【発明の詳細な説明】(本発明の属する技術分野)本発明は、地中に%を貯蔵する方法の改良に関し、更に
詳しくは、パイプ状体を地中に積台。DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the present invention pertains) The present invention relates to an improvement in a method for storing molten metal underground, and more particularly, to a method for storing pipe-shaped bodies underground.
し、このパイプ状体を経由して太陽熱を吸収した冷媒を
利用して地中に熱を移送してここに蓄熱したり、また地
中の蓄熱を冷媒を利用して地上に移送してこれをタ1シ
源として利用するように構成した地中δけj%方力法提
供するものである。Then, using a refrigerant that absorbs solar heat via this pipe-shaped body, heat can be transferred underground and stored here, or the heat stored underground can be transferred to the ground using a refrigerant. The present invention provides an underground δ-kej% method configured to use δ as a source of energy.
(従来技術)従来、ヒートパイプを地面に垂直に据付け、このヒート
パイプの上部を蒸発部、下部を凝縮部として使用する方
法が提案されている。しかし、このヒートパイプを使用
する方法は、ヒートパイプ自体の能力の関係から冷媒の
凝縮液を蒸発部に持上げる凸さに制限を受り、熱の貯蔵
能力を大きくすることが困難であった。(Prior Art) Conventionally, a method has been proposed in which a heat pipe is installed vertically on the ground, and the upper part of the heat pipe is used as an evaporating part and the lower part is used as a condensing part. However, this method of using heat pipes is limited by the convexity of lifting the refrigerant condensate to the evaporator due to the capacity of the heat pipe itself, making it difficult to increase the heat storage capacity. .
即ぢ、ヒートパイプは毛細管現象を利用して冷媒の凝縮
液を凝縮部より蒸発部に移送しているのでこの毛細管現
象による移送距離が限定される欠点がある。例えば、ヒ
ートパイプを横方向に据イ1げて使用する際には凝縮部
と蒸発部との間にかなりの距811を与えることが可能
であるが、このヒーI・パイプが植立した状態であると
重力の関係から62細液を移送する距離が制限を受ける
ことになる。That is, since the heat pipe transfers the refrigerant condensate from the condensing section to the evaporating section using capillary phenomenon, there is a drawback that the transfer distance due to this capillary phenomenon is limited. For example, when using a heat pipe horizontally, it is possible to provide a considerable distance 811 between the condensing section and the evaporating section, but when the heat pipe is installed vertically, In this case, the distance over which the 62 thin liquid can be transferred is limited due to gravity.
例えば、夏期に太陽熱を集熱して地中に蓄熱し、冬期に
前記地中に蓄熱された熱を順次取り出して暖房等に利用
する際には、地中の(1だい場所にまで熱を移送して蓄
熱する必要がある。IIIJち、蓄熱をする場所が浅い
と冬期におい−ご放熱が多く、蓄熱の効果が薄れる欠点
があり、これを避けるために蓄熱の個所はなるべく深い
位置であることが必要である。このような要求に対して
は、従来のヒートパイプを利用した蓄熱方法は前記の理
由により充分に液体(冷媒)を移送する能力を有してお
らず、結局地中に大量のタノシを使用し易い状態で蓄熱
することは困ケ1(であ(本発明の目的1発明の概要)本発明は、前記ヒートパイプを使用してMj 多JJ!
する場合の問題点を解消することを目的とするものであ
って、この目的を達成するための本発明の構成は、太陽
熱を望熱して地中に植立したパイプ状体中の冷媒に伝熱
する工程と、前記パイプ状体中の冷媒を地中に放熱する
ことによっイブ状体中の液状の冷媒を気化さ−け、この
気化した冷媒を凝縮器によって凝縮させることによって
地中の熱を取り出す工程と、この熱を加熱手段としC使
用する工程とがらなり、前記冷媒の管路中に圧縮機を介
在させて冷媒を加圧するように構成したことを特徴と1
−る地中蓄熱方法である。For example, in the summer, when solar heat is collected and stored underground, and in the winter, the heat stored in the ground is sequentially extracted and used for heating, etc., the heat is transferred to (one location) underground. If the heat storage area is shallow, there will be a lot of heat radiated in the winter and the heat storage effect will be weakened.To avoid this, the heat storage area should be located as deep as possible. To meet these demands, conventional heat storage methods using heat pipes do not have the ability to sufficiently transfer liquid (refrigerant) for the reasons mentioned above, and as a result, a large amount of liquid (refrigerant) is deposited underground. It is difficult to store heat in an easy-to-use state using heat pipes.
The purpose of the present invention is to solve the problems in the case where solar heat is desired and transmitted to a refrigerant in a pipe-shaped body planted underground. The liquid refrigerant in the tube-shaped body is vaporized by heating the refrigerant in the pipe-shaped body and radiating heat into the ground, and the vaporized refrigerant is condensed by a condenser to form a gas underground. The method is characterized in that the step of extracting heat and the step of using this heat as heating means are separated, and the refrigerant is pressurized by interposing a compressor in the refrigerant conduit.
- This is an underground heat storage method.
(本発明を実施する装置の1例)本発明を実施するための装置は、蓄熱部と集熱部と放熱
部より成り、前記蓄熱部はパイプ状体を地中に深く植立
しており、前記集熱部と放熱部との間に91路を形成し
、この管路と前記パイプ状体の1ノ旧115に挿入され
た液送管との間に管路が形成されてよタリ、この管路中
に冷媒を圧縮する圧縮機が設りられていることを特徴と
する地中M熱装置である。(An example of a device for carrying out the present invention) A device for carrying out the present invention is composed of a heat storage section, a heat collection section, and a heat radiation section, and the heat storage section is a pipe-shaped body that is planted deep in the ground. , a 91 path is formed between the heat collecting part and the heat radiating part, and a duct is formed between this duct and a liquid feed pipe inserted into the first part 115 of the pipe-shaped body. This is an underground M heating device characterized in that a compressor for compressing a refrigerant is installed in this pipe.
(実施例)次に図面を8照して本発明の詳細な説明する。(Example)Next, the present invention will be explained in detail with reference to the drawings.
図は本発明に係る地中蓄熱方法を実施する装置の概要を
示す図であって、地中1に設置3られた蓄熱部Aと、太
陽光を充分に受&Jることができる集熱部Bと、放熱部
Cより構成されている。The figure is a diagram showing an outline of a device implementing the underground heat storage method according to the present invention, and shows a heat storage section A installed underground 1 and a heat collection section that can receive sufficient sunlight. B, and a heat dissipation part C.
前記蓄熱部Aは、地中1深く植立したパイプ状体2が設
けられ、このパイプ状体2の内部の一部には断熱N3が
設けられ、更に液状の冷媒を移送するための液送管4が
このパイプ状体2の底部に開口して設けられている。こ
の液送管4は地上において膨張弁5を経由して蒸発器6
に接続され、この蒸発器6中の熱交換器6Aは太陽熱集
熱器7とポンプ8によって熱媒体の循環経路を構成して
いる。The heat storage part A is provided with a pipe-shaped body 2 planted deep underground, a part of the inside of this pipe-shaped body 2 is provided with a heat insulation N3, and a liquid feeder for transferring liquid refrigerant. A tube 4 is provided to open at the bottom of the pipe-like body 2. This liquid feed pipe 4 is connected to an evaporator 6 via an expansion valve 5 on the ground.
The heat exchanger 6A in the evaporator 6 constitutes a heat medium circulation path by the solar heat collector 7 and the pump 8.
前記蒸発器6は弁9を経由して圧縮機IOに接続され、
この圧縮機10の吐出側は弁11を経由してパイプ状体
2の上端部、即ぢ蒸発皿2Aと接続されている。また、
この蒸発部2八は弁12を経由して前記圧縮機10に接
続されている。The evaporator 6 is connected to the compressor IO via a valve 9,
The discharge side of the compressor 10 is connected via a valve 11 to the upper end of the pipe-like body 2, namely to the evaporation plate 2A. Also,
This evaporator 28 is connected to the compressor 10 via a valve 12.
更に前記圧縮機10の吐出側には弁15を経由して凝縮
器16が接続され、この凝縮器16中の熱交換器!6A
は熱の利用個所である家屋20内に設けられた放熱器2
1及びポンプ22で経路を構成しいてる。Furthermore, a condenser 16 is connected to the discharge side of the compressor 10 via a valve 15, and a heat exchanger in this condenser 16! 6A
is a heat radiator 2 installed in a house 20 where heat is used.
1 and pump 22 constitute a path.
本発明において重要な点は、地中1深くパイプ状体2を
植立し、このパイプ状体2の内部に液送管4を設け、こ
の液送管4の経路中に蒸発器6と圧縮機10と凝縮器1
6からなる冷媒の循環経路を構成した点にある。An important point in the present invention is that a pipe-shaped body 2 is planted deep underground, a liquid feed pipe 4 is provided inside this pipe-like body 2, and an evaporator 6 and a compressor are installed in the path of this liquid feed pipe 4. machine 10 and condenser 1
The point is that the refrigerant circulation path consists of 6 parts.
即ち、パイプ状体2を含む経路中の冷媒を介して地中1
に太陽熱を蓄熱し、また地中1の熱を冷媒を介してこの
熱の利用個所に移送する管路を構成し、更に冷媒を圧縮
1alQによって加圧することによってパイプ状体2の
長さに関係な(このパイプ状体2中に溜った冷媒2Bを
送液するようにしたことを特徴とするものである。That is, through the refrigerant in the path including the pipe-shaped body 2,
A conduit is configured to store solar heat in the underground 1, and to transfer the heat from the underground 1 to a place where this heat is used via a refrigerant, and the refrigerant is further pressurized by compression 1alQ, so that the length of the pipe-shaped body 2 is changed. (It is characterized in that the refrigerant 2B accumulated in this pipe-shaped body 2 is sent.
次に前記装置の作動状態を説明する。Next, the operating state of the device will be explained.
(地中への落ζ;ハ状態)まづN熱状態においては、弁15と17及び12を閉止
した状態にしておき、集熱部Bを構成する太陽熱集熱器
7より太陽光の熱を集熱して冷媒を力(げ尋シし、この
冷媒を配管7八、ポンプ8を経由して加圧して蒸発器6
中の熱交換器6Aに供給し、この蒸発器6の冷媒を加熱
する。(Falling into the ground ζ; C state) First, in the N heat state, the valves 15, 17, and 12 are kept closed, and the heat of sunlight is collected from the solar heat collector 7 constituting the heat collecting part B. The heat is collected and the refrigerant is compressed, and this refrigerant is pressurized via piping 78 and pump 8, and then sent to evaporator 6.
The refrigerant in the evaporator 6 is heated.
一方、蓄熱部へを構成し、地中に深く埋め込まれたパイ
プ状体2の内部には冷媒213が封入°されており、こ
の液状の冷媒2Bは液送上4と膨張弁5を経由して蒸発
器6中に供給されるので、この膨張弁5を制御すること
によって蒸発器6において太陽熱を受けて前記冷媒2B
は蒸発して蒸気となる。On the other hand, a refrigerant 213 is sealed inside a pipe-shaped body 2 that is deeply buried in the ground and constitutes a heat storage section, and this liquid refrigerant 2B is passed through a liquid supply 4 and an expansion valve 5. By controlling this expansion valve 5, the refrigerant 2B receives solar heat in the evaporator 6 and is supplied to the evaporator 6.
evaporates into steam.
蒸発した冷媒2Bは弁9を経由して圧縮機10によって
加圧されて弁11を経由し°(パイプ状体2中に供給さ
れる。このパイプ状体2 LJ:地中に深く植立されて
いるので、その底55B biかなり低い温度に保持さ
れている。従って、パイプ状体2の中に供給された冷媒
2Bは液体となってパイプ状体2の底部に溜る。The evaporated refrigerant 2B is pressurized by the compressor 10 via the valve 9 and supplied into the pipe-shaped body 2 via the valve 11. Therefore, the temperature of the bottom 55B is maintained at a fairly low temperature.Therefore, the refrigerant 2B supplied into the pipe-shaped body 2 becomes a liquid and accumulates at the bottom of the pipe-shaped body 2.
以上説明したように、集熱部Bにおいて太陽熱集熱器7
より集熱された太陽熱は、冷媒2Bにようで加圧されて
パイプ状体2中において地中1に放熱されて液状となる
。その間に冷媒2Bは地中1に放熱し、地中1において
は、この熱を蓄熱することができるのである。As explained above, in the heat collecting part B, the solar heat collector 7
The more concentrated solar heat is pressurized by the refrigerant 2B, and is radiated into the underground 1 in the pipe-shaped body 2, where it becomes liquid. During this time, the refrigerant 2B radiates heat into the underground 1, and this heat can be stored in the underground 1.
(放熱状態)次に冬期において、前記のようにして地中1に蓄熱して
よりいた熱量を使用する状態を説明する。(Heat dissipation state) Next, a state in which the amount of heat stored in the underground 1 as described above is used in winter will be described.
まづ、弁5と弁9.11を閉止し、弁15と膨張弁17
を開口して蒸発器6側を冷媒2Bが通過しないようにす
る。First, close valve 5 and valve 9.11, and close valve 15 and expansion valve 17.
is opened to prevent the refrigerant 2B from passing through the evaporator 6 side.
一方、凝縮器)6の前後に設けられている弁15と膨張
弁17を操作して凝縮器16を通過する冷媒2)3の損
を制御する。この冷媒2Bの量は、家屋20中の放熱器
21の放熱量に関係して制御される。On the other hand, the loss of the refrigerant 2) 3 passing through the condenser 16 is controlled by operating the valve 15 and expansion valve 17 provided before and after the condenser 16. The amount of this refrigerant 2B is controlled in relation to the amount of heat radiated by the radiator 21 in the house 20.
冬期においてはパイプ状体2中の圧力を制御することに
よってこのパイプ状体2中の冷媒2Bを蒸発させ、弁1
2.圧縮機10.弁15を経由して凝縮機16に供給し
、この中において凝縮させる。In winter, the refrigerant 2B in the pipe-like body 2 is evaporated by controlling the pressure in the pipe-like body 2, and the valve 1
2. Compressor 10. It is fed via a valve 15 to a condenser 16 where it is condensed.
地中1に植立したパイプ状体2の内部において蒸発した
冷媒2Bの蒸気は、圧縮機IOによって加圧されて凝縮
器16中に供給され、この内部に設けである熱交換器1
6Aに放熱して凝縮する。The vapor of the refrigerant 2B evaporated inside the pipe-shaped body 2 planted underground 1 is pressurized by the compressor IO and supplied to the condenser 16, and the heat exchanger 1 provided inside the condenser 16 is supplied to the condenser 16.
Heat is radiated to 6A and condensed.
この冷媒2Bの凝縮量は、放熱器21の放熱量に関係す
るが、冷媒2Bの流量は膨張弁17によって制御される
。The amount of condensation of the refrigerant 2B is related to the amount of heat released by the radiator 21, but the flow rate of the refrigerant 2B is controlled by the expansion valve 17.
以上説明したように、本発明の実施例によれば、夏期に
おいて一集熟部Bより太陽熱を集熱して蒸発″/:I6
において冷媒を加熱し、この冷媒を圧縮機10によって
加圧してパイプ状体2に供給することによってM熱部A
を経由して地中1に蓄熱される。As explained above, according to the embodiment of the present invention, solar heat is collected and evaporated from the concentrated part B in the summer.
M heating section A
The heat is stored underground 1 via .
また、冬期においては、冷媒の圧力を制御することによ
って前記蓄熱部へのチ;ハを利用して冷媒2Bを蒸発さ
せ、この冷媒2Bの范気を利用して凝縮器16において
放熱部Cに熱を与えて家屋20等の加熱あるいは温調を
必要とする部分を加熱するのである。In addition, in the winter, by controlling the pressure of the refrigerant, the refrigerant 2B is evaporated by utilizing the flow to the heat storage section, and the steam of the refrigerant 2B is used to flow to the heat radiation section C in the condenser 16. Heat is applied to heat parts of the house 20 or the like that require heating or temperature control.
従来の装置の場合には、ヒートパイプの毛細管現象を利
用して冷媒を送液をしている関係上、このヒートパイ・
プの長さに制限を受けたが、本発明においては圧縮機1
0を使用してパイプ状体2の底部に溜った液状の冷媒2
Bを送液するので、かかる制限は存在しない。In the case of conventional equipment, the refrigerant is transferred using the capillary phenomenon of the heat pipe,
However, in the present invention, the length of the compressor 1 is limited.
Liquid refrigerant 2 accumulated at the bottom of the pipe-shaped body 2 using
Since B is delivered, such a restriction does not exist.
即ぢ、パイプ状体2は、圧縮機10と接続されているた
めに冷媒2Bを任意に圧力に調節することが可能であり
、この圧力を調節することによってパイプ状体2中の液
状の冷媒をいかなる場所にも送l&することが可能とな
るので、前記のようなパイプ状体2の長さに制限を受益
ノることが殆どなくなる。That is, since the pipe-shaped body 2 is connected to the compressor 10, it is possible to adjust the pressure of the refrigerant 2B arbitrarily, and by adjusting this pressure, the liquid refrigerant in the pipe-shaped body 2 Since it becomes possible to send l& to any location, there is hardly any restriction on the length of the pipe-like body 2 as described above.
従って、パイプ状体2の長さを任意の長さに選定するこ
とが可能となり、地中1深く太陽熱を移送し、この部分
においてM熱することができるのである。Therefore, it is possible to select the length of the pipe-shaped body 2 to be any desired length, and solar heat can be transferred deep into the earth to generate M heat in this part.
周知のように、地中の深い部分においては、年中温度が
一定であるので、この関係を利用して夏期中に充分に蓄
熱し、冬期において、二の地中の熱量をパイプ状体2を
含む管路中の冷媒を介して適宜利用することが可能とな
る。As is well known, in the deep part of the earth, the temperature is constant throughout the year, so by utilizing this relationship, sufficient heat is stored during the summer, and in the winter, the amount of heat underground is transferred to the pipe-shaped body 2. It becomes possible to utilize the refrigerant as appropriate through the refrigerant in the pipe line containing the refrigerant.
本発明は以上のように伝熱媒体の経路に圧縮機を介在さ
せることにより蓄熱時においては集熱温度より高温での
蓄熱を可能にし、また放熱時では、地中からの集熱温度
より高い’lAL度での熱利用を可能にすることができ
るのである。As described above, the present invention enables heat storage at a temperature higher than the heat collection temperature during heat storage by interposing the compressor in the path of the heat transfer medium, and also enables heat storage at a temperature higher than the heat collection temperature from underground during heat dissipation. This makes it possible to utilize heat at 1AL degree.
図は本発明を実施するための装置の−+!il+を示す
概略図である。A・・・蓄熱部、B・・・集熱部、C・・・放熱部、■
・・・地中、2・・・パイプ状体、2人・・・蒸発部、
2B・・・冷媒、4・・・液送管、5・・・膨張弁、6
・・・蒸発器、7・・・太陽集熱器、8・・・ポンプ、
9・・・弁、10・・・圧縮機、11・・・弁、12・
・・弁、15・・・弁、16・・・凝縮器、20・・・
家屋、21・・・放熱器、22・・・ポンプ。The figure shows an apparatus for carrying out the present invention. It is a schematic diagram showing il+. A... Heat storage part, B... Heat collection part, C... Heat radiation part, ■
...underground, 2...pipe-shaped body, 2 people...evaporation part,
2B... Refrigerant, 4... Liquid feed pipe, 5... Expansion valve, 6
... Evaporator, 7... Solar collector, 8... Pump,
9...Valve, 10...Compressor, 11...Valve, 12.
... Valve, 15... Valve, 16... Condenser, 20...
House, 21...Radiator, 22...Pump.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58168261AJPS6060457A (en) | 1983-09-14 | 1983-09-14 | Method of underground heat storage |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58168261AJPS6060457A (en) | 1983-09-14 | 1983-09-14 | Method of underground heat storage |
| Publication Number | Publication Date |
|---|---|
| JPS6060457Atrue JPS6060457A (en) | 1985-04-08 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP58168261APendingJPS6060457A (en) | 1983-09-14 | 1983-09-14 | Method of underground heat storage |
| Country | Link |
|---|---|
| JP (1) | JPS6060457A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5054297A (en)* | 1989-09-22 | 1991-10-08 | Kabushiki Kaisha Toshiba | Cold storage system |
| CN1330911C (en)* | 2003-09-27 | 2007-08-08 | 北京北控恒有源科技发展有限公司 | Solar heating system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5749758A (en)* | 1980-09-10 | 1982-03-23 | Hitachi Ltd | Heat accumulating apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5749758A (en)* | 1980-09-10 | 1982-03-23 | Hitachi Ltd | Heat accumulating apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5054297A (en)* | 1989-09-22 | 1991-10-08 | Kabushiki Kaisha Toshiba | Cold storage system |
| CN1330911C (en)* | 2003-09-27 | 2007-08-08 | 北京北控恒有源科技发展有限公司 | Solar heating system |
| Publication | Publication Date | Title |
|---|---|---|
| US2860493A (en) | Heat-pump apparatus for providing heat for domestic and like purposes | |
| CN100386587C (en) | Pumpless self-circulation non-vacuum split gravity heat pipe | |
| US4327555A (en) | Solar air conditioning system | |
| US4186794A (en) | Method and system for storing and extracting low-temperature heat energy | |
| JP2019534442A (en) | Sub-atmospheric heating and cooling system | |
| CN108825289B (en) | Mine waste heat cascade utilization integrated system | |
| CN101769654B (en) | Heating system for compression heat pump and heating method thereof | |
| US2138688A (en) | Method and apparatus for the production of cold | |
| JPS6060457A (en) | Method of underground heat storage | |
| JPS5944487B2 (en) | Method and device for generating heat for remote heating using thermal power plant equipment | |
| CN110160116A (en) | A kind of mine heat energy utilization system and heat supply method | |
| JPH01269862A (en) | Geotherm exchanger | |
| EP1004001A1 (en) | Sorption trap arrangement and method for storing heat | |
| JP2562484Y2 (en) | Snow melting system using geothermal | |
| AU770892B2 (en) | Water heater with vapour phase downward heat transfer | |
| CN205316740U (en) | Solar thermal collector | |
| CN221924719U (en) | Multistage cold and hot double-storage energy storage system based on condensation water day-night temperature difference | |
| JPS5980600A (en) | Nitrogen gas filling device | |
| JPS60259A (en) | Solar heat collecting device | |
| JP2639581B2 (en) | Heat pipe type steam generator | |
| JPS5921573B2 (en) | greenhouse heating device | |
| CN106642683A (en) | Air source-solar energy double-heat source heat pump hot-water system | |
| KR100355531B1 (en) | An Apparatus for Heating Water by Using of the Cooling Cycle | |
| JPS5971985A (en) | Heat transporting apparatus | |
| JPS58110951A (en) | water heater |