Movatterモバイル変換


[0]ホーム

URL:


JPS6110134Y2 - - Google Patents

Info

Publication number
JPS6110134Y2
JPS6110134Y2JP1981087285UJP8728581UJPS6110134Y2JP S6110134 Y2JPS6110134 Y2JP S6110134Y2JP 1981087285 UJP1981087285 UJP 1981087285UJP 8728581 UJP8728581 UJP 8728581UJP S6110134 Y2JPS6110134 Y2JP S6110134Y2
Authority
JP
Japan
Prior art keywords
heat
storage tank
medium
temperature
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981087285U
Other languages
Japanese (ja)
Other versions
JPS57198547U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filedfiledCritical
Priority to JP1981087285UpriorityCriticalpatent/JPS6110134Y2/ja
Publication of JPS57198547UpublicationCriticalpatent/JPS57198547U/ja
Application grantedgrantedCritical
Publication of JPS6110134Y2publicationCriticalpatent/JPS6110134Y2/ja
Expiredlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese
【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、太陽熱を利用する暖房装置として
使用される太陽熱利用装置に関するものである。 このような太陽熱利用装置のひとつとして、第
2図に示すような構成のものが知られている。そ
の動作状態を説明すると、まず、天気がよくて日
射が強くなると、ポンプ3が始動し、蓄熱槽1内
の熱媒体(例えば水)を、蓄熱槽1→ポンプ3→
集熱器2→蓄熱槽1と循環させることにより、集
熱器2において集めた太陽熱を温熱媒(温水)と
して蓄熱槽1に貯える。この温熱媒は、ポンプ4
により、蓄熱槽1→ポンプ4→放熱器17→蓄熱
槽1と循環し、貯えた太陽熱を室内等に設置され
た放熱器17により放熱し、暖房等を行つてい
た。つぎに、日射が弱くなり蓄熱槽1内の熱媒体
温度が所定温度(暖房に利用できる最低の温度)
より下になると、太陽熱だけでは暖房できないの
で、蓄熱槽に設置された温度コントローラ25が
働いて熱媒体循環ポンプ18とヒートポンプ19
のコンプレツサ20とを作動させる。熱媒体循環
ポンプ18は、ヒートポンプ19の凝縮器21と
蓄熱槽1の間で熱媒体を循環させ、ヒートポンプ
19は蒸発器(空気−フロン熱交換器)22にお
いて外気より熱を吸収しこの熱を凝縮器(フロン
−熱媒体熱交換器)21において蓄熱槽1よりの
熱媒体に伝え、この熱媒体温度を上げる。図中、
23は膨張弁、24はフアンである。このように
して、ヒートポンプ19の働きによつて蓄熱槽内
の熱媒体温度を維持し、放熱器17による放熱を
行う。 従来装置では、このように暖房等の熱源として
太陽熱を優先的に使用し、蓄熱槽1内の熱媒体の
温度が所定温度より下になると補助熱源として外
気を利用するようにしていた。このため、太陽熱
の暖房等に対する寄与率が低くなるという欠点が
あつた。さらにヒートポンプ19は外気を熱源と
しており、外気中の温度が温度の低い熱媒体(フ
ロン)が流れている蒸発器22に霜として付着す
るので、ヒートポンプの性能が低下するという問
題もあつた。 この考案は、上記のような事情に鑑みなされた
もので、太陽熱をさらに有効に利用して、暖房に
対する寄与率を高くし、またヒートポンプの霜付
きによる性能を低下がない太陽熱利用装置を提供
するものである。これについて以下に説明する。 この考案は、太陽熱を吸収して液体状の熱媒体
を加熱する集熱器、この熱媒体を蓄える蓄熱槽、
上記集熱器とこの蓄熱槽の間で上記熱媒体を循環
させる手段、蒸発器と凝縮器とを有するヒートポ
ンプ、このヒートポンプの蒸発器と上記蓄熱槽の
間で熱媒体を循環させる手段とを備えた太陽熱利
用暖房装置において、上記蒸発器を構成する熱交
換器が、上記ヒートポンプの熱媒体が通る内管と
上記蓄熱槽の熱媒体が通る外管とで構成される2
重管式熱交換器であつて、上記蓄熱槽の熱媒体を
循環させる手段が、この蒸発器のみにこの熱媒体
が循環するように配設されるとともに、上記2重
管式熱交換器と凝縮器にはそれぞれ送風用フアン
が取り付けられ、上記蓄熱槽内の熱媒体温度を検
知して上記2個の送風用フアンの動作と上記ヒー
トポンプのコンプレツサの動作とを制御する温度
探知・作動制御手段が設けられていて、上記蓄熱
槽内の熱媒体温度が設定温度以上では上記コンプ
レツサが停止して上記2重管式熱交換器の送風用
フアンのみが作動し、上記蓄熱槽内の熱媒体温度
が設定温度より下がると上記コンプレツサおよび
凝縮器の送風用フアンが作動して上記2重管式熱
交換器の送風用フアンが停止し、上記両フアンに
より温風送風される太陽熱利用暖房装置を要旨と
する。以下、図面にあらわれた実施例にもとづい
て、この考案を説明する。 第1図はこの考案にかかる太陽熱利用装置の一
例をあらわす構成図である。同図にみるように、
太陽熱を集める方は従来と同様に構成されてい
て、太陽熱を吸収して熱触媒を加熱する集熱器2
と熱媒体を蓄える蓄熱槽1とをもち、ポンプ3の
働きで熱媒体(例えば水)を蓄熱槽1→集熱器2
→蓄熱槽1と循環させ、熱媒体の温度を上げる。
この装置もヒートポンプを備えているが、このヒ
ートポンプ5において、その蒸発器を構成する熱
交換器6が放熱器を兼ねている。すなわち、この
熱交換器6は外管7と内管8からなる2重管式熱
交換器であつて、その外管7は、ポンプ4の働き
で蓄熱槽1→外管7−蓄熱槽1と循環する温熱媒
と、熱交換器6に設置されたフアン9の働きで送
られる空気の間で熱交換させて、放熱する放熱器
となり、内管8が、その内部を流れるフロン(ヒ
ートポンプの熱媒体)と上記温熱媒の間で熱交換
させて温熱媒の熱をフロンに吸収させる蒸発器と
なる。このヒートポンプに5において、熱交換器
6の内管(蒸発器)8はコンプレツサ10を介し
て凝縮器11に接続され、凝縮器11は膨張弁1
2を介して内管(蒸発器)8に接続されている。
凝縮器11はフアン13を備えている。 この装置はまた、蓄熱槽1の内部の熱媒体温度
を検知して上記2個の送風用フアン9,13とヒ
ートポンプ5を制御する温度検知・動作制御手段
14を備えている。 このような装置において、集熱器2による集熱
のみで、蓄熱槽1内の熱媒体温度が設定温度(こ
の熱媒体からの直接放熱で充分暖房等ができる温
度)以上になつているときは、フアン9が回転し
て送風を行い、温風吹出口15から温風を取り出
して暖房を行う。この時ヒートポンプ5のコンプ
レツサ10は停止しており、ヒートポンプ5は作
動しない。そのためフロンは内管8内を流れず、
この2重管式熱交換器6は放熱器としてのみ働
き、外管7の温熱媒から太陽熱を取り出すことが
出来るのである。次に、蓄熱槽1内の熱媒体が設
定温度より下がると、すなわち、蓄熱槽1の熱媒
体で直接暖房等ができない温度になると、この場
合でもポンプ3は停止せず太陽熱の採熱は続けら
れ、また、ポンプ4も停止せずにそれぞれ循環作
業を続けるが、フアン9は停止し、代わつてフア
ン13が送風を行うようになる。同時に、ヒート
ポンプ5のコンプレツサ10が作動してヒートポ
ンプ内のフロンを循環させることにより、2重管
式熱交換器6の内管8内にこのフロンが流れるよ
うになるため、この内管(蒸発器)8においてフ
ロンが温熱媒の熱を吸収し、このフロンはコンプ
レツサ10で圧縮されて高温高圧となり、凝縮器
11においてフアン13による送風との間で熱交
換し熱を放出する。そして、温められた風は温風
吹出口16から出て部屋の暖房等を行う。ここで
熱を放出して凝縮したフロンは、膨張弁12を通
ることによつて圧力が下がり、霧状フロンと気体
フロンとの混合気体となり、内管(蒸発器)8に
戻る。ここで、再び蓄熱槽1から送られてくる温
熱媒の熱を奪つて蒸発し、以後同様の動作が繰り
返される。このように、蓄熱槽内の熱媒体が設定
温度より下のときでも、蓄熱槽の温水を熱源とし
てヒートポンプ5を運転し、凝縮器11から熱を
放出して間接的に暖房等を行うことができるので
ある。 この考案にかかる太陽熱利用装置における、ポ
ンプ3,4、フアン9,13およびコンプレツサ
10の稼動状態と、使用される温風吹出口の種類
をまとめると、次の第1表のようになる。
This invention relates to a solar heat utilization device used as a heating device that utilizes solar heat. As one such solar heat utilization device, one having a configuration as shown in FIG. 2 is known. To explain its operating state, first, when the weather is good and the sunlight is strong, the pump 3 starts and pumps the heat medium (for example, water) in the heat storage tank 1 from the heat storage tank 1 → pump 3 →
By circulating from the heat collector 2 to the heat storage tank 1, solar heat collected in the heat collector 2 is stored in the heat storage tank 1 as a heating medium (hot water). This heating medium is pump 4
As a result, the heat storage tank 1 → pump 4 → radiator 17 → heat storage tank 1 circulates, and the stored solar heat is radiated by the radiator 17 installed indoors, etc., to perform heating, etc. Next, the solar radiation becomes weaker and the heat medium temperature in the heat storage tank 1 reaches a predetermined temperature (the lowest temperature that can be used for heating).
At a lower temperature, solar heat alone cannot provide heating, so the temperature controller 25 installed in the heat storage tank works to switch on the heat medium circulation pump 18 and heat pump 19.
The compressor 20 is operated. The heat medium circulation pump 18 circulates the heat medium between the condenser 21 of the heat pump 19 and the heat storage tank 1, and the heat pump 19 absorbs heat from the outside air in the evaporator (air-fluorocarbon heat exchanger) 22 and converts this heat into The heat is transferred to the heat medium from the heat storage tank 1 in the condenser (fluorocarbon-heat medium heat exchanger) 21 to raise the temperature of the heat medium. In the figure,
23 is an expansion valve, and 24 is a fan. In this way, the temperature of the heat medium in the heat storage tank is maintained by the action of the heat pump 19, and the heat is radiated by the radiator 17. In this way, conventional devices preferentially use solar heat as a heat source for heating and the like, and when the temperature of the heat medium in the heat storage tank 1 falls below a predetermined temperature, outside air is used as an auxiliary heat source. For this reason, there was a drawback that the contribution rate of solar heat to heating etc. was low. Furthermore, the heat pump 19 uses outside air as its heat source, and the outside air has a problem in that the heat medium (fluorocarbon), which has a low temperature, adheres as frost to the evaporator 22 through which it flows, reducing the performance of the heat pump. This idea was developed in view of the above-mentioned circumstances, and aims to provide a solar heat utilization device that utilizes solar heat more effectively, increases its contribution to heating, and does not reduce the performance of the heat pump due to frost formation. It is something. This will be explained below. This idea consists of a heat collector that absorbs solar heat and heats a liquid heat medium, a heat storage tank that stores this heat medium,
A means for circulating the heat medium between the heat collector and the heat storage tank, a heat pump having an evaporator and a condenser, and a means for circulating the heat medium between the evaporator of the heat pump and the heat storage tank. In the solar heating system, the heat exchanger constituting the evaporator is composed of an inner tube through which the heat medium of the heat pump passes and an outer tube through which the heat medium of the heat storage tank passes.
A double tube type heat exchanger, wherein a means for circulating the heat medium in the heat storage tank is arranged so that the heat medium circulates only in the evaporator, A blower fan is attached to each condenser, and temperature detection/operation control means detects the temperature of the heat medium in the heat storage tank and controls the operation of the two blower fans and the compressor of the heat pump. is provided, and when the temperature of the heat medium in the heat storage tank exceeds the set temperature, the compressor stops and only the blowing fan of the double pipe heat exchanger operates, and the temperature of the heat medium in the heat storage tank decreases. When the temperature drops below the set temperature, the air blowing fans of the compressor and condenser are activated, the air blowing fan of the double tube heat exchanger is stopped, and both of the fans blow warm air.Summary of the solar heating system. shall be. This invention will be explained below based on the embodiments shown in the drawings. FIG. 1 is a configuration diagram showing an example of a solar heat utilization device according to this invention. As shown in the figure,
The one that collects solar heat has the same structure as before, with a collector 2 that absorbs solar heat and heats the thermal catalyst.
and a heat storage tank 1 that stores a heat medium, and a pump 3 works to transfer the heat medium (for example, water) from the heat storage tank 1 to the heat collector 2.
→ Circulate with heat storage tank 1 to raise the temperature of the heat medium.
This device also includes a heat pump, and in this heat pump 5, the heat exchanger 6 that constitutes the evaporator also serves as a radiator. That is, this heat exchanger 6 is a double-tube heat exchanger consisting of an outer tube 7 and an inner tube 8, and the outer tube 7 is operated by the pump 4 to transfer heat storage tank 1 to outer tube 7 - heat storage tank 1. It becomes a radiator that radiates heat by exchanging heat between the circulating thermal medium and the air sent by the action of the fan 9 installed in the heat exchanger 6. This is an evaporator that exchanges heat between the heating medium (heating medium) and the heating medium and absorbs the heat of the heating medium into the fluorocarbon. In this heat pump 5, an inner pipe (evaporator) 8 of a heat exchanger 6 is connected to a condenser 11 via a compressor 10, and the condenser 11 is connected to an expansion valve 1.
2 to an inner pipe (evaporator) 8.
The condenser 11 is equipped with a fan 13. This device also includes a temperature detection/operation control means 14 that detects the temperature of the heat medium inside the heat storage tank 1 and controls the two ventilation fans 9 and 13 and the heat pump 5. In such a device, when the temperature of the heat medium in the heat storage tank 1 is higher than the set temperature (the temperature at which heating can be performed sufficiently by direct heat radiation from the heat medium) due to only heat collection by the heat collector 2, , the fan 9 rotates to blow air, and warm air is taken out from the hot air outlet 15 to perform heating. At this time, the compressor 10 of the heat pump 5 is stopped, and the heat pump 5 does not operate. Therefore, Freon does not flow inside the inner pipe 8,
This double tube heat exchanger 6 functions only as a radiator and can extract solar heat from the heating medium in the outer tube 7. Next, when the heat medium in the heat storage tank 1 falls below the set temperature, that is, when the temperature reaches a point where the heat medium in the heat storage tank 1 cannot directly perform heating, etc., the pump 3 does not stop and continues collecting solar heat even in this case. In addition, the pump 4 continues its circulation work without stopping, but the fan 9 stops and the fan 13 starts blowing air instead. At the same time, the compressor 10 of the heat pump 5 operates to circulate the freon in the heat pump, causing the freon to flow into the inner pipe 8 of the double-pipe heat exchanger 6. ) 8, the fluorocarbon absorbs the heat of the heating medium, is compressed by the compressor 10 to become high temperature and high pressure, and exchanges heat with the air blown by the fan 13 in the condenser 11 to release the heat. Then, the warmed air exits from the warm air outlet 16 and heats the room. The fluorocarbons that have released heat and condensed here have their pressure reduced by passing through the expansion valve 12, becoming a mixed gas of atomized fluorocarbons and gaseous fluorocarbons, and returning to the inner pipe (evaporator) 8. Here, the heat medium sent from the heat storage tank 1 is again deprived of heat and evaporated, and the same operation is repeated thereafter. In this way, even when the temperature of the heat medium in the heat storage tank is lower than the set temperature, the heat pump 5 can be operated using the hot water in the heat storage tank as a heat source, and heat can be released from the condenser 11 to indirectly perform heating, etc. It can be done. Table 1 below summarizes the operating states of the pumps 3, 4, fans 9, 13, and compressor 10 and the types of hot air outlets used in the solar heat utilization device according to this invention.

【表】 以上に説明したようにこの考案にかかる太陽熱
利用装置は、蓄熱槽の熱媒体の温度が低くなつた
ときでも、従来装置とは異なり、これをヒートポ
ンプの熱源として有効に利用するので、太陽熱の
採熱量が向上し、暖房に関する太陽熱全体の寄与
率が向上した。また、蓄熱槽の熱媒体の温度が低
くなり、熱媒体からの直接放熱からヒートポンプ
を介在させる放熱への切換時においても、熱媒体
の循環路が変わらないので、熱損失を伴わずに放
熱態様の切換ができ、しかも、内管8は外管7の
内側にあり、効率よく熱交換できるとともに、内
管(蒸発器)8にはあらかじめ熱媒体の熱が与え
られているので、上記切換から直ちに蒸発器の蒸
発作用を開始でき、放熱態様切換後の暖房を速や
かに開始できるようになつた。さらに、一般的に
ヒートポンプは、空気を熱源とするものより水等
の液体を熱源とするもののほうが、成績係数(コ
ンプレツサの消費電力に対する熱の取り出し量)
が高いので、この考案によればヒートポンプの成
績係数をも向上させることができる。また温水を
熱源に利用し、外気を熱源とする必要がないの
で、霜付によるヒートポンプの性能低下も生じな
い。このように太陽熱の寄与率が高く、ヒートポ
ンプも高性能で用いることができるので、極めて
運転費の低いものとなつた。
[Table] As explained above, even when the temperature of the heat medium in the heat storage tank becomes low, the solar heat utilization device according to this invention effectively uses it as a heat source for the heat pump, unlike conventional devices. The amount of solar heat extracted has improved, and the overall contribution rate of solar heat to heating has improved. In addition, even when the temperature of the heat medium in the heat storage tank becomes low and there is a switch from direct heat radiation from the heat medium to heat radiation using a heat pump, the circulation path of the heat medium does not change, so the heat radiation mode is maintained without heat loss. In addition, since the inner tube 8 is located inside the outer tube 7, heat can be exchanged efficiently, and the inner tube (evaporator) 8 is already given heat from the heat medium, so the above switching is possible. The evaporation action of the evaporator can be started immediately, and heating can now be started immediately after switching the heat radiation mode. Furthermore, in general, heat pumps that use liquid such as water as a heat source are better than those that use air as a heat source.
Since the coefficient of performance of the heat pump is high, this invention can also improve the coefficient of performance of the heat pump. Furthermore, since hot water is used as a heat source and there is no need to use outside air as a heat source, there is no reduction in heat pump performance due to frost formation. In this way, the contribution rate of solar heat is high and the heat pump can be used with high performance, resulting in extremely low operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例をあらわす構成図、
第2図は従来例の構成図である。 1……蓄熱槽、2……集熱器、3……ポンプ、
4……ポンプ、5……ヒートポンプ、6……2重
管式熱交換器、7……外管、8……内管(蒸発
器)、9……フアン、10……コンプレツサ、1
1……凝縮器、12……膨張弁、13……フア
ン、14……温度検知・動作制御手段、15……
温風吹出口、16……温風吹出口。
Figure 1 is a configuration diagram showing an embodiment of this invention.
FIG. 2 is a configuration diagram of a conventional example. 1... Heat storage tank, 2... Heat collector, 3... Pump,
4... Pump, 5... Heat pump, 6... Double tube heat exchanger, 7... Outer tube, 8... Inner tube (evaporator), 9... Fan, 10... Compressor, 1
1... Condenser, 12... Expansion valve, 13... Fan, 14... Temperature detection/operation control means, 15...
Warm air outlet, 16... Warm air outlet.

Claims (1)

Translated fromJapanese
【実用新案登録請求の範囲】[Scope of utility model registration request] 太陽熱を吸収して液体状の熱媒体を加熱する集
熱器、この熱媒体を蓄える蓄熱槽、上記集熱器と
この蓄熱槽の間で上記熱媒体を循環させる手段、
蒸発器と凝縮器とを有するヒートポンプ、このヒ
ートポンプの蒸発器と上記蓄熱槽の間で熱媒体を
循環させる手段とを備えた太陽熱利用暖房装置に
おいて、上記蒸発器を構成する熱交換器が、上記
ヒートポンプの熱媒体が通る内管と上記蓄熱槽の
熱媒体が通る外管とで構成される2重管式熱交換
器であつて、上記蓄熱槽の熱媒体を循環させる手
段が、この蒸発器のみにこの熱媒体が循環するよ
うに配設されるとともに、上記2重管式熱交換器
と凝縮器にはそれぞれ送風用フアンが取り付けら
れ、上記蓄熱槽内の熱媒体温度を検知して上記2
個の送風用フアンの動作と上記ヒートポンプのコ
ンプレツサの動作とを制御する温度探知・動作制
御手段が設けられていて、上記蓄熱槽内の熱媒体
温度が設定温度以上では上記コンプレツサが停止
して上記2重管式熱交換器の送風用フアンのみが
作動し、上記蓄熱槽内の熱媒体温度が設定温度よ
り下がると上記コンプレツサおよび凝縮器の送風
用フアンが作動して上記2重管式熱交換器の送風
用フアンが停止し、上記両フアンにより温風送風
される太陽熱利用暖房装置。
A heat collector that absorbs solar heat to heat a liquid heat medium, a heat storage tank that stores this heat medium, a means for circulating the heat medium between the heat collector and this heat storage tank,
In a solar heating system comprising a heat pump having an evaporator and a condenser, and a means for circulating a heat medium between the evaporator of the heat pump and the heat storage tank, the heat exchanger constituting the evaporator is configured as described above. It is a double-pipe heat exchanger consisting of an inner tube through which the heat medium of the heat pump passes and an outer tube through which the heat medium of the heat storage tank passes, and the means for circulating the heat medium of the heat storage tank is the evaporator. The double-pipe heat exchanger and condenser are each equipped with a blowing fan to detect the temperature of the heat medium in the heat storage tank and to circulate the heat medium in the heat storage tank. 2
Temperature detection/operation control means is provided to control the operation of the air blowing fans and the compressor of the heat pump, and when the temperature of the heat medium in the heat storage tank exceeds a set temperature, the compressor stops and Only the blowing fan of the double-pipe heat exchanger operates, and when the temperature of the heat medium in the heat storage tank falls below the set temperature, the blowing fans of the compressor and condenser operate, causing the double-pipe heat exchanger to operate. A solar heating system in which the fan for blowing air in the container stops and hot air is blown by both of the fans.
JP1981087285U1981-06-121981-06-12ExpiredJPS6110134Y2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP1981087285UJPS6110134Y2 (en)1981-06-121981-06-12

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP1981087285UJPS6110134Y2 (en)1981-06-121981-06-12

Publications (2)

Publication NumberPublication Date
JPS57198547U JPS57198547U (en)1982-12-16
JPS6110134Y2true JPS6110134Y2 (en)1986-04-01

Family

ID=29882496

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP1981087285UExpiredJPS6110134Y2 (en)1981-06-121981-06-12

Country Status (1)

CountryLink
JP (1)JPS6110134Y2 (en)

Also Published As

Publication numberPublication date
JPS57198547U (en)1982-12-16

Similar Documents

PublicationPublication DateTitle
US3916638A (en)Air conditioning system
JPS6155018B2 (en)
KR100367176B1 (en)Heat pump type air conditioning apparatus
JPS6110134Y2 (en)
JPS5986846A (en)Hot water supply device of heat pump type
JPH09222244A (en) Humidity control air conditioner
JPS6255063B2 (en)
JPS6118374Y2 (en)
JPS6145144B2 (en)
JP2844124B2 (en) Heat pump type heating equipment using antifreeze
JPS6317970Y2 (en)
JP3466866B2 (en) Absorption air conditioner
JPS608570Y2 (en) Solar heat pump equipment
JPS6214533Y2 (en)
JPH0367966U (en)
JPS61167429A (en)Regenerating method of liquid moisture-absorbent in air-conditioning equipment
JPH0410525Y2 (en)
JPS5878056A (en) Heating device for heating and cooling
JPH0347172Y2 (en)
JPS6030651Y2 (en) Air source heat pump equipment
JP2691423B2 (en) Engine driven heat pump air conditioner
JP3030826U (en) Air conditioner hot water supply device
JPS5835954Y2 (en) Solar heating air conditioner
JPH0252790B2 (en)
JPS60569Y2 (en) Air conditioning equipment

[8]ページ先頭

©2009-2025 Movatter.jp