の事故区間を判別゛りる方法
として、CTを用いた方式や光センサーを用いた方式が
採用されている。Conventionally, methods using CT or optical sensors have been adopted as methods for determining fault sections of electric lines as described above.
〈発明が解決しようとする問題点〉ところで、前者のCT方式の場合はCT(7)1儂及び
寸法が大きく、設備が大型化すると共に、電気的に信号
を取り出すので、M磁誘導の彫冑を受け、正確な判別が
困難であり、高電圧部分からは直接信号を取り出すこと
ができないという問題がある。<Problems to be solved by the invention> By the way, in the case of the former CT method, the size of the CT (7) is large, the equipment becomes large, and the signal is extracted electrically, so the carving of M magnetic induction is difficult. There are problems in that accurate discrimination is difficult due to the presence of heat, and signals cannot be directly extracted from high-voltage parts.
また、後者の光センサ一方式は、例えばBSO磁界セン
サーを使用しても、センサ一部分を電線路に取付ける必
要があり、屋外部分での使用が困難であると共に、2セ
ツトのセンサーと位相判別回路が必要になり、設備コス
トが極めて高(つくという問題がある。In addition, even if a BSO magnetic field sensor is used, the latter one-type optical sensor requires a part of the sensor to be attached to the electric line, making it difficult to use outdoors, and requires two sets of sensors and a phase discrimination circuit. There is a problem that equipment costs are extremely high.
この発明は、上記のような問題を解決するためになされ
たものであり、電線路に光ファイバーを沿わせて配置す
るだけで事故を判別することができ、膜幅コストも廉価
になる事故区間判別方法を促供することを目的とする。This invention was made in order to solve the above-mentioned problems, and it is possible to identify accidents simply by placing optical fibers along electric lines, and it is possible to identify accident areas at a low membrane width cost. The purpose is to promote methods.
く問題点を解決するための手段〉上記のような問題点を解決するため、この発明は、電線
路の二点間に配置した喝波面保持光ファイバーの両端部
に、電線路を囲むコイルを両端部で逆方向に巻回して設
け、光ファイバーに入力した偏波光が各コイル部分での
電流磁界による磁気光学効果により角度偏位を生じるの
を利用し、光ファイバーの入力と出力を比較することに
より、事故区間を判別するようにしたものである。Means for Solving the Problems> In order to solve the problems described above, the present invention provides a method in which a coil surrounding the electric line is attached to both ends of a wavefront-maintaining optical fiber placed between two points of the electric line. By using the fact that the polarized light input to the optical fiber causes an angular deviation due to the magneto-optic effect caused by the current magnetic field in each coil part, the input and output of the optical fiber can be compared. This system is designed to determine the accident zone.
〈作 用〉隔波面保持光ファイバー内に、一端側から偏波光を入力
すると、両端のコイル部分において、電線路の電流磁界
による磁気光学効果により、偏光波面に角度偏位が生じ
る。<Operation> When polarized light is input into a wavefront-maintaining optical fiber from one end, an angular deviation occurs in the polarized wavefront in the coil portions at both ends due to the magneto-optic effect due to the current magnetic field of the electric line.
この角度偏位を最終的に光の強弱に変換し、光ファイバ
ーの入力と出力の変化を比較することにより区間内での
事故の有無を判別するものである。This angular deviation is ultimately converted into the intensity of light, and by comparing changes in the input and output of the optical fiber, it is possible to determine whether an accident has occurred within the section.
〈実 施 例〉以下、この発明の実施例を添付図面にもとづいて説明す
る。<Embodiments> Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.
図面は、架空電線路1と地中電線路2の連接線路に適用
した例を示しており、地中電線路2の両端部間に偏波面
保持光ファイバー3を配置し、この光ファイバー3の電
線路両端に位置する部分が、電線路2を囲むコイル4と
5に巻回されている。The drawing shows an example in which the application is applied to a connecting line between an overhead power line 1 and an underground power line 2, in which a polarization-maintaining optical fiber 3 is placed between both ends of the underground power line 2, and the power line of this optical fiber 3 is The portions located at both ends are wound around coils 4 and 5 surrounding the electric line 2.
、E配光ファイバー3において、コイル4と5は巻き方
向が左右逆方向に巻回されていると共に、電線路2の上
流側に位置する一嗜側に、入力用の光源6と、偏光板7
と1/4λ板8が配置され、他端側には検光子9が設け
られている。In the E light distribution fiber 3, the coils 4 and 5 are wound in opposite left and right directions, and an input light source 6 and a polarizing plate 7 are provided on the upstream side of the electric line 2.
and a 1/4λ plate 8 are arranged, and an analyzer 9 is provided at the other end.
前記コイル4と5は、光フアイバー3内を通過する偏光
波に対し、電線路2の電流磁界による磁気光学効果によ
り、偏光波面に角度偏位を生じさせる作用を行ない、両
コイル4と5の作用による入力と出力の変化を比較する
ことにより事故が電線路2の内外の何れであるかを判別
するものである。The coils 4 and 5 act to cause an angular deviation in the polarized wave surface due to the magneto-optic effect caused by the current magnetic field of the electric line 2 on the polarized wave passing through the optical fiber 3. By comparing changes in input and output due to the action, it is determined whether the accident occurred inside or outside the electric line 2.
次に、判別の方法を図面の例にもとづいて説明する。Next, a method of determination will be explained based on an example of the drawings.
(a ) 電線路に電流が流れていない場合電流が流
れない状態では、両コイル4と5の部分に電流磁界はな
く、光ファイバー3に入力した光は、減衰を無視すれば
そのまま出力として出てくる。(a) When no current is flowing in the electric line When no current is flowing, there is no current magnetic field between the coils 4 and 5, and the light input to the optical fiber 3 will be output as is if attenuation is ignored. come.
なお、偏光子7と検光子9はそのようになるよう調整し
ておくものである。Incidentally, the polarizer 7 and analyzer 9 are adjusted so as to be like this.
(b ) 正常な電流が流れているとき光ファイバー
3に入力された偏波光は先ず第1のコイル4を通過する
とき、電流磁界による磁気光学効果によって偏波面に角
度変位を生じる。(b) When the polarized light input to the optical fiber 3 passes through the first coil 4 when a normal current is flowing, an angular displacement occurs in the plane of polarization due to the magneto-optic effect caused by the current magnetic field.
更に進んだ光は次に第2のコイル5を通るが、このコイ
ル5は第1のコイル4と逆の巻回方向になっているので
、同じく磁気光学効果で偏波面が逆方向の角度変位を生
じる。The light that has traveled further passes through the second coil 5, but since this coil 5 is wound in the opposite direction to the first coil 4, the polarization plane is also angularly displaced in the opposite direction due to the magneto-optic effect. occurs.
結果として、第1のコイル4の角度変位が第2のコイル
5によって相殺され、結果として検光子9に出てくる光
は入力と等しい偏波光となり、入力と出力は変化がない
。As a result, the angular displacement of the first coil 4 is canceled out by the second coil 5, and as a result, the light that comes out to the analyzer 9 becomes polarized light that is equal to the input, and there is no change between the input and the output.
(C) 事故が区間外で生じたとき電線路2を流れる
事故電流は大きくなるが、両コイル4と5の部分を通る
電流は大きさも方向も同じなので、前記(b)の原理に
従い、入力と出力の変化はない。(C) When an accident occurs outside the section, the fault current flowing through the power line 2 increases, but the current passing through both coils 4 and 5 is the same in magnitude and direction, so according to the principle of (b) above, the input and there is no change in output.
従って、電線路に事故が発生しても入力と出力に差がな
ければ、事故は区間外と判定できる。Therefore, even if an accident occurs on a power line, if there is no difference between input and output, it can be determined that the accident is outside the section.
(d ) 事故が区間内に生じた場合事故が電線路2
内に生じると、第1のコイル4と第2のコイル5・の部
分を通る電線路2の電流は大きさも異なると同時に流れ
る方向が逆となる。(d) If the accident occurs within the section, the accident will occur on power line 2.
If the electric currents are generated within the electric line 2, the electric currents passing through the first coil 4 and the second coil 5 have different magnitudes and flow in opposite directions.
従って、光フアイバー3内を通る偏波光は、第1のコイ
ル4と第2のコイル5による偏波面の角度変位が重畳さ
れ、結果的に検光子9側の出力が減少することになる。Therefore, in the polarized light passing through the optical fiber 3, the angular displacement of the plane of polarization caused by the first coil 4 and the second coil 5 is superimposed, and as a result, the output on the analyzer 9 side decreases.
つまり、事故が発生し、かつ光ファイバー3の入力と出
力に差が出てくれば事故は区間内と判定できる。In other words, if an accident occurs and there is a difference between the input and output of the optical fiber 3, it can be determined that the accident is within the section.
く効 果〉以上のように、この発明によると、電線路のニ点間に配
置した偏波面保持光ファイバーの両端部に電線路を囲む
コイルを両端部で逆方向の巻回となるように形成し、−
波光が各コイル部分での電流磁界による磁気光学効果に
より偏波面に角度偏位を生じるのを利用し、光ファイバ
ーの入力と出力を比較することにより事故区間を判定す
るようにしたので、電線路に偏波面保持光ファイバーを
設置し、光ファイバーの両端に偏光子と検光子を設置す
るのみで、各種電線路の事故区間を判別することができ
、センサ一部分を電線路に取付ける必要がなくなり、事
故区間の判別が簡単な設備で正確に行なえるようになる
。Effect> As described above, according to the present invention, a coil surrounding the electric line is formed at both ends of a polarization-maintaining optical fiber placed between two points of an electric line so that the coils are wound in opposite directions at both ends. -
By utilizing the fact that wave light causes an angular deviation in the plane of polarization due to the magneto-optic effect caused by the current magnetic field in each coil section, the fault section is determined by comparing the input and output of the optical fiber, so it is possible to By simply installing a polarization-maintaining optical fiber and installing a polarizer and an analyzer at both ends of the optical fiber, it is possible to determine the fault section of various power lines.There is no need to attach a part of the sensor to the power line, and it is possible to identify the fault section of the power line. Discrimination can be done accurately using simple equipment.
また、偏光子と検光子部分は屋内に設置することができ
ると共に、1セツトの使用ですみ、位相判別回路等を省
略できるので、設備コストが安価になり、架空地中電線
路のほか変電所内や機器の事故区間判別として広く採用
できる。In addition, the polarizer and analyzer parts can be installed indoors, only one set is required, and phase discrimination circuits can be omitted, reducing equipment costs. It can be widely used to determine the accident zone of equipment.
第1図は、この発明に係る判別方法を架空、地中連接線
路に使用した説明図、第2図は判別方法の原理を示す説
明図である。1・・・架空電線路 2・・・地中電線路3
・・・偏波面保持光ファイバー4.5・・・コイル 6・・・入力光源7・
・・偏光子 8・・・1/4λ板9・・
・検光子FIG. 1 is an explanatory diagram in which the discrimination method according to the present invention is used for overhead and underground connecting lines, and FIG. 2 is an explanatory diagram showing the principle of the discrimination method. 1... Overhead power line 2... Underground power line 3
...Polarization maintaining optical fiber 4.5... Coil 6... Input light source 7.
...Polarizer 8...1/4λ plate 9...
・Analyzer
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59259767AJPS61139221A (en) | 1984-12-07 | 1984-12-07 | How to determine the accident section of power lines |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59259767AJPS61139221A (en) | 1984-12-07 | 1984-12-07 | How to determine the accident section of power lines |
| Publication Number | Publication Date |
|---|---|
| JPS61139221Atrue JPS61139221A (en) | 1986-06-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59259767APendingJPS61139221A (en) | 1984-12-07 | 1984-12-07 | How to determine the accident section of power lines |
| Country | Link |
|---|---|
| JP (1) | JPS61139221A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0568333A (en)* | 1992-02-13 | 1993-03-19 | Ngk Insulators Ltd | Fault section detection system for substation |
| US9304278B1 (en) | 2015-03-31 | 2016-04-05 | Corning Optical Communications LLC | Traceable cable with side-emitting optical fiber and method of forming the same |
| US9429731B2 (en) | 2013-08-12 | 2016-08-30 | Corning Optical Communications LLC | Optical fiber cable assembly comprising optical tracer fiber |
| US9671551B2 (en) | 2012-02-13 | 2017-06-06 | Corning Optical Communications LLC | Visual tracer system for fiber optic cable |
| US10101545B2 (en) | 2015-10-30 | 2018-10-16 | Corning Optical Communications LLC | Traceable cable assembly and connector |
| US10101553B2 (en) | 2015-05-20 | 2018-10-16 | Corning Optical Communications LLC | Traceable cable with side-emitting optical fiber and method of forming the same |
| US10107983B2 (en) | 2016-04-29 | 2018-10-23 | Corning Optical Communications LLC | Preferential mode coupling for enhanced traceable patch cord performance |
| US10185111B2 (en) | 2016-04-08 | 2019-01-22 | Corning Optical Communications LLC | Traceable end point cable assembly |
| US10222560B2 (en) | 2016-12-21 | 2019-03-05 | Corning Research & Development Corporation | Traceable fiber optic cable assembly with fiber guide and tracing optical fibers for carrying light received from a light launch device |
| US10228526B2 (en) | 2015-03-31 | 2019-03-12 | Corning Optical Communications LLC | Traceable cable with side-emitting optical fiber and method of forming the same |
| US10234614B2 (en) | 2017-01-20 | 2019-03-19 | Corning Research & Development Corporation | Light source assemblies and systems and methods with mode homogenization |
| US10338317B2 (en) | 2015-07-17 | 2019-07-02 | Corning Optical Communications LLC | Systems and methods for traceable cables |
| US10379309B2 (en) | 2014-11-18 | 2019-08-13 | Corning Optical Communications LLC | Traceable optical fiber cable and filtered viewing device for enhanced traceability |
| US10534135B2 (en) | 2015-07-17 | 2020-01-14 | Corning Optical Communications LLC | Systems and methods for tracing cables and cables for such systems and methods |
| US10539758B2 (en) | 2017-12-05 | 2020-01-21 | Corning Research & Development Corporation | Traceable fiber optic cable assembly with indication of polarity |
| US10539747B2 (en) | 2017-12-05 | 2020-01-21 | Corning Research & Development Corporation | Bend induced light scattering fiber and cable assemblies and method of making |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0568333A (en)* | 1992-02-13 | 1993-03-19 | Ngk Insulators Ltd | Fault section detection system for substation |
| US9671551B2 (en) | 2012-02-13 | 2017-06-06 | Corning Optical Communications LLC | Visual tracer system for fiber optic cable |
| US9429731B2 (en) | 2013-08-12 | 2016-08-30 | Corning Optical Communications LLC | Optical fiber cable assembly comprising optical tracer fiber |
| US10379309B2 (en) | 2014-11-18 | 2019-08-13 | Corning Optical Communications LLC | Traceable optical fiber cable and filtered viewing device for enhanced traceability |
| US10228526B2 (en) | 2015-03-31 | 2019-03-12 | Corning Optical Communications LLC | Traceable cable with side-emitting optical fiber and method of forming the same |
| US9304278B1 (en) | 2015-03-31 | 2016-04-05 | Corning Optical Communications LLC | Traceable cable with side-emitting optical fiber and method of forming the same |
| US10101553B2 (en) | 2015-05-20 | 2018-10-16 | Corning Optical Communications LLC | Traceable cable with side-emitting optical fiber and method of forming the same |
| US10534135B2 (en) | 2015-07-17 | 2020-01-14 | Corning Optical Communications LLC | Systems and methods for tracing cables and cables for such systems and methods |
| US10338317B2 (en) | 2015-07-17 | 2019-07-02 | Corning Optical Communications LLC | Systems and methods for traceable cables |
| US10101545B2 (en) | 2015-10-30 | 2018-10-16 | Corning Optical Communications LLC | Traceable cable assembly and connector |
| US10185111B2 (en) | 2016-04-08 | 2019-01-22 | Corning Optical Communications LLC | Traceable end point cable assembly |
| US10107983B2 (en) | 2016-04-29 | 2018-10-23 | Corning Optical Communications LLC | Preferential mode coupling for enhanced traceable patch cord performance |
| US10222561B2 (en) | 2016-12-21 | 2019-03-05 | Corning Research & Development Corporation | Light launch device for transmitting light into a traceable fiber optic cable assembly with tracing optical fibers |
| US10222560B2 (en) | 2016-12-21 | 2019-03-05 | Corning Research & Development Corporation | Traceable fiber optic cable assembly with fiber guide and tracing optical fibers for carrying light received from a light launch device |
| US10545298B2 (en) | 2016-12-21 | 2020-01-28 | Corning Research & Development Corporation | Traceable fiber optic cable assembly with illumination structure and tracing optical fibers for carrying light received from a light launch device |
| US10234614B2 (en) | 2017-01-20 | 2019-03-19 | Corning Research & Development Corporation | Light source assemblies and systems and methods with mode homogenization |
| US10539758B2 (en) | 2017-12-05 | 2020-01-21 | Corning Research & Development Corporation | Traceable fiber optic cable assembly with indication of polarity |
| US10539747B2 (en) | 2017-12-05 | 2020-01-21 | Corning Research & Development Corporation | Bend induced light scattering fiber and cable assemblies and method of making |
| Publication | Publication Date | Title |
|---|---|---|
| JPS61139221A (en) | How to determine the accident section of power lines | |
| Kurosawa | Development of fiber-optic current sensing technique and its applications in electric power systems | |
| CA2160472A1 (en) | Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method | |
| US6434285B1 (en) | Fiber optic difference current sensor | |
| Song et al. | A prototype clamp-on magneto-optical current transducer for power system metering and relaying | |
| Kurosawa et al. | Development of optical fiber current sensors and their applications | |
| Short et al. | An experimental study of acoustic vibration effects in optical fiber current sensors | |
| JPH0367231B2 (en) | ||
| US5365175A (en) | Method of locating ground faults | |
| JPS6166169A (en) | Temperature compensated current sensor | |
| JP2001264364A (en) | Optical current transformer | |
| Katsuta et al. | Fault section detection system for 66 kV underground branch transmission lines using optical magnetic field sensors | |
| Kurosawa | Development of fiber-optic current sensing technology for electric power systems | |
| JPS6224165A (en) | Transmission and distribution line fault area location system | |
| JPS6259873A (en) | Accident zone discrimination device using optical sensors | |
| Blake et al. | All-fiber in-line Sagnac interferometer current sensor | |
| ATE154443T1 (en) | CURRENT MEASURING ARRANGEMENT FOR A CABLE ROUTE | |
| JPS62150170A (en) | Optical fiber applied sensor | |
| Toya et al. | Development of optical ZCT and its application to fault section detection for 66‐kV underground branch transmission lines | |
| JPH073346Y2 (en) | Zero-phase current measuring device | |
| JPS59198360A (en) | Optical current transformer apparatus | |
| Niewczas et al. | Field evaluation of FR5 glass optical current transducer | |
| JPS6246276A (en) | Magnetic field and current measuring instrument | |
| Jain | Magneto optic current transformer technology (MOCT) | |
| JPH01276074A (en) | Optical demodulator |