【発明の詳細な説明】〔産業上の利用分野〕本発明は、化学的物質の濃度測定に用いる電界効果型半
導体センサに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field-effect semiconductor sensor used for measuring the concentration of chemical substances.
従来からゲート絶縁型電界効果トランジスタ導体センサ
は提案されている。これらは、IonSensitiv
e Field Effect Transistor
(l5FET)まなはChemical FET (
CHEMFET )と呼ばれ、特公昭54−24317
などにこれ等に関する記載がある。 。Gate insulated field effect transistor conductor sensors have been proposed in the past. These are IonSensitive
e Field Effect Transistor
(l5FET) Manaha Chemical FET (
CHEMFET
There are descriptions regarding these matters. .
第6図は、l5FBT のゲート部分を含む断面の基本
構成図である。例えばp−型のシリコン単結晶基板(1
)を用いた場合、表面にソース(2)とドレイン(3)
用のn+型の拡散領域をチャンネル部(4)をはさんで
離間して形成され、この基板表面を 5i02などの絶
縁層(5)で被覆されている。さらにその上に耐雰囲気
性を向上させるために5iBN4などの絶縁層(6)と
特定の化学的物質にのみ選択的に感応する層(7)を各
々1000X程度の厚さで形成されである。FIG. 6 is a basic configuration diagram of a cross section including the gate portion of the 15FBT. For example, a p-type silicon single crystal substrate (1
), the source (2) and drain (3) are placed on the surface.
N+ type diffusion regions for the substrate are formed with a channel part (4) in between, and the surface of this substrate is covered with an insulating layer (5) such as 5i02. Furthermore, in order to improve the atmosphere resistance, an insulating layer (6) such as 5iBN4 and a layer (7) selectively sensitive only to a specific chemical substance are formed with a thickness of about 1000× each.
リード線は2つの絶縁層(5,6)と化学感応層(7)
に穴を空け、ソース・ドレイン拡散領域(2,3)に接
するように形成されているリード・コンタクト用金属層
(8exAl)を通して取り出す。The lead wire has two insulating layers (5, 6) and a chemically sensitive layer (7)
A hole is made in the hole and the lead contact metal layer (8exAl) formed in contact with the source/drain diffusion regions (2, 3) is taken out.
このような電界効果型半導体センサは、微小化、多重化
可能、反応速度が速い等の利点と共に、ゲート部上の化
学感応層(7)を直接被測定雰囲気に触れさせるため、
センサの特性安定のために最も重要なゲート部構造の保
護が充分に行なえないという原理的な欠点を持っている
。Such a field-effect semiconductor sensor has advantages such as miniaturization, multiplication, and fast reaction speed, as well as the fact that the chemically sensitive layer (7) on the gate part is brought into direct contact with the atmosphere to be measured.
This method has a fundamental drawback in that the gate structure, which is most important for stabilizing sensor characteristics, cannot be sufficiently protected.
この欠点を克服したセンサが特願昭59−59946号
において提案されている。第7図がその構造を示す平面
図、第8図から第11図は、第7図の1点鎖線a−a’
、 b−b’ 、’ c−c’ 、 d−d’におけ
る断面図である。A sensor that overcomes this drawback has been proposed in Japanese Patent Application No. 59946/1983. FIG. 7 is a plan view showing the structure, and FIGS. 8 to 11 are the dashed line a-a' in FIG.
, bb', 'cc', and dd'.
このセンサの構成要素として、第6図に示す従来技術に
よる最も基本的なセンサと異なるのは、第10図に特徴
的にあられれているようにゲート部における金属等の導
電性物質層(9)の存在と、それにともなう保護層(I
ff)の存在である。即ち、この部分は完全なゲート絶
縁型電界効果トランジスタ(MISFET )となって
いる。これが導電性物質層(9)を介して化学感応層(
7)と電気的に接続されている。As for the constituent elements of this sensor, the difference from the most basic sensor according to the prior art shown in FIG. ) and the accompanying protective layer (I
ff). That is, this portion is a complete gate insulated field effect transistor (MISFET). This is applied via the conductive material layer (9) to the chemically sensitive layer (
7) is electrically connected.
つまり、第7図に示す様にMISFET構造はチップ上
の一方の端に集中的に形成し、化学感応層を他方の端に
形成すれば、平面的にゲート部分、換言するとゲート酸
化膜と化学感応部即ち化学感応層の位置関係を離すこと
が可能とな、す、延いてはゲート部構造の保護が容易と
なる。In other words, if the MISFET structure is formed intensively at one end of the chip and the chemically sensitive layer is formed at the other end, as shown in FIG. It becomes possible to separate the positional relationship of the sensitive part, that is, the chemically sensitive layer, which in turn makes it easier to protect the gate part structure.
ところが、このとき導電性物質層(9)は他の電気的に
安定に保たれている導電性物質層とは原理的に接続でき
・ず、全く遊離した状態になっている。However, at this time, the conductive material layer (9) cannot in principle be connected to other conductive material layers that are kept electrically stable, and is in a completely free state.
このなめ、この導電性物質層(9)の電位は、外乱の影
響を受は易く、これがそのまま七ンサ自体ノ特性の不安
定さにつながっていた。Because of this, the potential of the conductive material layer (9) is easily influenced by disturbances, which directly leads to instability of the characteristics of the sensor itself.
本発明は、長時間にわたり安定な測定が行fr、え、か
つ特性が均一なものを大量に生産できる電界効果型半導
体センサを提案す゛ることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to propose a field-effect semiconductor sensor that can perform stable measurements over a long period of time and can be mass-produced with uniform characteristics.
本発明は、特願昭59−59946号において提案され
ているトランジスタのゲート部分と化学感応部を少なく
とも平面的もしくは空間的に連続な位置関係にない離れ
た位置に形成することによりゲート部分の保護を容易な
らしめた電界効果型半導より電位を変動させず、センサ
として安定に動作するように、この導電性物質層の大部
分、即ち主にその上に化学感応層が形成されている部分
を除いなところを絶縁層をはさんで、他の一定電位に保
たれた導電性物質層で覆われていることを特徴とする。The present invention proposed in Japanese Patent Application No. 59-59946 protects the gate portion by forming the gate portion and the chemically sensitive portion of the transistor at separate locations that are not continuous in a planar or spatial relationship. In order to operate more stably as a sensor without fluctuations in electric potential than field-effect semiconductors, which have facilitated It is characterized by being covered with an insulating layer and another layer of conductive material maintained at a constant potential, except for.
これは、一般には静電シールドと呼ばれる方法でゲート
酸化膜と化学感応層を接続する導電性物質層は他の導電
性物質層から遊離していて、電気的な外乱に対しては一
種のアンテナのような働きをするので、極論すれば、外
部の雑音をアンテナで検出して信号に混入させるような
構造となっているが、そのアンテナを一定電位に葆たれ
た導電性物質層でシールドすることにより外乱から完全
に隔離して雑音の混入を防いでいる。This is because the conductive material layer that connects the gate oxide film and the chemically sensitive layer is separated from other conductive material layers using a method generally called electrostatic shielding, and is a type of antenna that resists electrical disturbances. In the extreme, the structure is such that external noise is detected by the antenna and mixed into the signal, but the antenna is shielded with a layer of conductive material held at a constant potential. This completely isolates it from external disturbances and prevents noise from entering.
以下、本発明を実施例の図面にもとすいて説明する。Hereinafter, the present invention will be explained with reference to drawings of embodiments.
本実施例では、シールド用の導電性物質層の電位は、ソ
ースと同電位に保っである。第1図は本実施例の電界効
果型半導体センサの構造を示す平面図、第2図から第5
図は第1図の1点鎖線a −a 、 b−b 、 c−
c 、 rj−d’ における断面図である。In this embodiment, the potential of the conductive material layer for shielding is kept at the same potential as the source. FIG. 1 is a plan view showing the structure of the field-effect semiconductor sensor of this embodiment, and FIGS.
The figure shows the dashed-dotted lines a-a, bb, c- in Figure 1.
c, a sectional view along rj-d';
本実施例のセンサチップの大きさは、 1.0mmX
5.0nunである。The size of the sensor chip in this example is 1.0 mm
It is 5.0nun.
本実施例の電界効果型半導体センサと、特願昭5.9−
59946号において提案されているセンサと構成要素
として異なるのは、前述しなシールド用の導電性物質層
αυの存在とそれにより保護層(10゜12)が少なく
とも2層は必要となつなことである。Field-effect semiconductor sensor of this embodiment and patent application 1986-
The difference in the components from the sensor proposed in No. 59946 is the presence of the conductive material layer αυ for shielding as described above and the need for at least two protective layers (10°12). be.
そして、その導電性物質層11)は第4図に示されるよ
うに、ソース領域(2)とのリードコンタクト用金属層
(8)と接続され、ソース領域と同じく一定電位に保な
れる。As shown in FIG. 4, the conductive material layer 11) is connected to a metal layer (8) for lead contact with the source region (2), and can be kept at a constant potential like the source region.
上記導電性物質層(9,11) は共にMまたはイオ
ン注入により導電性を持にせに多結晶シリコンが有力で
ある。この2層の導電性物質層(9,11)と少なくと
も2層の保護層(10,12) を形成する技術は既
に半導体の高集積回路の製造で実用化されている多層配
線技術を用いればよい。実際、上記保護層(10,12
)の材質としてはプラズマCVDなと低温のプロセスで
形成できるものが有力で、5iBN4. AJ120B
、 SiOxNy、 A30xNy、 PSG (Ph
osph。Both of the conductive material layers (9, 11) are preferably made of M or polycrystalline silicon which has been made conductive by ion implantation. The technology for forming these two conductive material layers (9, 11) and at least two protective layers (10, 12) can be achieved by using multilayer wiring technology that has already been put into practical use in the production of highly integrated semiconductor circuits. good. In fact, the protective layer (10, 12
) materials that can be formed by low-temperature processes such as plasma CVD are likely, and 5iBN4. AJ120B
, SiOxNy, A30xNy, PSG (Ph
osph.
−5ilicate P+Os −Sing)、 Pb
(LAhOa ・Sing(Lead−Alumino
−8ilicate )、 PbO−B20g−8iO
a(Lead −Boro−8il 1cate )
、 PbO・A320a ・B2011 ・5i02
(Lead −Alumino −Boro−8ili
cate ) もしくはポリイミド系樹脂などの同一
材質による多層構造でもよいし、これらの任意の組合せ
による多層構造も考えられ、目的に適した材質を自由に
選べばよい。また、各々の膜厚は1μm程度が適当と思
われる。-5ilicate P+Os -Sing), Pb
(LAhOa ・Sing(Lead-Alumino
-8ilicate), PbO-B20g-8iO
a(Lead-Boro-8il 1cate)
, PbO・A320a・B2011・5i02
(Lead-Alumino-Boro-8ili
A multilayer structure made of the same material such as a polyimide resin or a polyimide resin, or a multilayer structure made of any combination of these may be considered, and the material suitable for the purpose may be freely selected. Further, it seems appropriate that the thickness of each film is about 1 μm.
化学感応層(7)も簡単のために第2図では単層で示し
であるが、実際には膜と膜の密着性などの問題から化学
感応膜を最外層とした多層構造とすることも多い。The chemically sensitive layer (7) is also shown as a single layer in Figure 2 for simplicity, but in reality it may have a multilayer structure with the chemically sensitive film as the outermost layer due to problems such as adhesion between films. many.
この感応膜の種類として考えられるものを〔〕内に示す
その測定対象物と共に列挙すると、5iBN4 、 A
l gc)a 、 Ta2ks CH+イオン〕、各種
NAS(Na20−Al gOa Sing合成)ガ
ラス〔K+イオンNa+イオン〕、パリノマイシン固定
膜〔K+イオン〕、各種クラウンエーテル固定膜〔K+
イオン。Possible types of this sensitive film are listed together with the measurement target shown in brackets: 5iBN4, A
l gc) a, Ta2ks CH+ ion], various NAS (Na20-Al gOa Sing synthesis) glasses [K+ ion Na+ ion], palinomycin fixed membrane [K+ ion], various crown ether fixed membranes [K+
ion.
Ag+イオン、 TI+イオンetc)、ウレアーゼ固
定膜抗体固定膜〔アルデミン〕、アセチルコリンエステラー
ゼ固定膜〔アセチルコリン〕などがある。Examples include Ag+ ions, TI+ ions, etc.), urease-immobilized membranes, antibody-immobilized membranes [Aldemin], and acetylcholinesterase-immobilized membranes [acetylcholine].
本発明の最大の効果は、センサが電気的外乱に非常に強
くな、つなことで、例えばイオンなど電荷の移動が激し
い被測定雰囲気中など従来のセンサでは安定な測定が期
待できなかった場所での測定が可能となつに0そして、
本発明は導電性物質層を用いてゲート部構造と化学感応
部を分離したことによる効果(a)安定性の向上(b)長寿命化(C)各センサ間の特性のバラツキの減少の何れも損な
うことなく、特に(a)に関しては、さらに向上させて
いる。The greatest effect of the present invention is that the sensor is highly resistant to electrical disturbances, and can be used in locations where conventional sensors cannot be expected to perform stable measurements, such as in an atmosphere where charges such as ions move rapidly. It is possible to measure at 0 and,
The present invention achieves the following effects by separating the gate structure and the chemically sensitive part using a conductive material layer: (a) Improved stability (b) Longer life (C) Reduced variation in characteristics between each sensor In particular, (a) has been further improved without compromising any of the above.
一方、製造面から見ても化学感応部の形成はほとんどM
ISFET部の製造と切りはなして考えることができ、
かつ2層の導電性物質層も先に述べた様に多層配線と同
じ技術で製造できるので、一般のシリコンIC製造ライ
ンでの大量生産も可能である。On the other hand, from the manufacturing point of view, the formation of chemically sensitive parts is almost always M.
It can be considered inseparable from the manufacture of the ISFET section.
In addition, since the two conductive material layers can be manufactured using the same technology as multilayer wiring as described above, mass production is also possible on a general silicon IC manufacturing line.
第1図は本発明の一実施例としての電界効果型半導体セ
ンサの構造を示す平面図である。第2図は第1図の1点
鎖線a−a’における断面図で、同じく第3図はb−b
’における断面図、第4図はC−C’における断面図、
第5図はd−d’における断面図である。第6図は従来技術のシリコン単結晶基板を用いた電界効
果型半導体センサのゲート部分を含む断面の基本構成を
示す図である。第7図は従来技術により化学感応用絶縁層とゲート部の
平面的位置関係を離した電界効果型半導体センサの構造
を示す平面図である。第8図は第7図の1点鎖線a−a
’における断面図で、同じく第9図はb−b’における
断面図、第10図はc −c’における断面図、第11
図はd−d’おける断面図である。■、 シリコン単結晶基板(p−型)2、 ソース拡散領域 (n+型)3. ドレイン拡散領域 (n+型)屯 チャンネル
部5、絶縁N(その1. 8102 )6、絶縁層(そのf3.’5iBN4 )7. 化学感
応層8、 リードコンタクト用金属層(A1)9、 金属等
の導電性物質層10、 保護層(そのl)11、 シールド用導電性物質層12゜ 保護層(その2)代理人 弁理士 上 代 哲 司箒1図FIG. 1 is a plan view showing the structure of a field effect semiconductor sensor as an embodiment of the present invention. Figure 2 is a sectional view taken along the dashed line a-a' in Figure 1, and Figure 3 is a sectional view taken along the line bb-b.
4 is a cross-sectional view at C-C',
FIG. 5 is a sectional view taken along line dd'. FIG. 6 is a diagram showing the basic configuration of a cross section including a gate portion of a conventional field effect semiconductor sensor using a silicon single crystal substrate. FIG. 7 is a plan view showing the structure of a field-effect semiconductor sensor in which a chemical sensitizing insulating layer and a gate portion are separated from each other in plan view according to the prior art. Figure 8 shows the dashed line a-a in Figure 7.
Similarly, FIG. 9 is a cross-sectional view along b-b′, FIG. 10 is a cross-sectional view along c-c′, and FIG.
The figure is a sectional view taken along line dd'. ■. Silicon single crystal substrate (p- type) 2. Source diffusion region (n+ type) 3. Drain diffusion region (n+ type) channel part 5, insulation N (1.8102) 6, insulating layer (f3.'5iBN4) 7. Chemically sensitive layer 8, Metal layer for lead contact (A1) 9, Conductive material layer such as metal 10, Protective layer (Part 1) 11, Conductive material layer for shielding 12° Protective layer (Part 2) Agent Patent attorney First Tetsu Tsukasa Broom 1
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59133921AJPS6111652A (en) | 1984-06-27 | 1984-06-27 | Field effect semiconductor sensor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59133921AJPS6111652A (en) | 1984-06-27 | 1984-06-27 | Field effect semiconductor sensor |
| Publication Number | Publication Date |
|---|---|
| JPS6111652Atrue JPS6111652A (en) | 1986-01-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59133921APendingJPS6111652A (en) | 1984-06-27 | 1984-06-27 | Field effect semiconductor sensor |
| Country | Link |
|---|---|
| JP (1) | JPS6111652A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63131056A (en)* | 1986-11-20 | 1988-06-03 | Terumo Corp | Fet electrode |
| WO1989009932A1 (en)* | 1988-04-14 | 1989-10-19 | Terumo Kabushiki Kaisha | Ion sensor |
| WO2005022142A1 (en)* | 2003-08-29 | 2005-03-10 | National Institute For Materials Science | Biomolecule detecting element and method for analyzing nucleic acid using the same |
| WO2006012300A1 (en)* | 2004-06-28 | 2006-02-02 | Nitronex Corporation | Semiconductor device-based sensors and methods associated with the same |
| JP2007225644A (en)* | 2006-02-21 | 2007-09-06 | Epson Imaging Devices Corp | Method for manufacturing electrooptical device, electrooptical device, and electronic appliance |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63131056A (en)* | 1986-11-20 | 1988-06-03 | Terumo Corp | Fet electrode |
| WO1989009932A1 (en)* | 1988-04-14 | 1989-10-19 | Terumo Kabushiki Kaisha | Ion sensor |
| WO2005022142A1 (en)* | 2003-08-29 | 2005-03-10 | National Institute For Materials Science | Biomolecule detecting element and method for analyzing nucleic acid using the same |
| WO2006012300A1 (en)* | 2004-06-28 | 2006-02-02 | Nitronex Corporation | Semiconductor device-based sensors and methods associated with the same |
| US7361946B2 (en) | 2004-06-28 | 2008-04-22 | Nitronex Corporation | Semiconductor device-based sensors |
| JP2007225644A (en)* | 2006-02-21 | 2007-09-06 | Epson Imaging Devices Corp | Method for manufacturing electrooptical device, electrooptical device, and electronic appliance |
| Publication | Publication Date | Title |
|---|---|---|
| US6580600B2 (en) | Capacitance type humidity sensor and manufacturing method of the same | |
| TWI422818B (en) | Hydrogen ion sensing field effect transistor and manufacturing method thereof | |
| Cane et al. | Microtechnologies for pH ISFET chemical sensors | |
| US6617190B2 (en) | A-WO3-gate ISFET devices and method of making the same | |
| US20020114125A1 (en) | Capacitance type humidity sensor and manufacturing method of the same | |
| US7011980B1 (en) | Method and structures for measuring gate tunneling leakage parameters of field effect transistors | |
| JP2008215974A (en) | Field effect transistor type ion sensor | |
| US6387724B1 (en) | Method of fabricating silicon-on-insulator sensor having silicon oxide sensing surface | |
| US7019343B2 (en) | SnO2 ISFET device, manufacturing method, and methods and apparatus for use thereof | |
| JPS6111652A (en) | Field effect semiconductor sensor | |
| JPS6125044A (en) | Field-effect device sensing ammonia gas | |
| TWI435078B (en) | Ion-selecting device and method for making the same | |
| TW201440273A (en) | Resistive random-access memory sensor element | |
| JP2000108099A (en) | Micromachine sensor for displacement measurement | |
| JP3331648B2 (en) | Semiconductor acceleration sensor | |
| JP2514280B2 (en) | Integrated ion sensor | |
| JPH0518935A (en) | Diamond thin-film ion sensor | |
| JPH0426432B2 (en) | ||
| JPS61153537A (en) | semiconductor pressure sensor | |
| JP7573836B2 (en) | Ion Sensor Device | |
| JPS60202347A (en) | Field effect type semiconductor sensor | |
| JPH0452409B2 (en) | ||
| JPS61140182A (en) | pressure sensor | |
| JP2001004585A (en) | Semiconductor chemical sensor | |
| JP2000187016A (en) | Semiconductor ion sensor |